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Experiments on anomalous transport in a @ machine with a hard core providing magnetic shear
show shear-dependent particle losses in the absence of oscillations. It is demonstrated that these Bohm-
like losses are caused by steady plasma convection in asymmetric electric fields produced by small tem-
perature gradients in the end plates and that the effect of shear is to symmetrize the convective pat-
terns by twisting the equipotentials into tight spirals. A finite-Larmor-radius theory of transport by
convection is presented which correctly predicts the observed increase of confinement with shear.
Estimates of the absolute magnitude of losses by this mechanism indicate that at least half of the ano-
malous transport in @ machines is due to plasma convection, at least in magnetic fields below 4 kG.

1. INTRODUCTION
A. Historical Background

Thermally ionized alkali-metal plasmas in @
machines' provide an ideal medium in which to study
anomalous plasma transport across magnetic fields
because the amplitude of low-frequency oscillations
can be controlled by the experimenter. Universal
instabilities can be suppressed by line tying at the
end plates,” ion—ion collisions,” or nonuniform radial
electric fields.” In this work we make use of stabiliza-
tion by magnetic shear.’

In spite of the fact that anomalous transport in
Q machines has been under scrutiny for nearly a
decade, it is only now that an understanding of the
basic physical phenomena is beginning to emerge.
Early work by D’Angelo and Rynn® purported to
show classical diffusion and recombination, albeit
with a large coefficient of recombination later
explained by von Goeler’ as being due to surface
recombination on the hot end plates. In these early
experiments, the rate of diffusion was deduced from
the spreading of the plasma profile. More recent
experiments by Motley and von Goeler® and by
Hashmi et al.’ however, have shown that this
method is an insensitive one for distinguishing
between classical and anomalous diffusion. A better
method, used by D’Angelo’® and Motley," rests on
the plot of plasma density n vs the flux & of ions
injected at the end plates by surface ionization of
neutral atoms. It can be shown that on such a plot
one has n « &'* if classical diffusion and end-plate
recombination are dominant, whereas n « & if a
density-independent loss rate, such as Bohm dif-
fusion,’® obtains. What is generally found is that at
high densities or low plate temperatures T, when the
classical loss rate is large. the n « &' law is
followed. but that at low densities and high plate
temperatures the n « & law ix followed and the

equilibrium density falls well below the classical
value, indicating the existence of an anomalous loss
process. At T, = 2400°K, the transition point
occurs at n & 2 X 10" em™. An example of an
n-® plot, taken from our own data, is shown in
Fig. 1. It covers only the low-density regime and
clearly shows n « &. The existence of an anomalous
loss at low densities has been confirmed by von
Goeler and Motley'® using an entirely different
technique: the atomic beam is interrupted, and the
plasma decay time is directly measured. A suggestion
by D’Angelo and von Goeler'* that recombination
on the probes can be a serious loss mechanism does
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Fic. 1. Plot of peak density nyvs input ion lux # at B = 2
and 4 kG. The data were taken in a 5.08-cm-diam K plasma
326 cm long with a plain W hot plate (no hard core) at 2500°K
at each end. The neutral flux was concentrated at the center
of the hot plates and was balanced to better than 439, at
the two ends. The straight lines are estimates of the densit
expected from classical processes (in this case, mainly end}:
plate recombination) and from Bohm diffusion. In this run,
the points show no B dependence because it happens to be
canceled out by a change in oscillation amplitude with B.
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not invalidate the low-density conclusions, as has
been shown by density measurements with micro-
waves.'*'®

Supplementing the foregoing experiments are a
number of direct measurements of the radial escape
flux. Using a radial particle collector, Buchel’nikova'®
reported anomalous losses at low densities. Working
with single-ended @ machines (a hot plate at one
end and a cold collector at the other) Wolf and
Rogers'” and Decker ef al.”® used similar methods to
measure the radial losses: an ion collector is moved

progressively farther from the hot plate, and the -

decrease in collected flux is attributed to radial
losses. The results were divergent: Wolf and Rogers
reported essentially classical diffusion, while Decker
et al. found D, > Dgoun. Eastlund et al.'"* used
still another method: a pulse of neutral atoms is
injected at the hot plate, and the radial and longi-
tudinal spreading of the resulting pulse of ions is
measured. The radial diffusion was found to be
negligible in one paper,”® and to be four orders of
magnitude larger than classical in another paper.”®
Thus, no general conclusion can be drawn from these
experiments on gross loss rates, experiments in which
one does not examine what is happening inside the
plasma.

