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A physical picture is given of microinstabilities which can ocecur in plasmas of finite resistivity
with or without an effective gravitational field, and of finite Larmor radius stabilization. The drift
waves become overstable because of a phase shift between the density and potential fluctuations.
Transport of plasma across a magnetic field also arises from this phase shift; this transport does
not necessarily resemble a diffusion process. This mechanism may account for the “anomalous dif-
fusion” commonly observed in fully ionized plasmas. Particular attention is paid to the real part
of the frequency and to the phase correlations, which can easily be measured to test this hypothesis. In
regard to stellarator ‘“‘pumpout”, it is found that increasing the conductivity will not reduce the part
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of the loss rate which is due to the “universal’’ resistive overstability.

I. INTRODUCTION

HEN both the finite Larmor radius r;, of the
ions and the finite resistivity 5 are taken into

account, it has been found''* that drift waves in an

inhomogeneous plasmsa can become overstable and

grow in time, driven only by the plasma pressure.

The dispersion curve of this mode is shown in Fig. 1.

This overstability resembles the ‘“universal’’ insta-

bility of a collisionless plasma in that the wave

velocity is nearly the electron pressure-gradient drift
velocity v4,, but the growth rate is connected with
collisions rather than with resonant particles. For
this reason, we believe that it is the resistive over-
stability which has been observed in cesium plasma
experiments,® rather than the “universal” instability.
Our purpose here is twofold: first, to give a physical
interpretation of resistive overstabilities based on
the calculations, which themselves will be presented
in a separate paper; and second, to make use of this

physical picture and some plausibility arguments to

compute the anomalous transport of plasma across a
magnetic field. We find that the process is better
described by the term “electrostatic convection”
than by “anomalous diffusion.”

For simplicity consider a constant and uniform
magnetic field BZ containing a low-density plasma
consisting of (a) cold ions distributed so that a con-
stant density gradient n}/n, exists in the negative
z direction and (b) isothermal electrons distributed
so that the electric field is zero. Imagine a density
perturbation of the formn,/n,=vexp i(k y+kz —wt),

1'8. 8. Moiseev and R. Z. Sagdeev, Zh. Eksperim. i Teor.
Fiz. 44, 763 (1963) [English transl.: Soviet Phys.—JETP
17, 515 (1963)] and Zh. Tekh. Fiz. 34, 248 (1964)[English
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Fic. 1. Behavior of the real
and imaginary parts of the
electron drift mode phase ve-
locity w/k,, with (dashed line)
and without (solid line) a grav-
itational field, as the angle of
propagation k; /k; is varied,
for Ty = T'. The vertical scale
depends on n,, B, and k vq4.
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as illustrated in Fig. 2. We first show that v,, is a
natural velocity for plasma waves, quite independ-
ently of finite r, considerations. Consider a value
of ky sufficiently large or a value of 5 sufficiently
small that electrons flow freely along B; this cor-
responds to the region at the top of Fig. 1. Electrons
are then in equilibrium along each line of force, and
we have n = n, exp (e¢/KT,), or, to first order,
v = x = e¢/KT,. There will, in general, be a region
in which k; is large enough for this to be a good
approximation but small enough so that ion motions
along B can be neglected. Because of the initial
gradient, a typical line of constant density will take
the form of the curve labeled “isobar.” By virtue of
v = x, the equipotentials will be identical with the
isobars. This distribution of potential gives rise to
an electric field E, and a drift v, = E,/B of both
electron and ion guiding centers in the z direction.
At position 2 on Fig. 2, v, is maximum and n, = 0.
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y E ¢ F1e. 2. Schematic of
a drift wave n; =
exp ¢ (kiy + kyz — o),
with IC” < kJ_, propa-
gating across a density
gradient Vn, and possibly
also a gravitational field
g. For clarity the regions
of positive density pertur-
bation have been shaded.
The first-order potential
¢, electric field E,, and
ion and electron velocities
' v;, v are indicated for the
— limiting case of ‘large”
x k. The = dependence of
these quantities is as-
sumed to be weak.
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A little later in time, v, will have brought in particles
from a denser part of the initial distribution, and 7,
(and therefore x) will be positive at 2. Similarly, at
position 4 » and x will decrease. Thus the perturba-
tion apparently moves upwards on the diagram, in
the same direction as vs.. A quarter cycle later, x
becomes maximum at 2, and hence E, vanishes and
v, changes direction. To find the magnitude of the
phase velocity, we note that the rate at which v,
increases the density at any given z is an/dt =
—iwn, = —venl. Since E, = —ik,¢ and ¢ =
(KT./e)(n:/no), we have

ve = E,/B = —iy(KT./eB)nu/no).

