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Numerical Computations for Ion Probe Characteristics
in a Collisionless Plasma

Francis F. Chen

ABSTRACT

Numerical results in rba’.nges of experimental interest are presented
in graphical form for the potential profile around negatively biased spherical
and cylindrical probes in a collisionless plasma and for the saturation ion
current-voltage characteristics. The computations were made on the basis
of the theories of Allen, Boyd, and Reynolds for zero ion temperature and
of Bernstein and Rabinowitz for monoenergetic ions. These theories are ,
useful primarily for émail probes. For large probes the theory of Lam is
applicable. For completeness we have also included whatever curves are

necessary for the use of Lam's theory.



1. INTRODUCTION

The reéent boundary-layer analysis of La,m1 puts the theory of

electrostatic probes in a collisionless plasma into d’efinitive form. As long

as collisions and magnetic fields do not play a role, and as long as the experi-
mental difficulties of particle trapping and of reflection, secondary emissioh,
changes of work function, and so forth at the probe surface can be overcome,
the current to a biased probe can now be predicted rigorously by theory. How-
ever, in some situations tedious numerical computation is necessary. It is
the purpose of this report to assemble under a single cover such numerical
results as may be needed by an experimentalist, in a form which is conven-

ient to use.

The situation may be summarized as follows. For collection of the -
hotter species, usually éilectrons, the original theory of La.ngmuir2 is
valid. For collection of the colder species, usually ions, Langmuir's
orbital theory may still be used if a << h (symbbls are defined in Sec. 2).
The case a >> h 1is covered by the theory of Lam. 1 In the limit of large
a or small 77p this theory reduces to the well-known result of Bohm,
Burhop, and Massey3 and of Wenzl. 4 Lam!'s theory is more rigorous.
and more convenient to use than the earlier theory by Wenzl. 4 The case
a®~ h iz covered by the theory of Allen, Boyd, and Rey’nolds5 (ABR) for
B = 0 and by the theory of Bernstein and Rabinowit26 (BR) for 0 < B< 1.
This case is the troublesome one and necessitates the numerical computa-

tions whose results are presented in this report.
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We have concentrated attention on the simpler equations of ABR';5 which
give a fairly good approximation for B < 0.1, especiall? in the spherical case.
In addition to the probe charactefistics we have given the potential distributions
so thai; the reader may make his own cross-piots if that is necessary. The
computations were made on an IBM 7090 and cover a wider range of parameters
than given by ABR. > In the case of the BR theory, we have extended thé ori-
ginal computations only in the cylindrical case. However, we wish to point out ‘

that because of a number of risprints the original paper of BR gives incorrect

numerical results and should be used only for the formulation of the theory.

The curves contained herein replace the need to approximate by
N , 3 3/2 :
patching'' the Bohm™ current to the V space-charge law. This procedure,
used previously by Kagan and Perel, 7 Schulz and Brown, 8 Boyd and Thompson,

and Ichimiya, Takayafna, and Aono, 10 is both more laborious and less

accurate.

The proper theory to use for saturation ion currents is shown in
Table I for various ranges of parameters. The probe voltage 7)p enters
because it affects the distribution of the electrons. For 7p >> 1, the electron
distribution may be considered Maxwellian. For 7p less than about 1/2 or 1,
the quasi-neutral solution holds everywhere‘, and probe theory is particularly
simple. For 1< 7p < 5, the deviation from a Maxwellian distribution due to
the loss of electrons to the probe must be taken into account. Although this
poses no problem in principle, it complicates the computations. It is under-

stood that the above remarks apply equally well to electron collection when



the ions are nearly Maxwellian; however, for saturation electron currents
the need for Table I does not arise unless Te < Ti . The casel< < 5'is,

of course, interesting for the computation of the floating potential.