A correlation between oscillations and diffusion
has been reported by Buchel’nikova'® and by
Josephy et al.”' These results are suspect, however,
because either the observed oscillation amplitude'
or the observed change in oscillation amplitude® is
too small to explain the measured D, or change
in D,. Decker et al.”® reported a total lack of corre-
lation between oscillations and losses when a
minimum-B field was applied to the plasma. On
the other hand, Hendel et al.** have found a definite
correlation between the onset of drift waves and a
spreading of the plasma profile. In this experiment,
however, the absolute loss rate was not measured,
so that it could be consistent with the result of
Decker et al.”® if the dominant loss process were
other than drift waves.

B. Evidence for Convection

In the present experiment, we can separate the
steady-state losses from those connected with
oscillations by suppressing the oscillations with a
small amount of shear. Figure 2 shows our previously
published data® on the decrease of D, with increas-
ing shear. From the observed decrease in oscillation
amplitude with shear, we conjectured at that time
that the stabilization and localization of drift waves
were responsible for the improved confinement. It
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Fic. 2. Dependence of measured diffusion coefficient D,
(normalized to the Bohm coefficient D ) on shear parameter 6.
The points at extreme right are estimates of classical losses
(from Ref. 23).

now appears that only the losses occurring at low
values of shear in Fig. 2 can be attributed to oscilla-
tions.

The existence of an anomalous loss mechanism
independent of oscillations is best illustrated by
Fig. 3. Here, we show oscillations of plasma density
(actually, probe current) vs radius. The width of
the trace is an indication of oscillation amplitude.
The oscilloscope responds to all frequencies from
de to 1 MHz. As the shear is increased by varying
the current I,, the oscillation amplitude decreases,
and the average density rises. At the low magnetic
field of 2 kG, the oscillations are completely sup-
pressed for all I, > 200 A; yet the density continues
to increase with I,. This indicates that at low shear
there is a loss mechanism which is either strictly de
or connected with very high frequencies. It is
difficult to see how ions can be moved rapidly
across the magnetic field by high frequencies,* and
so we are led to the concept of plasma convection.

That large dc drifts should occur in the plasma if
the temperature of the end plates is slightly non-
uniform was actually predicted several years ago.”®
Asymmetric potentials connected with temperature
gradients were first observed by Hartman and
Munger.?® The basic reason is that the plasma
potential on each line of force is determined by the
balance between flux of electrons emitted by the end
plate and that of electrons drifting back into it; the
sheath drop is an adjustable Coulomb barrier which
insures this balance. Since thermionic emission is a
steep function of temperature, a small temperature
gradient in the end plate will cause a relatively large
gradient in the sheath drop, and hence a potential
gradient in the plasma. The resulting E x B drift
will carry particles radially if 7. is azimuthally
nonuniform. A variation of less than 1% in T, is
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Fia. 3. Time-resolved density profiles at 2 k(; as a function of shear. I, is the current in the hard core. The density
depression at the center is due to the presence of the hard core; the probe just grazes it. The probe current is dc coupled,

and the baseline is shown.

sufficient to give a drift velocity comparable to the
velocity of Bohm diffusion.?

Transport of plasma by steady E x B drifts was
first observed by Bohm et al.”” in an electric arc. In
alkali plasmas, Decker et al.'® were the first to point
out that the observed loss rate was consistent with
the drift mechanism desecribed above; however, no
detailed study of the electric field distribution was
reported. By using shear, in the present work we
are able to show that the conclusion drawn by
Decker et al.”® is basically correct. In low-8 toroidal
thermonuclear fusion devices, there are no end
plates to cause dc electric fields, but these can arise
from other causes. For instance, the method of
plasma injection or heating has been shown to give
rise to convective patterns in a toroidal octopole®
and in a linear quadrupole.” The relevance of our
experiment to fusion research lies in the prediction
of the rate at which shear can be expected to reduce
convective losses, whatever their cause.

In the present paper we establish the existence of
convective patterns by measuring the plasma
potential distribution and showing that it changes
with shear in the expected manner. Furthermore,
we present a theory of convection in sheared fields
which correctly predicts the observed increase in
confinement with shear. In this work we are con-
cerned primarily with quiescent plasmas with finite
shear; discussion of oscillation-induced losses is
deferred to another paper.

