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ABSTRACT,

A general dispersion relation for low-frequency, electrostatic
oscillations of an inhomogeneous low-density, fully-ionized plasma in a strong
magnetic field B 1is derived from the macroscopic equations for waves which
propagate at a slight angle 8 to the direction of the density-gradient drift.
Two sets of waves are found in the limits where the electrons are assumed to
move freely along B or not at all along B . In the latter case, one wave tra=
vels at the macroscopic drift velocity; a physical description of this phenomenon
is given in terms of the microscopic particle motions. The transition betwee
the two sets of waves occurs for small values of © of the order of (m/M)I/Z.1
or (ne /5)1/2, where is the resistivity. In this regionof ©® , longewave=
length ion cyclotron waves and density-gradient waves may be excited by the
pressure gradient, even if no longitudinal drift exists; the growth rate, compu-
ted numerically, is of the same order of magnitude as or smaller than the real
part of the frequency for conditions which exist in a thermally-ionized plasma

or in a stellarator, : ;
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I - INTRODUCTION,

Low-frequency oscillations in an inhomogeneous plasma
created by thermal ionization have recently been observed by D!Angelo
and Motley1 . These oscillations seem to propagate across the magnetic
field with the same velocity as the pressure-gradient drift; that this
should follow from the macroscopic equations of the plasma has been
noted by D'Angeloz . However, that a density perturbation should propa-
gate with the macroscopic drift seems at first to contradict the micros-
copic picture that, in the absence of collisions, the ions are tied to the
lines of force, which are stationary. We reexamine thiswproblem, star-
ting with the basic equations and approximations given in Sec.Il, and
find in Sec.IlIl that in the limit of strictly perpendicular propagation

these drift waves are a physically real phonomenon.

We then inquire whether or not the velocity of this wave
would be greatly affected by a small component of 5\ s the propagation
vector, along the magnetic field E . It is known, for example, that
electrostatic electron oscillations at the lower hybrid frequency exist
only in theory, for if the angle of propagation deviates from /2 by
as little as the square root of the electron-ion mass ratio, this frequen-
cy no longer exists. We find that the same is true of the density gradient

waves; for angles large compared to the root of the mass ratio, Sec.IV

N, D'Angelo and R.,W. Motley - Phys. Fluids - 6, 422 (1963),

N. D'Angelo = Phys. Fluids - 6, 592 (1963).



shows that the waves become the ion cyclotron waves, propagating per-
3
pendicular to B, , discussed by Motley and D*Angelo and by Drum-
4
mond and Rosenbluth , Our treatment differs from that of Ref. 3 only

in the inclusion of a density gradient correction.

To effect the transition between perpendicular propaga-
tion and propagation at sizable angles, one must take into account the
finite velocity of the electrons in their motion along B .« In Sec.V we
treat the case in which this velocity is limited by electron inertia; in
Sec.VI, the case in which it is limited by resistivity., We find that in
the region of small but finite k// the ion cyclotron waves not only suf=-
fer a change in frequency but may become unstable and grow at the ex-
pense of the density gradient. The relevance of this effect to anomalous

diffusion is briefly discussed in Sec.VII,

These oscillations may also be studied from the point of
view of the Vlasov equation, as has been done elegantly by Rosenbluth4'5
and his collaborators. We feel, however, that in thermally ionized plas-
mas, where collisions are frequent, the macroscopic equations are
likely to be more accurate. In any case, the effects of small but finite
k// are more easily brought into focus from our point of view. We have
not introduced any zero-order drift along B , since Landau damping
would be expected to have a serious effect on the excitation of the waves

in this case, and the Boltzmann equation must then be used.

R,W, Motley and N, D'Angelo - Phys. Fluids -« 6, 296 (1963).

