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-One of the fundamental techniques—the first one, in fact— for
measuring the properties of plasmas is the use of electrostatic probes.
This technique was developed by Langmuir as early as 1924 and con-

113
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sequently is sometimes called the method of Langmuir probes. Basically,
an electrostatic probe is merely a small metallic electrode, usually a wire,
inserted into a plasma. The probe is attached to a power supply capable
of biasing it at various voltages positive and negative relative to the
plasma, and the current collected by the probe then provides information
about the conditions in the plasma.

It is a fortunate property of plasmas that under a wide range of
conditions the disturbance caused by the presence of the probe is
localized, and the probe can act truly as a probe in the sense that its
very presence has no effect on the quantities it is measuring. We shall
find, however, that under certain circumstances, particularly in the
presence of a strong magnetic field, the disturbance is not localized, and
the probe current then depends not only on the plasma parameters
(density and electron and ion temperatures), but also on the way in
which the plasma is created and maintained. In such a case the method
becomes obviously less useful.

In spite of the difficulties which arise when probes are used in present-
day plasmas, the method is an important one because it has one advantage.
over all other diagnostic techniques: it can make local measurements.
Almost all other techniques, such as spectroscopy or microwave propaga-
tion, give information averaged over a large volume of plasma.

Experimentally, electrostatic probes are extremely simple devices,
consisting merely of an insulated wire, used with a dc power supply,
and an ammeter or an oscilloscope. Nature, however, makes us pay a
penalty for this simplicity: the theory of probes is extremely complicated.
The difficulty stems from the fact that probes are boundaries to a plasma,
and near the boundary the equations governing the motion of the
plasma change their character. In particular, the condition of quasi-
neutrality, which obtains in the body of the plasma, is not valid near a
boundary; and a layer, called a ‘‘sheath,” can form, in which ion and
electron densities can differ and hence large electric fields can be sus-
tained. A fundamental result of the original work of Langmuir and
H. M. Mott-Smith, Jr. (see /, pp. 23-132) was that in many cases the
sheath could be considered a thin layer near the probe surface and that
the quasi-neutral equation could be used up to a “‘sheath edge,” which
in practice had a well-defined position. In recent years considerable
progress has been made in the application of boundary-layer techniques
to this problem, so that the artifice of a sheath edge has been removed
and the continuous transition from boundary to plasma can be described,
at least in the collisionless case. The sheath then appears as a natural
consequence of the nature of the mathematical equations, and the
accuracy of the approximations which Langmuir made with great
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insight in the early days of plasma physics has been borne out in a large
number of physically interesting cases.

It will be our purpose to summarize the available theoretical results,
giving a sketch wherever possible of the way in which they were obtained,
and to supplement this with practical information on experimental
techniques. In Sec. 2 we begin with a short introduction to the physical
notion of sheath. In Sec. 3 we shall present the well-documented theory
of probes in a collisionless plasma. Although the theory of probes in the
presence of collisions and magnetic fields is still in a primitive state, we
shall treat this in some detail in Secs. 4 and 5 because of the current
interest in magnetically confined plasmas. In the final sections we shall
describe specialized techniques and practical considerations in the use
of electrostatic probes. Quantities will be in cgs—es units.

The literature on probes is so extensive that we have not attempted
to include here a complete survey of it. However, we have tried to include
references to the most recent papers, from which references to earlier
works can be obtained.

In order to get an over-all view of the situation, let use look at a
physical plot of probe current versus probe voltage, as shown in Fig. 1.
Here negative, or electron, current to the probe is plotted against V',
the probe voltage with respect to an arbitrary reference point. This plot
may be obtained continuously in a steady-state discharge, or point by
point in a pulsed discharge, the probe bias being changed from pulse to

Fic. 1. Schematic of a typical probe current-voltage characteristic.



116 FRANCIS F. CHEN

pulse; or the entire curve may be obtained in a few microseconds in a
pulsed discharge by the use of a fast-sweeping voltage source.

The qualitative behavior of this curve can be explained as follows. At
the point IV, the probe is at the same potential as the plasma (this is
commonly called the space potential). There are no electric fields at
this point, and the charged particles migrate to the probe because of
their thermal velocities. Since electrons move much faster than ions
because of their small mass, what is collected by the probe is pre-
dominantly electron current. If the probe voltage is made positive
relative to the plasma, electrons are accelerated toward the probe.
Moreover, the ions are repelled, and what little ton current was present
at V, vanishes. Near the probe surface there is therefore an excess of
negative charge, which builds up until the total charge is equal to the
positive charge on the probe. This layer of charge, the sheath, is usually
very thin, and outside of it there is very little electric field, so that the
plasma is undisturbed. The electron current is that which enters the
sheath through random thermal motions; and since the area of the
sheath is relatively constant as the probe voltage 1s increased, we have
the fairly flat portion A4 of the probe characteristic. This is called the
region of saturation electron current.

If now the probe potential is made negative relative to V,, we begin
to repel electrons and accelerate ions. The electron current falls as V'
decreases in region B, which we shall call the transition region or
retarding-field region of the characteristic. If the electron distribution
were Maxwellian, the shape of the curve here, after the contribution of
ions is subtracted, would be exponential. Finally, at the point I,
called the floating potential, the probe is sufficiently negative to repel all
electrons except a flux equal to the flux of ions, and therefore draws
no net current. An insulated electrode inserted into a plasma would
assume this potential.

At large negative values of V) almost all the electrons are repelled,
and we have an ion sheath and saturation ion current (region C). This 1s
similar to region A; but there are two points of asymmetry between
saturation ion and saturation electron collection aside from the obvious
one of the mass difference, which causes the disparity in the absolute
magnitude of the currents. The first point is that the ion and electron
temperatures are usually unequal, and it turns out that sheath formation
is considerably different when the colder species is collected than when
the hotter species is collected. The second point is that when there is a
magnetic field, the motion of the electrons is much more affected by the
field than the motion of the ions. These two points, which were neglected
in the original theory of Langmuir, are responsible for making impossible
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the simple and straightforward application of probes as originally
proposed by Langmuir.

If it is possible to place a probe in a plasma in such a way that the
plasma is not greatly disturbed by the probe, then one can hope to
obtain from the probe characteristic information regarding the local
plasma density n, electron temperature kT, , and space potential V.
The shape of part B of the characteristic obviously is related to the
distribution of electron energies and hence gives kT, when the distribu-
tion is Maxwellian. The magnitude of the saturation electron current is
a measure of n(kT,)!/2, from which n can be obtained. The magnitude
of the ion saturation current depends on n and kT, , but only slightly on
kT, , at least in the usual case where kT; <€ kT, ; hence ion temperature
is not easily measured with probes. Finally, the space potential can be
measured by locating the junction between parts A and B of the curve
or by measuring V, and calculating V. In the presence of collisions or
magnetic fields, the probe currents depend also on the transport coeffi-
cients of the plasma. In many instances, such as in a magnetic field, the
absolute magnitude of n cannot be calculated with certainty; however,
probes are still useful for finding the relative density in different parts of
the plasma. In unstable plasmas probes are useful for measuring fluctua-
tions in z or ¥, , which are simply related to fluctuations in probe current
or floating potential.

2 Sheath Formation

2.1 'THE DEBYE SHIELDING LENGTH

Let us consider the effect of introducing a potential V, at some point

x = 0in a plasma of dimensions R and undisturbed density n,. The

potential is given by Poisson’s equation, which, for simplicity, we write
in one dimension:

a2V

dx?

= —4me(n; — ne). (hH

If we normalize V, n,, n,, and x as follows:

_ eV _m e _
N = kTe’ Vl—'noy Ve—‘nos §_’R’ (2)

the equation becomes

h? d°
= g@ =) — vel), 3)
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where
h = (kRT¢/4mnye?)' /2. 4)

Since the quantity 2/R is small in a plasma (by definition), Eq. (3) has
the appearance of a boundary-layer equation; that is, the highest deriva-
tive in the equation is multiplied by a very small number. This means
that the equation without the derivative, v, = v;, which is called the
““quasi-neutral equation” or the ‘“‘plasma equation,” is valid over scale
lengths of the order of R and that  changes considerably only within a
small length of the order of 4 next to the boundary in order to satisfy the
boundary condition at ¢ = 0.

For example, let the ions be infinitely massive, so that n; is constant,
and let the electrons be in thermal equilibrium:

Ne = nge™". (5)
Poisson’s equation then takes the form

d’n
d(x[h)?

:l—e—”%n. (6)

Thus for small 7 the potential decays like
V= Ve &/m, (7)

and the externally imposed potential is shielded within a distance of the
order of h. The length 4 is called the Debye shielding length.

2.2 THE CHILD-LANGMUIR Law

Let us now examine another idealized situation, that of two infinite
plane-parallel plates, one which emits particles and is at zero potential,
and the other which is perfectly absorbing and is at a potential I/, . This
is shown 1n Fig. 2.

Consider first the case of emission at plane 4 of only one species of
particle, with charge —e and mass m, emitted at zero velocity. The
particle velocity at a position where the potential is V' is then

v = (2eV[m)! /2. (8)
If the emitted particle current density is j, the particle density at x will be

n(x) = j[2eV(x)/m] V. 9)
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Fic. 2. Schematic of the potential distribution between two planes, one of which 1s
emitting electrons.

Poisson’s equation becomes
A2V /dx? = 4mej(2eV [m)~1/2.
Multiplying by dV/dx and integrating from x = 0, we have

l(ﬂ)z _ 47rejfy(2e—V—)_1/2dV
0

2 \dx m
dV)O.

(10)
= dnjQmey VM 4 (S

By space-charge-limited flow, we mean that (dV/dx), vanishes. We then
have

V-14dV = (8m7)1/%(2me)t/* dx. (11)
Integrating from x = 0 to x = d, we have
4 Y314 = (8mj)1/2(2me)'/* d

or

N RNE L
)= (me) 9md?’ (12)
which is the Child-Langmuir 3-power law for space-charge-limited

current flow between two planes separated by a distance d with a potential
V5 between them.



120 FRANCIS F. CHEN

The top curve of Fig. 2 represents the case of small j, when the space
charge is small and the potential therefore a linear function of x. The
middle curve shows the case when j is at the value given in Eq. (12);
then the electric field is zero at 4 and a further increase in emission does
not increase the current because no field acts on the particles at 4.

If now the particles are allowed to have finite velocities when they are
emitted, their inertia allows them to leave the surface 4 even when no
electric field is present. This has the effect of depressing the potential
below zero and building up a field which opposes the emission of
electrons. The potential curve then looks like the bottom curve in
Fig. 2, with a potential minimum V at x = x,, . In the case of a
Maxwellian distribution of emitted electrons, the potential distribution
can be found by integrating over the initial distribution of temperature
ET. To first order in »~1/2, where n = eV /kT, Langmuir (I, p. 379) finds
for the space-charge-limited current

(2" U 2

This shows clearly the increase of current due to finite temperature. The
values of V', and x,, in Eq. (13) must be found by a more complicated-
procedure, but for practical purposes they are small and may be
neglected. Although we have for definiteness specified electrons, the
Child-Langmuir law obviously holds also for ions if the appropriate
mass and temperature are used.

(13)

2.3 'THE SHEATH CRITERION

Let us now introduce a second species of charged particle, so that we
have a species 1 which is accelerated from 4 to B and a species 2 of
equal and opposite charge which is repelled from B. We want eventually
to identify surface 4 with the surface of the plasma and B with the
surface of a wall or probe. Since a plasma is very nearly neutral (by
definition), we require that n, ~ n, at 4. |

Our purpose in treating this problem is to gain some physical insight
into the limitations of the approximation of a definite sheath edge
which separates the plasma region, in which there are no electric fields,
from the sheath region, in which large fields can exist. If the plane A in
Fig. 2 is to represent the sheath edge, then to ensure a smooth transition
to the plasma solution, the electric field of the sheath and its derivatives
must nearly vanish there. We shall find that this condition imposes a
requirement on the velocity distribution of the particles emitted at 4
and collected at B.
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For simplicity, we shall treat first the somewhat degenerate case in
which T, = 0, i.e., the accelerated particles have no random motion. In
this case we must give them a nonvanishing drift velocity v, at A4, since
otherwise their velocity at A would be O and their density infinite if
their current is to be finite.

Since there can be no particles of type | traveling from B to A, the
distribution function of 1 is

£1(0,v) = ngd(v — vy), v, >0

fl o) = mgd [+ 220) ).

my

(14)

We now assume that the potential B is so large that almost all particles
2 are repelled; their distribution will then be Maxwellian:

o (2 ) exp [y (22 4 222V ) 2k :
folx, ) = n, (zﬂsz) exp[ m, (v o )/2kf2] . (15)
With the dimensionless variables
o qlV B _7”_1_ 1/2 B in_n_‘ﬁi 1/2
T TRT, ““"’(2sz) ’ 5“x(kT2) ’ (16)
this becomes
o ()L o (= e
flnvw) = mo () -exp (= 2 =), (17)
where we have set ¢, = —¢,, and where v, = (2kT,/m,)!/2. Note that

since particles 1 are accelerated, ¢,V is always negative, and therefore 7
always positive. Similarly, Eq. (14) becomes

filn, u) = nevs 8[(u — m)'* — ). (18)
The densities are found by integrating with respect to v, du:

o d
n, = ”OJ O(y — uy) 62—%_—%)—1/—2 = ny(l + .,)%—2)—1/2. (19)

Poisson’s equation is then

7" = mgl(l + )2 — o). (20)
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With the usual integrating factor »’, the integral from 0 to x is
30t = n2u)[(1 + qug®'® — 1] + e — 1} + 2. (21)

For the moment, let us neglect 7, The left-hand side in Eq. (21) must
be positive; hence

202[(1 + quz? 2 — 1] > 1 — e, (22)
Near the origin » = 0, this inequality becomes, upon expanding,
22 mug? — gnPugtl > — g

mvh 1

Uy = (‘27&;)1/2 > (23)

This is the original sheath criterion derived by Langmuir (2, p. 140)
and Bohm (3, Chapter 3). It states that in order for the sheath equation
to have a solution for small % there is a restriction on the streaming
velocity assumed for particles 1 at plane A: namely, that it be larger
than (kTy/m;)'/2.

The most common application of this criterion is in the case of ion
collection, in which 1ons are particles 1 and electrons particles 2. In
many discharges the ion temperature i1s much lower than the electron
temperature, so that the assumption 7, = 0 is applicable. Equation (23)
then says that the ions must stream into the sheath boundary with an
energy greater than $k7T,, which is much larger than their thermal
energy.

The reason for this restriction on the cold species can be seen by
plotting the density, as given by (19), logarithmically against potential 7,
as shown in Fig. 3. The trapped particles 2 have a density which appears
as a straight line on the semilog plot. If " is rigorously zero, the curve
for n, starts at the same point n; as does n, , and its initial slope depends
on u, . If uy1s small, n, 1s less than n, for small 5. Referring to Poisson’s
equation,

r?
RBgn — N0y — Ny,

we see that if 7y = 0 and 7 is to be positive, »” must be positive near
n = 0. If u, is too small, " is negative, and this will not permit a mono-
tonic solution for 7(£). The solution will oscillate between two values of 7,
corresponding to an imaginary value of n'2. If u, were large, we see from
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Fic. 3. Schematic of ion density (n,) and electron density (n,) distributions in a
sheath as a function of potential 7, for various values of incident velocity u, of the cold
10ns,

Fig. 3 that n, is always larger than n,, and the problem does not arise.
The critical condition is that

dn,\  [dn,
(2} = i) (24)
From Eq. (19), this is just
—%uo—z:—no, or =3,

the same condition as Eq. (23). This equivalence was first pointed out by
Allen and Thonemann (4).

The proof given above is subject to the criticism that 7, %', and n”
cannot all vanish at x = 0, since then only the trivial solution is possible.
In practice 5, and 7y have small but finite values. If »” is positive, for
example, then by Eq. (20) #, must exceed n, at x == 0, as is illustrated
by the dotted line in Fig. 3. The curve n,(») may then dip below 7, , and
the critical value of u, is reduced. This effect, however, is slight as long
as the Debye length is small compared to the characteristic lengths in
the plasma, such as the mean free path or an ionization length. The
effect of finite 5, and 7y has been computed by Ecker and McClure (5).

If now the accelerated particles are allowed to have a spread in energy
at the sheath edge, the critical drift velocity u, given by Eq. (23) is
considerably reduced; however, the value of u, then cannot be expressed
simply, even for a Maxwellian distribution.
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We may now point out the implications of the sheath criterion on the
probe characteristic of Fig. 1. Consider the usual case in which T, < T, .
Then in part A of the characteristic, where electrons are accelerated
toward the probe, the sheath criterion (23) tells us that the electrons
must enter the sheath with a drift velocity greater than (kT;/m)'/2.
Since this is small compared to the random electron velocity, and the
finite electron temperature makes the criterion even less severe, the
current entering the sheath is closely approximated by the random
electron current in the plasma. Use is made of this in Section 3.1. On
the other hand, in part C of the characteristic, where ions are accelerated
to the probe, the sheath criterion requires the ions to have a directed
velocity greater than (kT,/M)'/2, which is much larger than the random
velocity. The velocity distribution at the sheath edge is then unknown
and the ion current must be computed laboriously, as is done in Sec. 3.3.
However, for sheaths thin compared to the probe radius, so that the
geometry is almost planar, it will turn out that the ion current density is
given roughly by n, times this critical velocity. This is essentially the
reason probes are insensitive to ion temperature. The situation is, of
course, reversed if 7', 1s much larger than T, .