Hence, —wn, = ky(KT./eB)(n./no)n§ and w/k, =
—(KT,/eB)(n}/n,), which is just vg.. There is no
instability because v, is always 90° out of phase
with n,.

II. “UNIVERSAL” OVERSTABILITY

To see the reason for the overstability, we must
consider finite Larmor radius, or, more accurately,
finite ion inertia. The behavior of the ion velocity v;
is shown in Fig. 2. If E, were steady, each ion would
drift at the E x B/B? velocity, and v; would be equal
to v.. However, since E, is fluctuating, there will be a
y component of v;, while the z component remains
almost the same as v.. This is apparent from the
motion of each individual ion undergoing a forced
vibration at a frequency @ < w,. As v, = E,/B
changes in time, ions will be accelerated; their inertia
opposes this acceleration and is equivalent to a

force g = —v;. This in turn causes a drift v =
(M/eB*)(g xB) in the y direction. Thus
_M, _M_GE,__i_w_&. 1)
Ve = g% T B a1~ w. B

At position 2 on Fig. 2, E, is at a maximum and hence
E, = v;, = 0. At position 3, v;, vanishes but v, is
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maximum. The existence of v;, causes a separation of
charge: at position 2 both electrons and ions are
brought in from the left by v, and »;, = v., but ions
are depleted by v;,. Hence there a negative charge
develops at 2, and, similarly, a positive charge
appears at position 4. If k; is sufficiently large, this
charge is easily canceled by electron flow along B.
If, however, we now move downwards on Fig. 1 to a
region of smaller k, where electrons have difficulty
traversing a half wavelength in the z direction, a
negative charge will appear at 2 and a positive
charge at 4. These charges build up until the excess
E, (over what normally exists to balance the electron
pressure gradient along B) is sufficient to drive the
electrons against the frictional drag due to collisions
with ions. The net result is a downward shift in the
potential distribution, as shown in Fig. 3. In the
y—z plane, the potential curves are shifted in the
—2z direction. This shift causes a component of
v, = E,/B to appear in phase with n,. Thus the
average v, is positive over the region where n, is posi-
tive, and vice versa. Since positive v, causes an in-
crease in n by virtue of Vn,, the perturbation will
grow.

As we progress downwards on Fig. 1 to even
smaller %y, the electron current along B decreases be-

by

F1a. 3. Schematic of the wave of Fig. 2 for a case of smaller
k), when the potential distribution is shifted downwards to
provide the E, necessary to drive electrons along B. For
clarity the indication of B, and v: has been omitted. The
plane 2/~y’ is displaced one half-cycle along 2. The value of
k;y has been exaggerated.
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cause of the longer resistive path, and it takes longer
to transport excess charges away from the z—y plane.
Hence the frequency decreases and Im w decreases
with it. Finally, at k;, = 0, the wave cannot exist at
all, and it grinds to a halt. The point at the origin in
Fig. 1 corresponds to a static perturbation: one can
build up an arbitrary density perturbation by placing
a number of ion guiding centers here and there and
adding an equal number of electrons in such a way
as to make the plasma neutral. Since we have neg-
lected classical diffusion, these particles do not drift
because no electric fields can arise which maintain
continuity of current.

