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In thermally ionized alkali-metal plasmas (Q machines), two types of low-frequency oscillations
are found: the usual drift wave localized to the region of large-density gradient, and a higher-frequency
wave localized to the region of the radial boundary. The latter “‘edge’” oscillation is shown to be a
Kelvin-Helmholtz instability driven by the large shear in plasma rotational velocity at the boundary.
An analytic solution of the finite-Larmor-radius dispersion equation for the unstable wave is found
by making the simplifying assumption that the rotational velocity jumps diseontinuously. The results
agree reasonably well with experimental measurements.

I. INTRODUCTION

In recent years there has been considerable work
on thermally ionized alkali-metal plasma generators
(Q machines') concerning universal instabilities, or
drift waves. There is, however, another type of
low-frequency oscillation which often arises spon-
taneously in such plasmas; and we suspect that in
early work on universal instabilities the two types of
oscillations were confused. When the magnetic field
is sufficiently high, the two oscillations can be dis-
tinguished by their localization in space, as illus-
trated in Ifig. 1. The amplitude of drift waves is
peaked in the region of large density gradiont, while
the other oscillation, always at a higher frequency,
is peaked in the region of large eleetric field near
the aperture limiter. The present work is an experi-
mental study of the latter phenomenon, which we
shall call the edge oscillation, and its explanation in
terms of the Kelvin-Helmholtz effect.

In hydrodynamics it is well known® that a fluid
with a gradient in mass flow velocity is subject to
the Kelvin-Helmholtz instability. That this also
occurs in a plasma when the flow is along the mag-
netic field B has been shown by D’Angelo and von
Goeler,® but so far this instability has not been re-
ported for flow across B. In Fig. 1 it is seen that
the edge oscillation occurs in a region where the
plasma potential takes a large jump (because of the
difference in work function between the emitting hot
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plate and the cool aperture limiter), and hence a
region where there is a large gradient in plasma
flow across B. One, therefore, suspects that either
the large E xB azimuthal rotation velocity or its
gradient is connected with the instability. The
difficulty is that the gradient scale lengths are not
large compared with the ion Larmor radius, and,
therefore, ordinary fluid equations for the plasma
would not be valid. Fortunately, an analysis of this
problem including finite-Larmor-radius effects al-
ready exists in the literature. Figure 2 shows that
the observed wave travels in the direction of E xB
but at a speed intermediate between the electron
diamagnetic drift and the maximum E xB drift.
The transverse Kelvin—-Helmholtz instability is the
only one we have been able to find which predicts a
frequency in this range.

II. EXPERIMENT

The measurements were carried out in the single-
ended @ machine shown in Fig. 3. The hot plate
was heated by electron bombardment to tempera-
tures of order 2000-2400°K. A beam of neutral
potassium atoms from an oven was directed at the
center of the plate by either a single nozzle or an
array of three nozzles set in an annular manifold.
The atoms are ionized by contact with the tungsten
plate. The radius of the plasma was set at about
1 ecm by a grounded aperture limiter. The plasma
was terminated by a large cold plate biased to
reflect electrons. The length L of the plasma column
could be varied up to 100 ¢m, but most measure-
ments were made with L =~ 50 em, in which length
the B field was uniform to 4-29,. The base pressure
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Fia. 1. Radial
plasma potential, plasma
+ density, drift  wave
amplitude, and edge oscil-
lation amplitude in a
double-ended potassium @
machine at about 2 kG.
These quantities were ap-
proximated by the float-
mg potential V, of and
ion saturation current J,
to a Langmuir probe. The
location of the aperture
limiter is shown on the
second curve. The last two
curves required frequency
selection with a Tektronix
1L5 spectrum analyzer.
The ion Larmor radius
was about 2 mm. These
data were taken at the
Princeton Plasma Physics
Laboratory.

rofiles of

4kHz Je

r {cm)

was < 2 X 107° Torr, and the stainless-steel vacuum
chamber walls were water cooled to keep the potas-
sium vapor pressure below 10~° Torr.