We have, for purposes of illustration, considered the case of an infinite
plane probe, but it is clear that such a probe cannot actually exist, since
in the absence of ionization all the plasma would eventually be lost to
the probe. The probe current in steady state is given by the rate of
ionization in the plasma, and therefore the probe is in a sense actually
an electrode. As we shall see in Section 3.3, the situation is different in
the case of spherical or cylindrical probes, for which the probe current
depends only on the properties of the plasma far from the probe and not
on the mechanism which produces the plasma. However, except for
geometrical factors, the basic prediction of the plane sheath criterion is
still valid; that is, the shielding of the probe by the sheath is incomplete,
and a total potential drop of order of magnitude 27T, must exist in the
plasma region to accelerate particles | to this energy by the time they reach
the point near the boundary where the quasi-neutral assumption fails.

Further discussion of plane sheaths, which necessarily involves the
ionization mechanism, may be found in the work of L. Tonks and
Langmuir (2, p. 176). The particularly simple case of no collisions has
been treated by Harrison and Thompson (6), Auer (7), and Self (8).
A rigorous boundary-layer analysis of the plasma-sheath transition has
been given by Caruso and Cavaliere (9). The stability of the ion stream
in this case has been examined by Chen (/0). The effect of a weak
magnetic field on the sheath criterion has been studied by Allen and
Magistrelli (/117).
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3 Probe Theory in the Absence of Collisions and
Magnetic Fields

The exact way in which the plasma parameters are related to the
probe characteristic will depend on the shape of the probe and the
relative magnitudes of the collision length, the probe dimensions, the
Debye length, the Larmor radius, and so forth. In this section we shall
discuss the simplest case—that in which both collisions and magnetic
fields are negligible. This case is essentially that covered by the original
theory of Langmuir. There is, however, one exception; that is, in dealing
with saturation ion current the effect of acceleration of ions in the
plasma region (which we discussed in connection with the sheath
criterion) was at first unknown to Langmuir. For the proper treatment
of ion saturation current we shall have to turn to comparatively recent
work. We shall confine ourselves to plasmas consisting of singly charged
positive ions and electrons. Extensions of the theory to include negative
ions or multiply charged ions is straightforward. The main difference
from the discussion of Sec. 2.3 is that now we shall have to consider
particle orbits in more than one dimension.

3.1 PROBE CURRENT IN A PRESCRIBED ELEcTRIC FIELD

We now turn to the problem of sheath formation on actual probes,
which are normally not planar but cylindrical or spherical, since such
shapes do not disturb the plasma as much as a large flat surface. Particles
can now move in orbits in a central force field, and the density is'no
longer a simple function of potential as it was in the one-dimensional
case. Again we have Poisson’s equation

V2V = —4n(qny + gons),

but now not only is the Laplacian more complicated but also n, is a
complicated integral involving V. The solution for V' must even in the
simplest case be found numerically. However, in some physical situations
the probe current can be found without knowing the exact behavior of
V(r). In these situations the original theory of Langmuir is applicable.
In describing this theory we shall assume that the function V(r) is
already known.

3.1.1 Thin Sheath: Space Charge Limited Current

Suppose that the prescribed electric field is such that the potential
drop around a charged spherical or cylindrical probe attracting particles
of type 1 is concentrated in a thin layer of radius s surrounding the
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probe of radius a. Suppose further that the velocity distribution is
essentially Maxwellian at the edge of the sheath. This situation applies,
for instance, to part A of the probe characteristic (saturation electron
current), since in most plasmas 7T, > T, and we have seen in Section
2.3 that the collection of the hotter species does not require a large drift
velocity at the sheath edge. If s — a is much smaller than a so that all
particles entering the sheath hit the probe, and if the probe is perfectly
absorbing, then the probe current is simply

I = jids, (25)

where A is the area of the sheath, and j, is the random current density
crossing a unit area in one direction. For a Maxwellian distribution, this
is given by

4o (2kT

Jr=3n0 = 3n (—;%1—) : (26)
We have omitted the charge ¢, and are therefore considering particle
currents. The factor % in j, is composed of two factors of 1. The first
accounts for that fact that at the sheath edge the density is half the
plasma density—the half consisting of particles heading toward the
probe. The second factor of 3 is merely the average of the direction
cosine over a hemisphere. To the extent that s — a << a, 4, is equal to
A, , the probe area; and the current is independent of voltage in this
limit.

The physical situation is clarified by Fig. 4. The collision mean free
path A is assumed to be much larger than s or a. The population at
point P consists of particles which made their last collision approximately
a distance A from P. Since the probe subtends only a very small solid
angle at P, the shadowing effect of the probe has negligible effect, and
the distribution at P is closely Maxwellian. At point S, however, there
can be no particles coming from the probe, and therefore the density
must gradually change from 7n at P to in at S, if there is no ionization
anywhere on the diagram. Since the particles of type 2, which are

Fic. 4. Representation of a probe and its sheath when they are both much smaller
than the mean free path.



4. ELECTRIC PROBES 127

repelled by the probe, are in thermal equilibrium, their density is given
by

n, = ne :V/kTy, (27)

By assumption, all electric fields are concentrated within the sheath.
However, in order to satisfy Eq. (27) and quasi-neutrality at S, we
must have

Vs
T, In 2, (28)

the potential at co being 0. Our initial prescription for V(r) can be
approximately true in practice only if kT, is very small. This is the
reason this theory can be used for the collection of hot electrons in a gas
of cold ions but would not be nearly correct in the case of cold ion
collection.

Although we have considered the potential distribution and hence
the sheath thickness s — a to be prescribed, this is sometimes not
necessary. In mercury discharges of the type used by Langmuir, the
sheath was visible, and its thickness could be measured, so that a measured
value of A, could be used in (25). Even if 4, cannot be measured, it can
be calculated from the space charge equations. If we neglect the density
of particles 2 in the sheath, the problem is the same as one we have
already considered in Section 2.2: that of space charge limited emission
from a plane A4 (the sheath edge) to a plane B (the probe surface). Thus
the current density is given by Eq. (13):

(B e 2

(29)

wheren = | e(V, — V)/kRT, |. If V{ = 0, j can be equated to j, to give a
value of the sheath thickness s — a; this can then be used to compute A4, .

If s — a is not infinitely small, it is more accurate to replace the
above equation for planar geometry by the corresponding space charge
equations for cylinders and spheres. These are given by Langmuir and

K. B. Blodgett (12, pp. 115 and 125):

S B RN S 2.66
Cylmder. ] = 9 (em) a2/92 (1 + —\7—;]——:) (30)
. L 2\ V= Vs PR 2.66
Sphere: 97 (em) a?o? (1 T \/,7)’ (31)
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where
B=v—04y+ -
o2 = 9% —0.693 + -
and

a
= ln = .
4 s

3.1.2 Thick Sheath: Orbital Motions

In the opposite limit of a thick sheath (s > a), not all particles entering
the sheath will hit the probe because of the possibility of orbital motions.
If the potential varies slowly enough (a condition we shall derive later),
the probe current is still independent of the exact shape of V(r). This
is because the laws of conservation of energy and angular momentum
concern only the initial and final values of the energy and angular
momentum.

Consider the orbit of a particle in an attractive central force field. Let
its initial velocity be v, and impact parameter, p. At its point of closest
approach to the center (in either a spherically or a cylindrically sym-
metric system), let its velocity be v, and its radius a. Then the conserva-
tion laws state:

L moy = L mol + qV, (32)

g = avs. (33)
Solving for p, we have (for ¢V < 0)

bt V)"

v (34)

where —qV, = $mv;. If we identify a with the probe radius, we see
that any particle with p smaller than that given by Eq. (34) will hit the
probe and be collected. Hence the effective collecting radius of the probe
is the larger value p, and this is independent of the shape of the potential
distribution. It is clear, therefore, that for a monoenergetic beam of
particles, or for an isotropic distribution of monoenergetic particles at
infinity, the probe current is given by

1/2
Cylinder: I = 2malj; (1 + —[I{;) (35)
0
S _ B o Va
phere: I = 4na¥, (1 + —T/—) . (36)
0
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Thus for a cylindrical probe the saturation electron current increases
with the square root of the probe voltage. The current is limited by the
impact parameter p and not by the sheath size, which can be infinitely
large.

So far we have considered monoenergetic particles coming in from
infinity. To do the more general problem we must take into account the
finite size of the sheath and also the distribution of energies at the sheath
edge. Again we shall presuppose that the potential distribution is known
and that the entire potential drop occurs within a sphere or cylinder of
radius s. Let ¢V be negative (attractive probe), and let # and v denote
the radial and tangential components of velocity. Conservation of
energy and angular momentum imposes the following relations between
quantities at the sheath edge (r = s) and at the probe (r = a):

2 2, 29V
ui + vs = g + va + qma
(37)
§Ug = AU, .
Solving for u, , we have
> 2 2 29V
u5:u§+‘v§(l—%§)— fn“. (38)

A necessary condition for a particle to hit the probe is that u2 > 0.
This is not a sufficient condition, since ¥ must not vanish anywhere
between s and a; sufficiency will be discussed in the next section. This
condition then imposes limits on the value of v, :

v (w2 0) T e (39)

m a®

This argument clearly holds for both cylinders and spheres. If G(u, , v,)
is the distribution function at s, the current to a cylindrical probe 1s
obviously the sheath area times the integral of uG(u, v) taken over all u
from O to oo and over v from —o¥ to + v¥:

I = Agj (40)

o) +v¥
j=n wdu|  Guv)do, (41)

0

where we have suppressed the subscript s.
Of particular interest is Maxwell’s distribution in two dimensions:

6. 9) = (o) = ("5

(42)
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The integration of Eq. (41) using this distribution and Eq. (39) is
straightforward and can be done explicitly. The answer is given by
Langmuir and Mott-Smith (/, pp. 32 ff and 108 ff); the answer for the
equation analogous to (41) for spheres is also given:

I = Aa].rF (43)
Cylinder: F = %erf P12 4 e[l — erf(n + P)/?] (44)
2
Sphere:  F = % [l — e=?] + e2, (45)
where v
e
N == (46)
a2
® = 2oz (47)
§2
n+ @ = =z (48)
erf x = % f: exp (—12) dt (49)

and j, is given by Eq. (26).

We note two limiting cases: s — a <€ a and s > a. In the thin sheath
limit, the arguments of the error functions are large, and we can use
the approximation

1 exp(—xa?)

VAR )

Il —erfx ~

When this is inserted into Eq. (44), the result is F' = s/a, and we recover
Eq. (25), as expected. Similarly, for large @ we can neglect the expo-
nentials in Eq. (45) and recover Eq. (25) for spheres.

In the thick sheath limit, @ is small; and we can neglect it relative
to 5. The error function for small x is given by

erf x ~ —\2}7—7 x, (51)
and the exponential e by 1 — @. Thus (44) and (45) become:
Cylinder: F ~ Ti /2 + (1 — erf nl/?) (52)

Sphere: Fe~n+41. (53)
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If, in addition, > 1, Egs. (52) and (50) yield

2 2
Cylinder:  F o S (g2 4+ 49 12) o S (n-F 1)1, 54
ylinder =7 (n'"? 4 3m )_\/Tr("'ﬁ) (54)

i

Thus for large sheath radii I varies as V for spheres, in agreement with
Eq. (36), while I varies as I/1/2 for cylinders, in agreement with Eq. (35).
The latter is true only if  >> | as well. Note that precise information on
the sheath radius is not required in this limit, since Eqgs. (52) and (53)
do not depend on s.

Equation (54) suggests that the slope of the electron saturation
current as well as its absolute magnitude may be a useful datum. From

Eq. (43) we have

.2 .
I = Avje o + D12

55
A (53)

T

2= — A3 ji(n + 1).

Thus if 12 is plotted against V, , there should be a linear region where
the slope 1s

S =5 Ak—n, (56)

giving a value for n. The intercept of this line at I = 0 gives the value
of e/kT if V_is known, or of V if kT is known. When such a linear plot
of I2versus VV can be obtained, therefore, the density and electron
temperature can be obtained separately, rather than in combination,
as in Eq. (43).

In the weakly ionized plasmas investigated by Langmuir, it was
actually possible to get a good linear plot of I% versus V' with cylindrical
probes. This deviated from linearity at small V, where the approximation
(54) becomes invalid, and at large V, where space charge limitation
requires the use of (25). The use of Eq. (53) with spherical probes,
however, turned out to be nearly impossible, since with actual probe
sizes the condition s a could not be fulfilled; instead, spherical
probes tended to draw space charge limited current.

Langmuir (/, p. 112) and Heatley (/3) have also given approximate
formulas for the very complicated case of a Maxwellian distribution
with a superimposed drift and cylindrical geometry. The spherical case
has been treated.by Medicus (/4) and Dote et al. (15).
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3.1.3 Range of Validity of Orbital Theory

Aside from the requirements A > s and A >- a, the collisionless
theory described above is subject to a requirement on the potential
shape. This can be seen by imagining a potential which extends far from
the probe (s >> a) but which has most of the drop occurring in a thin
layer around the probe. In such a case one would use the formula for
the case s > a, but obviously the true answer cannot differ much from
that given by the formula for s — a > a. Such a potential has an
“absorption radius” 7, larger than a which gives the effective collecting
area inasmuch as all particles entering the surface at r = 7, are destined
to hit the probe. The condition that no such absorption radius exists
will now be derived.

From Eq. (38) we have the following expression for the radial velocity
of a particle at the probe in terms of its velocity components:

2 2 2 52
ua:us‘i’?}s(]—'ﬁ)“i"(ﬁa, (57)
where we have let
$=—22 >0 (58)

If u> > 0, the particle will hit the probe, provided that it is not repelled
at some larger radius 7. The most stringent condition on ¢ is that even
those particles barely able to reach the probe (u, = 0) are not turned
around at a larger radius 7. If they were turned around, all those which
get past r would strike the probe; and r would be an absorption radius.

'To get the most stringent condition on ¢, we consider those particles
with », = 0, for which

ut = o? (‘%—1)—-4;&. (59)

At any radius 7 > a, their radial velocity is given by Eq. (57), with
replacing a:

2
uf = ul + o2 (l — %) + ¢r . (60)

Eliminating 22 between the last two equations, we have
g vs q

2 2 52 u§+¢a
Gt (1) (2fa?) — 1 (61)
1
o a2 s2__r2 a2 82—7'2
=+l (1 = 5 5—) — b (o s
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The condition that uZ > 0 then gives this condition on ¢, :

¢r > gda — (1 — g)us (62)
where
a2 32 . 7'2
g = s a7 (63)

If the initial distribution at s includes particles with u2 = 0, ¢, must
satisfy the condition

br > gda - (64)

The meaning of this can be seen by letting s approach infinity. Then
the potential falls less rapidly than 1/r%:

§— 00: > —. (65)

This is a rather gradual variation with r. This condition is not satisfied
in a dense plasma, where the Debye length is small; then the potential
must drop abruptly from ¢, and hence fall below the 1/72 curve. The
discussion above is clearly valid for both cylinders and spheres. Since for
purely geometrical reasons one would expect the potential to fall more
slowly away from a cylindrical probe than from a spherical probe, one
would expect that the condition (65) is more easily satisfied for cylindrical
probes, in agreement with Langmuir’s observations.

Of course if an absorption radius exists, this can be called the sheath
edge, and the theory would then apply. However, in this case the velocity
distribution at the sheath edge is unknown and must be calculated. This
is essentially the problem we shall consider in Section 3.3. The potential
may also be such that there are closed orbits within 7 = 5. The population
in these orbits would then depend on collisions, and the problem would
no longer be tractable. This possibility is also considered in Section 3.3
on ion currents.

3.1.4 Summary of Langmuir’s Theory

This theory applies when (a) the hotter component of the plasma
(usually electrons) is collected, so that the distribution at the sheath
edge is approximately Maxwellian; (b) the pressure in the discharge is
low enough that the mean free path is much larger than the probe or
sheath dimensions; and (c) the plasma density or the probe potential is
low enough that the potential distribution satisfies Eq. (64). The probe
current is then independent of the exact shape of the potential.
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When the sheath is thin compared to the probe radius, the current is
limited by space charge and is given by Eq. (25). In this case the current
varies with voltage only inasmuch as the sheath area changes; this
change is given by Eqs. (29-31). The saturation electron current magni-
tude then gives a value for n(kT,)!/2 In this limit the condition (64) is
never satisfied, but the result is insensitive to this requirement.

When the sheath is thick compared with the probe radius, the current
is limited by orbital motions and is given approximately by Egs. (35)
and (36), or, more exactly, by Egs. (43), (52), and (53). With intermediate
sheath thicknesses, the current is always less than the smaller of (25)
and (35), (36), and is given exactly by Eqs. (43)-(49). In the thick sheath
limit, part A of the probe characteristic appears as follows for different
probe shapes (Fig. 5):

The saturation electron current varies with I for spheres and as '1/2
for cylinders; it does not change for planes since no orbits are possible
and the sheath area is constant. The curve for a plane exists only by
virtue of the assumption of a sheath edge; for reasons given in Section 2.3
there can be no complete theory of a plane probe in a collisionless,
ionizationless plasma. What Eq. (25) gives for a large plane probe is the
density at the sheath edge, and the way this is related to the density
far from the probe depends critically on ionization and collisions. This

Sphere

Cylinder

Plane

4

F1c. 5. Theoretical shape of the saturation current portion of the probe characteristic
for various probe shapes when the probe current is limited by orbital motions.
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is not true for a small plane probe which would collect from an ill-
defined region because of edge effects and would exhibit a curvature in
its electron saturation characteristic.

In most plasmas of today the Debye length is so small and the probe
radius so large (so that the probe will not melt) that the Langmuir theory
is useless, and the single formula (25) suffices to describe saturation
electron current. Moreover, electron collection can seldom be used at
all because the large currents involved seriously affect the plasma
being measured.