4
W, Drummond and M. Rosenbluth - Phys. Fluids - 5, 1507 (1962)

5
N. Krall and M, Rosenbluth « Phys. Fluids - 6, 254 (1963).



II - FUNDAMENTAL EQUATIONS,

For a fullyeionized plasma, the first two moments of the
Boltzmann equation give, for each species, the following fluid equations

(ine.s.u):

QY\- = vVxB) - 4
v g T (BRI - VR (1)
%v—‘ + V-(nv) =0,

(2)

Here the density n will be taken to be the same for ions and electrons,
the mass will be written m for electrons and M for ions, and the
charge q assumed to be +e for ions and -e for electrons. These
equations are valid if the Larmor radii are much smaller than the scale
of macroscopic gradients and if there are no ion- electron collisions.
Finite resistivity will be treated in Sec.V . We further assume that the
density is so low that Z XB = 0 and that the frequencies are so low
that VY XE = 0 ; then B is constant and uniformand E can be
written -ch - If only frequencies much less than w/ﬁ\1\~’ the ion
plasma frequency, are considered, we may omit Maxwell's equations
altogether and use only Eqs.(1) and (2). We now assume that the visco-
sity may be neglected and that the temperatures are constant and uni-

form, so that

VR =KTVUn, (3)



Eq.(1)is also valid in the limit of frequent collisions; the pressure
and density are then related by an equation of state; Eq.(3) then contains

a constant of order unity, but its nature is not changed.

For simplicity we shall consider a plane geometry, with
the magnetic field B lying in the zdirection, the zero-order density
gradient in the x~direction, and the propagation vector k in the y-z
plane, its primary component being in the y~direction. If the time de-
rivative and the electric field are assumed to vanish, Eq.(1) becomes,

for ions,
/
en, v x B=KTin, (4)

where the prime denotes differentiation relative to x .Thus the equi-

librium solution is

V(O) = 0

X , .

vl =y = }_{I.‘.'. No — AV, | (5)
Y T 0o ¢ o W,

where

L) ENe/m,, V2K /M, w zeB/M, ©)

We now assume a perturbation of the form
Nzngwn, o Ny = Vnge) exp Li(ky vk z —wt)]
E(‘) = _2¢) $ = <T> exp [L(kp‘*k“’ﬁ'w{:)] (7)

V :vo?.\.vu) x“:)z 2 exp [L(\aL\,+\<\‘z—ut)])

A wa !
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in which ¥ is a real constant by assumption, and $ and T\[

are therefore constant by virtue of V¥ ¥ E =0 and the equations of
motion. We have thus, for convenience, required the density perturba=
tion to have the same x=dependence as n_; but it will not be necessa=

ry to specify the form of no(x). Eq.(1) for ions becomes
LwV\novm v elngn)[-74 + (\LM-\—Y_(‘))X%] - KT, (¥n,+Vn, )= 0. (8)

Upon subtracting (1 +V ) times Eq.(4) from this and separating into

components , we obtain, as a consequence of (7))
WwWMn, v, + eV\OVYB =0

y eno [tk d + v B) + (k KT vn,

twMn, v, = tky Mo (e$ + KT v),

twMn, v

9)

The solution of these gives

s —— (ed +vKT)

" o
VyT oA (10)
Vgt K0 (eF ~vKTL)
eBN ’
with
Q= wluw . (11)

The equation of continuity, Eq.(2), becomes, when we

(o)

linearize and assume that v vanishes,



wbe

- - - -2
(W-kyo)v —kVy -k Vg + v vy =0, (12)

The value of TVI: can now be inserted from Eq.(10) to obtain a relation
between ? and v . It will now be convenient to define the following

dimensionless parameters :

e = ; -
T ‘5—.\;’_\:) tx_—w\/l"\

il

X
‘J = \(lV+\‘ /(A)C = \/\LTL/\F)__
I k\\v-\—\n /wcz kv V2

(13)
§ = Wy e = A IV

K= kLVo/wC«:YS) eﬂX\\/b’)

L
symbols are defined in Eqs.(5) and (6). Note that A and § are not

where r. = V—Z-vth/wc is the ion Larmor radius, and the other

assumed to be constant. In terms of these parameters, the equation

of continuity for the ions, as found from (10) and (12), is as follows :
[al-D@-K) -y (Y2 +8§)- Y’ (@-n] v
(14)