Three Langmuir probes were used for detection of
the instability. Each had a 0.22-mm-diam tungsten

VACUUM CHAMBER

Fia. 2. Relative direc-
tions and magnitudes of
the observed velocity v¢
and the various drift
velocities in the plasma.

tip I-mm long and was coaxially shielded inside
a ceramic tube of 1.4 mm o.d. One probe could be
moved only radially; a second could also be rotated
on an offset shaft to change azimuth; and a third
could be moved along the magnetic field. Plasma
density was measured by saturation ion current
using the method of Chen et al.* Fluctuations in
ion current were detected by a 1-kQ terminating
resistor and a Tektronix Type 1A7 preamplifier.
Measurements of the probe characteristic showed an
electron temperature consistent with the hot plate
temperature (k7, = 0.2 eV). Fluctuations in float-
ing potential were measured by the method of
capacitance neutralization.’ Frequencies were meas-
ured with an oscilloscope and a spectrum analyzer.

Edge oscillations were observed for densities be-
tween 5 X 10° and 5 X 10'° em™®, and for B between
500 and 5200 G. Beyond these limits the density
profile deteriorated, so that no clean measurements
could be made. Figure 4 shows typical frequency
spectra. At low B, the spectrum consists of a funda-
mental and its harmonics. At high B, the spectrum
is broad with an identifiable peak. Typical density
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F1a. 3. Schematic of the @ machine.
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Fia, 4. Typical frequency spectra of edge oscillations at
low and high magnetic fields. The leftmost marker is at 0
frequency, and the absecissa is 10 kHz/div. The vertical scale
is linear,

¢

20r 12
cpA 15} 13
€
© ®
09 :
- 10} -40
2
=
sl ‘5:_{
[
s
0 -
[ 128
[
a. z
'e 15 135
3] [}
. ]
°° l.;.
< 1o} 14
MANIFOLD
= 7 pr
st 15
LIMITER
] ¥
o Il It 1 1 1 s 1 H
4 3 2 + O\ 2 3 4
I (cm)
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and without (top) the oven manifold. :
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Fig. 6. Measurement of k;. The top trace in each pieture
is a reference signal from a stationary probe. The bottom
trace is the signal from a probe moved along z with r and 6
kept constant. The point z = 0 is approximately at the
midplane of the column, and the probe was moved towards
the cold plate.

and potential profiles are shown in Fig. 5. Note that
the density profile could be changed by altering the
diameter of the aperture limiter or removing the
oven manifold. However, the nature of the oscilla-
tions was not changed, and in any case the measured
de profiles were used to compute the theoretical
frequencies. Tests with different types of aperture
limiters (disks placed in front of the hot plate or
flush with the hot plate, or a tubular limiter) showed
no effect on the oscillations other than what would
be expected from a change in plasma radius. The
potential profiles show that E, is practically zero in
the plasma. This is because the radial temperature
gradient in the hot plate nearly cancels the electric
field associated with the density gradient.® The
large E, at the edge of the column is due to the
change from an electron sheath in the interior region
to an ion sheath in the exterior region, together with
the change in contact potentials. The rise in po-
tential at large radius is probably due to the fact that
ions can migrate across B faster than electrons.
Since it is of primary importance to the theory

¢ F. F. Chen, Phys. Fluids 9, 2534 (1966).
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Fic. 7. Radial profile of wave amplitude, as measured by the
perturbed density n; divided by the local de density no.

whether %, is zero or finite, we took pains to measure
ky with a probe movable along B and rotatable
about an axis near the bottom of the vacuum cham-
ber. By choosing a point on the steep part of the
density profile and measuring the ion current, it was
possible to reposition the probe at the same radius
each time the position z along B was changed. To
keep 6 constant, we relied on accurate optical align-
ment of the vacuum chamber with the magnetic
field coil system. Figure 6 shows a measurement of
ky. From the change in phase shift of the movable
probe signal relative to the fixed probe signal, we
can place an upper limit of 6 X 107° em™ on k.
This would give a wavelength A\, = 20L. Because of
the smallness of k,, a small error in azimuthal probe
position would greatly affect the results. We estimate
the possible error in k, to be ~ 107* e¢m™'. This
gives A, > 8L. However, if the wave is a standing
wave rather than a traveling wave in the z direction,
one would expect no phase shift but only an ampli-
tude change with 2. From the observed amplitude
change we can again place a lower limit of about
8L on \,. This indicates a flute mode; drift waves
normally have Ny =~ 2L. We shall return to this
point later.

