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Abstract—Numerical results in ranges of experimental interest are presented in graphical form for
the potential profile around negatively biased spherical and cylindrical probes in a collisionless
plasma and for the saturation ion current-voltage characteristics. The computations were made
on the basis of the theories of ALLEN, BoyD and REyNoLDs (1957) for zero ion temperature and of
BERNSTEIN and RABINOWITZ (1959) for monoenergetic ions. These theories are useful primarily for
small probes. For large probes the theory of LaMm (1964) is applicable. For completeness we have
also included whatever curves are necessary for the use of LAM’s theory.

1. INTRODUCTION

THE recent boundary-layer analysis of LaMm (1964) puts the theory of electrostatic
probes in a collisionless plasma into definitive form. As long as collisions and mag-
netic fields do not play a role, and as long as the experimental difficulties of particle
trapping and of reflection, secondary emission, changes of work function, and so
forth at the probe surface can be overcome, the current to a biased probe can now
be predicted rigorously by theory. However, in some situations tedious numerical
computation is necessary. It is the purpose of this paper to assemble under a single
cover such numerical results as may be needed by an experimentalist, in a form which
is convenient to use.

The situation may be summarized as follows. For collection of the hotter species,
usually electrons, the original theory of LANGMUIR (1961) is valid. For collection
of the colder species, usually ions, LANGMUIR’s orbital theory may still be used if
a < h (symbols are defined in Section 2). The case a > h is covered by the theory
of LaM (1964). In the limit of large a or small %, this theory reduces to the well-known
result of BouM, BURHOP and MASSEY (1949) and of WENzL (1950). LAM’s theory
is more rigorous and more convenient to use than the earlier theory by WEnzL. The
case a &~ h is covered by the theory of ALLEN, BoyD and REYNOLDS (1957) for 8 = 0
and by the theory of BERNSTEIN and RABINOWITZ (1959) for 0 < # << 1. This case
is the troublesome one and necessitates the numerical computations whose results
are presented in this paper.

We have concentrated attention on the simpler equations of ALLEN et al. which
give a fairly good approximation for § << 0-1, especially in the spherical case. In
addition to the probe characteristics we have given the potential distributions so that
the reader may make his own cross-plots if that is necessary. The computations
were made on an IBM 7090 and cover a wider range of parameters than given by
ALLEN et al. In the case of the BERNSTEIN and RABINOWITZ theory, we have extended
the original computations only in the cylindrical case. However, we wish to point
out that because of a number of misprints the original paper of BERNSTEIN and
RABINOWITZ gives incorrect numerical results and should be used only for the formu-
lation of the theory.
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48 F. F. CHEN

The curves contained herein replace the need to approximate by patching the
BouM current to the V32 space-charge law. This procedure, used previously by
KaGaN and PEreL (1953), ScHuLz and BRowN (1955), Boyp and THOMPSON (1959)
and IcHMIYA, TAKAYAMA and AoNo (1960), is both more laborious and less accurate.

The proper theory to use for saturation ion currents is shown in Table 1 for

TABLE 1
Ion
distribution g Geom. a<<h a~ h a>h
ally, 7,>1 1<, <5 n,<1l n,>1 1<, <5 5, <1
— 0 Sph. ABR* LAam* LaM
(ABR)
CylL C* C*
Mono- <1  Sph. L-O BR* Lam* Lamt Lam
energetic (B, W)
Cyl. L-O BR* L-O Lawm* Lamt Lam
(W)
~1 Sph. L-O BR Lam* Lam? Lam
(B, W)
Cyl. L-O BR L-O Lam* Lamt LaMm
(W)
>1  Sph. L-O BR L-O L-S L-O
Cyl L-O BR L-O L-S L-O
Maxw. <1  Sph. L-O BRfY BRT
Cyl. L-O BRft L-O BRf
~1  Sph. L-O H H
(BRY) (BRY)
Cyl. L-O H H
(BRT) (BRY)
>1  Sph. L-O BRfY L-O L-S L-O
Cyl. L-O BRfY L-O L-S L-O

* Numerical computations available in this paper.