-y yasr$H «y (a*-0] X =0,

To obtain the equivalent equation for electrons, we can



-7 -
-l 2 2
simply replace n by -YAQ X by -P X , § by ‘gr\s
]’2 by (3/‘41{ , ‘{// by pr\x 9 , and K by per . This

leads to the following continuity equation for electrons :

[Q‘{p"(l—}«"ﬂ") -\—r\xz —‘uzﬂ,\,(} - X"}A"Q"( - P‘n_‘*)] pv +
(15)

+ [7.(). ($ —‘Axﬂ_) + X"\.A"e"'(\—}{‘n.")]x =

We can simplify Eq.(15) by neglecting the term PAZ .QZ
relative to 1 ; since (L 1is less than or equal to 1 for the waves
under consideration, this is an extremely good approximation., The term
NZQ\A may also be neglected relative to rAYZ if ‘Aﬂ. << '5/8' , which
is easy to satisfy. In addition, we can simplify the ion equation (14) by
neglecting the terms containing YZ// . This means we neglect the mo;
tion of ions along B . Comparing the term X/@to the term Y
we see that this approximation requires 9 << (I, which is valid for

the range of interest. Eqs. (14) and (15) then become

al(@-)@-w - (Y +wly - ay*arw) = o (147)

[Qz(p—urxz)_\‘z —\ev.] y + Y_!L(Vs- in_\ *Yl -\91].)6
wolp p p

1]

(15¢)

The requirement that the determinant of these two equations vanishes

then supplies the dispersion relation.

We note in passing that if the inertia term in Eq.(1) had

been neglected, as is done in analyses of the screw~instability type,



Eqs.(14!') and (15) would have been identical; and no condition on (L
would have been found, the equation of continuity being satisfied identi-
cally for each species separately. Thus the inertia of at least the ions
must be taken into account, and the effects we shall consider depend on

the fact that the ion Larmor radius, through small, is finite.

III « PERPENDICULAR PROPAGATION,

We first consider the limiting case in which © = 0,
and the problem is entirely two-dimensional. The electron equation

(15') then becomes simply
A +ppyt)Y + (K-py" )X = o, (16)

Together with the ion equation (14%), this leads to the dispersion equa-

tion
at (k-pyra)fat-wa - ()]« al (key*a) 1+ gpy®) = 0. (17)

1, Limit ), ~ 0. Inthe case of a uniform plasma,

W vanishes, and for L # 0 Eq. (17) reduces to
T _ 2 - 2
p Lo - Gy )= ppyt, (18)

or, for ‘A((l ,



nt = ‘4-‘ * (\'\'{5)’\/1

(19)
T 'L
WY = WeoW + kv
te e LY, (20)
where
Ve = (KTi+KT )™ /M*E
(21)

is the acoustic velocity. We thus recover the lower hybrid frequency

for perpendicular propagation in a uniform plasma,

2, Limit B -» 0, Inthe limit of vanishing magnetic

field, we must also assume A = 0 in order to have an equilibrium.
We can then simply set W W, equal to zero in Eq.(20) and recover
the expression for ordinary acoustic waves in the limit of low frequenw

cies.

3 Limit M-> 0, In the limit of vanishingly small elec~

tron Larmor radius, we may set ® equal to zero in Eq.(17). The e=

quation can then be factored exactly :

n?uﬁ-wJUL+yS”)=°- (22)

This gives three roots :

]
o}

a)

b) ky Vo (23)

Q) we= (<ku/\) we .

fH
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The first root, a double one at w = 0, corresponds to
the most obvions physical situation : an equal number of ions and elec-
trons is added to the equilibrium configuration, and these simply gyrate
in place without causing any charge separation. It is seen from Eq.(16)
that if {L vanishes, so does the electric field. Mback to the
ion equations of motion (10), we see that vY vanishes for this root,

and

- 31 KT

Vg = —\.\<L—é—é VY. (24)
This is just the Vp drift of the perturbation; according to the physical
picture given by Spitzer , there is a net velocity in the x-direction,
even though all guiding centers remain fixed, because of the difference

in density of guiding centers in the y~direction.