Note that the spiraling motion of ions does not
appear because we have assumed T; = 0. If T; is
finite, the growth rate is increased because the total
plasma pressure, which drives the overstability, is
increased. However, there is finite-r;, stabilization,
to be discussed below, due to the fact that an ion
samples regions of different E during the course of a
cyclotron gyration; but there is still a net increase
in Im w for T; > 0. Note also that if electron inertia
rather than collisions were limiting the electron
flow along B, the oscillations would have neutral
stability.” This is because v,, is then proportional
to (v — x) rather than to its gradient, and the phas-
ing relationships necessary for the overstability are
destroyed. It seems plausible from this physical pic-
ture that neglected effects such as the x dependence
of the perturbation, the variation of KT, during an
oscillation, and an initial gradient in KT, or n}/n,
are only incidental to the overstability; it will al-
ways occur when a frictional drag impedes electron
motion along B.

III. GRAVITATIONAL OVERSTABILITY

Although we have discussed only the “universal”
mechanism for exciting this overstability, any other
mechanism which causes a charge separation can
give rise to the phase shift between 7, and v, which is
responsible for the growth rate. For instance, con-
sider the case of a small curvature in B. This is
equivalent to a gravitational force g in the positive
z direction, say. Referring again to Fig. 2, we see
that g causes an upward drift of electrons and a
downward drift of ions. This causes a build up of
negative charge at position 2 and of positive charge
at position 4, just as ion inertia did before. Again if
ky is sufficiently large, this charge accumulation is
easily dissipated by electron motion along B, and
there is only a pure oscillation traveling at v,,. For
smaller k;, the same overstability occurs, but with a
larger growth rate than before. This is shown in the
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Fie. 4. Schematic of a gravitational instability with k,, = 0,
with Ty = 0 (left), and 7: > 0 (right). The ion motions
are illustrated for a case of weak finite-r, stabilization.

upper portion of Fig. 1 for a typical small value of g.
As we move toward k; = 0, however, the situation is
qualitatively different from before because the
growth rate is finite at k, = 0. This is just the Ray-
leigh-Taylor gravitational instability. The physical
explanation of this instability is rather subtle, and at
least one previous attempt at a physical picture is
erroneous.* :

Continuing with the case T; = 0, we find the
k, = 0O situation to be that shown at the left of Fig. 4.
The gravitational drifts v,; and v,, cause an excess of
electrons to appear at position 2, and an excess of
ions at position 4. The resulting E, causes both
species to drift with the velocity v, along the zero-
order density gradient. Since v, is in phase with «,,
the density at position 1 increases and that at posi-
tion 3 decreases, and the perturbation grows. The
ordinary explanation stops at this point: no mecha-
nism is given for arresting the separation of charge.
In practice, V.j = 0 must be satisfied so that the
plasma remains neutral and becomes unstable in an
orderly fashion no faster than the acoustic velocity.
To see how this is achieved, we must consider the
effects of ion inertia discussed above. By Eq. (1)
there is a component of v, in the y direction given
by vi, = (@.B)™" 0E,/dt. If Im (w) > Re (), as is
true for small g, v;, is in phase with E,, as shown in
the left part of Fig. 4. It is clear that the divergence
of v;, eauses positive charges to accumulate at posi-
tion 2, and negative ones at position 4; and the value
of Im (w) adjusts itself so that this rate of charge
accumulation just cancels that due to v,.

In practice, v, is not exactly in phase with n,, and
there is a small Re (w) of the order of kv,. If g is a
real gravitational force, so that v, > v,., the wave

+F. C. Hoh, Phys. Fluids 6, 1359 (1963).
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velocity is in the direction of v,;. If g is actually a
force due to a curvature in B, we have v,; = 0 for
T; = 0, and the wave travels in the direction of v...
These statements hold in the frame in which the
equilibrium electric field vanishes.

- IV. FINITE LARMOR RADIUS EFFECTS

When T; is finite, the ion drift motions are modi-
fied by the finite size of the cyclotron orbits. Con-
sider an ion moving in an inhomogeneous electric
field E = E,§ cos ky; typical spiral orbits are de-
picted at the right of Fig. 4. An ion with its guiding
center at a maximum of E spends some of its time in
the regions of smaller E; hence its drift speed v;.
is less than v, = E,/B. An ion with its guiding center
at E = 0 spends as much time in a region of £ > 0
as of E < 0; hence its (vanishing) drift speed is
unaffected. From such considerations one can antici-
pate the rigorous result, which can be obtained quite
readily, that »;, — v, is always proportional to and
opposite in direction to v, and depends on the second
derivative of E, that is, on k*. When a large number
of ions rather than a single one is considered, an
additional effect arises because the distribution of
guiding centers differs from the distribution of ions.
Some of the ions at a maximum of E have their
guiding centers at points of smaller E, and this
further reduces the average drift velocity uv;..
Schmidt® has shown that these two effects are of
equal magnitude; the resulting ion drift is v;, =
1 — ¥’ri)E,/B.