1 Formalism indicated only.

() Superseded work; L-O, LANGMUIR (1961) orbital-motion theory; L-S, LANGMUIR (1961)
sheath theory; ABR, ALLEN, Boyp and ReyNOLDs (1957); BR, BeErRNSTEIN and RAaBINOwWITZ (1959);
LaM, LaMm (1964); B, Borm, BurHOP and Massey (1949); W, WENzL (1950); H, HALL (1964);
C, CHEN (present paper).

various ranges of parameters. The probe voltage 7, enters because it affects the
distribution of the electrons. For %, > 1, the electron distribution may be considered
Maxwellian. For 7, less than about 1/2 or 1, the quasi-neutral solution holds every-
where, and probe theory is particularly simple. For 1 <7, <5, the deviation from
a Maxwellian distribution due to the loss of electrons to the probe must be taken into
account. Although this poses no problem in principle, it complicates the computa-
tions. Itis understood that the above remarks apply equally well to electron collection
when the ions are nearly Maxwellian; however, for saturation electron currents
the need for Table 1 does not arise unless T, << T;. The case 1 < < 5 is, of course,
interesting for the computation of the floating potential.

Although our computations have been made only for monoenergetic ions, it is
clear that the results for a Maxwellian distribution will not be appreciably different



Numerical computations for ion probe characteristics in a collisionless plasma 49

for B < 1, since the dependence on ion energy is slight. On the other hand, for § > 1
the probe current depends primarily on kT, and is given by LANGMUIR’s sheath theory
for a Maxwellian distribution. The transition case § ~ 1 is not well covered by any
simple theory. The simple sheath theory fails because the accelerating electric field
outside the sheath is neglected; the BERNSTEIN and RABINOWITZ (1959) theory fails
because a monoenergetic distribution is no longer a good approximation. This gap
in the theory has been plugged recently by HALL (1964), who has found a method
to integrate numerically the BERNSTEIN and RABINOWITZ equations for a Maxwellian
distribution.

Finally, we wish to point out that whenever possible spherical probes should be

used in preference to cylindrical probes for the following reasons:

(i) The disturbance of the plasma by the probe is smaller for a sphere because
the potential falls off faster with radius.

(i) For a given radius, a cylindrical probe is more likely to trap ions in closed
orbits; that is, it must be operated at lower potential than a spherical probe.
Conversely, for a given 7, a cylindrical probe must be made larger in diameter
in order to avoid ion trapping.

(iii) Spherical probes are not sensitive to the distribution of angular momenta
assumed at infinity.

(iv) For spherical probes the theory is simpler, and numerical computations are
easier to carry out.

These remarks are of course not applicable in the presence of a strong magnetic

field.
2. DEFINITIONS

C.G.S.—e.s.u. are used. The current I, is the particle current multiplied by the
charge number Z of the particle. The subscript p indicates probe surface; the subscript
0 indicates absorption radius; and the subscript 1 indicates the radius where the quasi-
neutral solution breaks down.

n = —eV/[kT, (normalized potential)
& = r/h (normalized radius)
&, = rp/h or a/h (normalized probe radius)
h = (kT,/4mnye®)12 (Debye length)
n, = plasma density at oo
E, = ion energy at oo, for a monoenergetic distribution
f = E,/ZkT, (normalized ion energy)
Z = charge number of the ions
J = I(e®kT,)(m;[2ZkT,'/2 (normalized ion current for spheres)
J = I(e[kT,)(m,[2mn,Z)!/? (normalized ion current for cylinders)
I, = total ion current to probe for spheres
I, = ion current per unit length to probe for cylinders
JE, = ILr,(e/kT,)*(2m;kT,/Z)"* (another useful normalization for cylinders)
{ = &J~ 12 (another useful normalization for spheres)
{ = &J7! (another useful normalization for cylinders)
L = angular momentum
| = mean free path of ions
L = I(m,2ZkT )\ 2[(7r,2n,) (normalized ion current in LAM’s theory, for
spheres)
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¢ = I(m,[2ZKT '2[2r ny) (normalized ion current in LAM’s theory, for
cylinders)
tp = normalized BoHM current, a function of 8 only
Ip = 7r 2ng5(2ZKT,/m,)\2 (BouM current to sphere, valid for &, — o0)
= 2r,nytg(2ZkT,/m;)!/2 (BouM current to cylinder, valid for &, — o0)
IeO = nO(kTe/z"Tr"le)l/2
T =iy = I,/Ip (a ratio expressing the increase in ion current over the
BoHM value, due to finite sheath thickness)
A7), F(T) = functions used in LAM’s theory for spheres
A (1), G(yp) = functions used in LAM’s theory for cylinders.