Further evidence for ¥, = 0 were provided by
two other checks. First, if L is changed by 509,
there is no observable change in frequency or ampli-
tude of the wave. Second, the phase shift between
the density fluctuation and the potential fluctuation
was found to be ~ 180°, rather than ~ 0° As ex-
plained by Chen,” this indicates a flute, rather than

TF. F. Chen, Phys. Fluids 8, 912 (1965).

a drift, mode. There is a question of why end-plate
damping® would not prevent flute instabilities from
arising. Apparently, the wave is excited in the region
outside the aperture limiter, where there is no
thermionic emission, and, therefore, no end-plate
damping. Figure 7 shows that the wave amplitude is
indeed peaked at the extreme edge of the plasma
column.

The azimuthal propagation of the wave was meas-
ured by two probes with a variable separation in 4.
Figure 8 shows phase shift measurements for the
m = 3 and m = 4 azimuthal modes. We have also
measured the radial propagation; there was no
measureable phase shift for radial probe separations,
indicating a standing wave in the radial direction.

The dependence of wave velocity on magnetic
field is shown in Fig. 9, in which the frequency
divided by the azimuthal mode number m is plotted
against a normalized |B|. It is seen that the wave
velocity is constant at high B and rises at low B.
This can be understood qualitatively as follows.
The wave velocity w/k, is proportional to the drift
velocity E/B in the “edge” region. If the jump is
potential A¢ is constant and the thickness of the
transition region scales as the Larmor radius ry,
then we have w/k, « E/B « A¢/r.B. Since
7. « B7', w/k, is constant with B. At low fields,
however, the Larmor radius becomes comparable
to the plasma radius R, and the thickness of the
transition region scales as R rather than as r. Then,
we have w/k, « A¢/RB « B~'. This explains the
rise in w/k, as B is lowered to very small values.

8 F. F. Chen, J. Nucl. Energy, Pt. C, 7, 399 (1965).
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Fie. 8. Example of the measurement of azimuthal mode
numbers. The upper picture shows the 90° phase shift pro-
duced by an m = 3 mode when the probes are separated by
90°. The bottom picture shows the 90° phase shift of an
m = 4 mode when the probes are separated by 221°. In the
latter case multiple sweeps of the oscilloscope were used to
average over the noise.

Figure 10 shows the mode amplitude as a function
of B for the m = 3, 4, and 5 modes. It is seen that
the higher modes successively peak as B is increased.

Finally, we have considered the possibility that
the waves are excited by shear in v;, as in the work of
D’Angelo and von Goeler,® rather than by shear in
v. This experiment was done with a negative bias
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Fia. 9. Wave velocity f/m vs magnetic field B. The abscissa
has been scaled by a factor (a; — a2)™! which appears in
combination with B in the theory. The factor a; — a2 is-the
fractional change in density in going from the inside region
to the outside region. | )
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Fia. 10. Wave amplitude n;/ny as a function of B/(e) — as)

(see caption of Fig. 9).

on the cold collector plate, so that ions flow only
toward the plate both inside and outside the aper-
ture limiter, and there can be no large shear in v,
at the edge. If the negative bias is varied, there is
no effect on the oscillations. If the collector plate is
made slightly positive relative to the plasma so that
some ions are reflected, the wave is still unstable;
but the spectrum is modified by instabilities con-
nected with electron flow along B. For large positive
biases, the latter instabilities mask the edge oscilla-
tion.