II. APPARATUS
A. Magnetic Field

A diagram showing the vacuum and magnetic
field features of the machine is shown in Fig. 4.
The 0-4 kG B, field is uniform to 419, over the
6.6 liter plasma volume and is kept constant to
< 0.19% by a transistor regulator. The hard core
is a 1 em diam water-cooled alumimun tube capable
of carrying up to 5 kA de; however, I, is limited to
about 4 kA by evaporation of condensed neutral
potassium from the warm end of the tube, an effect
which changes the magnitude and symmetry of the
input ion flux. To counteract thermal expansion,
the hard core is kept under 400 kg of tension by the
lever and counterweight arrangement shown. Alumi-
num was chosen because its combination of weight,
tensile strength, and conductivity was optimal,;
furthermore, its surface could be anodized to form
an insulating layer, which prevents the dc potential
drop along the tube from contacting the plasma.
The sag of the hard core under gravity was negligible,
but the force from the return leads limited the
straightness of the tube to 4-0.2 mm. The hard core
is threaded through 1.27-em-diam holes in the hot
plates and is kept centered in the holes by the
supports shown.

B. Vacuum

The copper vacuum chamber is water cooled to
keep the pressure of neutral K to < 107 Torr.
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Fi6. 4. Scale drawing of experimental layout: (A) diffusion pumps with freon baffles and pneumatic valves; (B) liquid Ny
traps; (C) center section with rotating probe mounts, replaceable with standard port cross; (D) hot plate assembly and aperture
limiter; (E) hard-core support; (F') bellows and Viton O-ring seal for hard core; (G) clamp and electrical connection to hard
core; (H) water inlet and outlet; (J) lever with 10-to-1 ratio; (K) lead weights. The port locations are numbered.

Viton O-rings are used throughout. Base pressure
averages 2 X 10°° Torr.

C. Hot-Plate Assembly

The ionizer plates are 6.35-cm-diam tungsten
disks 1.3 em thick, with a central hole 1.27 cm in
diameter. They are heated by electron bombard-
ment. The operating temperature is typically
2500° K, sufficient to create an electron sheath for
the densities n < 2 X 10" em™ encountered in the
experiment. An aperture limiter sets the plasma
radius at 2.54 em. Details of the coaxial hot-plate
structure are presented elsewhere.”* Although a
temperature uniformity of £5° K is possible with
this design, no particular effort to achieve optimum
uniformity was made in this experiment, and the
temperature varied typically by £15° K. The
distance between hot plates was 326 cm.

D. Oven and Collimator

The flux of neutral K atoms impinging on the hot
plates is controlled by varying the temperature of
the ovens in which vacuum-distilled metallic
potassium is evaporated. Heated pipes carry the
K vapor into the stainless steel collimator manifold.

7.7,
2,

Fig. 5. Drawing of Type I beam collimator and hot-plate
assembly.

Two types of beam collimators were used. Early
work was done with Type I, shown in Fig. 5. The
incoming K vapor is distributed azimuthally in the
high-pressure chamber at the right and is bled into
the low-pressure chamber at the left via small holes.
Collimation of an annular beam is done by means of
two annular slits. In the low-pressure chamber, the
mean free path is long compared with the chamber
dimensions at all pressures used. This method assures
azimuthal symmetry and constancy of beam profile
at all neutral fluxes. However, the radial collimation
was difficult to control. In most of this work, Type I1
collimators, shown in Fig. 6, were used. Here, the
neutral beam is directed at the hot plate by 16 small
molybdenum tubes equally spaced in azimuth and
aimed at a circle about midway between the hard
core and the radius of the aperture limiter. Measure-
ments made with Type I collimators were similar
to the Type II data but showed a large ion input
flux near the hard core and, consequently, a pre-
dominance of inward radial losses.

The ion input fluxes from the two ends of the
machine were balanced to 59, before each run in
order to minimize unidirectional drifts along the axis.

E. Probes

Coaxially shielded Langmuir probes of two designs
were used for all local measurements. Type I has a

Fia. 6. Detailed drawing of ionizer and diagnostics: (A) hot
plate; (B) filament; (C) atomic beam collimator; (D) heated
pipe from oven; (E) aperture limiter; (F) grounded shield;
(G) hard core; (H) collimator positioner; (J) flux collector;
(K) probe; (L) radial flux detector; (M) inner aperture
limiter and radial flux detector (not normally used).
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Fic. 7. Potential distribution and particle flow in the region
outside the main plasma. Half of the machine is shown.