&
I

3. FORMULAE AND GRAPHS

For f = 0 we have used the following equation (ALLEN et al., 1957) for a spherical
probe:

d dn)
— g2 L) — g1 20—1
P (5 : Jnliz 4 £~ = (. §))

The results for the potential distribution n(£) for various values of J are shown in
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Fig. 1, where for convenience of presentation we have plotted % vs. the variable
{ = &J12, In terms of {, equation (1) can be written

1d ( r Z_Z) gty e = 0, 2

so that the quasi-neutral solution is the same for all J. A log-log plot of #(£) is given
in Fig. 2 for easier reading at the extremes of the range of £. The log &-log J cross-plot
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of Fig. 3 is used for interpolating in J to obtain the probe characteristics J(#,). The
Jatter are shown for various &, on a linear scale in Figs. 4(a) and 4(b) and on a log-
arithmic scale in Fig. 5. From Fig. 5 one can see the range in which J varies as L2,
To find the plasma density, one computes J from the experimental data, using a
known value of kT, and places the points on Fig. 4. The value of &, is then obtained,

102 | rr—T

o] :.': -

i

0 oF g
FiGc. §

from which n, can be computed. From the curves 7(§) the reader may make whatever
cross-plots he wishes if the ones presented here are not convenient.
For f = 0 we have used the following equation for a cylindrical probe:

d di;) —~1/2 - __
—_ — ) — = 0. 3
B (5 iz Jn + &e (3)
In terms of { = &J-1, this reads
1 d d”) —1/2 - __
—_ = 7 + 0. 4
J2d¢ (C d{ e ®)

These equations are valid if the distribution of angular momenta L at o is a delta
function around L = 0. In practice the collisionless equations are valid only up to
a mean free path /, and the validity condition can be written:

_"E,L r 2

eV, <_l%' )

The potential distribution 7({) is shown in Fig. 6. A log-log plot of n(&) is given in
Fig. 7. The log &-log J& cross-plot is given in Fig. 8. From this one obtains the
probe characteristics J&,(1,,) for various &, shown linearly in Figs. 9(a), 9(b), 9(c) and
logarithmically in Fig. 10. From the latter one can see the range in which J&, varies
as 742, The quantity J&, is used because it is independent of n,. To find the plasma
density when kT, is known, one computes J&, from the experimental data and places

the points on Fig. 9. A value of &, is then obtained, from which 7, is easily calculated.
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For finite 8 we have used the following equation (BERNSTEIN and RABINOWITZ)
for a spherical probe:

1d(, )_l( 2)1’2 1[1 n_ ‘”}”2_ . 6
§2d§(§d§ (2 51+ 35 — o ©)

where the plus sign is used for the exterior region & > &, and the minus sign for the
interior region & < &,. The absorption radius &, occurs when the square bracket

vanishes.
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The potential profiles 5(£) for various J have been taken from the computations
of BERNSTEIN and RaBiNowiTZ and are shown in Figs. 11(a), 11(b), 11(c) for
B = 0-01, 0-05, and 0-1, respectively. The cross-plots J(3), for various &, are shown
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in Figs. 12(a), 12(b), 12(c). These are the probe characteristics. To show the depend-
ence on 3, we have plotted in Fig. 13 the probe characteristics for £, = 10 and various
values of f, including 8 = O from Fig. 4. In general, the dependence on £ is small
for large &, and becomes measurable for &, < 10. A log-log plot of J(7,) for various
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£, is given in Fig. 14 for # = 0-1 to show the range in which J varies approximately as
nY2. The plasma density is found the same way as in the 8 = 0 case, only an approxi-
mate value of 8 must now be chosen. These results are valid for a monoenergetic,
isotropic ion distribution but because of the insensitivity to § for § < 1 they may be
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applied to a Maxwellian distribution of such a temperature that the random current
is kept the same; thus the equivalent ion temperature is

Spheres: kT, = % E, = % pZkT,.
7
| . 4 ™
Cylinders: kT, = — E; = — pZkT,.
v v

For finite 8 we have used the following equation (BERNSTEIN and RABINOWITZ)
for a cylindrical probe:

1 d (E dn) = {1} F : sin—l[ i } — e (8)
gde\"de/  \0f ' oa B+ ' ’
where the top choice is for £ > &, and the bottom choice is for & < &, The ab-
sorption radius &, occurs when the square bracket is unity. The data of