Although our computations have been made only for monoenergetic
ions, it is clear that the results for a Maxwellian distribution will not be
appreciably different for [ << 1, since the dependence on ion energy is
slight. On the other hand, for [ >> lthe probe current depends primarily
on kTi and is given by Langmuir's sheath theory;for a Maxwellian distribu-
tion. The transition case 8 ~ 1 is not well covered by any simple theory.
The simple sheath theory fails because the accelerating electric field out-
side the sheath is neglected; the BR theory fails because a monoenergetic
distribution is no longe;r é. good approximation. This gap in the theory has
been plugged recently by Hall, 1 who has fouﬁd a method to integrate numer-

ically the BR equations for a Maxwellian distribution.

Finally, we wish to point out that whenéver possible spherical probes
should be used in preference to c“ylindrical probes for the following reasons:

(1) The disturbaﬁce of the plasma By‘the probe is smaller for a
sphere because the pbtentia.l falls off faster. with radius.

(2) For a given radius, a cylindrical probe is more likely to trap
ions in closed orbits; that is, it must be operated at lower
potential than a spherical probe. Conversely, for a given 7)p
a cylindrical probe must be made larger in diameter in order

to avoid ion trapping.



(3) Spherical probes are not sensitive to the distribution of angular
momenta assumed at infinitity.. |
(4) For spherical probes the theory is simpler, and numerical
computations are easier to carry out.
These remarks are of course not applicable in thé presence of a strong

magnetic field.
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2. DEFINITIONS

C.g.s. - e.s.u. are used. All currents are particle currents multi-

plied by the charge number of the particle. The subscript p indicates probe

surface; the subscript o indicates absorption radius; and the subscript 1

indicates the radius where the quasi-neutral solution breaks down.

i

il

1

—eV/kTe (normalized pdtential)
r/h (normalized radius)
T /h or a/h (normalized probe radius)
P -
(kTe/4 m_e”)? (Debye length)
plasma density at «
ion energy at ©, for a monoenergetic distribution

Ei/sze (normalized ion energy)

‘charge number of the ions

Ii (ez/kTe) (mi/ZZ kTe)% (normalized ion current for spheres)
Ii(e/kTe) (mi/Z‘)TnoZ)% (normalized ion current for cylinders)
total ion current to probe for spheres

ion current per unit length to probe fér cylinders

: L
I r (e/kT .)2 (2m kT /Z)a (another useful normalization
1 p e i e .
for cylinders)

f

£372 (another useful normalization for spheres)
-1

£J ~ (another useful normalization for cylinders)

angular momentum

mean free path of ions
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i
Ii (mi/ZZkTe)a/(ﬂ r 2n ) (normalized ion current in Lam's

L =
theory, for spheres)
1 .
L = Ii (mi/ZZkTe)z/Zr no) (normalized ion current in Lam's
theory, for cylinders)
tg = normalized Bohm current, a function of S only
- 2 , H .
IB = 1Trp n LB (ZZkTe/mi) (Bohm current to sphere, valid
for § — )
L P
= 2 ! 3 . .
IB rpno LB(ZZkTe/mi) (Bohm current to cylinder, valid
for § — »)
. P
= 2 2
Ieo no(kTe/ ‘n‘me)
T = L/LB = Ii/IB (a ratio expressing the increase' in ion current

over the Bohm value, due to finite sheath
thickness)

it

AS(T), F(T) functions used in Lam!'s theory for spheres

AC(T). G(y¥/) = functions used in Lam's theory for cylinders



3. FORMULAS AND GRAPHS

For B= 0 we have used the following equation5 for a spherical probe:

1 ) .
%z(gz %%) R R (1)

The results for the potential distribution 7(§) for various values of J are
shown in Fig. 1, where for convenience of presentation we have plotted 7 wvs.

L
the variable = £J 2. Interms of { , Eq. (1) can be written

1

d 2 dnm -3 2 -n _
‘é’c’(C_?d’C”)'" + e = 0, (2)

e

so that th‘eiquasi-neutral solution is the same for all J . A log-log plot of
N(£) is given in Fig. 2 for easier reading at the extremes of the range of §.
The log 5. - logJ cross-plot of. Fig. 3 is used for interpolating in J to
obtain the probe charac2eristics J(np)'§ The latter are shown for various

§p on a linear scale in Figs 4a and 4b, and on a logarithmic scale in Fig. 5.

et

4

From Fig. 5 one can see the range in which J varies as npg‘. To find the
plasma density, one computes J from the experimental data, using a known
value of ’kTe , and places the points on Fig. 4 . The value of §p .is then
obtained, from which ﬁo can be compﬁted. From the curyes Nn(&) the
reader may make whatevef cross-plots he wishes if the ones presented here

are not convenient.