The second root, w = k‘\_v0 , is the one discussed
1,2
by D*Angelo ’ , and is a wave which travels with the zero-order drift
velocity. Referring to Eq.(16), we see that for ‘A = 0 this root gives

1

a finite electric field :

X"' _Q\)/K = -y, (25)

Inserting this into the equations of motion (10), we see that in this mode
v, = VY = 0 , and the ion macroscopic velocity vanishes. This is becau~
se the pressure gradient drift of the ion perturbation, which was found
for the static case {L =0 , is in this case exactly canceled by a drift
of the ion guiding centers in the x-direction, caused by the oscillating
electric field in the y-direction. This is illustrated in Fig. 1. This

L,Spitzer « Physics of Fully Ionized Gases (Interscience Publishers,
New York, 1962), 2nd ed., p.32.




Esfield also causes an Q X“B\ drift of the electrons; and if ion inertia
had been neglected, this drift would have been the same for the ions,
and there would have been no charge separation to maintain the E-field.
However, since the ions move slightly differently from the electrons
under the action of Ef\, the electrons must drift back and forth in the
xw~direction to maintain charge neutrality at all times. The density gra=
dient in the x-direction is,of course, what makes this mechanism of
neutralization possible. This wave, therefore, is by no means trivial;
the ion and electron guiding centers may drift over large distances

because of the low frequency involved.

From this physical picture it is easy to see intuitively
that the velocity of the wave should depend on the speed with which the
electrons can neutralize the space charge; that is, it should be propor-
tional to the local density gradient A and the drift speed E/B ,Since
E/B must be proportional to KTi/B in order for the ion drifts to

cancel, we have w/kl_ ~ KTi)\/B = « Why the constant of propor-

v,
0
tionality should be exactly 1 seems to be fortuitous. Indeed, if we

had chosen a different x-dependence for n, , the wave velocity would

be slightly different from Yo

gation in the x~y plane, it is clear that the wave velocity will be fastest

. Although we have not considered propa-

in the y-direction, since the E X B drifts are then parallel to the

density gradient.

We now consider the root (c) of Eq.(23). This is a modi=
fied ion cyclotron wave in which electrons maintain quasineutrality not
. by moving along B as in the usual case but by drifting along a density
gradient, Whereas in solutions (a) and (b) the continuity equation for

electrons and ions, respectively, was satisfied identically because the
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macroscopic velocity was zero, in)éolution (c) both velocities are finite.
The ratio of wave velocities for (b) and (c) is - 82 =—-;- 2 ri , which,
by assumption, is very small, We note that the frequency of wave (c)
can be larger or smaller than W, depending on the relative size of
the wavelength and the density gradient, and that the wave always tra-
vels in the opposite direction from Yo

4, Case w = 1 ,For completeness we finally consider

the solution of Eqs.(14) and (15) for the case of a positronium or solid-
state plasma where W= (3 = 14 For strictly perpendicular propagation,
these equations yield without approximation the simple dispersion rela-

tion

Wz = W: + (.k-:"')\-‘-)v:\; y (26)

which shows the continuous transition from what corresponds to the
lower hybrid frequency of Eq.(20) to what corresponds to the root (c)
of Eq.(23) as Xl is increased from 0 to |kl . The drift wave

cannot arise because the Larmor radii are equal.

1V - PROPAGATION AT "LARGE'" ANGLES,

We now proceed to the opposite limit of Eq.(15'), in

- 2
192 = o0 . Eq. (15') then reduces to the (linearized) Boltz=

which W

mann distribution for the electrons :
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xX=pv, (27)

Since the electrons have been assumed to move freely along B . In-
sertion of this into the ion equation (14') yields the cubic dispersion

equation

(a-w)(@ -1 - (P yt k) = 0, (28)

In the limit of a uniform plasma, K = 0 , and we recover the dis=-
persion relation for ion cyclotron waves, propagating perpendicular

3
to B, found by Motley and d'Angelo ¢

T 1
At =1+ Qep)yt, v =l v kivs (29)

2 2
The small correction k; vy is somewhat simpler in form than that

4
found by Drummond and Rosenbluth .