BernsTEIN and RaBinowitz for the potential profiles (&) for various § and J
are plotted in Figs. 15(a—f) to show the shape of () and the dependence on fi. New
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computations for 7(§) at various J for f = 0-01, 0-03 and 0-1 are shown in Figs.
16(a—c) on log-log plots. The behaviour of a typical quasi-neutral curve is also
shown. From Fig. 16 one obtains by cross-plotting the probe characteristics J&,(7),
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for various values of &,. These are shown in Fig. 17 for § = 0-1; the -dependence
is so small that we have not bothered to plot other values of 5. We have plotted
J&, rather than J because J&,, is independent of ,; the density can then be determined
as in the B = 0 case. Unfortunately, large values of &, for large %, could not be
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obtained with the programme we used. In Fig. 18 we show the probe characteristics
on a log-log scale to make clear the range in which J varies approximately as 72/2.
Equation (8) is based on the assumption of a distribution of angular momenta L
at oo which is independent of L. Hence the assumed distribution is not isotropic
in the cylindrical case; it is monoenergetic in E;, and arbitrary in E; ; the projections
of the velocities on a plane perpendicular to the probe axis are isotropic. However,
because of the insensitivity to 8, the present results may also be used for a Maxwellian
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distribution if 8 < 1. If one takes the limit of equation (8) as 8 — 0, one does not
recover equation (3) for 8 = O unless the arc sin may be replaced by its argument.
The reason for this lies in the indeterminacy of L as § — co. When the inequality
(5) 1s not satisfied, equation (8) should be used. This problem does not arise for the
sphere. We have not computed the § = 0 case with equation (8); however, for
large £, and 7, the difference between equation (3) and (8) should be small.
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For large £, the probe characteristics are more easily computed by the method
of LaM. For this one uses the LAM diagram of Fig. 19. Suppose r,, n,, kT,
and B are known; then the S-dependent coefficient 4 of Fig. 19 is found from Fig.
20 for spheres and Fig. 21 for cylinders and A& 3 is computed. For a given 7,, one
follows a path like the dotted one shown in the upper half of Fig. 19 to find I;/I5,
where I, is the BouM current defined in Section 2. The electron component can be
found similarly from the lower half of Fig. 19. Strictly speaking, the curves of con-
stant I,,/I for each element depend on #; but we have neglected this slight variation.
The coefficient 4 is defined by

A = (4/15)* (spheres)

A = (7[t5)*? (cylinders), ©)
where ¢ is found from the following transcendental equations:
Spheres: 15 = 4e 1 [§(n, + BYV2 + pY2eM] (10)
mo= 13— B+ 262 + )] (11)
Cylinders: t5 = (1, + ) sin (we™™) (12)
tan (me=") = 2(n; + Pfme™ . (13)

Values of ¢5 and 7, obtained by hand computation and graphical methods are shown
in Figs. 20 and 21.
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To determine the plasma density one uses the following formulae (in e.s.u.):

—V, m, 1/3A
Sphere: (el,)*3 - (ZZe) () 19
. _ Vp zmi 1/3
Cy]mder: @71(1_)2/—3 = (—Z—e—) AC(’T), (15)
where
7= iy = L/l (16)

The left-hand side is computed from the experimental data; then, having A(7) or
A7), one finds 7 from Figs. 22, 23 or 24. Knowing 7, one finds J; from g given in
Figs. 20 or 21. The function A/(7) is defined as

A7) = F(7'®), (17)
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where F is the solution of the equation

T2FV2 Q2F)dT? = 1

65

(18)

subject to the boundary conditions F= F' =0 at T = 1. The function A7) 1s

defined as
Afr) = 2BG(7),

(19)
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where G is the solution of the equation
d dG
parl (y30) =1 20)
p \ dy

under the same boundary conditions. The curves in the LaM diagram (Fig. 19) are
of the functions 723A () and 72/3G(7). The dashed portions of the curves in Figs. 19,
22 and 23 indicate the region where trapped ions are possible.
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Since very often ion trapping does not occur even when it can, it is possible to
use much higher voltages or smaller probes than the trapping criterion dictates.
The functions A(7) and A (7) for this extended range of =, where trapping can occur,
are shown in Fig. 24. The curves 723 A (7) and 7%/3A (), which are the ones in the first
quadrant of the LAM diagram (Fig. 19) are shown for this extended range in Fig. 25.
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In Fig. 26 we show 72 vs. 4&,%3y, in the ‘normal’ range of r. This is essentially
an I2-V, plot and shows that such a plot can be approximated by a straight line.
In Fig. 27 we show the same plot for the extended range of 7.

All of the results in this paper are subject to the restriction 7, = 4 so that the
electron distribution is approximately Maxwellian.

Larger reproductions of these graphs may be found elsewhere (CHEN, 1964).
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