3.2 THE TRANSITION REGION

In region B of the probe characteristic the probe collects both ions
and electrons. Fortunately, the ion current is much smaller than the
electron current, because of the disparity in mass, and it can be sub-
tracted out even if not accurately known. The probe, then, collects
electrons moving against a repelling field. The current can be computed
with the same formulas used in the section on orbital motions, but
with eV > 0; however, for a Maxwellian distribution the answer is the
same regardless of the sheath and probe sizes and even the shape of
the probe.

32.1 Maxwellian Distribution

Suppose the probe is charged negatively to repel electrons and 1s
perfectly reflecting. If the electron distribution is in thermal equilibrium,
we know that the density follows the Boltzmann law

m = nge ", (66)
and that the distribution is still Maxwellian everywhere; only the

density is changed by the potential. The random current hitting the
probe is then merely

. RT \1/2
[ = Apje = Aan ( 27Tm) . (67)
where 7 is evaluated at the probe surface. Using Eq. (66), we find
kT 1/2
I = Agn, ( 27'rm) e, (68)

where n = | eV/kT|. Now if the probe is perfectly absorbing, the
Maxwellian distribution near the probe is deprived of electrons coming
back from the probe. However, the distribution of those going toward
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the probe, which contribute to the current, is essentially unchanged, since
it is determined by collisions far away from the probe, where the popula-
tion is undisturbed by the presence of the probe. Therefore Eq. (68) is
still approximately true for an absorbing probe, especially if 7 is large,
so that the probe draws little current.

If In1 is plotted against » (or V), Eq. (68) predicts a straight line if
the distribution is Maxwellian. The slope of the line is | e/kT | and gives a
good measure of the electron temperature. In Langmuir’s plasmas the
In I-V plot was linear over a ratio of 1000 : 1 in current. This was actually
better adherence to the exponential law than one had a right to expect.

In the case of two groups of electrons at different temperatures, the
In I~V plot would be a broken line, as shown in Fig. 6. The slopes of
the two straight segments would give the temperatures of the two groups.

The space potential is often obtained by extrapolating parts A and B
of the probe characteristic and finding the point of intersection: this is
also shown in Fig. 6.

3.2.2  Isotropic Distributions

If the velocity distribution of electrons is not Maxwellian but is still
isotropic, the shape of the transition region of the probe curve can give

———

-~

In / B,

y
- v

F1c. 6. Schematic of a In I-V curve with a bend in the transition region, indicating
the presence of two groups of electrons with different temperatures.
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information about the distribution function. This will be demonstrated
for the case of a plane probe.
Let the isotropic distribution be f(v), so that

nzf?@ﬁw:%ﬁpwmmzﬁpwah (69)

Let a plane probe be at potential — ¥, so that electrons are repelled, and
let
—2elV

m

¢ = > 0. (70)

The particle current density moving toward the probe at velocity v and
at an angle 6 relative to the normal 1s

dj = v cos 0 f(v) d%. (71)

For each v, only those electrons with 8 << 6* will be energetic enough
to strike the probe, where

v cos 0% = $1/2. . (72)

The minimum value of v is obviously ¢1/2. The total current density
striking the probe is thus the integral of (71) over these limits:

oo g*
]= Ll o 23f(v) dv f 27 sin 6 cos 0 df

Ccos6* 0 L
o f 12 2 z vg(v) dv J‘ — cos 0 d(cos ) = L)l/z 4 9g(v) dv[cos? 0]° .,
(73)

“’W@W1—f)@ (74)

i=14 12

If we differentiate with respect to ¢, the integrated part drops out,

leaving . ©)
_f —8w)
4f 12 o dv.

A second differentiation yields

R A TR Lo s 15)

Thus the distribution function g(v) is given by

g(¢'/%) = 845" (76)
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Similar results have been obtained by Langmuir (/) for spherical
and cylindrical probes.

Since a double differentiation of the probe curve is involved, the
curve must be obtained extremely accurately before the distribution
function can be found. This requires the plasma to be quiescent. A
number of circuits have been given in the literature for performing the
double differentiation electrically, by use of an oscillating probe voltage.
In any case the accuracy required is such that this technique is not
generally useful except in extremely quiescent plasmas.

3.3 SATURATION IoN CURRENTS: UNKNOWN ELecTrIC FIELD

In the Langmuir theory it was assumed that the velocity distribution
of the collected particles is known at the sheath edge. We have seen,
however, in Section 2.3 that when the colder species is collected, as is
usually the case in dealing with ion currents, the ions must have a drift
velocity upon entering the sheath. Therefore, if the sheath edge is taken
close to the probe, the ion velocity distribution is unknown. Alternatively,
if one takes the sheath edge to be far away, to include the electric fields
which impart this drift velocity to the ions, then an absorption radius
exists, the condition (64) is not satisfied, and the Langmuir theory does
not apply. This means that the ion current is not independent of the
potential shape, and one must actually solve for the potential by using
Poisson’s equation. Since the ion density term in this equation is a
complicated integral involving ion orbits, the solution cannot be given
explicitly even in the simplest case.

In the case of a plane surface the ion drift velocity is acquired in the
plasma region, where ion production exists. For spheres and cylinders
this is not necessary, and a well-posed problem exists even if one neglects
collisions and ionization everywhere. Before tackling the complexities of
orbits, we shall examine the simple case of ions starting at rest, so that
all motions are radial.

3.3.1 Zero Temperature Limit

"This special case is the theory of Allen ef al. (16) for a spherical probe.
Let I be the total ion current; in the absence of collisions and ionization,
I is conserved. If ions start from rest at co, where ¥V = 0, their velocity
at r, where the potential is V, is

2el/\1/2
o= (—57) =ovah, (77)

where
n = —elV/[kT, and vg = (2kRT¢/M)1/2, (78)
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The ion density at 7 is given by this velocity, the area, and the current I:

ny = I/4nrlogmt/2. (79)

With z, given by Maxwell’s distribution, Poisson’s equation in spherical
coordinates 1s J J
“ar (")

2\ dr

— —d4me (————— —noe"’) . (80)

Introducing the usual dimensionless length

£ = rlh = r(dmnye®kTe) /7, (81)

we can put this in the form

_l_ fi_ 2 @ _ 2 1/2¢2\-1 __ ,—
BT (g : g) — [(dmhnoent2E2) — e, (82)
We define a current /; such that
I, = dnhtngo, —= (RTe)*/2(2/Meb)\/2. (83)

From its form it is easy to see that /; is the random ion current crossing a
Debye sphere, if the ions had the temperature of the electrons. Poisson’s
equation is, finally,
dzn_ gdn ) 1/242 1
(H+iqpter)ree =1 (84)
An approximate solution of this can be obtained by defining a sheath
edge. The quasi-neutral equation, which obtains in the plasma region, is

e — Lo (85)
1
Differentiating this, we have
d —21
VS R U U7t/ -
€ 77(2 Y Ui )df I,\ g . (86)

From this, we see that the coefficient of dn/d¢ vanishes at y = 3, so
that dn/d¢ must be infinite there. This point marks the breakdown of the
quasi-neutral solution and may be defined as the sheath edge. If n = 1
at the sheath edge, and ¢ ~ a/h there (a being the probe radius), then

we have from Eq. (85)
[ = I@h 221 e 12 — A2V eV ingo, — 0.61 Ag(RTo/M)\2ny . (87)

We give this approximate solution because Bohm (3) used the same
method to evaluate I for the case of monoenergetic ions with non-
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vanishing velocity. That calculation was very complicated because
azimuthal motions had to be taken into account, but the method of
approximation using a sheath edge was the same as given here. Bohm
obtained coefhicients of 0.57 and 0.54 instead of 0.61 in (87), for ion
energies 0.01 and 0.5 times k7, , respectively. Thus the saturation ion
current 1s quite independent of k7; and gives instead the product
n(kT,)'/2. This is because ions are pulled into the sheath by a potential
drop of order kT, . The reverse would be true of saturation electron
current if the electrons were colder than the ions.

The exact solution of Eq. (84) was obtained numerically by Allen
et al. (16). Consider the asymptotic behavior of Eq. (84). The term
corresponding to the ion density is I;/(I;p!/2£%). As £ — o0 we see that if 5
varies asymptotically as ¢4, the ion density is finite at infinity. This is in
contrast to the plane case, where as v; - 0, n; > o0. If n — £4 we
see that " and 2’/ approach zero, and (84) reduces asymptotically to
the quasi-neutral equation, as expected. If we let { = £(I;/1)'/2, we have

The solutions of this for each value of I/I; agree at large { and are shown
in Fig. 7a. The corresponding n—¢ curves are shown in Fig. 7b. The
probe potential for each value of I is found by the intersection of the
appropriate potential curve with a vertical line at ¢ = a/h. The shape
of part C of the probe characteristic is found from these intersections;
this is shown in Fig. 7c for various values of a/h. This variation of I with
V' was not computed by Bohm (3).

3.3.2 Finite Temperature: Orbital Motions

When the ions have a finite angular momentum and can make orbits,
the calculation of the ion density is so complicated that it will not be
worthwhile to follow this in detail. Instead, we shall sketch the general
procedure, following the method of Bernstein (/7).

Suppose that we have a spherical probe at negative potential, that the
electrons are Maxwellian, and that the ion distribution is known at
some large radius A where the collisionless region ends. If there is
spherical symmetry, Boltzmann’s equation has the general steady-state
solution

f=HE, ]) (89)

where E and [ are the two constants of the motion, energy and angular
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Fic. 7. Potential distribution (a) and (b), about a spherical probe in a cold-ion
plasma, and the saturation ion probe characteristic (c¢). In (a) and (b), { and ¢ are different
normalizations of the radius. [J. E. Allen, R. L. F. Boyd, and P. Reynolds, Proc. Phys.
Soc. (London) B70, 297 (1957).]

momentum. If # and v are the radial and tangential components of
velocity, V the potential, and e the ion charge, we have
E = 1M@? 4 o?) + eV(r)

J = Mro. (%0)

Solving for u, we have
L Mu2 = E — eV — J*2Mr2. 91)

Thus it is convenient to define an effective potential energy U, such that
U(r, ]) = eV (r) + J?/2Mr2. (92)
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The distribution f(E, ]) can be divided into f+ and -, corresponding
respectively to ions moving away from and toward the probe. The
function f~ is assumed to be known at some large radius and is therefore
known everywhere. The complexity of the problem comes from finding
S *. Obviously, f + will be zero for those orbits which intersect an absorbing
probe and will be equal to f~ for those that do not. Thus in integrating
over f to find the ion density to put into Poisson’s equation, a procedure
with which we are by now familiar, the domain of integration must be
divided up, depending on whether f+ = 0 or f+ = f-,

If A>> a (A and a being the mean free path and probe radius, respec-
tively), one would expect that f~ would be almost Maxwellian at A,
since this distribution comes from ions which had a collision about A cm
away, and the probe subtends a very small angle at this distance. The
distribution £+ at A will be depleted of those ions of low angular momen-
tum which have hit the probe, but this small number does not greatly
affect the total density there and does not affect the probe current, since
these are particles traveling away from the probe. Thus the specification
of f ~ at A should determine the problem if A — oo, which is the regime of
validity of the theory. Of course A must not be equal to oo, since all
angular momenta are infinite there, and the specification of f~ at o©
would not tell anything about the distribution of angular momenta at
finite radii.

The classification of orbits is best described by Bernstein’s diagram
of the effective potential energy U (Fig. 8). For J = 0, the potential is
everywhere negative, and the ion merely falls into the probe. For small I
we assume that the centrifugal force term in Eq. (92) dominates at
sufficiently small radii, and there is a centrifugal barrier there. As Jis
increased, a maximum as well as a minimum will appear. At some
critical Jc, the minimum will disappear, and there is only an inflection
point. Finally, for very large J’s the effective potential is always positive.

We note that for small J’s there is a potential well. Ions trapped in this
well will make closed orbits around the probe and never reach r — A.
‘Therefore, the population in these orbits will not be determined by the
specification of f ~(E, J)atr = X but will depend sensitively on collisions
near the probe. The existence of such trapped ions would alter the poten-
tial distribution in a manner which is difficult to predict and would
invalidate the theory. Hence one of the results of this theory is that the
probe radius must be larger than the radius of the inflection point in [
then no potential minimum can exist outside the probe and no particles
can be trapped.

Consider now a probe of radius R and the curve J2 which has its
maximum at R. All ions with energy higher than Ey, the energy of this
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Fic. 8. Effective potential energy U as a function of radius, for various values of
the angular momentum ¥ of an ion incident upon a spherical probe. [I. B. Bernstein

and I. Rabinowitz, Phys. Fluids 2, 112 (1959).]

maximum, will be collected; and f* = 0 for such ions. Ions with
E < Eg will be either collected or reflected, depending on the relative
magnitude of E and J2. At any radius r, > R, the ions with E smaller
than the magnitude of the maximum in U ar r, will not reach r; , and
therefore f+ = f—. Ions with very large energy or very small angular
momentum will be collected, and for these f* = 0, f~ = f~. Thus
when the density is computed, the distribution f must be integrated
over the E, | phase space; and this space must be divided up into regions,
depending on the probe radius R, in which f+ and f~ are related in
different ways to the known function f .

The ion density appears, then, as a complicated integral. This must be
set equal, in Poisson’s equation, to the Laplacian of V' in spherical
coordinates, minus the Maxwellian electron density term. For the case
of a continuous distribution of ion velocities at large radii, this integro-
differential equation can be solved only by tedious numerical computation.

- 3.3.3 Case of a Monoenergetic Isotropic Ion Distribution

The integral in n; can be evaluated if f~(F) >~ 6(E — E;). The
solution of Poisson’s equation still involves a difficult machine com-
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putation, but this has been done by Bernstein and Rabinowitz (17). It

has also been done by Bohm with E. H. S. Burhop and H.S.W. Massey

(see 3) for the numerically much easier case in which the conditions at

a ‘“‘sheath edge” are assumed (cf. Section 3.3.1). We shall examine the

final equation in order to gain some insight into the nature of the solution.
‘The following dimensionless parameters are used:

& = r(dmnye®[RT )L /?

¢ = 4I(2[kTevs),  v5 = (2kRT/M)1/2
B = E,[kT,

n = —eV[kT,,

(93)

where the notation is consistent with that used so far. In terms of these
variables, Poisson’s equation for the spherical case is

gl =20 1)) 20 p—gmm) —n >4

R R R ST

where £, is determined by the condition that the second bracket on the
right-hand side and its derivative vanish at £, . It is the radius at which
the maximum in the curve of U(r) has a height equal to the initial ion
energy E,. For ¢ < £, the ion density is smaller than for ¢ >'¢,,
because a number of ions are reflected by the potential hill to the right.

If we keep B finite and let £ go to oo in (94) and expand in small %/8,
the first of Egs. (93) becomes

(83 = g a0 = (145 —agma
95)

Thus if n goes asymptotically as £-2, the right-hand side can be made to
vanish for large £; this is the behavior expected in the plasma region.

On the other hand, if we let 8 (essentially the ion temperature) go to 0
first, &, must go to oo to make the second bracket on the right-hand side
of (94) vanish. Thus we must expand the second of Egs. (94) for large
n/B. This gives

(e =

MIRT T ARSI SR
1
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This is the same as (84) derived before for T; = 0. Here » must behave
asymptotically as £~ to achieve quasi-neutrality at large &.

The solution thus has the nature of a boundary-layer problem in
which 7 satisfies different equations for large and small £, and the
solutions are matched at some radius, in this case &, . When the ions are
strictly cold, the region of large ¢ is never reached. This explains why
the solution of Allen et al. goes as £* instead of {72, as in the case of
finite B. In practice ¢ can never be allowed to go to infinity but only to
some large distance A. Whether n goes as £-2 or £~ near A will depend on
whether A is larger or smaller than &;, which, in turn, depends on the
smallness of S.

For any given ¢, (94) gives a curve of n versus £. These curves may
then be cross-plotted to give the probe characteristic for a given value
of £. An example of such normalized I;—V curves is given in Fig. 9.
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Fic. 9. Saturation ion current characteristics for spherical probes of various sizes
in a plasma with a monoenergetic isotropic distribution of ions of energy E, = BkTe.
[I. B. Bernstein and 1. Rabinowitz, Phys. Fluids 2, 112 (1959).]

Further computational results are given by Chen (/8). The dependence
on ion energy is exemplified by the curves of Fig. 10 for £, = 10.
Such a cross-plot must be made for each probe. One notes that the
variation of probe current with ion temperature is slight (~209%,), in
agreement with Bohm (3). This result also justifies the use of a delta
function distribution for the ions.

The case of a cylindrical probe has also been worked out analogously
by Bernstein (/7). In this case the appropriate dimensionless variables
are the same as in Eq. (93) with the exception

met m I?

97)
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Fic. 10. Dependence of the saturation ion current characteristic on ion energy
E, = BkTe, for a probe radius of 10A. [I. B. Bernstein and I. Rabinowitz, Phys. Fluids
2, 112 (1959).]

The equation for a cylindrical probe is then

L d (¢ d") 1= Lgin (—‘/52 )”2, £ = &

£d¢\° dE m R
B 1 . ) L/gz 1/2
p— ;— Sin 1 (I—:I——;JB) 3 é: < §u . (98)

‘The absorptior. radius £, is the point at which the argument of sin—1 is
unity. This formula is valid for an ion distribution at oo which is inde-
pendent of J. and which is an arbitrary function of the velocity com-
ponent parallel to the probe axis. Note that this is not an isotropic
distribution. Typical probe characteristics for a cylinder are shown in
Fig. 11. Further data are given by Chen (/8). In Fig. 11 we have plotted
the function ¥ = #-1(B:)}/2£ , which is more convenient to use because
it is independent of n,. To obtain n,, one computes the ordinate from
the experimental data and the known value of kT, and places the experi-
mental points on the diagram. The value of ¢, resulting from the best
fit then gives the value of 4, and hence of n, .

