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INTRODUCTION

An instability of partially ionized gases subject to an electric field
perpendicular to a strong magnetic field has recently been discovered by
Simon1 and by Hoh.2 This mechanism seems to explain satisfactorily the
low-frequency osciilations and anomalous transport of plasma across a
magnetic field cbserved by the author and his co-workers in hot-cathode
discharges. These results will be reported in another paper. Similar
low-frequency fluctuations are found also in fully ionized gases suffering
from anomalous diffusion, such as in a stellarator; and it is the purpose
of this paper to irnvestigate whether or not a similar mechanism of insta-
bility may be operative in the absence of neutral atoms.

The physical reason for the instability is most easily explained with
reference to the case of partial ionization. Imagine a cylindrical, iso-
thermal plasma column, as shown in Fig. 1, immersed in a constant and
uniform magnetic field B and subject to a zero-crder electric field EO
and density gradient Vno » both directed toward the axis. This choice of
sign is normal for VnO , but it is normal for Eo only if an external poten-
tial is applied, as in a reflex discharge, or in a magnetic field strong
encugh that the ions diffuse across B faster than the electrons. In the ab-
sence of collisions, both ions and electrons would drift with a velocity vy
in the @-direction because of Eoo In additior, the ions and electrons have
a drift in opposite directions due to the pressure gradient. This produces
an azimuthal current such that ix E) = an As is well known, this differ-
ential driit cannot cause an instability because it is always perpendicular

to the density gradient.
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If now we admit collisions with neutral atoms, the drift due to E
is modified in two ways. There is first a drift in the direction of E of
magnitude v“ = ;.LLE , Where B, is the perpendicular mobility coefficient
and is of opposite sign for the two species. Secondly, there is a decrease
in vo because of the collisions; this decrease is usually larger for ions
than for electrons, and therefore a relative drift occurs between the two
species. Both effects tend to create a charge separation, and the first ef-
fect, VFL’ is approximately wc'r times larger than the second, Avo ,
where wc is the ion gyrofrequency and 7 the ion-neutral collision time.

We assume that the zero-order conditions are maintained by appro-
priate sources and inquire what will happen to a density perturbation. It
is easy to convince oneself that an axially symmetric perturbation will
cause a charge separation but no instability. If a perturbation in the §-
direction occurs, however, the differential drift Avo will cause a charge
separation, as shown in Fig. 1. An azimuthal electric field E1 then grows
until the drift p E; is just sufficient to stop the separation of charge. The

however, is to produce a radial drift v. in the

secondary effect of E )

1’
same direction for both species. If the zero-order density gradient is in
the direction shown, this radial drift brings a region of higher density into
a region where the density perturbation is already positive, and vice versa;
and hence the perturbation grows until the zero-order gradient is destroyed.
The growth rate is of course damped by collisional diffusion both across B

and along B, if the wavelength in the direction of B is finite. Near the

threshold of instability, one might expect to observe discrete frequencies
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at harmonics of the rotation frequency. Well above the threshold, one
would expect the plasma to break up into a distribution of eddies of differ-
ent sizes, with lifetimes determined by the rates of classical diffusion.
An enhanced transport of particles across B then results from the fluctu-
ating azimuthal electric fields; or, to put it another way, the instability
makes a large density gradient impossible in the interior of the plasma,
and hence there must be a large gradient at the edge, so that classical dif-
fusion can remove the particles at a fast rate.

This mechanism differs from the helical instability of Kadomtsev
and Nedospasov3 in two main respects. First, the value of (.UCT must be
finite here but may be zero in the case of Ref. 3. Second, in the latter
case, an azimuthal charge separation is caused by the longitudinal dis-
placement of a helix; here, the charge separation is caused by a differ-
ential rotation, and hence no helix and no currents or gradients in the B
direction are necessary.