For B = 0 we have used the following equation for a cylindrical probe:

)=

%(é%’%)ﬁh" A (3)



In terms of § = EJ-I , this reads
1 d d -3 -
L& (8)nhe e o
J

These equations are valid if the distribution of angular momenta L at
is a delta function around L = 0. In practice the collisionless equations

are valid only up to a mean free path £, and the validity condition can be

written:

2
--Ei rp ,
v << T2 )
P Y/

The potential distribution 7({) is shown in Fig. 6. A log-log plot of 7(§)
is given in Fig. 7. The 1og. £-log J& cross-plot is given in Fig. 8. From
this one obtains the probe characteristics J& p(np) for various ép shown
linearly ‘in Figs. 9a,\ 9b, and 9¢, and logarithmically in Fig. 10. From tl';e
latter one can see the range in which J§p varies as np% . The quantity

JE is used because it is independent of n, - To find the plasma density
when kTe is known, one computes J£p from the experimental data and

places the points on Fig. 9. A value of £p is then obtained, from which

n is easily calculated.

For finite B we have used the following equation6 for a spherical probe:

i
1 4 ( 2 dn> \ ( m 2, . n 4J
3 JE — =3 {1+ 5 + 5 |+ -
g g d§ 2 + B .2 - ﬁ - ']'— (6)
g B2c”
where the plus sign'is used for the exterior region § and the minus
sign for the interior region £ = §O . The absorption radius Eo occurs when

the square bracket vanishes.
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The potential profiles 7(§) for various J have been taken from the compu-
tations of Bernstein and R?:Lbinovwl‘cz6 and are shown in Fig. lla, 1llb, and llc

for ﬁ= 0.01, 0.05, and 0.1, reépectively. The cross-plots J(np) for various
ﬁp are shown in Fig. 12a, 12b, and l2c. These are the probe characteristics.

To show the dependence on [, we have plotted kin Fig. 13 the probecharacteristics
for Ep = 10 and various values of f, including B = 0 from Fig. 4. In éeneral,
the dependence on [ is small for large §p and becomes measurable for
¢ < 10. A log-log plot of J(?]p) for various §p is given in Fig. 14 for

pN

B = 0.1 to show the range in which J varies approximately as 'I]pz . The

fr=

plasma density is found the same way as in the 3 = 0 case, only an approxi-
mate value of 3 must now be chosen. These results are valid for a mono-
energetic, isotropic ion distribution but because of the insensitivity to
for 8 << 1 they may~be ap'plied to a Maxwellian distribution of su‘ch a
temperature that the rar;xdom current is kept the same; thus the equivalent ‘ion
tempefature is

Spheres: k'ri = -77; Ei = -74—T BZkTer .

Cylinders: “ kT = -;—E : = % BZkTe "

For finite B we have used the following equation 6 for a cylindrical

probe:

5

1 -1 . -1 - :
):{O}+-7—T-s1n mJ —e77 s (8)

1 d
= — (& -
& d¢ ( d E(B+ T])—z-

['a23

where the top choice is for § = §O and the bottom choice is for § = Eo .
The absorption radius §0 occurs when the square bracket: is unity. The

data of Bernstein and Rabinowitz6 for the potential profiles 7 (§) for various
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B and J are plotted in Fig. 15a,b,c,d,e, and { to show the shape of 77(§{) and
the dependence on . New computations for (&) at various J for § = 0.01,
0.03, and 0.1 are shown in Fig. 16a,b, and ¢ on log-log plots. The behavior
of a typical quasi-neutral curve is also shown. From Fig. l6c one obtains by
cross plotting the probe characteristics Jijp(np) for various values of §p .
These are‘ shown in Fig. 17 for = 0.1; the B-dependence is so small that we
have not bothered to plot other values of 8. We have plotted J§p rather

than J because JEP is independent of n_i the density can then be determined
as in the = 0 case. Unfortunately, large vélu‘es; of §p for.large 77p could
not be obtained with the program used. In Fig. 18 we show the probe charac-

teristics on a log-log scale to make clear the range in which J varies

s

approximately as 'r]pz .