‘The method of Bernstein and Rabinowitz is not easy to use experi-
mently because of the dimensionless variables and the difficult com-
putations necessary. Fortunately, this theory is necessary only for small
probes; that is, for small values of ¢, = a/h. For large £, and 7, (the
probe voltage), a recent boundary-layer analysis by Lam (/9) gives
the solution of Eq. (94) or (98) in terms of a single universal curve. In
Lam’s theory it is shown that a continuous solution of these equations
can be constructed from the solutions in four distinct regions: a quasi-
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in a plasma with an isotropic distribution of projected ion velocities [F. F. Chen, ¥. Nucl.
Energy: Pt. C 1, 47 (1965).] Only one value of B is shown because of the insensitivity

to B.

neutral region in which the Laplacian of 5 can be neglected, two transi-
tional layers, and the sheath region in which #n, is negligible. Further-
more, it is shown rigorously that the thickness of the transitional layers
is of order £;%/%, so that for large probes Langmuir’s assumption of a
well-defined sheath edge is accurate to this order. To compute the
potential distribution, one has only to locate the sheath edge by finding
~where the quasi-neutral solution n(¢) has infinite slope and therefore
breaks down, and then to use this sheath edge to solve the Langmuir-
Blodgett sheath problem [cf. Egs. (30) and (31)].

The theory of Lam (/9) provides a convenient procedure for finding
the ion probe charaeteristic or the plasma density. To find the I.-V
curve for highly negative probes for given values of n,, kT, , and kT, ,
one uses the diagram of Fig. 12. The parameter A depends on the
position of the sheath edge and is a function of 8 = Ey/kT, . In fact,
the ion temperature appears only in 4. For 8 << 0.2, 4 is insensitive to
and may be approximated by a constant. To use Fig. 12, one needs the
following definitions:

np = —eVp/kT,, Ep = 1p/h, vy = (2kTe/m;) /? (99)
Sphere: A~19, Iy =~ 1.57r ngvs (100)
Cylinder: A~22, Ig ~ 1.97yn4vs (101)
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and plasma parameters. The dashed portions indicate ranges where trapped ions are
possible. The curves for a cylinder and a sphere are not directly comparable, because

slightly different velocity distributions were used.

The curve I(n,) is then found by following a path like the dotted one
shown in the upper half plane. The current Iy is essentially the current
predicted by Bohm (3). It is also a weak function of B for small 8, but
we have approximated the coefficient in Iy by a constant. It is clear
from Fig. 12 that I} is the ion current in the limit of large £, or small 5, ,
when the sheath is infinitely thin compared with the probe radius. The
increase of I over Iy as 7, is increased is a consequence of the increase in
sheath thickness; this effect was neglected in the work of Bohm et al. (3).
This variation of sheath thickness is given also by the Langmuir—
Blodgett formulas (30) and (31), but in Langmuir’s theory the acceleration
of ions in the quasi-neutral region, resulting in the (k7T',)!/? dependence

of I, was neglected.
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The total probe current also contains an electron component which
may not be negligible at the smaller values of %, . The value of I, for a
Maxwellian electron distribution may be found from the lower half of
Fig. 12. The relative importance of I, obviously depends on m;/m, ;
hence there is one curve for each element. The dashed portions of the
ion curves indicate the region in which trapped ions are possible.
However, there has been no experimental evidence that trapped ions
affect the probe current appreciably even if 5, is very large.

To find the plasma density n, from a single measurement of [;, it
is easier to use Figs. 13 and 14 and the following formulas:

< V my\1/3
Sphere:  — (717)1;7?7 - (5) Ay(7), (102)
o Vo (2mp\'3
Cylinder:  — =g —( 4 ) Ady) (103)
C
=1/l . (104)
] le 4T 16 18 20
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Fic. 13. The functions Ag(7) and F(A) used in the theory of Lam for computing
the plasma density from the saturation ion current to a spherical probe. The dotted
portions indicate the possibility of ion trapping.

The left-hand side of Eq. (102) or (103) can be computed from the
measured current, and the value of 4, or /¢ can be found from Fig. 13
or 14. The resulting value of 7 gives I,/I;, and hence I and #n,, from

Eq. (100) or (101).

3.3.4 Summary of Theories of Ion Collection

All of the theories presented so far are valid only for strictly colliston-
less, quiescent plasmas without magnetic fields. The geometry of the
probe is assumed to be an ideal sphere with no supporting wires, or an
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Fic. 14. The functions Ac(7) and G(+') used in the theory of Lam for computing
the plasma density from the saturation ion current to a cylindrical probe. The dotted
portions indicate the possibility of ion trapping.

infinite cylinder with no end effects. In all cases the electron distribution
is assumed to be Maxwellian; the collection of electrons at low voltages,
which changes the electron concentration and hence the potential near
the probe, is neglected.

The original Langmuir theory (Section 3.1.2) is valid for very low
densities and small probes, where an absorption radius larger than the
probe radius does not exist. This condition is generally not satisfied in
ion collection if the ions are colder than the electrons. However, this
theory may be applicable in the tenuous plasmas of outer space or in
the case that the probe is an extremely thin wire.

The theory of Bohm, Burhop, and Massey (see 3) concerns the case
of a spherical probe and monoenergetic ions of energy 0.01 and 0.5 times
kT.. The dependence on ion energy was found to be slight, and the
approximate result for saturation ion flux was found to be

L

a7 (105)

I =1in,A (
where 4 is the probe area, n, the plasma density, and M the ion mass.
In deriving this result the approximation of a “‘sheath edge” was made;
consequently, no dependence on probe voltage is given. The formula
(105) 1s thus quite inexact but nonetheless quite useful. It shows imme-
diately the dependence on the plasma parameters, and it gives an absolute
number which can be compared quickly with experiment. To this order
of accuracy Eq. (105) can be used even for nonspherical probes and
probes in a magnetic field, provided the appropriate area is substituted
for A. This gives an immediate order-of-magnitude check on the plasma
density. The density profile is given more accurately than the absolute
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density provided the electron temperature can be assumed to be constant
or if its profile is known.

To take into account the variation of / with I, one must use the theory
of Lam, which is valid for large values of £, and %, and for cylindrical as
well as spherical probes. The results are summarized by Figs.12,13,and 14
and Eqs. (99-104). The dependence on ion temperature is slight and
has been neglected here, but it is given by Lam (/9) and by Chen (/8).

For probes so small that the condition £, > 1 is not fulfilled, numerical
computations are necessary. The theory of Allen et al. (Section 3.3.1)
is for a spherical probe and is limited to completely cold ions. The
solution is exact to large radii, and the variation of ion current with
probe voltage (i.e., the shape of part C of the characteristic) is given
graphically. Since the dependence on ion temperature is small, the
assumption of zero temperature is not restrictive. Comparison with
experiment must be done graphically, and a separate cross-plot of the
given curves must be made for each value of the probe radius measured
in Debye lengths. This theory has the advantage that the equation is
fairly easy to solve numerically, so that curves for additional values of
the parameters can readily be obtained.

The theory of Bernstein and Rabinowitz (Section 3.3.3) is the most
accurate and the most difficult to use. Again the solution is carried to
large radii, and the variation with voltage given. Moreover, finite ion
energies are considered; and the important cylindrical case is given as
well as the spherical case. Comparison with experiment, however,
involves a tedious process of cross-plotting and reduction of dimension-
less parameters to real variables, for each assumed value of the plasma
parameters. The numerical solution is so complicated that curves other
than the ones given are difficult and expensive to obtain.

The case of a continuous distribution of ion energies necessitates an
even more tedious computation, unless T; > T, so that Langmuir’s
theory of Section 3.1.1 can be used. However, because of the insensitivity
to ion energy, this problem is not expected to give an answer much
different from those already obtained. All these theories suffer from the
fact that the electric field from the probe accelerates ions from large
distances; hence collisions and external electric fields, such as those
required to maintain the discharge, are apt to influence the probe current.

4 Probe Theory in the Presence of Collisions

In weakly ionized plasmas at high pressures the results of the previous
section will be modified by collisions between the collected particles
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and neutral atoms. The species repelled by the probe will not be greatly
affected by collisions, since it i1s ordinarily assumed to be in thermal
equilibrium anyway. We now consider the effects of collisions, not
because the case of high pressures is important in modern plasmas but
because this is a necessary prelude to the case of strong magnetic fields,
in which particles can move transversely only by collisions.

The effects of collisions on the foregoing theory are twofold. First, if
the mean free path A is less than the characteristic length of the potential
(roughly %), the equation of motion of particles in the sheath will differ
from the free-fall equation, and one would expect that the potential
profile and hence the probe current would be altered. Second, if A is not
considerably larger than the probe radius a, the distribution of velocities
at the edge of the collisionless region will differ from the undisturbed
distribution, since the probe is large enough to block a nonnegligible
portion of the particles arriving at this edge. This depletion of the plasma
at the boundary of the collisionless region can be calculated only by
considering the collision-dominated region. Thus the effects of collisions
must be considered if either the condition A > 4 or the condition A > a
is not satisfied.

4.1 PROBE AT SPACE POTENTIAL

The second effect, that of depletion of the plasma when A > a is not
satisfied, can be readily illustrated in the case of a probe at space poten-
tial, when there are no electric fields to be taken into account. The
treatment of Bohm et al. (3) is valid for almost any shape of probe.

Consider a probe of area 4, and any convex shape immersed in a
plasma. One mean free path A from its surface we draw an imaginary
surface of area A;. Outside this surface we shall assume that particle
motion is collision dominated, while inside the motion is collisionless.
If 7, is the density at the surface 4;, and if the velocity distribution were
isotropic there, as would be the case if 4, < A4,, the random flux
crossing A; inwards would be

Jr = an,?, (106)

where 9 1s the average magnitude of the thermal velocity. The current
striking the probe would then be this times the probe area:

I = in34, . (107)

On the other hand, if 4, — A;, that is, if the mean free path is so short
that the surface A, is very close to the surface A, , then the distribution
at A; cannot be isotropic, since there cannot be any particles there
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coming from the probe. In this case the density n, is only half as large,
and the probe current is instead

I = ing4,. (108)
In general, for arbitrary A,
1= ﬂflig—p—, (109)

where K is a constant varying between 1 and 3, depending on the
relative magnitude of 4, and 4, .

The current I can be computed another way. In the region outside 4,
the particle current density is controlled by diffusion and mobility and
is given by

j = —DVn — unVVl, (110)

D and u being the coefficients of diffusion and mobility, respectively.
Since the probe is at space potential, we shall assume that there are no
electric fields, and VI vanishes. We shall examine this assumption later.
In the exterior region j is conserved, so that V - j = 0. From Eq. (110)
we see that if D i1s constant,

V.j= DV =0. (111)

The probe current is the integral of the normal component of j over any
surface enclosing the probe. Choosing this surface to be A;, we have

sz _j-ds_—_Df Vn - ds, (112)
A\ Ax

j and ds being oppositely directed. This integral depends only on the
geometry of the surface 4;, since n is a harmonic function outside 4; .
This can be seen by making an analogy with the problem of electrostatics.

Consider a conductor with a surface A; immersed in a vacuum.
Outside A;, the potential 1/ satisfies Laplace’s equation V2 = 0.
Integrating Poisson’s equation

V2V = —4mp

over the volume inside 4, , we have for the total charge on the conductor

—dmq = fVZVd3r — fA VV - ds. (113)
A
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We know that ¢ depends only on the geometry and is given by the
capacitance of the surface 4, :

q=C(V,— V). (114)

Since n and V satisfy the same equations, we can make an analogy
between I and ¢. From Egs. (112)-(114), we have

I = —4mgD = —4zCD(V, — V.) = 4nCD(n, — n,), (115)

n, being the density at co. |
Now we can equate this to the value of I computed for the collisionless
region (109):

I = 4nCD(ny — n,) = n,54,/4K. (116)

Solving for n; and I, we have

47=CD
"= M gnCD T 54, 4K (117)
and
7714 D 47TCD noﬁA p 614 p

I =

-1
4K "aCh 1Ak — 4 (Kt Tecn) - (19

Specializing now to the case of a sphere, we have that A, = 4na?
and C = a + A, this being the capacity of a sphere of radius a + A
Since the classical diffusion coefficient is

D = )l;i , (119)
the probe current becomes
. (3a a -1

In the limit of large A/a, K becomes unity and Eq. (120) reduces to the
collisionless random current, I = ny54,/4. In the limit A < a Eq. (120)
becomes

no'l-)-Ap . —3- )\

I=2000 .22 (121)

Thus in the limit of small A, collisions reduce the probe current by
approximately a factor A/a.
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We now return to the assumption of zero electric field. The expression
for n; [Eq. (117)] is of course valid for either species of particle, as are
all the formulas in this section. Since D ~ Ad, @ will cancel out of the
equation. All the remaining parameters depend only on geometry,
except A. Thus if A is different for ions and electrons, n; will differ, and an
electric field must be set up to re-establish quasi-neutrality. Con-
sequently, for small A/a it is not really possible to bias a probe at space
potential, since its very presence changes the space potential. Our
derivation of (121) must therefore be regarded as approximate.

4.2 SaTURATION CURRENT IN THE LiMIT A < A

We now consider the opposite extreme when a large voltage is put on the
probe and electric fields are important. The problem is simplified if
we assume that the mean free path is much shorter than any other length
in the problem, including the Debye length, so that particle motion is
collision-dominated everywhere, even in the sheath. We shall then see
how this ‘“diffusion sheath” differs from the collisionless sheaths we
have considered up to now. We shall pay particular attention to the
case of a cylindrical probe for two reasons: the integrals are tractable,

and the result may be directly applicable to the case of a strong magnetic
field.

4.2.1 Cylindrical Probe

Let an infinite cylindrical probe of radius a be immersed in a plasma
of density 7, . Let particles 1 be collected so that e,V is negative, and
let the potential be so high that particles 2 are essentially Maxwellian.
Further, let the motion of particles 1 be completely collision-dominated,
so that the flux is describable in terms of a diffusion coefficient D and a
mobility p (pertinent to species 1):

j. = DVn;, — un,VV. (122)
Poisson’s equation 1s
V2V = —4me(ny — noee2V/kTz). (123)

For any probe current 7, j; is known since I is conserved, and these
two equations may be solved simultaneously for n; and V. To make
further progress, we must now make the first of two important sim-
plifications: that the probe potential is so large compared to kT, that
the D term in Eq. (122) can be neglected relative to the p term. This can
be seen as follows. If A, and A, are the characteristic lengths of the
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gradients of #n and V, then in view of Einstein’s relation for classical
diffusion,
b= (124)
we have
DVn, _ kT, Ay

pm,VV eV Ay (123)

Providing that the A’s are of the same order of magnitude, the D term
1s smaller than the u term by the ratio 27, /eV .
With this simplification, (122) gives the ion density:

_ —h
m=_sp (126)

In cylindrical symmetry, the total current I per unit length to the probe is

I = —2mrj, . (127)
With e, = —e,; , Poisson’s equation now becomes, in cylindrical coor-
dinates,
1d, dv I ,
- — | = — . e, V/kT,
r dr (r dr ) 4me, [2—,”“, dV/dr Mot ] : (128)

In dimensionless form this becomes

%d% (p %) T p dn/bdp e (129)
where
n = —e V[kT,
p =r/h, Bt = kT,/4mne?
= 1I/1,
I, = 2anyu kT, /e, . (130)

From Eq. (129) it is clear that a quasi-neutral solution at large radii can
be obtained only if dy/dp approaches —:i/p as p approaches oo and 9
approaches 0. Then the right-hand side vanishes at co, corresponding
to equal charge densities. Thus the asymptotic behavior of 7 is

p

p
nom| gl | e (131)
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This integral diverges, so that strictly speaking the cylindrical problem
in not a well-formulated one. Consideration of the D term, which we
neglected, does not help the asymptotic behavior; the potential simply
falls so slowly that one would expect an infinite current per centimeter
to a cylindrical probe. In actuality this, of course, does not happen
because there are (a) ionization and (b) end effects, so that I is not
strictly constant with radius. From (131) it is apparent that any decrease,
however slight, of I and hence of « will make the integral converge. The
cylindrical probe at high pressures is therefore not a true probe in that
its influence necessarily extends into the region where ion production
is important.

The solution of (129) can be found if we impose a ‘“‘sheath edge”
at r = s or p = o and assume that dn/dp = 0 at p = o. To solve this
analytically we must also make our second approximation: that the
potential is so high that the density of particles 2 can be neglected.
Then Poisson’s equation becomes

1d/ dpy — —u
p dp (P dp) ~ pdnjdp’
or
1df  — df
L A N b A 132
where
d
fe) =rg;
Integrating from o to p, we have
1 dn\2
=4 (3) =502 — ) (133)
dn . o? 1/2
2y _
7= (p2 1) , (134)
D 2 1/2
7 — 1 = Mf (Z—‘ — 1) dp. (135)

carrying out the integration, we find finally that

_ ___1/2,‘ 2 o\l/2 __ g 0_2_— 1/2§

N —mg =1t ((a p?) o log [P + (P2 1) ] , (136)
where o/p = s/a. This is, then, the high-pressure equivalent of the
Langmuir-Blodgett space-charge equation (30). If we convert (136)
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back to esu by (130), we will find that the dependences on kT, and 7,
cancel out; and, aside from the geometrical factor, the current I is
proportional to (V — V)? as contrasted with (V' — V,)*/2 in the colli-
sionless case.