When the density gradient is finite, the dispersion equa~
tion (28) may be solved by considering it a quadratic in the normalized

wavelength 'X ; since K = SY , we have
(1+p oy~ (R +p)sy + n(1-n*) = 0. (30)

This is shown plotted on Fig. 2 for @ = 1 and §= 0, 0,1, and
0.5 . It is clear from (30) that the graph is symmetric about the origin;
therefore, there are always three real roots {L for each value of

‘X . For d =0 , the parabola represents the relation (29). When

S is finite, this branch is lowered and moved to the left; thus for a



given wavelength, the frequency is raised or lowered by the density
gradient depending on the sign of 78 . (Note,however, that this ef-
fect is not directly applicable to experiments on cyclotron waves in
which the density gradient is parallel to k ). In addition, a lowefre=
quency density-gradient wave appears for finite & . For this wave,
we can neglect the term .().2 in Eq. (28); the frequency is then appro-

Ximately
ﬂ=_(sv<{1+(\«,s)yzl'1 ® -fK. (31)

From Eq.(5), it is clear that this wave travels at approximately the
electron drift velocity. This is similar to the drift wave of the previous
section, but the direction of propagation is reversed and the ion tempera-
ture is replaced by the electron temperature. The latter is because the
electric field is now determined by the electron temperature, as Eq.(27)
clearly shows. The fact that the density gradient enters with the oppoe
site sign is because now that the electrons do not move across B at
all, only the ions are affected by the mechanism of charge neutralizae

tion via a" B drifts along a density gradient.

V « ARBITRARY ANGLES : FINITE ELECTRON INERTIA,

To see the transition between the two sets of waves found
in Secs.IIl and IV, we must take into account the mechanism which li=
mits electron motion along 13 . In this section we assume that colli-

sions are unimportant, and the electron streaming velocity is limited
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only by inertia. Since this inertia is small, the effect will be apprecia~-
ble only at very small values of B , corresponding to very long wave-
lengths along B . Thus we must solve the determinantal equation of
(14') and (15'), assuming that t is small but tk-l 62 is finite. The
resulting dispersion relation is quartic in Lk and cubic Y but it is

-l 2

2
linear in Y\ ©

» and we can regard it as a relation between 'A e
and (L, for a given real value of Y . After a little algebra, we obtain,

correct to first order in YL

Q" (- (ER+y) ¥
(- @) -w) + (1+P) (2 L+ K)

-t W2 *
Y\‘Q = -+ rxﬂ. . (32)
. 2 . .
Aside from the small term ‘}Lﬂ ; this expression re-
2
duces to the relation (22) of Sec.IIl if © is allowed to go to zero fas=
ter than P and to the relation (28) of Sec.IV if M is allowed to go

2
to zero faster than © . In the limit S =K= 0, this reduces to

Q= 1+ 1+ B) ’ (33)
\+P6'2‘

and N1 is always real, as it has to be, if the plasma is uniform. If

is finite, it will be convenient to define a normalized wave velocity

w=E /K (34)

) .
and to write Eq.(32) (without the @w{l term) in terms of u
: p

Slgte _wt(u=n(+8%u) L =1

K2 () +25 20— 2 (u-1) (35)
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This relation between the wave velocity u and the an=
gle of propagation € is shown in Fig.3a for a case \5\<)’ and in Fig,
3b for a case |§| 7Y - The sign of 3 does not enter. The intersec-
tions with the uwaxis are the three waves of Sec.III ; the asygmptotes are
the three waves of Sec.IV, It is clear from Fig.3 that the transition
occurs for very srnal}é;.ngles ® , and that the ion drift wave at u = 1
has already greatly changed its velocity when 0 is only as large as