III. THEORY

A. Two-Region Solution

We shall use as our fundamental equation the
radial wave equation given by Rosenbluth and
Simon®

@WV+G{¥£T+&%)¢=Q 1)

where
T = p’I‘a(;)(C-O - wd.’), (2)
b=w—me=w—"V,=w+ 2l 3)
° r ° r B’
= KT:mp’ =
wdi—eBrpy \l’—‘:’: (4)

and the prime denotes 9/dr. This equation de-
scribes low-frequency flute perturbations of the
form exp [t{(mf — wt)] propagating around an iso-
thermal, cylindrical plasma with an arbitrary density
profile p(r) and an arbitrary radial electric field

®* M. N. Rosenbluth and A. Simon, Phys. Fluids 8, 1300
(1965).
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Ey(r) in equilibrium. Equation (1) includes finite-
Larmor-radius effects to order (r./R)* and is de-
rivable from fluid equations with collisionless vis-
cosity,’ from guiding-center equations,'® or directly
from the Vlasov equation.’ If the ion diamagnetic
drift frequency w,; is set equal to zero, one recovers
the usual equation for the Kelvin—Helmholtz insta-
bility in an ordinary fluid® with a velocity distribu-
tion Vo(r). The gravitational force has been set
equal to zero in Fiq. (1), but the last term represents
an effective gravitational force due to the centrifugal
force.

Analytic solutions of £q. (1) and complex eigen-
values for w can be found only for special forms of
the functions p(r) and E,(r). In this problem the
radial variation of the perturbation is important,
and one cannot use a “local” approximation which
neglects the radial derivatives. To find a simple
solution we have chosen to make the approximation
that p(r) and V,(r)/» are constant in each of two
regions but make discontinuous jumps at an inter-
face r = r,, as shown in Fig. 11. The reasonability
of this approximation will be discussed later.

With this simplification, w,; vanishes and o is
constant in each region. Within each region, FEqgs. (1)
and (2) become

2

" é ’ Lj‘ﬁ; — =
e e ] (5)

T = pr'a’. (6)

The solution of Eq. (3) is ¢ = Ar™'*™ + Br'7",
We now specify m > 1 without loss of generality
and require that ¢ be finite at + = 0 and vanish
at r = o, Thus, we have

ll/—] — AT— 1+m
¢2 o BT_ 1—m

(interior region),

@)

(exterior region).

To connect these solutions at the interface, we
follow standard procedure’ and derive a jump con-
dition by integrating Eq. (1) from r, — etor, + ¢
and taking the limit ¢ — 0. We assume that the
Lagrangian displacement /B of a fluid element is
continuous across the interface—that is, that there
is no separation. Terms in Eq. (1) which do not
contain a derivative then disappear, and we have

ATY) + [(m* — Dma,
(KT./eB) + rie®] Ap ¥, = 0,  (8)

10 T, E. Stringer and G. Schmidt, Plasma Phys. 9, 53 (1967).

Vi
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Fre. 11. Form of the zero-order distributions of rotation
frequency and density assumed in the two-region solution.

where

Y, = Ar]"*" = Br;'™™ ©)
and

@, = 3@, 4+ @), ‘ (10

@, and @, being the constant values of & in regions
1 and 2, respectively. The jump in Ty’ is computed
from Eqs. (6) and (7), and we have

(m + Dpo; + (m — 1)p,is}
— [* + 2ym(m® — 1)&,)(p. — p) = 0, (1)
where
v = (1/2r)(KT;/eB). (12)

The finite-Larmor-radius effects appear only in the
v term. This term comes from the middle term in
Eq. (1), in which 7 becomes infinite at r, because
ws; contains p’. With the use of Eq. (3) and the
definitions

a2 = pra/(p F pa). wia = Voo/r, (13)
Eq. (11) becomes
w — 2 (m — Do,
+ ax(m + Dw, + v(m* — Diee — ay)lw
+ m(m + Da; + mim — Do}
—ym(m’ — 1w, + @) — ) = 0. (14)

Thus, we have explicit expressions for the frequency
and growth rate:

Re () = (m — Dayw, + (m + Dayw,
+ym® = Do, — ),  (15)
(Im @] = —[(m — Daw,
+ (m + Dagw, + y(m* — Dl — a)]*
+ m(m — Daw: + m(m + Doyws
+ ym(m®* — D, + wa)(@ — ay). (16)

t——
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F1g. 12. The two-region solution for frequency f and growth
rate Im(w) as a function of m-number for w, = 0, w =
—2 X 10% sec™, and y(a; — a2) = 3750(a), 2250(b), and
1500(c). Curve ¢, for instance, corresponds to p; = 7ps,
r, = 1 cm, and B = 5 kG. Magnetic field increases as one
goes from curve (a) to curve (c).