The condition A < k is usually not fulfilled in highly ionized plasmas,
and this theory is then inapplicable. However, if there is a strong magnetic
field, the mean free path is effectively reduced to 7, , the Larmor radius,
in directions perpendicular to the field; and this may, for electrons,
become smaller than s. Since in the case of the infinite cylinder all
motions are transverse to the axis, this theory is directly applicable in
strong magnetic fields if p is replaced by pu, , or u/w?r® However, an
independent determination of the sheath thickness s is required.

4.2.2 Spherical Probe

The case of a sphere is entirely similar, except that one must replace
Eq. (127) by
I = —4mr¥, (137)

and Eq. (130) by
I, = 4nhnypkT,/e, . (138)

Poisson’s equation in spherical coordinates is then

1 d(,dpy,  — B
p*dp (p 3;) T Eaid (139)

In order to achieve a quasi-neutral solution, we must have for large p,
- (140)
or

Nt (141)

In this case the potential does fall fast enough to allow a solution which
does not depend on conditions far from the probe.

If we neglect the exponential term and make the transformation
x = 1/p, Eq. (139) becomes

d’n dx
a2 22
e T dn
dydny

L (142)

dx® dx ~ xt
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In neglecting e we have, however, destroyed the asymptotic behavior
and must assume a sheath edge at x, . The last equation can be integrated
once from x, to x to give

d _ (2 L)m (i _ l)m. (143)

dx 3 x3 X3
The final integration must be done numerically.

4.2.3 Plane Probe

In this case we have

—h =1, (144)
I, = noukTyfesh, (145)
and
dy _
=" (146)

For a quasi-neutral solution at { = 0, dn/d¢ must approach a constant,
equal to —¢. It is clear why this is so. Since j, is constant by Eq. (144),
there must be a finite electric field to drive this current no matter
how far from the probe one goes, as long as ionization is neglected.
Hence the plane case is even worse than the cylindrical case asympto-
tically, and the probe current depends strongly on the ionization
mechanism.

We can, nonetheless, solve the space charge problem of two parallel
plates at ¢ = 0 and ¢ = &, with dn/d§{ = —cand = Q at &, . Multi-
plying (146) by dn/d¢ and integrating from £ = £ to £ = £, we have

2 2
S - e
dn _
— = [ + 2u(és — &) + e — 2]12, (147)

The final integration can be carried out if we neglect e~

n = fo Lt —f —[® — 2 + 2u(¢s — 7] d¢

(148)
mp = (B30)7M(® — 2 + 2u6)%2 — (& — 2)%%).

This gives the potential profile for space charge limited flow, to be
compared with the collisionless formula (12).
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4.3 ASYMPTOTIC ANALYSIS OF LLARGE SPHERICAL PROBES

The formula (143) for a spherical probe requires that the sheath
thickness be known. Since the problem of a sphere has a well-behaved
solution at oo, the constant of integration x, can be obtained from the
solution in the quasi-neutral region. This is done in the boundary-layer
analysis of Su and Lam (20), which shows that the solution, as in the
collisionless case, can be divided into partial solutions for the quasi-
neutral region, a transition region, and a sheath region, and that the
thickness of the transition layer can be neglected in the limit of large
probes and high potentials. This theory is applicable in the limit of
small A, when the macroscopic transport equations are valid. In this
limit there is a fourth boundary layer immediately next to the probe
called the ion-diffusion layer in which the D term of Eq. (122) is dominant
and the ion density falls rapidly to O to satisfy the boundary condition
n; = 0 at the probe. This layer has a negligible effect on the probe
characteristic. Typical I-V curves for large negative probes, computed
by Su and Lam, are shown in Fig. 15. These curves show good saturation
at high probe potentials; that is, the probe current is more constant than
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Fic. 15. Saturation ion current characteristics for various sizes of spherical probes
in a collision-dominated plasma. [C. H. Su and S. H. Lam, Phys. Fluids 6, 1479 (1963).]
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the collisionless theory would predict. This often occurs in experiment;
and when it does occur, one should suspect that the current is diffusion
limited.

When the probe is near space potential the current of electrons
collected is no longer negligibly small, and the theory becomes more
complicated. Computations for arbitrary 7, and large p, are given by
Cohen (21). If n, is much less than I, however, a simplication can be

made by linearizing the governing equations. For 7, <1 and
[(1 4 B Y)(A/r,)(A/R)?]1/3 L 1, Su and Lam (20) obtain

= qQmrpn { s 3771) (
I'=dmromDo Ut giai + A om (149)

where 8 = T,/T, .

4.4 SuMMARY OF PROBE THEORIES WITH COLLISIONS

When the mean free path is neither large nor small, the theory becomes
extremely complicated, since there is no simple equation of motion. The
first analysis of a probe at high pressures was made by Davydov and
Zmanovskaja (22), who assumed that A ~ A, so that quasi-neutrality
obtained in the diffusion region, and free-fall occurred in the sheath.
Ionization was taken into account, but the sheath criterion (23) seemed
to be unknown to them. In 1951, R. L. F. Boyd (23) considered the
case of intermediate mean free path by dividing space into four regions
and matching boundary conditions at each interface: a sheath region in
which n; # n,, an abnormal mobility region in which n; ~ n, and
v; ~ (VIV)1/2, a normal mobility region where Eq. (122) is satisfied, and
an undisturbed plasma region. A result of this very complicated analysis
was that the probe current cannot be computed without prior knowledge
of the sheath thickness.

The transition from collisionless to collision-dominated collection by
a cylindrical probe was studied by Schulz and Brown (24). For no
collisions, the Langmuir theory was used. With one collision in the
sheath, the probe current was found to be increased, since the orbital
motion was disrupted. With several (2 to 10) collisions in the sheath,
the ions can be scattered out, and a plural scattering calculation by
Cobine was used. For many collisions in the sheath, Eq. (136) was used.
Semiempirical formulas were given for each case, and the theory was
checked against microwave measurements of density, with extremely
good agreement.

Waymouth (25) has attempted to match the solution in the collision-
dominated region directly to that in the free-fall region; however, the
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validity of such a procedure is open to question. Ecker et al. (26) have
done the same for a cylindrical probe; it was of course necessary to
consider ionization in this case. The primary effect of collisions seems to
be a decrease in the plasma density at r = A due to the blocking effect
of the probe. The magnitude of this effect is given by Eq. (117).

Only in the continuum limit, when the macroscopic fluid equations
can be used everywhere, and only for spherical probes, has the theory
been worked out in detail. The elegant boundary-layer analyses of Su
and Lam (20) and of Cohen (27) are summarized by the saturation ion
curves of Fig. 15. For other geometries Eqs. (136), (143), and (148) may
be used if the sheath thickness can be estimated.

In all this work the classical diffusion and mobility constants were
assumed. In fully ionized plasmas the diffusion coefficient varies with
density, and these theories would not hold. However, the mean free
path for Coulomb collisions is usually so long that the collisionless
theory usually would apply, except in dense, cold, fully ionized plasmas.

5 Probe Theory in the Presence of a Magnetic Field

As we have already seen, probe theory in the absence of magnetic
fields is sufficiently complicated that in most cases of interest numerical
solutions of the equations are necessary. When a magnetic field 1s added,
the problem becomes so difficult that it has received only very spotty
treatment up to the present time. This is unfortunate, since most
plasmas of interest today employ a magnetic field to aid in confinement;
this applies both to plasmas of thermonuclear interest and to the
Van Allen belts.

The main difficulties introduced by a magnetic field are twofold.
First, particles are constrained to gyrate about the lines of force, so that
particles move at different rates along and across the field. This intro-
duces an anisotropy which makes the problem at least two-dimensional.
Second, the effective mean free path across the field is of the order of
the Larmor radius, since particles can travel only this far without
making a collision; and since the Larmor radius is quite small for
electrons even for moderate fields, there is essentially no collisionless
theory in such a case. In fact, for very strong fields any probe will
resemble a plane probe, since particles can come to it from only one
direction; and we have seen that the current to plane probes depends on
the mechanism of plasma production in the entire volume and is not a
local property of the plasma itself. We shall first consider the problem
in general and then discuss the few specific cases which have been treated.
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5.1 OVER-ALL VIEW OF THE PROBLEM

When a magnetic field is applied, the most noticeable effect is that
the saturation electron current is decreased below its value in the
absence of a field. The ratio of I, to I; is normally of the order of the
ratio of electron to ion thermal velocities, i.e., (RT./m)*/2/(kT;/ M)/,
and this is of the order of 10% In a magnetic field weak enough that the
ion Larmor radius r; is large compared to the probe radius a and the
Debye length % and hence that /; is not affected, but strong enough that
7 e 1s comparable to or smaller than the relevant dimensions, this ratio
falls to 10 or 20. This is presumably because the available electron
current, which normally is that diffusing to a sphere of radius of order
A, is decreased by the magnetic field B to that diffusing at a reduced rate
across B into a cylindrical tube defined by the lines of force intercepted
by the probe.

The normal diffusion coeflicient D, as given by kinetic theory, is A9/3.
The diffusion coefficient across a magnetic field, in the case of classical
collisions with neutrals, 1s

D, = D/(1 + w?r?), (150)

where w is the cyclotron angular frequency, and = the mean collision
time. Equation (150) also holds for fully ionized gases. Since wr for
electrons is typically above 102 (at 100 G and 10 p neutral pressure),
D is severely reduced even at small fields. For ions, w is decreased by
m/M while 7 = (n,00)~! is increased by approximately (M/m)'/2, so
that w?r? is at least 2000 times smaller than for electrons. Thus D ; is
decreased severely only for large B, and the conditions assumed in the
previous paragraph can actually occur. At large magnetic fields anomalous
diffusion almost always occurs, in which D, is much larger than the
value in Eq. (150). An important function of probes is to measure the
unknown anomalous value of D, .

Another effect of the magnetic field is to destroy electron saturation;
that is, part 4 of the probe characteristic continues to increase with
voltage. This may be because the effective length of the flux tube into
which electrons can diffuse to reach the probe increases continuously
with voltage; however, this part of the characteristic has not been
analyzed in detail, and it is not possible to give an exact physical picture.

As for the transition region, part B of the characteristic, it seems
reasonable that at high negative voltages, when the drain of electrons is
small, the plot of In /,/V, should still be linear when the distribution is
Maxwellian, and the slope should still give the electron temperature.
The sheath around a spherical probe may now be asymmetrical, but the
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addition of a magnetic field cannot change the state of thermodynamic
equilibrium, and this state is such that the velocity distribution in any
direction is exponential. However for strong fields it is possible that a
complete equilibrium is not reached, but instead the plasma is describable
by different temperatures 7', for motions perpendicular to B and T, for
parallel motions. In such a case one would expect that the slope of part B
would give T, , since most electrons reach the probe by traveling along B.
The exact analysis of this part of the characteristic has not been done.

Near the space potential, the absolute magnitude of the electron
current has been estimated by Bohm et al. (Section 5.2), and the variation
with potential by Bertotti (Section 5.3). However, the behavior is suffi-
ciently obscure that at the present time it is not known which point on
the characteristic corresponds to the space potential. Indeed, it may not
even be possible to define a space potential. The point of intersection
found by extrapolating parts B and A4 of the characteristic therefore
does not have its usual significance.

Part C of the characteristic, the ion saturation current, has so far
defied all attempts at analysis in the case of a strong field, when 7 1s
comparable to or smaller than other relevant lengths in the problem. In
weak fields, as mentioned before, the ion current should not be greatly
affected. Since the electron motion is affected, one would expect that the
ion sheath around a negatively charged symmetrical probe would not
necessarily be symmetric. The effect of this on the ion current has not
been treated.

5.2 ELECTRON CURRENT NEAR THE SPACE POTENTIAL

The electron current at small positive probe voltages can be estimated
in 2 manner similar to that in Section 4.1. This approach was originally
suggested by Bohm, Burhop, and Massey (3). Consider a probe of
arbitrary shape immersed in a plasma in a magnetic field. Let the positive
probe potential be so large that very few ions are collected, but small
enough that the electric field has little effect on the motions of electrons.
Obviously these conditions are compatible only if T; < T, . Let the
mean free path along B be A, the Larmor radius be r, , and the diffusion
and mobility coefficients along and across the field be D, D, , u, and u ,
where D, is defined by Eq. (150) and p, is defined similarly.

As in Sec. 4.1, we assume that the motion across the last mean free
path is unhindered, so that in terms of the density 7, one mean free path
away from the probe the current is given by Eq. (109):

n;ﬂ;

I'=4 3k

(151)
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where K is a constant varying from i (if the surface 4, is far from the
probe) to 1 (if A, is close to the probe). With the magnetic field, the
surface A; will be skewed, somewhat as shown in Fig. 16, since the

"
A\

—
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S

Fic. 16. Schematic of the shape of the surface 4; bounding the collisionless region
around a probe in a magnetic field.

—= B

length of a free path along B is A, while across B it is only 7, . The
exact shape is not important. In the region exterior to A;, we shall
assume that the collision-dominated equations obtain and that current
is conserved. The electron flux is given by

j— —D-Vn 4 np-VV, (152)
where D and p are diagonal matrices:
D, 0 0 p, 00
D:(o D, 0), p:(O “y 0). (153)
0O 0 D 0 0 pn

The mobility term can be evaluated if we assume quasi-neutrality in
the exterior region. Then n, is equal to n;, which in turn is given by
the Boltzmann relation:

ne = ny = nge°V/*i, (154)
Thus,
—¢

Vn=n (kT1

)VV. (155)

Using this and the Einstein relation (124) (assuming the latter to hold
even in a magnetic field), we obtain for the current

j:—D-Vn(lJr%). (156)

We shall ignore the correction factor (1 + T;/T) since this must be
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close to unity from our original model. Since current is conserved and
D 1s assumed constant,

on

~Vj =D, Vin+ D =0. (157)
If we let
o« =D, |D (158)
and
{ = Vaz, (159)
Eq. (157) becomes
0 =D, (v2n+ 2" =Dy 160
= J_( _Ln+'522)— LY (160)

where V7 is the Laplacian in {-space, in which lengths in the direction
of B have been contracted by a factor 4/a. Thus n is a solution of
Laplace’s equation in {-space.

‘The probe current is found in terms of n; by integrating j over 4, :

ﬁiﬁ
dz
(161)

[ — f“ —j-dS = f“ds. D.Vn — le“dsl-vﬂz +Df“dSu :

To transform the integrals to {-space, we note that 8/02 = 4/« 9/0(
and dS, = dS'/+/a, while dS, and V n are unchanged by the trans-
formation (the primes indicate quantities in {-space), so that

I = DVa f V'n-dS'. (162)
A

This integral can be evaluated for any simple surface A, (the trans-
formed surface A;), but there is no need to do this, since we saw in

Eq. (115) that this is given in terms of the capacity of the surface 4,
relative to infinity. Thus

I = 47V aCD(ny — n,). (163)
From this and Eq. (151), we have

n,o -
I =4, 74_"15 = 417\/aCD(n0 — n,),
(164)
Mo
nA - — b
[+ Ap?

167KV «CD
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and
noﬁAp
4

I =

Apv )*1.

K D
( + 167V «CD

(165)

For strong fields we can neglect the first term in the brackets; the area
of the probe then no longer enters. It is the area of the surface 4,,
contained in C, which matters. Putting D = A¢/3, we have

4ny0

I———3

vV aCA. (166)

If, in calculating C, we assumed A; and hence A, to be an infinite
cylinder with its axis in the z-direction, or if we assumed the probe to
be an infinitely long wire, we would find that C ~ L/In(b/a), where a
is the radius of the surface 4, , b is the outer radius, and L the length of
the region in question. Since we are interested in the limit 4 — oo,
L — oo, the value of C depends on how these limits are approached.
Thus we recover the result of Sec. 4.2.1 that an infinite cylindrical
probe in the collision-dominated case is not a well-posed problem. The
finite length of the surface 4, must be taken into account.

Returning to the case of a spherical probe, we note that the surface 4,
in this case can be approx1mated by a prolate spheroid of minor radius
a + r, and semimajor axis @ + . In {-space, the transformed surface 4,
then has a radius b perpendicular to B and a semiaxis 4 along B, where

b=a-+r ~a

d = Vala +X) ~ VaX (167)

This spheroid is prolate or oblate depending on whether a is less than or
greater than 4/al. The capacitance of such a spheroid can be found
from standard texts to be

d(1 — p2)L/2

- tanh(—l(l i)pz)l/z ,  p=bld<1 (168)
d(p2 — 1)/2

- tan(—zl)(Pz _)1)1/2 ) p=>bd =1 (169)

These formulas, together with (167) and (165) or (166), then give the
saturation electron current at a small positive potential under the
assumptions that T; < T, that orbital motions can be neglected in
the free-fall region, and that quasi-neutrality obtains elsewhere. The
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neglect of K in (165) is justified whenever the field is strong enough to
make / much less than its zero-field value.

The expression for C diverges as d — o0 as one would expect; the
potential in the infinite cylindrical case falls so slowly that if one could
maintain a density 7, at infinity, the current would be infinite. When
p — 1, the inverse tangent and hyperbolic tangent can be replaced by
their arguments, and both expressions reduce to the spherical case,

C = b. When d = 0, (169) reduces to the capacity of a disk:
C = 2b/n. (170)

This differs only slightly from C = b. Thus in the range p > 1 the
probe current depends insensitively on the assumed length and shape
of the surface 4, ; the opposite is true if p << 1. Fortunately, the inter-
esting range of p centers around 1. This may be seen as follows if one
assumes classical diffusion:

a aw

Vad— 7

It
1

(171)

QUi o

For average laboratory conditions, a = 10~2cm, w = 2 X 10 sec™!
(1000 G), and 9 = 2 X 108 cm/sec (kT, ~ 10eV), p is just 1. At
higher fields and larger probe radii, in principle p can be as large as 100;
however, what normally happens at high fields is that transverse diffusion
becomes much larger than the classical value, and this increase in «
reduces p back to the order of unity.