Equation (8) is based on the as sumption of a distribution of angular
momenta L. at o which is independent of 1,. Hence the assumed distribu-
tion is not isotropic in the cylindrical case; it is monoenergetic in Ei.l. and

arbi’trary:in Eii ; the projections of the velocities on a plane perpendicular to

|
the probe axis are isotropic. However, because of the insensitivity to f,
the present results may also be used for a Maxwellian distribution if § << 1.
If one takes the limit of Eq. (8) as B — 0, one does not recover Eq. (3) for
B = 0 unless the arc sin may be replaced by its argument. The reason for
this lies in the indeterminacy of L as § —% , When the inequality (5) is
not satisfied, Eq. (8) should be used. This problem does not arise for the

sphere. We have not computed the 8= 0 case with Eq. (8); however, for

large ﬁp and 77P the difference between Egs. (3) and (8) should be small.



-12-

For large §p the probe characteristics are more easily combputed by
the method of Lam. : For this one uses the Lam diagram of Fig. 19. Suppose
rp, n kTe’ and B are known; then the [-dependent coefficient A of
Fig. 19 is found from Fig. 20 for spheres and Fig. 21 for cylinders and
Aijp-&/?’ is computed. For a given‘ np , one follows a path like the dotted
one shown in the upper half of Fig. 19 to {ind Ii/IB , Where IB is the Bohm
current defined in Sec. 2. The electron component can be found similarly
from the lower half of Fig. 19. Strictly speaking, the curves of constant
I /I_ for each element depend on f ; but we have neglected this slight

eo’ B

variation. The coefficient A is defined by

/3

A = (4:/(.:8)Z (spheres)

/3

- A= (n/LB)Z (cylinders) , (9)

where L_ is found from the following transcendental equations:

B
v - _L L =M
Spheres: lg = 4e - .[%(771+ B) 2+ B%e ] - {10)
1 1l f"?l
my= z- B2t BFe (11)
-nl .
Cylinders: LB = (771+ B)sin(me - ) (12)
N 0!
tan (7T e ) = Z(T]l+ B)me . (13)

Values of LB and m obtained by hand computation and graphical methods

are shown in Figs. 20 and 21.
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To determine the plasma density one uses the following formulas

(in e.s.u. ):

—’Vp m, %‘

Sphere: -(-e—I—)—2-73 = (226) AS(T) (14)
i

-V .'Zmi %
Cylinder: —-—-—3’373 = ( Ze) A7) (15)

(eIia) ¢ :

where

T = L/LB= Ii/IB . (16)

The 1. h. s. is computed from the experimental data; then, having AS(T) or
AC(T) , one finds 7 f{from Figs. .22, 23,/ 0r24. Knowing 7 , one finds Ii

from (g given in Figs. 20 or 21. The function AS(T) is defined as

L
A ()= F(17) | | (17)

where F 1is the solution of the equation

_},_ s
TéF2 dZF/de = 1 (18)

1
subject to the boundary conditions F=F = 0 at T=1. The function

A’C(T) is defined as

2/3

am= 1P o | 19)

where G 1is the solution of the equation

2. 1 a dG ~
lPG“@(w-&-&)=l o (20)
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under the same boundary conditions. The curves in the Lam diagram (Fig. 19)

2/ 2/3

are of the functions 7 3As(‘r) and T G(7) . The dashed portions of’'the
curves in Figs. 19, 22, and 23 indicate the region where trapped ions are

possible.

Since very often:ion trapping does not btcur. even when it'can, it ils) -
possible to use much higher;voltages or smaller probes than the trappix;g
criterion dictates. The functions AS(T) and Ac('r) for this extended range
.~ of 7 , where trapping can occur, are shown in Fig. 24. The curves

2/3 2/

T AS(T) and T 3AC(T), Which are the ones in the first quadrant of the

Lam diagram (Fig. 19) are shown for this extended range in Fig. 25.