The condition for instability [Im (w)]* > 0 can be
rewritten as follows:

aia[(m — Do, — (m + De,]
+ (m — Daw; — (m + Dayw:
> y(m* — Dla; — a)’[y(m* — 1)
+ mlw: — @) + 20w, — )y — a)']. (17)

The physical interpretation of this dispersion
relation is clear. The first term in Eq. (17) repre-
sents the Kelvin-Helmholtz excitation of the insta-
bility. This term is always destabilizing and is es-
sentially proportional to the shear in the zero-order
E xB velocity. Note that, as expected, the density
in both regions must be finite for this effect to exist.
The other two terms on the left-hand side of Eq.
(17) represent the net centrifugal force. A “gravita-
tional” instability is excited if the inner region is
more dense and/or spins faster than the outer region.
In our experiment, a,w? is less than a,w?, so that
the centrifugal force is actually stabilizing; the
destabilizing effect is entirely Kelvin—Helmholtz.
The terms on the right-hand side of Eq. (17) depend
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on v and represent the finite-Larmor-radius damping
of large m-number perturbations. The oscillation
frequency, as seen in Eq. (15), is essentially a
density-weighted average of the E x B drift velocities
in the two regions, modified by the finite-Larmor-
radius term in «.

Typical plots of frequency f and growth rate
Im (w) are shown in Figs. 12 and 13. In Fig. 12, the
E xB drift is in such a direction that the finite-
Larmor-radius term in Eq. (15) adds to the fre-
quency. Note that the growth rate is sharply cut off
at large m numbers, as is normal in finite-Larmor-
radius stabilization, that the growth rate peaks at
shorter wavelengths as r, is decreased, and that
more modes are simultaneously unstable at higher
B fields. Note also that the m = 1 mode does not
depend on v, and hence is not affected by finite-
Larmor-radius stabilization, as shown long ago by
by Rosenbluth et al.'* In Fig. 13, the E xB drift is
in such a direction that the finite-Larmor-radius
term in Eq. (15) opposes the drift, resulting in very
low frequencies. Unfortunately, this is the direction
of E, in the experiment, and the predicted fre-
quencies are considerably lower than observed. To
remedy this, we go to the three-region treatment.

B. Three-Region Solution

In the two-region solution, the region of large
electric field (see Fig. 5) is neglected altogether.
Since ions spend a finite amount of time in this
region, it is clear that the two-region treatment
would predict too low a wave velocity. To account
for the Doppler shift in the high-field region, we now
divide the plasma into three sections, as shown in
Fig. 14. Region 2 is now the comparatively thin
layer in which E, is large.

Proceeding as before, we now have, in place of
Eq. (7), the following:

Vi = A" Y, = BrmTt 4 O
1//3 = DT_"'_I. (18)

Tﬁere are now two jump conditions of the form of
Eq. (18), one at r; and one at r,,. These yield

(C/D)2mpsisy = (m — 1)psisy + (m + 1)pyit
— [0* + m(m® — 1)(KT./eB)
'(‘-:’23/7'23)](% — p) =W,
(C/A)2mpir7;™ = (m — 1)pyisy — (m — 1)pys?
+ [w® + m(m® — 1)(KT./eB)

“@12/r3)(pz — p1) = W,. (20)

I M. N. Rosenbluth, N. A. Krall, and N, Rostoker, Nuel,
Fusion Suppl., Pt. 1, 143 (1962).

(19)
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Fre. 13. Dispersion curves for w; = 2 X 104 sec™. Other
parameters as in Fi1a. 12.