The dependence of / on D, can be seen if we approximate C by
b (~a); then from (166),

oy 32 (172)

I'=—="3,

where a is the probe radius, and « = D /D. Thus I varies only as the
square root of D,; this is because part of the probe current comes
from diffusion along B, and this is unaffected by a change in D .

Equations (172) and (105) are crude but useful approximations to
the saturation electron and ion currents to an arbitrarily shaped probe in
moderate magnetic fields (r,, < a < ry;). If kT, and A are known,
Eq. (172) gives the value of D, whether it is classical or not. Unfortu-
nately, it is not clear at which point of the characteristic I should be
measured.
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5.3 “CoLLISIONLESS”’ THEORY OF A PROBE IN
STRONG MAGNETIC FIELDS

In the previous section we considered the particle currents in the
collision-dominated region but neglected the detailed behavior of the
electric field and particle motions in the collisionless region near the
probe. Now we shall describe the theory of Bertotti (27), which treats
this region but neglects the asymptotic behavior in the transverse direc-
tion. In order to obtain a tractable problem it was necessary to reduce
the problem to one dimension and to make a number of mathematical
simplifications.

Consider a probe of cross-sectional area 4, in a strong magnetic
field B. Let the probe voltage be so high that particles 2 are essentially
all repelled and therefore are Maxwellian. This is of course true in the
long run in spite of the magnetic field, since the latter cannot affect the
thermodynamic equilibrium of particles 2. Because of the weak com-
munication across lines of force, however, it takes longer to achieve
this equilibrium in a field than without one, and we must assume that
the time concerned is short relative to the confinement time of particles 2.
The size of the Larmor radius of particles 2 then makes no difference;
the density is given by the Boltzmann law whether the gyroradius is
large or small. The gyroradius of the collected particles 1 will be
assumed small compared to the probe radius.

The probe is assumed to collect only particles traveling along B in a
tube of radius @ + r_, where a is the probe radius and », the gyroradius
of particles 1, and @ > r. . The population of particles in this tube
will be controlled by transverse diffusion into the tube from the undis-
turbed plasma. The diffusion coefficient D, can be classical or anomalous
(caused, say, by fluctuating electric fields), but the theory is most useful in
the case of anomalous diffusion. Ordinary collisions suffered by a particle
in the course of its travel along B in the tube defined by the probe are
completely neglected. The theory is “collisionless’ to the extent that
a D, which does not depend on collisions with particles can be used.

The basic assumption of this theory is that the radial fall-off of
potential (and hence density) as one leaves the probe and the tube of
force it intersects has a characteristic length of the order of the larger
of r, and A, both of which are small compared with a. Hence the un-
disturbed density #n, is reached in a relatively short distance radially.
This assumption will be discussed later. All quantities will then be
averaged over the cross section of the tube, and this will become a one-
dimensional theory in the dimension 2, along B. As one goes away from
the probe in the 2-direction, the undisturbed density will be approached
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asymptotically, since there will be a larger and larger distance in which
particles can diffuse into the tube and replenish the particles lost to the
probe. The behavior of » and V in the z-direction will be given by the
theory. This problem is very similar to the problem of a collisionless
discharge between infinite parallel plates. Instead of ionization we have
here transverse diffusion which feeds particles into our one-dimensional
space. There is here however a ‘“‘recombination’ mechanism due to the
loss of particles from the tube due to the same transport mechanism
which brought them in.

The transverse ‘‘diffusion’ is imagined to be given by a frequency s,
which is constant in space and time and gives the rate at which particles
are exchanged between lines of force. Thus into a volume wa? dz of the
tube of force defined by a probe of circular cross section, there are
ma’nys dz particles per second transported from outside the tube (where
the density is 7n,), and there are wa®n,(2)s dz particles per second trans-
ported similarly out of this volume. The net flux is then found by
dividing the difference by the area:

_ mats dz(ny — ny)

2ma dz

= %sa(ny — n,). (173)

The parameter s can be related approximately to D, by assuming that
the radial gradient of # has a scale length », , the gyroradius of particles 1;
then the flux is also

j = D,(ny —m)jr, (174)

and so
D, ~ isar, . (175)

The perpendicular transport mechanism, however, need not be a
diffusion mechanism at all.

If n, and V are understood to be average density and potential over a
cross section of our tube, they are related by the following one-dimen-

stional Poisson equation for e, = —e, :
2
(clizz = —d4me,(n, — nge 02V /kTz), (176)

We shall employ the usual dimensionless variables:
n = '—‘elV/kT2 > 0
¢ = z/h
h = (kT,/4mny ) (177)
u = v/vg, vy = (2RTy/m, )12

Vv = nl/no .
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Equation (176) then becomes

2]

7' =v—e, (178)
and conservation of energy for particles 1 gives
w*(€) — () = (&) — n(0)- (179)

We can also define a dimensionless diffusion coefficient 4 and a corre-
sponding dimensionless o:

4 = D |vsh
s (180)
o = shjvs,
so that Eq. (175) becomes
4 ~ Loa*r, (175a)

where a* and 7* are measured in units of A.

The next task is to calculate v in terms of ¢ and the initial velocities of
particles 1. For simplicity Bertotti assumes that these have a uniform
velocity +u, in the ¢-direction, half the particles going in each direction.
The extension to a continuous velocity distribution complicates the
equations but does not introduce any new effects. Let (¢, {) be the
dimensionless particle current (normalized to nyv,) which enters the
tube in a unit length at { and reaches ¢. The current that enters at {,
W&, {), 1s given by the diffusion 'parameter o:

(L, ) = +3o, (181)

the -+ 4 indicating that half goes one way and half the other. As this
component of current travels toward &, it is being diminished by diffusion
out of the tube at a rate proportional to o and to the density ¢/u:

&(E, C) _ ——O'L(f, C)

& wED) s
where u is given by Eq. (179):
u (€, 0) = ug + n(£) — () (183)

It is clear then that « varies exponentially:

c(f, C) — :]:%Ue—af(;’,@’ (184)
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where (¢, {) is the time, normalized to k/v,, taken to go from { to §:

¢

Of course, if ug were too small compared to n, some particles entering
the tube heading away from the probe would be turned around by the
potential. These would contribute twice to the density and would
greatly complicate the equations. Hence we must assume for all »:

w2 > . (186)

This means that the theory is limited to small probe potentials, and
usually to electron collection, since if T; << T,, a probe potential
smaller than &T;/e would not be sufficient to repel most of the electrons
and cause saturation. With this assumption, the density at £ is given by
the integral over all partial currents from ¢ = 0 (at the probe) to £ = oco:

L(f, C) 00 p—07(£,8)
W(€) = f - f DT (187)

Because of the absolute value sign this is conveniently broken up into
two integrals. Let p = { — £. Then using (187) for v and (183) for u, we
have for Poisson’s equation (178)

f e °7 dP

2Jo (2 +n(€) — (€ + p))'7
J~ e °7 dP

2 [4f + n(€) — (€ + P 7

77’/ + e_-n _

(188)

where 7 = 7(§, € + p) is given by (185) and (183) in terms of %. This is
an integro-differential equation for n(¢), with 5(0) = 7, , n(0) = 0.
The probe current density j is the integral over the partial currents . d{:

no‘ZJSO’ 0

j = ngos [ °° dgu(0,8) = M2 [ mermov g (189)

0

by (184). Here 7 is given by (185) and (183) once 7 is known.
The complexity of this equation is apparent. The nature of the solution
can be seen, however, in a much simplified case, in which

_sz_l(vs)z_ 1

o) - 2
2u 2

Yo

=t 3 0. (190)
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In this case %, is so large that in (183) u can be replaced by +u,; in
other words, the particle motion is unaffected by the potential. This
corresponds to collection of one species which is much hotter than the
other; usually this implies electron collection in the presence of cold
ions. Also the time 7 in (185) is approximated by (¢, {) = ug'| § — (.
Equation (188) then simplifies to

£
7' 4 e = if e~/ dp + —‘J e=??lo dp

2u 2u
’ ’ (191)
n" e =1 — fe ot/

This equation has a rather peculiar behavior if we set ¢ = 0, corre-
sponding to no transverse diffusion. Then

n 4 e — % =0. (192)

This means that quasi-neutrality can never be attained: the equation
for n, cannot be satisfied for 5y = 0 and %y = 0. The physical
meaning of this is clear. If there are no collisions and no transverse
diffusion, the very presence of an absorbing probe removes all particles 1
traveling toward the probe, and hence the density at oo can be only 17, .
On the other hand, if we first change the unit of distance so that

£* = ofu, (193)
and Eq. (191) reads
0%l Z;’g +oeo =1 — Le e, (194)
and then let 0 — 0, we get
e + et —1 =0 (195)
or
mo = —In(l — Je-otiu). (196)

This solution and its derivatives do approach 0 for £ — co. In fact the
quasi-neutral solution is guaranteed in this case because as ¢ — 0 in
(194) the differential operator is neglected.

This 1s therefore a boundary-layer type of problem in which two
different equations obtain for different regions, and the solutions must
be matched at the common boundary. The position of this boundary
will depend on the size of o. The solution %, of Eq. (196), then, applies
to the quasi-neutral region far from the probe. There is a very gradual
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falloff of potential corresponding to the gradual replenishment by
diffusion of particles lost to the probe. At ¢ = 0, 5, = In 2.

The solution 5, of Eq. (192) is valid for the sheath region and must be
matched to 7, by letting ny(c0) = In 2. With y(0) = 75, , 9, can easily
be found numerically. The first integration can be done analytically
the usual way. Note that the scale length for 7, is of order 1 (% in real
units), while for 7, it is #y/o (vy/ks in real units), which is generally very
much larger. Thus the last term in (191) can be set equal to 3 in the
sheath, and 7, is the proper solution there.

The probe current follows from Eq. (189). In the limit of large u,,
T is approximately {/u,, so that the current density is approximately
j = Ingvgu, = inyv,, which is just the thermal random current. With
the first-order correction found from the numerical solution of (192),
the probe current density 1s

j = nae(l + 0.16420) + hosec [ dag(z) — In 2], (197)

0

where « is defined in (190). The integrand is always positive.

This result is clearly in contradiction to experiment, since it predicts
an electron current in excess of the current (approximately 2n,v,)
which would be collected in the absence of a magnetic field. The reason
is also clear and bears out our previous statement that there is really no
collisionless probe theory for a magnetic field. We have seen that an
infinite cylindrical probe collects infinite current in the collision-domi-
nated case. Since any shape of probe acts like a long cylindrical probe in a
magnetic field because it collects particles along a long tube of force,
one would expect that the surrounding plasma would be severely
drained of electrons. Hence the original assumption that the plasma
density has its undisturbed value n, a small distance r_ radially away
from the probe is invalid; the radial falloff distance is actually very large.
In this “collisionless’ theory the density just outside the tube of force is
assumed to be replenished to n, by free motion along lines of force.
However, because of the length of the scale distance for %, , these
particles must travel a very long distance along z, and their motion is
eventually limited by collisions. Thus the decrease in j when B # 0
depends eventually on A, the mean free path along B, as was found by
Bohm (Section 5.2); and the largeness of (197) is due to the neglect of A.

This theory can perhaps be salvaged, however, since for n, one
merely has to substitute 7n;, as calculated by Bohm for the collision-
dominated region [cf. Eq. (164)]. This will give the correct magnitude
of j, while the last term in (197) will give its dependence on 7, , i.e.,
the shape of part 4 of the characteristic. This shape is somewhat
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unexpected, since the computation of the integral in (197) shows that
the slope of j increases with o . Thus according to this theory the
floating potential occurs to the left of the inflection point in the probe
characteristic (Fig. 1), contrary to the case when B = 0. The reason
for j to increase with 7, is merely that the sheath thickness & increases
with 7, ; hence there is a larger region where Vz is large. The reason
for the slope of j to increase is more obscure. This is probably because
electrons are accelerated more by higher 5, , so that they have less
chance to be scattered out of the tube. This acceleration was neglected
in calculating %, , as was diffusion; but it was included in the first order
term in the expression for j. This effect would probably be completely
masked in practice by the I — I dependence of the solution in the
collision-dominated region.

In a second paper by Bertotti the restriction to a« — 0 was removed,
but it was necessary to treat the case of slow diffusion, ¢ — 0, in which
the second integral in (188) could be neglected because the interval was
finite. The restriction (186) on probe potential was also removed by
considering particles which are turned around by the electrostatic field.
After a tedious calculation Bertotti arrives at an expression for j valid for
arbitrary «. In the limit of large 7, he finds that j ~ 3% There is thus
no saturation. However, this result is suspect for several reasons. First,
the collisional effects mentioned above would certainly become im-
portant. Second, the asymptotic analysis in which % is divided into 7,
and 7, is valid only if o7 is small, i.e., the time of travel is small compared
to o~ L. For large sheaths this may not be true. Third, in the presence of
gradients of 7 in both 2 and 7 directions, there is a second-order drift
which moves particles radially even when ¢ = 0. The neglect of this
drift would not be valid if the value of o is too small. The theory of
Bertotti makes its primary contribution in demonstrating the mathe-
matical nature of this boundary-layer problem.

5.4 SuMMARY OF PROBE THEORIES WITH A MAGNETIC FIELD

As early as 1936 Spivak and Reichrudel (28) made a study of electron
collection in a weak magnetic field, primarily by cylindrical probes.
Their point of view was that the Langmuir orbital theory (Section 3.1.2),
which has the advantage that the probe current is independent of the
potential distribution, had a limited range of applicability (the sheath
had to be large), and that this range could be extended by applying a
weak magnetic field. Electron collection is then controlled by orbital
motions in the magnetic field over a larger range of possible potential
distributions. The current is again independent of potential shape, and
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Poisson’s equation and ion density are not considered. In order to solve
the orbital problem, however, Spivak and Reichrudel had to assume a
boundary at which the magnetic field’s effects abruptly stopped; and
the velocity distribution at this boundary was assumed to be known.
This rather unrealistic assumption limits the credibility of the theory,
even though the resulting curves for parts 4 and B of the probe charac-
teristic vary with B in a manner similar to that observed in experiments.
Detailed comparison with experiment was attempted; but since the entire
discharge changed with B, this was not definitive. In any case the theory is
valid only for very weak fields (below 100 G) and very low densities.

In 1954, Bickerton (29) considered electron collection by a plane
placed parallel to a magnetic field. Three cases were considered: & < r,,
h> r_,and h ~ r_ . The procedure was to assume that electron motion
is prescribed by perpendicular diffusion and mobility (152) and that the
electric field is given by Child’s law (12) for space-charge-limited zon
flow from the plasma to the collector. The latter assumption may be
valid for the lower portion of the transition region of the probe charac-
teristic, but Bickerton also used this assumption even near space poten-
tial. With a known ¥ and j(n), the density in the sheath can be found in
terms of that at the sheath edge. The latter was found from the quasi-
neutral solution for the plasma region; convergence was achieved by
including ionization.

For h < r_, the electron motion inside the sheath is unaffected by the
magnetic field, while that outside the sheath is unaffected by the electric
field. If the velocity distribution is known at a distance ~r from the
sheath edge, and all electrons entering the sheath are collected, con-
sideration of orbits in the outer region gives for the probe current
density (for classical diffusion)

negy

P00 T g (198)

4 wr

where w is the electron gyrofrequency. If collisions during the last
Larmor orbit are taken into account, the result quoted by Bickerton
and von Engel (30) is
_ ny? [8 + 0?1 — e’2"/‘“’)]
4 2(4 + w?r?) '

(199)

This expression reduces to n,9/4 for o = 0 and to (198) for w — co.
The density n, is that near the plane probe; its relation to the density
at oo is not known, since no asymptotic analysis was given. Moreover
an abrupt sheath edge was assumed. Therefore some caution must be
exercised in using (199). Although (198) resembles the result of Bohm
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(166) in that the current goes as 1/B, the two theories do not agree in
detail because of the difference in the original model.

The magnitude of the electron current near space potential is given by
Bohm [Eq. (165)] for a probe of arbitrary shape. This theory neglects
electric fields and orbital motions and is valid only for kT, > kT, .

'The variation of electron current with potential is given by Bertotti
[Eq. (197)] for the case of a probe of arbitrary shape in a strong magnetic
field, when the probe potential and the ion temperature are both small,
and the transverse diffusion coefficient is constant. The result is not
expressible in simple terms. Collisions are neglected.

The variation of saturation probe current with potential is also given
by Bertotti (27) for the case of slow diffusion and large potentials. The
temperature ratio is arbitrary, so presumably this theory can be used for
ion collection as well. However, the assumptions of the theory are so
restrictive that extreme caution should be exercised in its use.

No satisfactory theory, particularly of the important regions B and C
of the probe characteristic in a magnetic field, is available. However, as
long as the electrons are in thermal equilibrium and the ion Larmor
radius i1s much larger than the probe dimensions, the usual theories of
ion collection may be used. The electron temperature is probably
correctly given by the In I~V curve in the range in which it is linear.
Even in a strong magnetic field the range of electron velocities thus
sampled is usually greater than in the method of double probes.

Much of the uncertainty in measurements in a magnetic field can be
removed by using auxiliary floating probe to measure the change in the
potential of the plasma caused by the current-collecting probe. The
auxiliary probe should be small, so that it does not block the current
to the main probe, and should be on the same line of force as the main
probe, so that it is in a region with the same space potential.