0,1 r%' °

For small values of r'\-l 92, two real roots of u are
lost, indicating the possibility of an instability. This is not a consequen=-
ce of our approximations, since the term ‘A-QE in (32) is small even in
the unstable region, and the approximations made to obtain (14) and (159
are valid for small ‘A-l 92 . In the case of Fig.3a, apparently the elec=
tron drift wave speeds up and the '"backward' cyclotron wave slows down
as © 1isdecreased, and these two waves interact at the same velocity
to give an instability . We have not shown the imaginary part of u be=
cause in practice this phenomenon will be masked by the effects of re-

sistivity.

VI « ARBITRARY ANGLE : FINITE RESISTIVITY,

We now wish to consider the more realistic case where
the electron velocity is limited by collisions rather than by inertia.For

7
this it is more convenient to use the single-fluid equations for a fluid

L.Spitzer - Physics of Fully Ionized Gases (Interscience Publishers,

New-York, 1962) 2nd ed. p.27-28.



with a macroscopic velocity V.o a2 macroscopic current j ,and a re=
sistivity M thus the set of four equations (1) and (2) in v. and v,
S~ e
is replaced by the following setin v ,
WA = 4xB - (1+PIKT
Mt "2 PIKT Un (36)
= . .\_. - B — fAKT‘. v

nwvxB wVe +V\V\l+ 3 ‘3:“‘ — Un (37)

V- \ =0

V-3 (38)

M + Velny) = Q= %—-ozn

2t w (39)

In Eq.(37) we have neglected a term in 32’_/31: which represents the
electron inertia; this requires that the resistivity be high enough that
the electron collision frequency is much higher than the wave frequency,
a condition easily satisfied in practice. We have also neglected terms

of order m/M, Because the plasma is no longer perfectly confined, we
have had to add a source term Q to (39) in order to achieve an equi-

librium,

In zero=order, we assume that /3t = 330 = 33z = g¢ =0;

the equations of motion (36) and (37) then give, in cylindrical coordinates,

i =0

jo) = (BT ]

v = KL %_ | (40)
V\}O) - _1 (o) ——-
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where the prime denotes 3/3r , and A is defined by

(\« @)Y\KTL

A= \
B2

(41)

Eq.(38) is identically satisfied, but to satisfy (39), n_ cannot be an ar-
bitrary functionof r .If Q were proportional to no, Eq.(39)
would be nonelinear in noo. However, in thermally-ionized plasmas,
Q can have the form of a constant q minus a recombination term
akni. In such a case (39) is linear in n: , and the solution for a cy-

linder of radius ro is

v %[1 _ 1.0r (2/A)3]

° T (r, @«/A)E] ) (42)

where Io is the usual Bessel function of in;aginary argument. This
profile was first found by Rynn and D*Angelo . We shall assume that

A is small, so that q andx o« are small; then we may neglect Q
in firsteorder relative to Jn/dt. This requires that r] be sufficiently
small that we can neglect diffusion during the period of an oscillation,
but sufficiently large that the term 3j/?t can be neglected. These re-

quirements are easily satisfied in practice.

We may then proceed to calculate the dispersion relation
in the same manner as in Sec.V. The algebra is somewhat more compli~
cated and will be omitted. Upon taking the same form for the perturba=

tion (Eq.7) and again neglecting the ion motion parallel to B, we obtain

N.Rynn and N, D'Angelo - Rev.Sci.,Instr. 31, 1326 (1960).
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e = a@-w s +y)y”

-3 e—"
L (L -a¥)(-w)+ (11 8) (yra+w) (43)
in which
€E=

noev
o)

(44)

has been assumed to be small,

The form of Eq.(43) is not surprising, for if the z-com-
ponent of (37) is compared with the z-component of (1) for electrons,
one finds that --it»)mnve-_z has been replaced by -nerljz . Since ion

motion in the z~direction has been neglected, jz is merely ~--en0vez
Dividing through by eB , we find that —i.ﬂ.‘.{ is to be replaced by € ,
or \/\-1 by -in.e.l. This explains the factor of =i{l. which appears
between Eq.(32) and Eq.(43). This factor not only changes the degree of
the equation but also makes the coefficients complex so that 1 is al-

ways complex and must be found numerically.