If %2 or T:/T., is small, so that finite-r, effects
are weak, the situation is that depicted at the right
of Fig. 4. Since w is essentially imaginary, v;, is
about the same as in the T; = 0 case. The difference
in ion and electron drifts along ¥n, now brings in
an excess of ions at position 3 and of electrons at
position 1. This has the effect of shifting the point
of maximum ion accumulation from 2 to a position
between 2 and 3. The whole pattern of ¢, E,, v;, and
v, must now shift downwards so that the maximum
of ion accumulation again occurs at 2, where the
maximum electron accumulation due to v,. occurs.
This downward shift puts », and n, slightly out of
phase and therefore decreases the growth rate of the
instability. More important, it gives  a real part, be-
cause the maximum of v, now oceurs below the maxi-
mum of n,; since v, increases the density by bringing
in plasma of higher n,, the maximum of n, will move
downward in time; that is, the wave travels in the
direction of vy;. Unless T; is so small that T;/T, <

5 G. Schmidt, Stevens Institute of Technology Report
SIT-131 (1964).
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Fig. 5. Schematic of a
gravitational wave com-
pletely stabilized by finite
Larmor-radius effects.

o8B 1v,,.

-—Vn,
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(Rn§/no)™", R being the radius of curvature of B,
the wave velocity is always 3v;;. We are unable to
give a simple reason for the factor 4. Since the
charge accumulation rate due to »;, — v, is propor-
tional to n}/n,, finite-r, stabilization is larger the
steeper the initial gradient, as is well known.®

We now consider a case of large T'; or large kr,
in which the gravitational instability is completely
stabilized by finite Larmor radius; this is shown in
Fig. 5. The difference »;, — v, is now so large that it
dominates over »;, in providing ions at position 2 to
cancel the electron accumulation due to v,. The
maximum of v;, — v, then occurs at 2, so that v, and
n, are 90° out of phase. Two pure oscillations can now
occur, both traveling in the direction of vy;. Since
the wave travels downwards, dE,/dt is negative at
position 1, say, and by Eq. (1) »;, is negative there.
From Fig. 5 it is seen that v;, actually aids the
gravitational drift in providing negative charges at 2.
As T; or k*r} is changed, «, and hence v;,, changes in
such a way as to keep the net charge buildup rate
zero. The explanation of Hoh* is in error on two
counts: first, it depended on the z dependence of
both E, and ¢, a dependence which was ignored in
the theoretical results® under examination; second,
the effect of ion inertia on v;, was not found.

We can now easily find the effect of finite T'; on the
“yniversal” overstability of Sec. II. Referring to
Fig. 2, we see that since v;, — v, is opposite in direc-
tion to v,, the finite-r;, effect will bring in negative
charges at 2 and positive charges at 4. This is such
as to add to the charge accumulation due to v;,.
Hence finite r;, will increase the growth rate of the
overstability. We find that the rate is increased by
the factor (1 + T/T.).

Experimentally, the resistive overstability of Fig.
2 with k, # 0, with or without g, can easily be dis-

¢ M. N. Rosenbluth, N. A. Krall, and N. Rostoker, Nuecl.
Fusion Suppl. Pt. 1, 143 (1962).
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tinguished from a nearly stabilized gravitational
instability with &, = 0 (Fig. 5), because the waves
travel in opposite directions. Even if a zero-order
electric field makes the direction of propagation dif-
ficult to determine, it is clear that the correlation be-
tween ¢ and n, has opposite sign in the two cases.