6 Floating Probes

6.1 FLOATING POTENTIAL

Although space potential is usually the quantity of interest, what is
easily measured is instead the floating potential, the voltage at which
the probe draws no current. Therefore the exact relation between V,
and V', is of interest. V; is of course negative relative to V.

In the absence of a magnetic field an approximate relation can be
obtained by using Eq. (105) for the ion current:

ji = Ln(RTe/ M), (200)
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Since most electrons are repelled, their distribution, if originally
Maxwellian, remains so in the presence of the probe, and the electron
current is merely the random current times the Boltzmann factor:

je — inﬁeeeV,/kTe —

1 " (2kTe

1/2
5 ) ecvinte, (201)

mm

V', being negative. Setting j; equal to j,, we have

er 1 T m
=g (5 77) - (202)
Thus for hydrogen V, is about 3.6 times £T', negative relative to space,
and the factor is somewhat larger for heavier elements. For a more exact
answer, the numerical results for j; (Section 3.3) must be used.

In the presence of a magnetic field the magnitude of I, is uncertain
because no theory exists for j; at small negative probe potentials. If the
field is so weak (less than a few hundred gauss, say) that 7;, is much larger
than the Debye length and the probe radius, then it may be permissible
to use Eq. (200) still: The electron current, however, will be constrained
to flow along the field, even at quite low fields, so that the effective
collecting area is reduced to something like the projection of the probe
area on a plane perpendicular to B. Thus for a cylindrical floating probe
perpendicular to B the electron current is, very approximately,

Ie = 4alje , (203)
where a and [ are the radius and length, while the ion current is
11 = 277(11].1 . (204)

If we use Eqgs. (200) and (201) for j; and j, , the resulting value of er}/k T,
differs by only a constant equal to In(3w) = 0.45, and this is probably
insignificant in view of the approximations made.

6.2 DouUBLE PROBES

In most gas discharges there is an electrode in good contact with the
plasma which can be used as a reference point for potential when
applying a bias voltage to a probe. Such an electrode can be the anode or
cathode of a discharge, or the metallic wall or limiter of an electrodeless
discharge, such as that in a stellarator or a toroidal pinch. In some
instances such a reference point is not available. Examples of this are
a toroidal rf discharge in a glass tube or the plasma in the ionosphere.
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In such a case a double probe must be used. The double-probe method
was originally proposed by Johnson and Malter (37), and we shall give a
simplified version of their thorough analysis. This method was invented
for use in decaying plasma, in which the plasma potential changed with
time, so that it was difficult to maintain a constant probe-plasma potential
difference. With two probes biased with respect to each other but
insulated from ground, the entire system ‘‘floats” with the plasma and
therefore follows the change of plasma potential.

Figure 17 shows the geometry. Probes 1 and 2 have areas A, and A4,

FiGc. 17. Schematic of a floating double-probe system showing the convention used
for the sign of I.

respectively, and are located in a plasma which has constant properties
within the spacing of the probes. A voltage V' is applied between 1 and 2,
but the entire system is not connected to any electrode. For definiteness
we shall assume V| is positive relative to V, , and therefore

V="V,—V,>0. (205)

A current I(V) flows between 2 and 1 and is positive if V is positive, by
definition.

The potential distribution is shown schematically on Fig. 18. Since
the electron velocities are much higher than the ion velocities, the
probes in general must both be negative with respect to space to prevent
a net electron current from flowing to the whole system. This condition
can be violated only if one probe is so much larger than the other that
the ion current to the larger probe can cancel the saturation electron
current to the smaller probe; we shall not consider such a case.

Figure 19 shows what the probe characteristic will look like. This is
drawn for the case 4; > A4, ; the curve will of course be symmetrical
for A, = A,. At VV = 0, both probes are at floating potential and no
net current goes to either one; hence I = 0. If V' is now made slightly
positive, V', will become less negative and V,, more negative; thus
more electrons will flow to 1 and fewer to 2. This results in a positive
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Fic. 18. Schematic of the potential distribution between the probes of a floating
double-probe system.
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Fi1G. 19. Schematic of a double-probe characteristic in the general case when the
probe areas are unequal.

current flow from 2 to 1, that is, a positive /; this is shown by the dot on
Fig. 19. For large positive ’s, probe 2 will be very negative, drawing
saturation ion current. Probe 1 will still be negative, but close enough
to V, to collect a sufficient electron current to cancel the ion current to
probe 2. Thus the probe characteristic assumes the shape of the saturation
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ion characteristic of probe 2. With negative V' the current is reversed,
and the same general behavior occurs; the magnitude of the saturation
current will be different if the probe areas are different.

This qualitative description reveals an important advantage of the
double probe method: the total current to the system can never be
greater than the saturation ion current, since any electron current to
the total system must always be balanced by an equal ion current.
Thus the disturbance on the discharge is minimized. This has the
disadvantage, however, that only the fast electrons in the tail of the
distribution can ever be collected; the bulk of the electron distribution
i1s not sampled.

To find the current I(V) quantitatively, we define 7,,,7,_,7, ,
and 7, to be the ion and electron currents to probes |1 and 2 at any
given V. The condition that the system be floating is

fhy Flo, — 4 — iy =0. (206)
The current I in the loop is given by

Iy — g — (e — 1) = 21 (207)
If we add and subtract (206) and (207), we obtain

I =iy — iy, =iy, — iy . (208)

The currents i_ are given by Eq. (201) for the electron current density
to a probe in the transition region:

= A,jrec"1/*Te; similarly for 7,_ . (209)

gt

Here j, is the random electron current density. Substituting this into

the first of (208) and using (205), we have

I+, = Ayjrec?1/kTe = A, jeetV+Vo) 1kTe

_ Al ; eV /kT,
= 7 il VT (210)

From the second of Eq. (208),

I+h, A ypr, 211)

e —1 A,

The basic assumption of this theory is that the probes are always
negative enough to be collecting essentially saturation ion current;
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therefore, 7, can be accurately estimated at any V' by smoothly extra-
polating the saturation portions of the double-probe characteristic. The
quantities in the numerator and denominator of Eq. (211) are then
easily obtained; they are shown in Fig. 19. The slope of a logarithmic
plot of this ratio against V then yields the electron temperature.

We note two special cases. If 4, = 4,, then 7, ~1i4,, ~1, , and

Eq. (211) can be solved for I:
I = i tanh(eV/2kT,). (212)

This formula has been found to fit the experimental curve quite well.
On the other hand, if 4, > A, , we can assume that probe 1 is essentially
unaffected by probe 2 and is almost at floating potential, with z;, ~ 1, .
Thus

I<ty, = 4,5, . (213)

Since 7,, — I = 1,_, Eq. (211) can be written

Ayj, o —:;11—1— 1o etV/kTe; (214)

2

and
iy = Ayj,e¥I*Te = A,j e~¢Vi-Vo)/kTe, (215)

Since 7;, =~ 7,_, we have j,_ ~ j exp(eV,/kT,). With this, Eq. (215)
becomes
iy = Ayjret¥eliTe. (216)

This is just the transition current to a single probe, as one would expect,
since probe 1 has become a large reference electrode. This case of
A, >> A, has application in space physics, where a nose cone casing
often serves as a large reference probe.

The logarithmic plotting of (211) to determine kT, is quite laborious.
Since only a few electrons are sampled anyway, sufficient accuracy on
kT, can be obtained by merely measuring the slope of the characteristic
at the origin. If we assume that 7 is independent of V, we obtain from

(208)

dl di_ diy
v~ 4V 4V’ e
Using (209), we have
A, jret*1/*Te e_dVs + AjjretV2/*Te d f_Vz = 0. (218)

kT. dV kT. dV
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From (205) we have

4V, dv,
1 = 172 17 (219)
so that (218) becomes
. dv dv
eVy/kTy Z "1 eVy/kTe (21 __ —
Aye T+ A ( - 1) 0. (220)
AtV = 0, we have VV; = IV, ; and so
av,1 A,
”JV]O T A, + 4, (221)
The first of Eq. (217) therefore becomes, at V' = 0,
a7~ 4,4, . e eV [ET
avl, = 4+ 4 222)
Since
Jr = Jret Vi Te, (223)
we have
A1 e . AA,
}1_17]0 kT A+ 4, (224)
Finally, since 7;,, = A,j, and i,, = A4,j, , we have
dl e 1y, iy,
——=| = . L 225
dV]o kTe 1y, + 15, (225)

From this, kT, can be computed from the slope at the origin and the
measured magnitudes of 7;, and 7,, .

Once kT, 1s known, the plasma density can be calculated from either
saturation current, with the help of one of the theories of ion collection
summarized in Section 3.3.4.

6.3 EMITTING PROBES

A technique which is sometimes useful is to make a probe in the form
of a small wire loop so that it can be heated to emission by the passage
of a current. Whenever the probe is sufficiently positive, the emitted
electrons will be drawn back to the probe, and the collected electron
current will be essentially unaffected by the emission. On the other hand,
when the probe is negative relative to V, the emitted electrons will be
able to escape and contribute an apparent ion current to the probe.
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The potential at which the hot-probe and cold-probe characteristics
begin to disagree therefore is an indication of the space potential, as
shown in Fig. 20.

coLo HOT

Fi1c. 20. Schematic of the difference between an ordinary probe characteristic and
that of an emitting probe.

Since an emitting probe collects electrons when it is positive and emits
them when it i1s negative, one might hope, by increasing the emission,
to reach a point at which the probe will float at the space potential,
giving a direct indication of V.. Unfortunately, this is not generally
possible because the emission cannot be increased indefinitely because of
space-charge limitation. What will happen is that a double sheath will
form next to the surface of a negative probe because of the excess of
slow emitted electrons there. The potential distribution is shown
schematically in Fig. 21; the theory has been worked out by Langmuir
(32).

Probe

SONNONONANONNNNNANN

F1G6. 21. Schematic of the potential distribution in a double sheath surrounding an
emitting probe.
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'The potential hill as seen by the emitted electrons is of the order of kT,
where T’ is the probe temperature, typically 0.2 eV. The potential hill
seen by the plasma electrons is of order kT, if the probe is floating, so
that for T, > T the value of V; is not brought much closer to V, by
the emission. In other words, the maximum emitted current cannot be
sufficient to compensate for the collected current because the plasma
electrons have much higher velocities. The maximum emitted current is,
however, much higher than in a vacuum because of the presence of
positive ions to help cancel the space charge; the ion density is propor-
tional to n,, and therefore so is the emitted current. It is clear that the
only case when I’} is equal to Vis when T, = T, so that the potential
curve is symmetrical.

The same considerations apply when there is secondary emission of
electrons due to bombardment by energetic ions. In this case the emitted
electrons always have an effective temperature of about 1 to 3 eV. Since
the secondary emission coeflicient is angle dependent, the correction
to I, due to this effect is not easy to calculate.

7 Time-Dependent Phenomena

So far we have considered only measurements which are essentially
steady-state. In many instances a plasma will be quite noisy and have
fluctuations in ¥V, and n,. The effect of these on the time-averaged
measurements will be considered in Section 7.1. One of the most
important applications of Langmuir probes is in the measurement of
oscillations and fluctuations. Such measurements make full use of the
spatial resolution of probes and are not subject to the errors in absolute
calibration of probe currents. However, one must then worry about
the speed of response of a probe. These considerations will be discussed

in Sections 7.2 and 7.3.

7.1 ErrecT OF OSCILLATIONS

The effect on the time-averaged probe characteristic of fluctuations in
ny, kT, , and V, in rf or unstable plasmas has been studied theoretically
and experimentally by Garscadden and Emeleus (33), Sugawara and
Hatta (34), Boschi and Magistrelli (35), and Crawford (36) with essentially
the same results. Let j,(¢), kT,(¢), and V (¢) be the fluctuating component
of the random electron current, the electron temperature, and the space
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potential, respectively. Then in the transition region B of the probe
characteristic in a Maxwellian plasma we have

e(Vp — Vs — S)]

K(To 1 1) (226)

je = (je + ) exp |

Since the I, — V curve is nonlinear, one would expect a fluctuation in
V, to affect the average value {j,) of j, . If kT, does not vary, we have

ey = Jeol(l + Jrljr)ee"s/*Tey, (227)
where
Jep = jre? Vo Vel [kTe, (228)

Since V', appears only in j,, , the slope of the I~V curve is unchanged
by the fluctuating quantities; and the measurement of k7T, from the
In I~V curve is unaffected, as long as the probe remains on the exponen-
tial part of the characteristic. The In I~V curve is merely shifted upward
by a constant. For j, = 0 and ¥, = P, sin wt, the shifted value is given by

(Je> = Jeolo(eVs/kTe), (229)

where /; is the Bessel function of imaginary argument. This result has
been verified by all the above-mentioned authors by superimposing a
sinusoidal signal on the probe voltage. If V', is constant and only #,
varies, Eq. (227) predicts that j, is unchanged, since the average of
jr 1s 0. This has been verified by Crawford (36) by modulating the
discharge current. Sugawara and Hatta (34) have checked Eq. (227)
experimentally for other shapes of signals.

If kT, is not constant, its average value is not given exactly by the
average slope of the In I -V curve. This has been studied by Sugawara
and Hatta (34). The error is small for V', near V, but Boschi and
Magistrelli (35) find that accurate measurements are impossible in this
region. Crawford (36) gives a more general theory which includes
cross-correlation effects due to simultaneous fluctuations in n,, kT,
and V, with phase lags, and has checked experimentally the case wlen .
n, and V' oscillate sinusoidally with a phase difference.

When the oscillations extend into the saturation parts (4 and C) of
the probe characteristic, the shape of the characteristic is altered. For
potentials near ¥, the “knee” of the characteristic is rounded by the
oscillations. This has been seen by Garscadden and Emeleus (33). For
potentials near V,;, the I-V curve is bent into an S-shape by large-
amplitude oscillations. This was predicted and observed by Boschi and
Magistrelli (35).
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The fact that the usual dc measurement of kT, is not affected by
large amplitude fluctuations in n, and ¥ in a noisy discharge has been
verified by Chen (37). The technique was to use a double probe, one of
which measured V/; while the other measured I. The instantaneous I-V
curve could then be displayed on an X-Y oscilloscope. The value of
kT, measured from this agreed with the usual method within the
experimental error of 109,.

7.2 RESPONSE OF A PULSED PROBE

By applying a sawtooth voltage pulse to a probe the entire charac-
teristic can be traced in a microsecond or less. This is desirable under
the following circumstances. First, in low-temperature plasmas the
contact potential between the probe and the plasma is important, and it
is necessary to obtain the probe characteristic before the contact potential
is changed by the deposition of impurities on the probe surface. Second,
in unsteady plasmas the time during which the plasma parameters are
constant may be quite short. Third, in intense discharges a probe may
melt when it draws a large electron current; by keeping it near V/; and
pulsing it, one can use the heat capacity of the probe to keep it from
melting during the voltage sweep. Finally, in the measurement of
velocity distributions (Section 3.2.2) it is possible to obtain dI/dV or
d*1/dV? by pulsing the probe voltage and time-differentiating the probe
current by RC networks. In addition, probes are often used to measure
oscillations and fluctuations in a plasma. In all these applications one
assumes that the probe sheath is in equilibrium with the plasma at all
times. It is therefore important to know the frequency response of a
probe and its sheath.

Although a complete, time-dependent theory of probes is not available,
the physical nature of what happens when a probe is pulsed has been
made clear by the experiments of Bills et al. (38) and Oskam et al. (39).
One would expect that electrons would react almost instantaneously to
an applied potential but that the ions would move much more slowly.
Since their maximum velocity is of the order of v, = (kT,/m;)!/? and
they must travel a distance of the order of & = (kT,/4mn.e*)'/? to form
a new sheath, the maximum frequency response would be expected to
be of the order of the ion plasma frequency w,; = (4mnye?/m;)}/2. The
situation is, however, a little more complicated: there is a fundamental
difference between positive and negative probes.

Suppose a probe, biased positive to draw saturation /., is pulsed
further positive. The electron sheath must increase in thickness, and
the sheath edge must move fromr = s, tor = s, , say. Theions orlgmally
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located between s, and s, are pushed away by the electric field. Before
they have completed this motion, however, the value of I, will be larger
than in the final state, because the presence of ions inside r = s, serves
to diminish the negative space charge. Thus a positive square wave will
exhibit an overshoot in I, . This has been observed by Bills et al. (38).
Since this occurs only if V is positive, the onset of this overshoot as V),
is raised gives an indication of the space potential. The time it takes the
ions to move out of the sheath and for the overshoot to die out is typically
of the order of 1 usec.

This overshoot does not exist in high-pressure discharges, as were
used by Oskam et al. (39). There the electron current is limited by
collisions in the plasma region and cannot rise abruptly. The final value
of I, is not reached until ions far from the probe can move to set up the
density and potential gradient necessary to supply the electron current
by diffusion. The time required depends on the ion mobility; at 1.2 Torr
in He, it takes approximately 1 usec.

Suppose now that a probe is biased negative to draw saturation /; and
is pulsed further negative. The ion sheath must grow and the electrons
originally located between s, and s, must be pushed away; however, this
occurs very rapidly. The ion density in the sheath must also be read-
justed; in particular, the ion density between s; and s, must be decreased.
This gives rise to a transient ion current to the probe. Kamke and Rose
(40) have tried to measure this current; the time constant is of the order
of 1 usec. This current is, however, very small and is often completely
negligible compared to the displacement current discussed below. If
this overshoot in ion current is neglected, the frequency response of a
negative probe is somewhat higher than that of a positive probe.