shield made of stainless steel hypodermic needle
tubing and coated with epoxy to an over-all diameter
of 0.38 mm. Type II has a shield consisting of a layer
of silver paint between coaxial glass capillary tubes
and has an over-all diameter of 0.25-0.30 mm.
Type II is more {ragile but can be positioned more
accurately near the hard core; Type I suffers from
the residual magnetism of the shield. Both types
have cylindrical tungsten tips 0.05 mm in diameter
and about 1 mm long; for fine structure measure-
ments the tip is shortened to 0.1 mm. Details of
probe construction are given elsewhere.®' **

The probes are moved radially by a variable-speed
motor, and a radial scan can be plotted on an x-y
recorder in about 30 sec. Scans of an entire plasma
cross section are made by tilting the direction of
travel about an axis 12.4 em away from the axis of
the machine. In normal operation the axis of probe
motion is tilted slightly so that the probe just grazes
the hard core. At the midplane {see Fig. 4) we some-
times used a probe mount on which two probes
could be moved independently in the 6 direction.
This is done by manually rotating short sections of
the vacuum chamber on sliding O-ring seals.

Since estimates of classical diffusion and recombi-
nation depend on the absolute value of plasma
density, we calibrated the ion currents from such
probes against densities measured by microwaves.
This calibration is published elsewhere.”!

The probe tips are normally covered with a layer
of potassium. Slight changes in the work function
of the surface can cause slow drifts in the apparent
floating potential. In-Sec. V we shall show how these
drifts are subtracted out. As an additional check,
we have used hot probes, consisting of a small loop
of wire heated by de, which are hot enough to keep
off the layer of potassium but not hot enough to emit
electrons. Use of these probes has verified the exist-
ence of asymmetric potential distributions.

F. Particle Collectors

The input ion flux @ is measured by dropping the
cold plates J (Fig. 6), which are split so that they
can enclose the hard core. These plates are inserted
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at ports 2 and 9 (Fig. 4) and biased to —22 V to
collect all ions emitted from the hot plates. Radial
losses occurring between the hot plate and port 2,
say, are eliminated by increasing I, until the
collected ion current saturates. With the cold plates
in place, the distribution of input ion flux is measured
by probes in ports 1 and 10. Because of radiation
from the hot plates, these probes had to have alumina
insulators, without shield.

The outward radial lux &, is measured with the
collector L shown in Fig. 6. It is placed near the
midplane of the machine and has an inside diameter
about an ion Larmor radius larger than the aperture
limiter. It is biased negatively to collect ions and is
split into four semicircular sections so that the
symmetry of the radial losses can be checked. The
theory of operation of this ‘“‘plasma eater” is illus-
trated in Fig. 7. The plasma in the exterior region
must be positive relative to the limiter and collector
because of the large mobility of electrons along B.
In the absence of resistivity, the potential drops
occur only in the sheaths. Ions entering the exterior
region, therefore, see no longitudinal electric field;
half of them recombine at the limiter and half at the
collector. At saturation, the sheath on the collector
is sufficient to repel all electrons; these flow only to
the limiter. What flows through the ammeter are
only those electrons needed to neutralize the ions
flowing to the collector. Thus, the total radial ion
flux is equal to twice the current flowing to all sections
of the collector. The effect of the collector voltage
on the plasma is removed by extrapolating the
current to zero voltage. Note that this is an inte-
grated measurement of all radial ion losses, as
contrasted with the method of Buchel’nikova,
which samples only a small fraction of the plasma
surface. The inner plasma eater M (Fig. 6) was used
only for the measurement of Sec. VID.

G. Alignment

The collimator positioner H (Fig. 6) and the
smallness of the hole in the hot plate assure that the
hard core is centered relative to the aperture limiters
to within 0.5 mm. To align the hard core with the
magnetic field, it is only necessary to align the
aperture limiters with B. At the radius of the
limiter, there is a sharp rise in plasma potential due
to the discontinuity in sheath drop and in work
function at the ends of the machine. The location of
this discontinuity is noted with two floating probes
90° apart near the midplane, first with one cold
plate J (Fig. 6) inserted and then with the other.
The entire vacuum chamber is moved until the
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discontinuities from the two ends of the machine
coincide within 0.5 mm.