V. THE DIFFUSION COEFFICIENT

From the physical picture given above, it is clear
that rapid convection of plasma across a magnetic
field is produced automatically by these oversta-
bilities: the oscillations grow because the first-order
electric field causes regions of high initial density to
drift into regions where the density perturbation is
already positive, and vice versa. This continues until
the initial density gradient is destroyed. During the
time of growth, plasma is convected “outwards” on
the average; that is, toward the region of low initial
density. The usual way' to compute the diffusion
cofficient D, is to use a dimensional argument: D,
is a length squared divided by a time. If the fluctua-
tions are taken to be random, the ““correlation time”
taken to be (Im w)™", and the ““correlation length”
taken to be k7!, which in turn is of order r (the
plasma radius), then one obtains the Bohm diffusion
coefficient Dy = aKT./eB, where o is a constant
smaller than unity. This method of computing Ds,
similar to that originally suggested by Spitzer,” is
unsatisfactory because the electric-field fluctuations
are assumed to be random. Drift wave instabilities,
on the other hand, grow precisely because the
electric-field fluctuations are not random but are
correlated with density fluctuations; the process is
not a random walk at all. We therefore propose to
calculate the anomalous loss rate in a more plausible
manner by taking these correlations into account.

In the overstabilities considered here the growth
rate is caused by the component of v, = E,/B which
is in phase with n,. This can be seen from the linear-
ized equation of continuity of the ion fluid, which,
with », and dv,/dz neglected, reads

dn,/dt + v} + tking, = 0. 2)
The real part is, for real ny,
Im (w)n, + Re @b — king Im (v,) = 0. 3)

The third term contains the ion inertia effect which
causes the overstability, but it can be neglected in
Eq. (3) in comparison with the second term because
if w is primarily real, Eq. (1) says that Im (v,) ~
(w/we) Re (v,). We have implicitly assumed w/w, <K

7 L. Spitzer, Jr., Phys. Fluids 3, 659 (1960),
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(né/no)/ k., which is necessary in any case to elimi-
nate a high-frequency root of the complete dispersion
relation. Thus we have

Re (v.) & —Im (0)(m/na). @

Consider now the average flux j, across a given plane
z = x,. This is given by

jz = ((no + nl)vx) = %nl Re (vz)
= Ing(—no/nt)(Im w)m/no)’.  (5)

This is a second-order quantity, but it is given to
first-order accuracy by Eq. (5) if the value of Im (w)
from the linear theory is used, since the perturbation
amplitude n, is assumed known. Second-order terms
in Re (»,) would appear in third-order in j..

As long as Im (w) is positive, there is a net average
transport of plasma in the —Vn, direction even if
the oscillations are coherent. For small amplitudes
the flux can be evaluated from the known expressions
for Im (w). For the “universal” overstability, the
growth rate® in the upper region of Fig. 1 is (inesu)

Im (w/w.) = ¥enon/BYEL/KDELrL)rine/ne)’.  (6)

Inserted in Eq. (5) this gives a j, proportional to ng,
and hence this overstability has an effective diffusion
coefficient D, = —j,/n} dependent on k,, ky, and n,.
For the gravitational overstability the ‘“large” &,
growth rate is given® by

Im (0/w) = —(enon/B)(KL/KD(L/R)rno/no).  (7)

Now j, is independent of n}, and no diffusion coef-
ficient can be defined. The maximum growth rate in
the absence of curvature® is approximately '

Im (w/w,) = 0.4(kwo/w.) = 0.2(k1rs) [rint/nd|, (8)

independent of resistivity. If the corresponding value
of k; were dominant, the escape flux would be in-
dependent of 7). The maximum growth rate in a
strongly curved field is

Im (w/w) = [—wmb/n)r/R)I, 9)

occurring at k; = 0; hence the escape flux can even
be proportional to (n}) 3.