In Eq. (19), the coefficient B has been eliminated
by the condition ¥, = y; at rz,. Similarly, B has been
eliminated from Eq. (20) by ¢, = ¥, at 7. These
two conditions on B yield a third equation

D/C = (A/C)Tzz';' +1- (7'23/7'12)2".-

The coefficients C/D and C/A can now be elimi-
nated from Eqgs. (19)-(21) to give the equation

1)

Wy, — W, = W,(1 — W, W1, (22)
where W, = 2mp,a, € = (ry/r2)’™ — 1, and W,
and W, are defined above.

Equation (22) is a quartic equation for w. To re-
duce it to a quadratic, we make use of the approxi-
mation w; > w, w, ws, ws. On the right-hand side
of Eq. (22), which is multiplied by the small quantity
¢, we may replace W, and W, by the leading term
(m — 1)p,@2. In the finite-Larmor-radius terms in
W, — W,, we replace @,, and &,3 by — imuw,. Finally,
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Fig. 14. Form of the zero-order distributions of Vy/r and
o assumed in the three-region solution. The upper diagram
illustrates how a measured set of profiles would be divided
into three regions of constant V,/r and p.

we assume region 2 to be thin, so that r,, =~ r,; and
e = 2méd, where

5= (rys — 712)/T1s. (23)
With these approximations Eq. (22) becomes
(m — Dpést + (m + Dpsi; + 8(m* — 1)pyisy
— [0 — ym’(m® — Dw:)(ps — p) = 0.  (24)

We have actually done a more careful job of ordering
and have obtained additional small terms, but Eq.
(24) contains all the essential features of the solu-
tion, and further refinement does not seem justified
in view of the erudeness of the original model. Ex-
panding Eq. (24) and defining a; = p;/(p1 + ps), we
obtain the following dispersion equation:

(1 + bax(m® — 1)/mle’ — 2[(m — Dayw,
+ (m + Doyws + B(mz — Donw,]w
+ m[(m — 1)"‘1“’? + (m + l)aawg

+ 8(m2 — 1)a2w§ + 'y(m2 — Dwolaz — )] = 0.
(25)
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Fig. 15. The three-region solution for f and Im(w) as™'a
function of m-number for @ = 0.5, wy = 105, ws = 2 X 10¢
sec™’, Other parameters same as in Fia. 12. Solid curves:
§ = 0.2; dashed curves: 5 = 0.1(¢;) and 0.3(c;), with vl —
a3) = 1500. Curves (a), (b), and (¢) correspond approximately
to B = 2, 3.3, and 5 kG, respectively.

Frequencies and growth rates computed from
Eq. (25) are shown in Fig. 15. The parameters are
the same as for Fig. 13, except that a middle layer
of thickness § = 0.2 3= 0.1 with rotation frequency
w, = 10° sec™ has been added. Note that the fre-
quencies have been shifted to higher values by the
da,w, term; this is the expected Doppler shift. This
term dominates over a finite-Larmor-radius term
which we neglected; hence, the frequencies coincide
for different values of v. The ¥ term in Eq. (25)
has a smaller stabilizing effect than it did in the two-
region case. This is because the da,w? term is domi-
nant in the constant term of Eq. (25), and finite-
Larmor-radius stabilization occurs only at very
large m-numbers.

C. Discussion

What is the justification for using finite-Larmor-
radius equations and then assuming that the density
and electric field change discontinuously in a dis-
tance small compared with r.? First, there is a pre-
cedent for this procedure in the solution of the
hydrodynamie problem of two fluids—say, of wind
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blowing over water. The equations for an inviscid
fluid are used in that case® to describe the interior of
each fluid, where the relevant scale lengths are
much larger than the collision mean free path ..
At the boundary, there is a layer of thickness of
order A, in which viscosity must be taken into ac-
count. This layer is customarily neglected, and the
matching of inviscid solutions is made with a jump
condition. In the case of magnetoplasma, we replace
A. with 7, and use the finite-Larmor-radius equa-
tions in the interior of each fluid, where the scale
lengths are much larger than r,. At the boundary,
there is a layer of thickness of order r, in which
finite-Larmor-radius equations break down and
higher-order terms in the ion orbit integrals should
be taken into account. We neglect this layer and
replace it with a jump condition. In both the hydro-
dynamic and the plasma cases this procedure is
justified by reasonable agreement with experiment.
In neither case does one expect the theory to be
extremely accurate.