4/3

In Fig. 26 we show 72 vs. Aé p_ ’17p in the "normal'" range of 7.
This is essentially an \Iiz - Vp plot and shows that such a plot can be’
approximated by a straight line. In Fig. 27 we show the same plot for the

extended range of T .

All of the results in this report are subject to the restriction np > 4

so that the electron distribution is approximately Maxwellian.



-15-

4, ACKNOWLEDGMENTS

The author is indebted to Mrs. J. Peskin for performing the calcula-
tions for finite B on an IBM 704 computer, to Mr. H. Fishman for the
calculation for 8= 0 on an IBM 7090, and to Mr. K. P. Mann for plotting

and tracing the numerous curves.



o
-

10,

11.

-16-

REFERENCES

S.H. Lam, Phys. Fluids 7. (1964).

I. Langmuir, Ccllected Works, G. Suits, ed. (Pergamon Press,
New York, 1961), Vcl. 4, p. 99.

D. Bohm, E. H. S. Burhop,vand H. S. W. Massey, in The Characteristics

of Electrical Discharges in Magnetic Fields, ed. by A. Guthrie and
R. K. Wakerling (McGraw-Hill Book Co., New York, 1949), Chap. 2.

F. Wenzl, Z. angew, Phys. _2_, 59 (1950).

J. E. Allen, R. L. F. Boyd, and P. Reynolds, Proc. Phys. Soc. 70B,
297 (1957).

I. B. Bernstein and I. Rabinowitz, Phys. Fluids 2, 112 (1959).

Yu. M. Kagan and V. I. Perel, Doklady Akad. Nauk SSSR 91, 1321 (1953).
G. J. Schulz and S. C. Brown, Phys. Rev. 98, 1642 (1955).

R. L. F. Béyél‘a_nd J. B. Thompson, Proc. Roy. Soc. 2524, 102 (1959).
T. Ichimiya, K. Takayama, and Y. Aono, in Space Research: Proc.

lst Int'l Space Science Symposium, Nice, 1960 (North Holland Publ. Co.,
Amsterdam, 1960), p. 397.

L. S. Hall, Report UCRL-7660-T (1964).



-17-

TABLE I
Ion
Distribution| f Geom.| a<<h a ®h a>>h
| |
all >>1|l<n <5 |n <1 >> 1 i<n <5 <1
Mo g2 2 |55 T 0% N
- 0 | sph. ABR Lam Lam
(ABR)
Cyl. c c’
Mono- <<l | Sph. L-0 BR>'< La.ma< Lamf Lam
energetic (B, W) ;
cyl. | L-0 |[BR" L-0 !Lam' Lam’ | Lam
. (W) '
~1 | Sph. | L-0 [BR Lam® ! Lam’ | Lam
(B, W)
Cyl. | L-0 |BR L-0 | Lam®! Lam’| Lam
(W)
>>1]| Sph. | L-0 |BR L-0 | L-S L-0
Cyl. { L-0 |BR L-0 | L-S L-0
Maxw. < <1 Sph. L-0 BIR7 BR[
Cyl. | L-0 BR7 L-0 BR7
=1 Sph. L-0 H 7¢ H 7‘
(BR') (BR)
Cvyl. 1L.-0 H » H
(BR7; (BR7;
>> 1| Sph. | L-0 BR7‘ L-0 | L-S L-0
Cyl. | L-0 BR7‘ L-0 | L-S L0




O

-18-
TABLE I - LEGEND

Numerical computations available in this report
Formalism indicated only

Superseded work

Langmuir orbital-motion theory (Ref. 2)
Langmuir sheath theory (Ref. 2)
Allen, Boyd, and Reynolds (Ref, 5)
Bernstein and Rabinowitz (Ref. 6)

Lam (Ref. 1)

Bohm, Burhop, and Massey (Ref. 3)
Wenzl (Ref. 4)

Hall (Ref. “11)

Chen (present report)
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