So far we have considered only small values of
n1/mo, for which the results are as rigorous as the
linear theory. We now abandon all attempts at
rigor in order to make the transition to the nonlinear
regime. Note that if n, and k, had maximum values
of m, and 77!, respectively, which could be achieved
simultaneously, Eqgs. (5) and (8) would give j. =

8 F. F. Chen (to be published); see also J. D. Jukes, Phys.
Fluids 7, 1468 (1964).
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0.1norLw,, and there would be no magnetic confine-
ment. To get a more realistic estimate of the escape
flux, we must consider the distribution of amplitudes
n, in the nonlinear limit. Physically, the growth of
the oscillations corresponds to a drift of alternate
layers of plasma to the left and right, respectively,
as depicted, for instance, in Fig. 4. Clearly, when n,
becomes so large that dn,/dy is comparable with
on,/dx, the direction of the local gradient will be
changed, and the wave cannot continue growing as
before. This nonlinear behavior is reached when

10)

What happens beyond this point is of no concern to
us, because either the local gradient is so small that
the oscillation does not grow, or the propagation
vector is turned so that the correlated drifts are in
the y (or azimuthal) direction. The escape flux oceurs
during the growth of the waves, and as long as the
boundary conditions impose an average prevailing
density gradient in the —z direction, there will
be a tendency for waves to start in the y direction,
giving a net flux in the & (or radial) direction. We
therefore approximate the escape flux by inserting
the linear growth rate Im () in Eq. (5) and taking
its average over time. Letting

ny = n/k. = Nimax-

7, = N exp [Im (w)i],

we find the average n’ over a growth period (from
Ny = Mo t0 Ny = Nigay) 1O be

<n§> = %nzlmax[ln (7111!18.:1/7210)]—l = %en?max-

The size of the initial perturbation 7, is unknown,
but it enters only weakly. With the use of Eq. (10),
we obtain

jo = tnoekil (—ni/no) Im (w), 1)

where n//n, is the prevailing density gradient aver-
aged over the eddies in the turbulent state.

If k, is allowed to adjust itself to give the maxi-
mum growth rate, use of Eq. (8) yields

j,, = .0577«067"1(00’(711 (ng/n0)2 3 (12)

where 72 = K(T; + T.)/Md:. Thus for each mode
characterized by k., D, varies as KT/B and is itself
proportional to nj. In a curved field Eq. (9) should
be used instead for the lowest modes; however,
finite-r; stabilization strongly damps the gravita-
tional overstability for larger values of k,ry, and
Eq. (12) is valid for the higher modes even in a
curved field. If there is a constraint on k,;, Eq. (6) or
(7) must be inserted in Eq. (11). For a field with
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curvature B we obtain
j. = Yednrini/(MREY), (13)

which shows D, « KTn!/B*. Any convective insta-
bility with Im (w) « nj} would give j, « nf’ If k, is
fixed by the topology of the experiment, Eq. (13)
gives the flux for any k.. For a straight field we ob-
tain

Ge = —¥noelnoen/B) k. /kr)riwdnb/na)’,

whence D, « (KT)*n{?/B*.

From the foregoing it can be seen that resistive
overstabilities can give transport rates considerably
faster than classical diffusion by a process not re-
sembling diffusion at all. Our description of thir
process does not depend sensitively on the randoms
ness of the oscillations or on their radial wavelengths.
The main assumption about the nonlinear behavio~
is the distribution of amplitudes given by Eq. (10).
This is a reasonable assumption which yields a power
spectrum in qualitative agreement with experiment.
Our philosophy has been to ignore the escape flux
caused by a wave after it has grown to the limit
given by Eq. (10) on the grounds that this flux will
be small (and we do not know how to compute it
anyway) and to confine our attention to the flux
oceurring during the growth of a wave, when the
linearized value of Im (w) is apt to be a good approxi-
mation.