We wish to point out several interesting features of the mechanism
described qualitatively above. First, since a finite wavelength along B
adds to the damping, those perturbations with very long parallel wave-
lengths will grow fastest. This is in agreement with measurements both
in a reflex discharge4 and in a stellarator.5 Furthermore, if the diffusion
process can be described in terms of random walks,6 the selection of long
parallel wavelengths automatically ensures that electrons and ions diffuse
out at the same rate, since the streaming of electrons along the field can-

not, in this case, change their rate of random walking. Second, since



-4 -
the frequencies depend on the rate of diffusion and the speed of rotation,
they would be expected to lie in a low-frequency band not related to wpi
or wci' Since high frequencies are associated with small eddies, which
are more easily damped by diffusion, the frequency spectrum would be
expected to decrease with frequency. This is in qualitative agreement
with the observations.4’ > These measurements of parallel wavelength
and frequency would seem to eliminate ion waves propagating along B
as a possible cause of the electrostatic fluctuations. Third, this insta-
bility is found from a parabolic differential equation, not a wave equa-
tion, and hence does not involve the synchronism between particles and
waves. As a consequence, a nonlinear limit to the amplitude of the fluc-
tu ations, of the type considered by Drummond and Pines,7 does not ap-
ply. Finally, perhaps the most interesting aspect of this mechanism is
the correlation between the density fluctuations and the velocity v

1

(Fig. 1). This correlation is such that vy is always outward where the
density is above average and inward where the density is below average.
Anomalous transport can therefore result from coherent, as well as ran-
dom, fluctuations. In the analysis of Spitzer,6 no account was taken of

the possible relation between the fluctuating electric field and the positions
of the particles creating this field; with this mechanism, it is possible to
take this correlation into account. This type of turbulence can be illus-
trated by the example of a block of ice suspended above a hot radiator in
such a way that the average velocity of the air between them is zero. Yet

there is a net transport of heat upwards because of the correlation between

the heat content of an eddy and its direction of motion.



FUNDAMENTAL EQUATIONS

We now inquire whether a similar mechanism of instability can
occur in a fully ionized gas. It is clear from the physical picture that
what is needed is a difference of drift velocity between ions and electrons
rotating under a radial electric field. In the absence of collisions with
neutrals, there are two effects which may cause such a differential rota-
tion: the viscosity and the centrifugal force. The latter has the added
attraction that it is always in the same direction regardless of the direc-
tion of the electric field, and this direction is the proper one to produce
the instability. In addition, a differential drift can occur because of
gradients in B. This has been studied extensively by other authors and
will not be considered here.

We shall employ the macroscopic equation of motion for the (singly

charged) ion and electron fluids and the equations of continuity, as follows:

ne(E + v. X B) — Vp. = Mnv,* Vv, + V. (1)
- i - - e T B

-ne(E + v _XB)-Vp_=0 (2)

on

e + y-(nxi) =0 (3)

91 Veav ) = 0 (4)

at - e

Here m is the ion viscosity tensor given, for instance, by Bernstein and
8

Trehan.” The two terms on the right of Eq. 1 represent the effects of cen-

trifugal force and viscosity, which are normally neglected. We have ne-

glected the corresponding effects for the electrons, because of their small
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mass, and have assumed the density to be so small that B is constant and
uniform and that the frequency is so small that a) quasi-neutrality obtains,
b) Poisson's equation need not be used, and c) the inertia terms can be ne-
glected. We now further assume that the fluctuations are electrostatic and
the temperature uniform, so that E= -V¢ and Epi’ = KTi,eZn.

e

We then assume an essentially azimuthal perturbation of the form

n = vno(r) exp i(mf — wt) (5)

(Z)l = 6 exp i(mf - wt) , (6)

where v is a real constant and —d; a complex one. We have thus assumed
that n has the same radial dependence as n, (which cannot be true near
the axis) and that the radial dependence of 6 can be neglected; these ap-
proximations should not be serious. Eqgs. 1-4 are then linearized about
an axially symmetric equilibrium and combined in the usual fashion so

that Egs. 3 and 4 form two equations for v and ¢ whose determinant

gives the value of W when set equal to 0.

VISCOSITY ALONE

We first consider the case in which the veVv term may be neglected.
For simplicity we confine the discussion to a plane geometry in which all
zero-order gradients are in the x direction, with B in the z direction. If

a = wc'r is much larger than 1, the zero-order viscosity term is approxi-

(o) 1 ), 1 (N . 1 (o) 2 (o ..
AvA = - —_— — - _— P — 7
T L L FE L I
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1

where | = 3 nKTi'r is the classical viscosity coefficient, 7 is the ion-

ion collision time, and a prime denotes differentiation in x. Following
. 9 . . .
Simon,  we perform a simultaneous expansion in the two small param-
-1 . . .
eters & and €, the ratio of the ion Larmor radius r_, to the length

Ii

of the macroscopic gradients; Eq.l then yields in zero-order

(©) 1 KTi nO’
VY =—I§(e E_Eo) (8)
(o) _u 1 ()Y
Ve T (_z Vy ) )
n eB o Y
[
Ay © o B (.l v (O)l)’ (10)
y 2n eB \a vy
(o]

(o) (o)

Here v is the ordinary ion drift across B and Awv the change

in this drift due to the viscosity. Since both g and & contain a factor of

(o)

7, Eq.(10) shows that AVY does not depend on collisions. It is instead

an effect of the finite LLarmor radius of the ions, which brings them into

(o)

regions of different v during a gyration.