In the limit & = W= 0, Eq.(43) reduces to
' (b -C)=Q, (45)

with C=1+U1+pry",

Upon separating (L into real and imaginary parts and taking the real
part of Eq{45), we find that Im(Q) =-%—e,3-2 <0, Thus in a uniform plase~
ma the waves are damped, as one would expect. For finite § , when
G-l 92—>0, the numerator of Eq.(43) must vanish, and we recover

-1,.2
Eq .22); when € © ~¥ oo, the denominator must vanish,and we recover
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Eq.(28). In terms of the normalized wave velocity u , Eq.(43) can be

written

wu(u-) (1+5u) .
Wrut(u-1)-Cu-f3 (46)

. - T
te'e” =

This relation has been computed numerically for IB =1
and Y real. In Fig.4 is shown a case with the same parameters as
in Fig.3;in Fig.5,a case corresponding to a thermally-ionized potassium
plasma; and in Fig, 6,a case corresponding to a stellarator plasma. Only
positive values of e..l 92 are shown because no pathological behavioﬂr

occurs near the ue-axis, as in Fig.3. From (46) it is evident that when

-1 a2
€ © changes sign, ' u goes into its complex conjugate,

We note that although the imaginary part of u (orof
. , since K 1is real) goes to zero for large and small 16-1 92 s in
accord with the results of Sec.III and IV, it is finite and appreciable for
a large range of e"l 92. Since the sign of W affects Eq.(46), we have
chosen it positive so that positive Im(u) corresponds to positive Im({).
We then see that the density-gradient wave traveling with the electrons
is unstable for 6-1 92 ~ 1 , and that the "forward" wave (traveling
in the ion drift direction) is always damped. The "backward'" ion cycloe
tron wave is excited if § > b/ and damped if & < Y . The physical
reason for the rather surprising appearance of positive growth rates
lies in the correlation between the ion velocity Ve and the density per=
turbation v . From Eq.(10) we see thatif ¢ and ¥ are in phase,
as in Eq.(25) or (27), v, is 90° out of phase with vV , and there can
be no growth, The flow-of electrons along B shifts the phase of ¢

and ¥ , and for certain waves there can be a correlation between v,

and ¥ such that Ve brings more density into the perturbation from
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the zero-order distribution when </ is already positive. The pertur=~

bation can then grow at the expense of the zero-order gradient.

VII « DISCUSSION ,

In this paper we have overlooked the effects of radial
boundary conditions, Qiscosity, and zero~order drifts along B . Since
it has been shown that only the local density gradient matters for small
amplitude waves, the radial boundaries will not greatly affect waves
propagating in the azimuthal direction. Viscosity effects would not be
important unless large shear velocities appear. A small drift of the
electrons relative to the ions in zerow-order could greatly affect the
growth rate but would have a minor effect on the frequency. With these
reservations, we now discuss the relevance of the results to experie=

ments.

In the potassium plasma experiment of D*Angelo and
Motleyl, ¢ is of the order of 3 % 10‘.5 and -(LrA of the order of
3 x 10_7 s so that resistivity is about 102 times more important than
electron inertia, and the results of Sec.VI are relevant. In Fig.5 are
shown the curves for a value of Y corresponding to such a plas‘ma.
It is apparent that for the '""forward' wave E-l 62 must be below
10-1 for the wave velocity to be close to the ion drift velocity. This im=
plies a longitudinal wavelength in excess of 5 X 103c m, If the wave is
excited by an electron drift, the drift velocity must be of the order of