14

VI. RELATION TO EXPERIMENT

Although the anomalous “ diffusion” coefficient has
been derived theoretically numerous times in the
literature, we know of no good measurement of it in a
fully ionized gas. To see the reason for this, consider
a plasma in a conducting cylinder. Since E, = 0
near the wall, fluctuating electric fields, random or
otherwise, cannot directly bring particles all the way
to the wall: near the wall all drifts are in the azi-
muthal direction. What drift instabilities can do is
make it impossible for a large density gradient to
exist in the body of the plasma, so that the loss rate
is controlled by classical diffusion in a steep gradient
near the wall. The small gradient necessary to main-
tain the turbulence in the region of anomalous dif-
fusion is difficult to measure. We are acquainted
with two devices producing a hydromagnetically
stable, fully ionized plasma of sufficient duration for
study of electrostatic “diffusion.” In a thermally
ionized cesium plasma,’ the losses by recombination,
mostly at the endplates, are so large that diffusion
losses are masked. In the stellarator, an aperture
limiter forms the wall of the plasma, and it is ob-
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served® that the density profile is almost flat inside
the aperture and falls rapidly outside. This indicates
that the loss rate is not limited solely by the anoma-
lous transport in the interior region. Rather, the
flux is controlled by ambipolar flow along B to the
limiter in the exterior region, together with a small
amount of anomalous radial transport. The latter
is caused by small amplitude oscillations which oceur
in spite of the existence of conducting endplates out-
side the aperture. The density gradient in the interior
is only that necessary to produce this flux by electro-
static convection. In most cases this small gradient
cannot be measured accurately, and the B and KT
dependence of the loss rate is characteristic of the
exterior region rather than the interior region. At
present one can test the theory only by asking
whether Im (w) is large enough to account for the
growth time of the oscillations, and by measuring
the phase between n, and ¢, and hence between n,
and v,, to see if j, = (n,v,) is large enough to account
for the observed loss rate. Preliminary observations'
of the latter sort in the stellarator indicate that
this is so.

Our method of computing the escape flux can be
used with any of the “drift” instabilities. To see
whether the resistive overstabilities described here
- are relevant to stellarator “pumpout’”’, we consider
numerically the ‘“low-current” case’ in which the
Ohmic heating current appears to play no role. Thus
we take KT = 5eV,n, = 10 em™, B = 3 X 10* G,
r = 5cem, L = 1200 em, B = 100 em, with hydrogen
as the gas. We assume k; =~ m/r and n/n, =~ 1/r.
The gravitational overstability depends on the sign
of n}/n,; hence the lower m numbers are presumably
eliminated by the rotational transform. For \; < 1L,
the transform does not help, and for large m the
growth rate is given by Eq. (7). This gives Im (w) ~~
m® sec™?, or r & 100 usec for m = 100, corresponding
to kyry, = 0.2. Im (w) decreases linearly with % and
with L, if R is the same order as L. The “universal”
overstability, on the other hand, does not depend
on the sign of n{/n,, and is not affected by the rota-
tional transform. The latter, however, imposes a
periodicity condition because A,’s longer than L will
generate a periodicity in the azimuthal direction,
which fixes k,k,. We therefore write, approximately,
3N, < mL. If this condition allows the %, correspond-
ing to the max mum growth rate to occur, Eq. (8)
gives Im (w) = 240m sec™’, independent of 5. If the

®S. Yoshikawa, W. L. Harries, R. M. Sinclair, and
J. C. Young, Princeton University Plasma Physics Labora-
tory Report, MATT-Q-21 (1963).

10 8, Yoshikawa (private communication),
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upper limit to m is fixed by k,rp = 1, we obtain
7 =2 10 psec. As 7 is decreased, Im (w) remains con-
stant but A\, becomes longer and longer. Finally,
the periodicity condition above limits A, and a
further decrease in n decreases Im (w) linearly; the
maximum Im (w) is then given by Eq. (6), with
kk, fixed and k,r;, = 1. This dependence on 7 is not
achieved until KT = 1.3 keV. T, and T; have sepa-
rate effects: increasing T', decreases 4, while increas-
ing T'; increases r;, reducing the maximum value of
m. At 5 eV, the maximum growth rate is reached for
all m > 13; for m < 13, Eq. (6) and the periodicity
condition give Im (w) = 6 X 107*m® sec™, and
7 = 1.7 msec at m = 10. Since the observed confine-
ment times are several milliseconds, we conclude
that all but the lowest modes grow sufficiently fast;
and we proceed to compute the escape flux.
Although Im (w) is largest for large k., we have
seen that j, decreases with &, because the amplitudes
of the higher modes are smaller. Whether the loss
rate is determined primarily by high or low m num-
bers depends on the distribution of initial values of
k., and this requires some assumption about the
turbulent state. We imagine that a perturbation
with k = k,9 grows until the local gradient is in the
y direction; then waves with smaller k, in the =z
direction can grow in this local gradient. These do
not contribute to j,, but as they hit the nonlinear
limit, they allow waves of still smaller wavelength
to grow with k in the y direction. Thus large-scale
perturbations break up into smaller ones until \,
is of order 71, and classical diffusion damps the growth
of smaller wavelengths. In this process there is no
reason to assume that all values of m between m ., =
27r/r., are not equally probable. Hence we estimate
the total flux by taking only one value of k, for each
k., namely, the one giving the largest growth rate,
assuming k, &~ 0, putting &k, = m/r in Eq. (12), and
summing over m from 1 to mg... We then obtain