In the transition region the ion sheath hardly changes, and only the
electron inertia limits the frequency response. Bills et al. (38) estimate
that the response time is shorter than 108 sec, and the data of Takayama
et al. (41) indicate that the probe response may be good all the way up
to the electron plasma frequency. When there are collisions, however,
large changes in the gradients in the quasi-neutral region must occur to
accommodate the large change in electron current; Oskam et al. (39)
find response times as long as 10 usec in the transition region.

In addition to the effects mentioned above there is a displacement
current due to the capacitance of the sheath. This current is the same
order of magnitude for positive and negative probes and is negligible
compared to the transient in /, ; however, it may be much larger than
the transient in I;. Thus in the experiment of Oskam (39) a large
overshoot lasting about 0.4 usec in the negative probe range is attributed
to displacement current.
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7.3 Use ofF PROBES TO STuDY FLUCTUATIONS

The use of electrostatic probes to detect waves or discrete oscillations
in plasmas is commonplace. We wish to discuss here the use of probes
to study continuous bands of noise which are often found in low-
pressure discharges, particularly in magnetic fields. By treating the
plasma as a turbulent fluid in which the local density and electric field
fluctuate stochastically, much as the local velocity does in aerodynamic
turbulence, one can, by measuring spectra and correlation coefficients,
obtain information on the nature of the fluctuations and how they may
be related to anomalous diffusion. The earliest measurements of this
type were apparently made by Batten et al. (42) in a cold-cathode
reflex discharge. Longitudinal correlations in a strong magnetic field
have been measured by Chen and Cooper (43). The most extensive
studies of this type, however, have been made by Bol (44) in a highly
ionized plasma in a stellarator.

A typical spectrum of the oscillations of floating potential on a probe is
shown in Fig. 22. Since the ion plasma frequency was about 150 Mc in
this case, it is clear that the fluctuations are of sufficiently low frequency
that the probe is in equilibrium with the plasma at all times. If 2T, is
constant, /; — V is constant; and these oscillations reflect the oscilla-
tions in space potential. The fluctuations in local electric field can be
measured by using two floating probes spaced much closer than the
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Fic. 22. A typical frequency spectrum of fluctuations in floating potential on a
probe in a magnetically confined plasma. Note that the vertical scale is logarithmic.
The data were taken in a hot-cathode reflex discharge in 5 X 102 Torr of He at 2000 G;
the plasma density was of order 102 cm™3.
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correlation distance and taking the difference in potentials by means of a
transformer or a difference amplifier. The oscillations in local density
can similarly be measured by using a negative probe collecting saturation
ion current. If variations in k7, and the slope of the I,V curve can be
neglected, the fluctuations in I; are proportional to those in n,. The
quantity I; more convenient to work with than ¥, because the signal is
taken from a small resistor in series with the probe and hence is low-
impedance.

Although in principle the information obtainable from correlation
measurements is contained in the frequency spectrum, it is often more
convenient to work with correlations. The cross-correlation coefficient
between the density at two points is defined as |

{n(x) n(x + d))

R = (P(x) YL ¥ (x + d)>172

(230)

where { ) indicates the time average. This can be obtained conveniently
by taking the sum and difference of the I; signals from two probes,
squaring them, and taking the time average. If

(L — I (I
pP= 22) _ U
S ASYER G (231)

then R is given by
| 11—-P

R=3177

Q1% +O71/%). (232)

The Q terms are very nearly unity if the probes have nearly equal areas
and are located in a statistically uniform region of the plasma. The
quantity P can be obtained from a differential amplifier and a squaring
circuit. An example will be given in Section 8.3.

If the continuum of frequencies is composed of discrete waves with a
definite dispersion relation but a continuum of wavelengths, the disper-
sion relation can be obtained by frequency analyzing the signals. At
each frequency, a plot of R versus probe separation d will look like that
in Fig. 23. A pure coherent wave of wavelength A will give a curve of
the form R = cos(2wd/A); hence a measurement of the intercepts on
the abscissa will yield the relation between w and A. A purely random
fluctuation will give a Gaussian curve for R(d). In general, the curve
R(d) will be a damped cosine whose envelope gives the length over
which the wave is coherent. In this manner, Bol (44) was able to obtain
the phase velocity of waves of each frequency propagating in the azi-
muthal direction in a stellarator. The direction of propagation could
also be determined by inserting a time delay in one of the signals. By
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Fic. 23. Schematic of the cross-correlation coefficient R for fluctuations on two
probes separated by a distance d. The solid curve shows the wavelength A of the oscilla-
tions at the frequency of measurement. The dotted curve is the envelope of R(d) and
gives the correlation length.

aligning two probes accurately along the magnetic field by means of an
electron beam, Chen and Cooper (43) determined that the velocity of
propagation in the longitudinal direction in a reflex arc was much higher
than the acoustic velocity.

Correlations between fluctuations in VIV and in n, would be desirable
to measure, but since this involves at least three probes, the effect on the
plasma is appreciable. Correlations with temperature fluctuations would
require more complicated techniques.

8 Experimental Considerations

8.1 EXxPERIMENTAL COMPLICATIONS

We have seen that the behavior of probes in a collisionless plasma is
fairly well predicted by theory. In the presence of collisions or magnetic
fields the theory is not complete, but one can still make meaningful
measurements if he stays in a regime where he knows how to correct for
the effects of collisions or magnetic fields. All that remains is to insert an
insulated wire into the plasma and take the probe characteristic. In
most instances it is actually this simple; however, there are occasional
pitfalls for the experimentalist. It is the purpose of this section to list
the ones which are known.

1. Surface layers. 'The work function of the probe surface is affected
by layers of impurities which are deposited there. If kT, is below several
electron volts, the variation of work function over the probe surface and
its change in time will affect the probe characteristic. These layers may
be adsorbed gases; metallic coatings, such as Hg or Cs; or even resistive
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compounds. The effect of such contaminants has been shown by Wehner
and Medicus (45), Howe (46), and Waymouth (47). It is good practice
to “outgas’ a probe the first time it is put under vacuum; this is con-
veniently done by drawing enough saturation electron current to heat
the probe tip to incandescence. In some discharges the surface layers can
reform quickly. It is then necessary to pulse the probe to obtain the
characteristic before this happens. Between pulses, the probe is kept
under electron or ion bombardment by a large positive or negative bias,
whichever is more efficient in eliminating the contaminants.

2. Secondary emission and arcing. As mentioned in Section 6.3, a
negative probe may collect a spuriously large apparent ion current if
secondary electrons are liberated by the ions. At positive voltages the
secondary electrons cannot escape from the probe and therefore are
unimportant. The effect of secondary emission is difficult to correct for;
and therefore it should be avoided by using materials with low emission
yields and low probe voltages. In intense discharges, however, it is not
always possible to avoid secondary emission. In fact, a “unipolar’ arc
can form, in which the probe is the cathode and the sheath edge the
anode; the circuit is completed by currents flowing to a metallic discharge
wall. Such arcs can destroy a probe. It is found that platinum is less
subject to such arcs than is tungsten.

3. Perturbation of the plasma. In weakly ionized plasmas the presence
of a probe perturbs a plasma by lowering the density in its neighborhood;
this effect is part of the theory of probes in the presence of collisions.
In well-confined, fully ionized plasmas, however, the probe can interfere
in other ways. The most important is the liberation of impurity atoms
from the probe shield or the probe tip. These impurities can cool the
electron gas and reduce the conductivity by being excited in inelastic
collisions and radiating away the energy. In thermally ionized Cs plasmas,
magnetic confinement may be so good that a probe can become the
major source of plasma loss.

4. Effect of the probe shield. Although it draws no net current, the
insulating shield around a probe collects ions and can depress the plasma
density in its neighborhood in the presence of collisions. This has been
studied by Waymouth (25). To avoid this, one can make a density scan
by moving a bare wire through the plasma and taking differential
measurements.

5. Change of probe area. The current collected by a probe depends
on its exposed area. This can change by sputtering or melting in intense
discharges. Furthermore, a conducting layer may form on the insulator
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either by deposition or by reduction of the oxide by hydrogen. If the
probe tip is in electrical contact with this conducting layer, the effective
collecting area is greatly increased. Fortunately, it is usually quite obvious
when this occurs. To avoid this, it is good practice to center the probe
tip in the insulating tube, so that the point of contact with the insulator
is well away from the plasma.

6. Oscillations. The effect on the probe characteristic of fluctuations
in the plasma has already been considered in Section 7.1.

7. Reflection of electrons. If the probe is not perfectly absorbing, the
theory can be modified to take this into account, if the reflection coefh-
cient is known. Fortunately, the determination of kT, from transition
region of the characteristic is unaffected by reflection, since in a
Maxwellian gas the velocity distribution of electrons striking the probe
is the same regardless of I, and therefore the reflection coefficient is
constant.

8. Photoemission. In very tenuous plasmas, such as in the ionosphere,
the ion currents are so small that photoemission must be taken into
account. This occurs for densities of 108 cm~3 or below. Ichimiya et al.
(48) have reduced the effect of photoemission by using a hollow probe
with large holes in its surface. The holes apparently do not reduce the
ion current, but the photocurrent is reduced in proportion to the
exposed area.

9. Macroscopic gradients. In small discharges the length of the probe
or the extent of the disturbed region of the plasma may be large compared
to the length of macroscopic gradients of 7, ot V in the discharge. In
such a case the effect on the probe current must be considered.

10. Negative ions. In the presence of negative ions the collisionless
theory can be modified straightforwardly to include their effect. This
has been treated by Boyd and Thompson (49).

11. Metastable atoms. The liberation of electrons from the probe by
metastables has been considered as a cause of discrepancies between
theory and experiment by Schulz and Brown (24).

12. Ion trapping. The possibility of trapping ions in closed orbits
around a negative probe has been pointed out by Bernstein and
Rabinowitz (/7). However, there has been no experimental evidence
that this is important.

13. External circuit. 'The stray capacitance of the leads to a probe is
of great importance if the probe is pulsed or if it is used to measure Ve
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to high frequencies. A floating double-probe system will not follow fast
changes in space potential unless the entire system has small leakage
capacitance to ground. Around powerful, pulsed machines there are the
usual problems of ground loops and rf pickup. At the Model C stellarator
in Princeton, the power levels are so large that for safety all probe signals
are telemetered to the control room without a direct electrical connection.

8.2 PrRoOBE CONSTRUCTION

Although the theory for spherical probes is better developed than for
cylindrical probes, spherical probes are seldom used because of the
difficulty of construction. Figure 24 shows three types of probes com-
monly used. These are designed for use in large magnetic fields. In the
absence of such fields one would make the exposed tips of the wire
probes (A4) and (B) much longer so that they approximate infinitely
long cylinders. In the simple probe (A4) note that the tip is etched down
in diameter so that if a conductive coating should form on the exposed
surface of the insulator, the tip would not touch it.

Probe (B) is a shielded probe for use in detecting oscillations. The
shield may be a tube of molybdenum or nickel; it is shown covered by

~ &

Fic. 24. 'Three types of probes commonly used in discharges in magnetic fields.
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an insulator so that it may be grounded directly without affecting the
discharge. This may not be necessary, since the shield need only be at
ac ground and may be allowed to float dc-wise. The probability of
contaminating the discharge would be reduced if the outer insulator
were removed. In determining the length of the inner insulator, one is
forced to choose between two evils. If the insulator is set back, as shown,
arcs may form between the probe and the shield because of plasma
which diffuses into the space between them. If the insulator extends
beyond the shield, a short circuit may develop as a result of a conductive
coating. To reduce the large capacitance of such a probe, one may want
to drive the shield with a cathode follower fed by the floating probe
signal. In practice a shielded probe is generally not necessary to eliminate
capacitive pickup through the insulator. One merely has to load the
floating probe with an impedance small compared to the capacitive
impedance of the shield but large compared to the impedance of the
plasma. This will be clarified in Section 8.3.

Probe (C) is a double plane probe of the type used at Harwell, England.
The platinum rods are sealed to the Pyrex insulator, and then the end of
the entire assembly is ground flat. As explained in Section 2.3, the
current from a plane probe is difficult to interpret in terms of the plasma
parameters; however, plane probes are useful to give a rough indication
of the behavior of an unstable discharge. Plane probes are often simply
isolated sections of the tube wall or an aperture limiter.

The material used for the probe tip is most often tungsten or molyb-
denum because of their refractive properties. Molybdenum can be
machined, and tungsten can be etched by heating to redness and then
drawing over a bar of sodium nitrite. Platinum is used when necessary
to avoid unipolar arcs. In ordinary discharges the insulator is usually
glass or quartz, but in intense discharges a more refractory material is
required. The best material is probably high-density, high-purity
alumina. Beryllium oxide has a higher thermal conductivity and hence
resistance to thermal shock, but its superiority has not been established.
These materials are available in tube form but are not machinable. If
machining is required, one can use boron nitride.

The use of probes in high-density, high-temperature plasmas is often
limited simply by the ability of a probe to withstand the energy dissipa-
tion. The problems in intense discharges have been discussed by Jones
and Saunders (50) and Chen (57). The heating of the probe can be
lessened by keeping it at floating potential, by pulsing the discharge for
short times, or by physically moving the probe through the plasma at a
high velocity. A system for doing the latter has been described by
Gardner et al. (52). In toroidal plasmas it is found that “runaway”
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electrons have a much larger effect of the life of a probe than the ions,
and often probes cannot be inserted into the plasma column until such
“runaways’’ have been eliminated. A complete system for mounting
and remote-controlling probes in an ultra-high-vacuum system has

been described by Chapuk et al. (53).

8.3 TypicaL CIRCUITS

Figure 25 shows the basic circuit for probe measurements. For probe
current measurements, the resistor R is small, and the current is given

@

FiGc. 25. A simple probe circuit.

by the meter V;. The resistance R is represented by the slope of the
load line L; in Fig. 26. As the probe bias is changed, the intercept of
this line with the V-axis is shifted, and the probe characteristic A4 is
traced by measuring the current at the intersection of L, with A. If R
is small enough that L, is almost vertical compared to the maximum
slope of A4, the probe voltage can be measured by either meter V, or
meter V. For floating potential measurements, R is large, the voltage
source B is omitted, and V, is given by meter V;. The load line 1s
shown by L, and should be sufficiently horizontal that the intersection
with 4 occurs near the floating potential. Note that if V; is much

LOAD LINE
L, r( CURRENT- DRAWING PROBE)
b
I !
A B
|
|
|
1 v—
447 = _ L 2
LOAD LINE l
(FLOATING PROBE)

Fi1c. 26. Diagram of load lines representing the external circuit and their relation
to the probe characteristic.
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different from ground, as for curve B, the resistor R must be made
larger.
Figure 27 shows a typical circuit for taking the dc probe characteristic

Ry Ry
VV VA
- / +]+ / -
7 7
X-Y LOGARITHMIC
0 o AMPLIFIER [
REC.
Q (OPTIONAL)
vVVVN——
Ry

Fic. 27. Block diagram of a circuit used for obtaining dc probe characteristics.

on an x—y recorder or an x—y oscilloscope. Two opposing voltage supplies
are used to allow a continuous sweep through O potential. If these
supplies are electronic, bleed resistors R, and R; may be necessary to
allow current to pass through them in the reverse direction. For dc
measurements the current-detecting resistor R is located on the ground
side of the supplies. For high-frequency measurements it must be located
on the probe side to avoid the effects of stray capacitance in the supplies.
The current detector must then be floating, or a differential amplifier
with high rejection ratio must be used. The availability of clip-on current
detectors greatly simplifies this measurement.

Figure 28 shows schematically a circuit for measuring the amplitude

c
iF DIFFERENTIAL
— AMPLIFIER
it SQUARING SPECTRUM
t A 1 CIRCUIT ANALYZER
SCOPE
[RecORDER] [ RECORDER |
J j|

\Y

_I ( ALTERNATE METHOD)

Fic. 28. Block diagram of a circuit for measuring the fluctuations in a local electric
field by means of two floating probes.
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and spectrum of oscillations in local electric field. T'wo floating probes
are used. The blocking capacitors C are used to allow a smaller value
of R to be used, as was discussed in connection with curves 4, B, and L,
of Fig. 26. The resistance R is chosen so that the signal from the probe
is not affected but the signal due to capacitive pickup through the
probe shield is attenuated.

Figure 29 is a block diagram for obtaining the probe characteristic
quickly by applying a sawtooth pulse to the probe. A dummy probe is

FLOATING =
DIFFERENTIAL SWEEP
CURRENT VOLTAGE
DETECTOR GENERATOR
=
DUMMY AT
™ PROBE BIAS
X-Y
SCOPE

Fic. 29. Block diagram of a circuit for obtaining the probe characteristic in a few
microseconds.

bl -
Plasma 0-10 us
F_ O

-OA Time
Matched band  Delay line sample

=pa'.;s filters B8 selector
— A8 { Zﬁ
I|"}.. A+B Calibrated
attenuator
A-B
Thermocouple
Power Commun.
2 2 amplifier receiver
XCHO

etc.

Correlation measurement setup

Fi1c. 30. Block diagram of a circuit used for measuring the cross-correlation coeffi-
cient for fluctuating signals on two probes. [K. Bol, Phys. Fluids 7, 1855 (1964).]
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used to buck out the stray capacitance. The current detector may be,
for instance, two clip-on current probes attached to a differential am-
plifier.

Figure 30 shows the circuit used by Bol (44) to measure the correlation
between the voltage or current signals from two movable probes. The
sum and difference signals are obtained merely by inverting the phase of
one signal at the input of the oscilloscope preamplifier. These signals
are squared by a thermocouple. Linearity is preserved by keeping the
signal amplitude constant at the thermocouple by means of an attenuator.
Note that the frequency analysis is performed by a communications
receiver after the signals are added; this obviates the need for two
receivers.
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