Second, the sharp-boundary model makes more
sense when one considers exactly which finite-
Larmor-radius effect has been retained. By assuming
uniform p and E,/r in the interior of each region, we
have neglected both the diamagnetic drift and the
finite-Larmor-radius correction to the ion E xB
drift in equilibrium. At the interface, there is a
diamagnetic current connected with the discon-
tinuous jump in density. This does not give rise to
the v term we have retained; for if one redoes the
calculation keeping diamagnetic effects but neglect-
ing the finite Larmor radius by dropping the viscosity
tensor, one would simply recover the hydrodynamic
fluid result with the diamagnetic drift added to Vo.
Hence, all finite-Larmor-radius effects in the equi-
librium have been neglected; the v term comes from
the finite-Larmor-radius effect connected with the
nonuniformity of the perturbed electric field. When
the interface is rippled, an E field in the 6 direction
is created. The ions drift more slowly than the elec-
trons in this nonuniform E field, and because of the
jump in density at the interface a space charge
arises. In accordance with a picture given by Chen,”
this space charge causes a phase shift between the
fluctuations in density and potential which slows
down and eventually stops the instability. Thus,
the finite-Larmor-radius effect has been retained
only to predict the correct cutoff of wave growth at
high m numbers in the two-region solution.

The physical interpretation of the three-region
solution is considerably more complicated. Ap-
parently, the Kelvin-Helmholtz effect is so large in
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the presence of the high-velocity layer that finite-
Larmor-radius stabilization can be neglected at
small m numbers. The growth rate (Fig. 15) peaks
at larger m numbers than are observed, and it would
appear that the three-region solution does not pre-
dict this peak accurately. We believe that this is
partly due to the approximations made in reducing
Eq. (22) to a quadratie, and partly due to the in-
accuracy of the sharp-boundary model. On the other
hand, the frequencies (Fig. 15) are given quite
accurately because they depend mainly on the E xB
velocities in the three regions, weighted by the rela-
tive number of ions in each region.

We now return to the question of finite k,. The
measurements of k, shown in Fig. 6 are not entirely
inconsistent with a standing wave with A\, = 4L.
Such a wave with a node at the hot plate and a
maximum at the cold plate would be consistent with
the theory of end-plate damping.® Furthermore, this
value of A, is small enough to put the experiment
in the drift-excitation range of the resistive drift
wave dispersion curve.'> However, the drift effects
are of the same order of magnitude as the finite-
Larmor-radius effects, and we have seen that these
effects are dominated by the Kelvin—-Helmholtz
effects in the three-region treatment. Thus, we have
reason to believe that the &k, = 0 theory is applicable
to the experiment whether or not A, was as short as
4L. The finite-k, terms can easily be added to
Eq. (1), but one would then lose the benefits of an
analytic solution.

IV. COMPARISON OF THEORY WITH EXPERI-
MENT

The frequency and m number of the dominant
mode has been measured under various conditions
as regards magnetic field, plasma density, and
aperture limiter configuration. In each case, the
density and potential profiles were measured and
approximated by step functions, as shown in Fig. 14,
From these step functions, the theoretical frequency
and growth rate was calculated from Eq. (25). The
comparison of the calculated frequencies with the
observed frequencies is shown in Fig. 16. The indi-
cated errors arise mainly from the measurement of
E, from the potential profiles. It is seen that the
agreement is quite good, and much better than with
any theory that does not take into account the non-
uniform electric field. The calculated frequencies are
generally somewhat higher than those measured.
This is probably due to the negleet of the zero-order

12 F, F. Chen, Phys. Fluids 8, 1323 (1965).
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Fia. 16. Comparison of the measured frequencies with the
frequencies calculated from the three-region solution and the
measured profiles.

nonuniformity of E, in the middle region, an effect
which would slow down the rotation of the plasma.