Jootal = 0-05’no€7'i7“wc In 271/ rL)(n{,/no)z, (15

approximately proportional to KT'/B. It is clear that
most of the flux comes from the higher modes. Thus
although our picture of the turbulent state is similar
to Kadomtsev’s,"! we come to the conclusion that the
particle loss comes as much from the large m num-
bers as from the small because of the larger number
of possible modes of short wavelength. Note that
Mmex €nters only logarithmically. The observed flux
is, for r & 4 msee, j & 5 X 10'° ions/cm® sec; from
Eq. (15) we obtain a similar flux if we set ¢ =

11 B. B. Kadomtsev, J. Nucl. Energy, Pt. C 5, 31 (1963).
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1/In (ax/M10) = 0.3 and nf/ne = 1/1.2r. This value
of n¢/n, is larger than the measured value, and this
value of e seems somewhat high. Hence we conclude
that not all the presently observed loss rate is due
to the “universal” overstability. However, the frac-
tion of it which is cannot be reduced by increasing
the conductivity. In addition, there is a possible
contribution from the gravitational overstabilities
with A, < L. Multiplying Eq. (13) by the number of
modes, which is 2xr/r., we obtain a flux of the same
order of magnitude as above. This flux also varies
as B™', but it can be reduced by reducing .

Thus far we have ignored the effect of shear in the
magnetic field. This will put a lower limit on the
value of k.. However, consideration of the z depend-
ence’ shows that Im (w) is not greatly affected by k.,
for k, < k,, so that if the large values of k, are im-
portant for the loss rate, it will not be greatly af-
fected by the shear-imposed minimum value of k..
On the other hand, shear can also limit the value of
k;. If these waves can be localized to regions of =
several Larmor radii thick, in which the shear is
negligible, then the growth rates and escape fluxes
computed above are not greatly changed. If the
waves are not localized, then k, cannot be small
everywhere, and one can set k,/k, > r/L. This condi-
tion does not allow the maximum growth rate for
the “universal” mode to be attained in the stel-
larator, and we must use Eq. (6) for the growth rate.
Setting k, equal to its minimum value in Eq. (14)
and summing over &, , we obtain 7, =3X10"¢(n}/n,)®,
which is about 100 times less than the shearless
value. This flux is proportional to nin(KT)}/B?
so that it is independent of temperature. The gravita-
tional mode is more severely affected by shear be-
cause if k, is set equal to k,r/L in Eq. (13), j. is
proportional to k32 It is then the small k, modes
that contribute most to the sum over k,, and these
modes are not allowed by the condition on k..
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At large Ohmic heating currents, an increased loss
rate is observed® in the stellarator. The oversta-
bilities considered here are not greatly affected by a
zero-order current, but instabilities associated with a
temperature gradient'? can then arise. In particular,
the “rippling” mode’® may increase the loss rate by
making thinner the classical-diffusion layer just in-
side the conducting aperture limiter. In addition,
an instability due to resonant particles' can be
driven by the current, but as the electron—ion mean
free path is only 3 X 107°L in the high-current dis-
charge, we do not believe resonant particles can be
important. The current-driven anomalous flux can be
eliminated by other methods of heating and by in-
creasing KT.. We have seen, however, that the loss
due to the “universal” overstability cannot be re-
duced by an increase in temperature and therefore
may be more serious in the long run.

In addition to their importance in the stellarator,
these resistive overstabilities can explain oscillations
observed in cesium plasmas.® Here the effects of the
endplates are all-important; our analysis of this
problem will appear elsewhere.'* Endplate stabiliza-
tion in cesium plasmas makes possible careful studies
of the onset of these overstabilities.
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