5 X 107 cm/sec in order to be synchronous with the wave at 10 kc. To
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drive such a current, a potential drop ot the order of 10 volts along the
plasma column would be necessary, and this seems excessive in view

of the fact that no voltage is directly applied. Thus it is difficult to un=
derstand how the ion drift wave can be excited. On the other hand, the
wave traveling with the electron drift maintains its frequency for angles
® which are compatible with the length of the column, and this wave
can apparently be excited by the pressure gradient alone., It remains to
explain why this wave appears only when an ion sheath is present at both
ends of the plasma column. We suggest that perhaps it has to do with the
insulating properties of the sheath. When the electron emission is limi=
ted by a potential hill, a rise in plasma potential allows more electrons
to be emitted; thus electric fields are shorted out, However, when elec=~
tron emission is temperature limited, it is independent of potential,

and wavelengths longer than the machine are possible in the plasma co-
lumn,. Finally, we note that the ""backward'" cyclotron wave is not obser=
ved experimentally., This may be because the density gradient was not
large enough to excite it, or because this macroscopic theory cannot

accurately predict excitation close to w, .

It is interesting to see whether the '""backward' densityw
gradient wave can be excited in a stellarator, Here also the resistivity
dominates; the curves of Fig. 6 show a case with W = .01, correspon=-
ding to conditions in a stellarator. The imaginary part of u is too
small to be seen on the graph, but it is of the order of 0,1 to 0,5 times

2
Lo . If B~ 30 kgauss,

the real part of u at very low values of e
KTe ~ 10 eV, and both the wavelength and the scale length of the densi~
ty gradient are of the order of 1 cm, the frequency w is about 30 kc,
and the growth time about 50-300r\s ecs However, extremely long wave=

lengths along B are required; this is compatible with the require=
A
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ments of the rotational transform, which must not bg periodic. Thus it
is not impossible for these waves to arise in a stellarator and to cause
anomalous diffusion either by causing large amplitude drifts in the ra-
dial direction so that the outer layers are continually '"'scraped off",
or by causing a state of turbulence in which particles can be lost by

random walks
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FIGURE CAPTIONS,

Pictorial representation of the density~-gradient wave traveling with
the ion drift velocity. The shaded region represents a density perture
bation propagating in the y-direction, and the thickness of the ion
Larmor orbits represents the relative local density. In this wave the
E X B drifts in the x-direction exactly cancel the macroscopic velo=

city due to the perturbation.

, Dispersion curves for waves traveling perpendicular to a density

gradient, characterized by S s when electron motion along the ma-
gnetic field is free. The graph is symmetric about the origin. Note
the change of scale necessitated by the low frequency of the density-

gradient wave.

, The variation of the wave velocity u with angle of propagation 0 ,

for a given wavelength Y and two values of the density gradient § ,
in the case of zero resistivity. The value Y= 0,18 corresponds,

for example, tothe m =1 mode of a thermally ionized Cs plas-
ma 0,5 cm in radius at 5 kgauss or the m =3 mode ofa K plas-
ma 1 cm in radius at 4 kgauss. Note that the scales are linear in the

box near the origin and logarithmic or semi-logarithmic outside.

. The variation of the wave velocity Re(u) and the growth rate Im(u)

as a function of angle of propagation 8 , in the case of finite resis~
tivity, for the same values of Y and § asin Fig.3. Note that
the scales are linear in the box near the origin and logarithmic or

semi-~logarithmic outside.

=
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The variation of Re(u) and Im(u) with © , in the case of finite re~
sistivity, for two values of 8§ and a value of Y corresponding

to the m =1 mode of a thermally~ionized K plasma 1.5 cmin
radius at 3.5 kgauss . Note that the scales are linear in the box near

the origin and logarithmic or semi«logarithmic ocutside.

The variation of Re(u) and Im(u) with © , in the case of finite
resistivity, for two values of 8§ and a value of ’Y corresponding
tothe m =2 mode of a 2 €V helium plasma 2cm in radius at 30
kgauss, Note that the scales are linear in the box near the origin

and logarithmic or semi-logarithmic outside.
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