Figure 17 shows a comparison of the B dependence
of the measured amplitude with that of the theo-
retical growth rate for the m = 3, 4, and 5 modes.
The dashed lines are the experimental data of Fig. 10.
The points are values of Im (w) computed from
Eq. (25) and the measured profiles. The agreement
suggests that the saturation amplitude is not un-
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Fia. 17. The calculated growth rate and the measured
wave amplitude as a function of B/(a1 — a3), where a1 — a3
is the relative density change in going from the interior to
the exterior region.
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Fiag. 18. Comparison™of experimental (points) and theo-
retical (line) radial amplitude distributions for the m = 3
mode.- The theoretical curve includes a small admixture of
the m = 1 mode to account for the finite wave amplitude
atr = 0.

related to the theoretical growth rate. Note that
Im (w) increases monotonically with B if the plasma
profile is kept constant, as can be seen from Fig. 15.
The fact that Im (w) falls again at high B (for fixed
m) is due to a change in the plasma profile. At large
B, Fig. 15 would predict a large number of unstable
modes. This is consistent with the broadening of the
spectrum of Fig. 4 at high magnetic field.

Figure 18 shows the measured radial dependence
of wave amplitude for the m = 3 mode. The theo-
retical curves are the interior and exterior eigen-
functions of Eq. (7). To account for the nonvanishing
amplitude at »r = 0, we have had to assume a small
admixture of the m = 1 mode, which has constant
amplitude at »r = 0, as can be seen from Eq. (7).
The good agreement between theory and experiment
here gives credence to the validity of our step-func-
tion model, for, as we stated earlier, the results are
sensitive to the form of the radial wavefunetion.

V. SUMMARY AND RELATED WORK

We have shown that the “edge’’ oscillation ob-
served in Q machines is a transverse Kelvin—Helm-
holtz instability adequately described by a k;, = 0
theory of Rosenbluth and Simon.’ Centrifugal and
drift excitation of the oscillations have been shown
to be unimportant in the experiment. Theory and
experiment show reasonable agreement as regards
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wave frequency, B dependence of growth rate, and
radial amplitude distribution.

Although we believe we have identified the insta-
bility, there is room for improvement both experi-
mentally and theoretically. In particular, the theo-
retical calculations can be refined successively by
(a) solving the entire quartic equation (22), (b)
assuming more realistic forms for p(r) and E,(r)
in the various regions, (¢) numerically integrating
Eq. (1) without dividing the plasma into regions,
(d) .adding finite-k; terms to Eq. (1), and (e) im-
proving Eq. (1) by going to higher order in r./R.

We believe that this Kelvin—-Helmholtz instability
is responsible for oscillations above 5 kHz observed in
early work in alkali plasmas and erroneously identi-
fied as drift waves. The original paper of D’Angelo
and Motley'® did not show a radial amplitude distri-
bution, but subsequent papers by Buchel’'nikova,*
D’Angelo et al.,'”” Lashinsky, and Hartman,'
showed oscillation amplitudes that were definitely
peaked at the radial boundary. Most of these results
have been summarized by Hendel, Chu, and Polit-
zer."® More recent experiments on drift waves® 2°
have been made with the recognition that the edge
oscillation is a separate phenomenon.

An experiment similar to ours has been reported
by Enriques, Levine, and Righetti.”* The geometry
of their experiment was somewhat cleaner than ours,
but no theoretical explanation was given; the experi-
mental results were similar. In the interior of an
alkali plasma the radial E fields are relatviely
weak, but their nonuniformity can affect the excita~
tion of drift waves. This has been studied by Hart-
man and Munger” and by Chen and Rogers.®
Many experiments in small @ machines are per-
formed in weak magnetic fields (~ 1 kG). In such
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Vienna, 1966), Vol. I, p. 499,
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experiments the large electric field at the edge can
penetrate far into the plasma because of the large-
ion Larmor radius, and the Kelvin-Helmholtz effects
cannot be neglected. Particularly suspicious are
reports of “drift waves” in single-ended @ machines
such as ours. The ion lifetime in such devices is so
short that drift waves generally do not have time
to grow unless the excitation is aided by the centrifu-
gal or Kelvin—-Helmholtz effect.

Finally, we wish to point out that it is important
to use shielded probes in  machines, since probes
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must penetrate the region where these relatively
high-frequenecy oscillations can exist.
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