Since the electrons are assumed to make no collisions, they do not

(o}

diffuse across B; hence the ion diffusion velocity v must also vanish.

Egs. (8) and (9) then give a second order differential equation for EO if

(o)

/

no is prescribed. If Eo is such that v vanishes, the plasma is static;

and none of the effects considered in this paper will occur. If EO is such

(o)’ () (o)

that v vanishes (no shear), both v and Av vanish, and the insta-
y X y
bility under consideration cannot occur because the ions and electrons

o
drift at the same speed. However, Eo can be such that v (0) vanishes
X
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. o] . .. - -1, .
while Avy( ) remains finite, due to the fact that & is proportional to n

(o)

for a fully ionized gas. In this case the instability will occur if AvY is
of the proper sign; moreover, the smallness of g will not limit the ampli-

tude, since [ also provides the only damping mechanism considered. We

(o)

have not computed the growth rate because the value of Av is quite

(o)

arbitrary, even if the equation v = 0 must be satisfied with a prescribed
x
potential drop in the plasma.

It is dubious that a large shear velocity can be maintained in the

(o)

plasma and we shall henceforth assume that v

(o)

vanishes and hence that

is zero.

(Vem)

CENTRIFUGAL FORCE ALONE

If Vemr may be neglected in Eq. (1), we find that in zero-order, the
(0), o, (o)

2
term Mnox Vv is just the centrifugal force - Mnov (©) /r and that

6

v = 0 and

My ©) 1 KT n'
W (s =5 )7 (= n -E,) (11

The ion drift velocity can thus be faster or slower than the electron

drift velocity, depending on the sign of E ; however, the charge separa-
o

tion is always in the proper direction to produce instability, according to

the simple picture of Fig. 1. In first order, we must evaluate the terms

o
noy‘(o)-z\ifl) and nox(l)-YX“(O). If rva() is assumed constant, and ve(l) is
neglected relative to vr(l), as a consequence of the essentially one-

dimensional perturbation (Eqgs. 5 and 6), these terms are approximately



1 ov
Oy - e (12)
, M
g oo, ) =5 (13)
- ——— 9 r

Solving the system (Eqs. 1-4) with this approximation, we find that
w may be complex if V X EO # 0 but that if V X Eo = 0, w is purely real.
This somewhat surprising result is a consequence of the fact that we have

included only one effect, the term of Eq. (12)) which can offset the centrifu-

gal force. This has the effect of shifting the phase of vr(l) until is is ex-

actly 90° out of phase with the density perturbation n, and therefore the

perturbation does not grow.

CENTRIFUGAL FORCE AND VISCOSITY

We now include both the terms on the right of Eq. (1) under the as-
(o) (o)

o]
P is constant and hence that (Ver)

(1)

first order viscosity term, (V-.r) °, is in general quite complicated, and

sumption that rv vanishes. The

we shall be content with retaining only the dominant term in each direction.

(o) 1) (1)

is constant, v is much less than v , m is not too small,
r

6 Y

and all r-derivatives of first-order quantities and @-derivatives of zero-

If rv

order quantities are neglected, these dominant terms are, very approxi-

mately,
V-Tr=——r—<———)- (14)

Solution of the dispersion equation then yields

Re (w) =~ rnwo = mve(o)/r (15)



ImW)~ - — ——— — — (16)

In obtaining this result we have made the approximations mQO << 1,

lyal>>|, 6 <<1, |ya|mﬂo>> 6, and Olon>> 0,

where

Q =v (0)/rw 6 = 2 /(an eB) =m/r, and a=n /n' (17)
o 2] c’ YU o Y ' o o’

the prime denoting differentiation with respect to r. If nol is negative, as
is normal, Eq. (16) shows that there is an instability, This is because the
viscosity prevents the term 'yve(o)vr(l) of Eq. (12) from completely cancel-
ing the effect of the centrifugal force. However, the growth time is of the

-2 ... .
order of 10 seconds for stellarator conditions, and this is too slow to be

of interest.

FINITE RESISTIVITY
To take collisions between electrons and ions into account, it is more

convenient to use the single-fluid equations of Spitzer:

AXB-Yp = May-Vy + Vo1 (18)
jXB-Vp_=ne(E+yXB-nj) (19)
,,.V,..j.= 0 (20)
on

5t Ve(nv) = Q. (21)
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Here p is the total pressure, 77 the resistivity, and J and v the
macroscopic current and velocity. Terms of order me/M have been ne-
glected. Since there is a small but finite value of vr(o), we have intro-
duced a source term Q to achieve a steady state; but we assume that Q

is so small that it can be neglected in first order. The calculation pro-

ceeds in an analogous manner to the preceding case, and we find

Im(w) =~
m g 1 n’/ m n KT 2ZnMn w W m n U
—— 2 _ i + -—— = — (22)
2 2
r Mno aZ n_ r2 B2 B 2 r B2 o

The first term is the same as in Eq. (16). The second is always
negative and is obviously the dissipative effect of cross-field diffusion.
The third is always positive and represents the combined effect of re-
sistivity and centrifugal force. The last term may be of either sign but
is very small because it involves both 77 and [t. None of the terms in

(22) is large enough to be of interest.

ION INERTIA
We now take into account the inertia of the ions by adding a term
Mn Bx/at to the right hand side of Eq. (1) or Eq. (18). In the case of

zero resistivity, we find the dispersion equation
2
SyaQ) - [myaszo + C-SE]Q + on (C-& =0, (23)

whereQ=w/wC, S=1—mﬂo,
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C=1+ZQ—1—6
o 2
£=1-22 _yamg + 220 (24)

and the other symbols are defined in Eq. (17).
If the viscosity can be neglected, this equation is simple enough
to be solved with the approximations l'yal >> 1 and mﬂo << 1. We then

find instability if ya < 0 and

m’Q ° [yl < 4, (25)

with a maximum growth rate

m n

1
Im(w) -~ IVB(O)I -— = mlwol (—ya) 2. (26)

0O~

o]

These expressions are independent of the direction of E0 , and

[

Eq. (26) gives a growth rate (—‘ya)_z times the observed frequency. If
]yal = 25 and the observed frequency is 50 kc, the growth time is of the
order of 100 pus, which is sufficiently fast to be of interest. Although we
have not found simple expressions for the effect of resistivity or viscos-
ity, these effects are probably small in view of the fast growth rate.

If the centrifugal force is neglected in addition to viscosity and re-
sistivity, we obtain purely real values of w for propagation perpendicular
to B. If, however, small but finite values of the parallel wave number
are admitted, and the oscillation of electrons along the field is taken into
account, we find an instability driven only by the pressure gradient. This

effect will be reported in a separate article.
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We note that the introduction of the inertia term makes these oscil-
lations into waves, and some of the considerations mentioned in the intro-
. . (1)
duction no longer apply. In particular, n and v are no longer
r

correlated in such a way that enhanced transport can occur even with

coherent oscillations.

DISCUSSION

. L1
Variocus theories '’

have previously been proposed to explain the
fast loss of plasma (''pumpout') observed in stellarator discharges. These
have been based on the existence of longitudinal gradients in potential or
. e . 12 .
temperature. Inasmuch as a radial electric field is always observed  in
13 ) .
a stellarator and has recently been shown =~ to affect the diffusicn rate, we
have investigated whether or not this agent alone can cause low-frequency
oscillations to arise, without any nonuniformity along the field lines. It
has been found that the centrifugal force on a rotating plasma can cause
such instabilities. A radial electric field can be expected to arise in a
. . 14 . . . .
toroidal discharge ~ in which KTe >> KTi and the plasma is defined by an
aperture limiter. Such fields are normally opposite in sign from those
needed for the reflex-discharge instability. Local shear fields can also
arise in the interior of the plasma because of charge separations caused
by magnetic field inhomogeneities; in such a case the ion viscosity can
conceivably lead to an instability.

The effects considered in this paper can be eliminated by stopping

the rotation of the plasma or by imposing a periodicity in the z-direction.
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The inclusion of the ion inertia term in the equation of motion is tanta-
mount to considering the finite Larmor radius of the ions. If it should
turn out that it is this term which is responsible for electrostatic insta-
bilities, it would be ironic that the same effect is needed to stabilize a

plasma against hydromagnetic instabilities.
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