1. THE PHYSICAL MODEL

The existence of an oscillation-independent loss
mechanism is shown quantitatively in Fig. 8. The
experimental points are the measured values of peak
plasma density 7, for various values of I, at constant
B, and ion input flux ®. All the points lie well below
N1, the density expeeted if only classical losses were
present. The amplitude of low-frequency oscillations
was measured at the same time. From this amplitude
one can calculate®® an upper limit to the radial
transport due to the oscillations by assuming that
the density perturbation n, and the drift velocity in
the perturbed electric field E,/B are exactly in
phase. This gives a lower limit, n.., to the peak
density one would expect if oscillations were the sole
cause of the losses. Note that n,,. rises sharply up
to I, ~ 200 A, indicating stabilization of large
oscillations. For I, < 200 A, n, is above or about
equal to n,,., indicating that oscillations could
indeed be a primary loss mechanism. However,
for I, > 200 A, n,.. lies considerably higher than
the experimental points, indicating that the oscilla-
tion amplitude is much too small to account for the
losses. Moreover, whatever is limiting the density
seems to be shear dependent. The theoretical curve
on Fig. 8 shows the density expected from plasma
convection, according to the theory to be presented
in Sec. IV. Note that at zero shear the theoretical
density is about twice the measured one, indicating
that losses from convection and from oscillations are
about equal in this case.

We, therefore, must find a loss mechanism which
is sensitive to shear and exists in the absence of
oscillations. One possibility is that end-plate re-
combination is anomalously large and is decreased
by shear because the increase in the length of the
lines of force increases the time of flight of ions to
the end plates. This hypothesis fails on two counts.
First, the magnitude of the effect is two orders of
magnitude too small. At r = 1.25 em, the radius of
the density maximum, rd8/dz for a line of foree is
0.32at I, = 4 kA, B, = 2 kG. Taking the Pythag-
orean sum ds° = dz* + r° d6” brings the effect down
to a 59, lengthening of the line of force, whereas a
factor of 5 is needed to explain the shear dependence.
Second, a recent direct measurement® of the end-
plate recombination rate in a @ machine showed
that it was within a factor of 2 of the expected value
at n = 10" e¢m™®%; this is insufficient to explain the
departure of n, from n., in Fig. 8.
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Fic. 8. Peak plasma density n, vs hard-core current I, at
B. = 2 kG. The curve n,;. is a lower limit to the peak density
expected if oscillations were the cause of plasma losses. The
point ng is the density expected from classical diffusion and
end-plate recombination. The theoretical curve shows shear
dependence of n, calculated from the theory of convection
given in this paper.

A suggestion®® that charge exchange can cause
anomalous losses also fails on two scores. First, we
used potassium rather than cesium, and the partial
pressure of neutral K is too small for this to be an
important effect. Second, charge exchange would
not be shear dependent.

However, consider the following hypothesis.*.
Suppose: one of the end plates has an m = 1 azi-
muthal asymmetry in its temperature distribution.
According to the well-known sheath conditions for
a thermionic plasma,®® there will then be an m = 1
asymmetry in the plasma potential ¢ at the sheath
edge. Because of the good electrical conduetivity,
we may assume that ¢ is constant along each line of
force. In the absence of shear, a typical equipotential
will look like the off-center circle in Fig. 9 at any
cross section in the plasma. With finite shear, the
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Fra. 9. Schematic of how an off-center equipotential at
zero shear (A) is twisted into a long spiral at large shear (B).
All other equipotentials are, of course, similarly twisted. The
corresponding radial potential profiles are shown below.



1334

bz
E»3l

Fia. 10. Intermediate stages in the development of the spiral
convective pattern of Fig. 9.

given equipotential will still have the same shape at
the sheath edge but will be progressively distorted,
as shown in Tig. 10, at cross sections farther and
farther away from the nonuniform end plate. This
is due to the differential rotation of the lines of force
at different radii.

Particles E xB drifting along the asymmetric
equipotentials will be able to change their radial
positions without crossing the lines of force and thus
appear to suffer from enhanced radial transport.
With large shear, the particles will spend part of the
time in cross sections where the length of the drift
path is greatly increased, and their radial transport
will appear to be decreased. Actually, in the spiral
patterns, the increase in E exactly cancels the effect
of the increase in drift path in the r, = 0 limit. It is
only finite Larmor radius effects that give the
improvement in confinement. The theory for this
will be presented in the next section. Experimental
verification of the model and further refinements in
the model will be presented in Secs. V and VI.

IV. THEORY
A. Fluid Approximation

We consider a semi-infinite cylindrical plasma
with a given potential distribution at z = 0 and wish
to compute the potential distributions at various
cross sections z # 0 when a shear field B, is applied
to the uniform field B,. To do this, it is sufficient to
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use the fluid equations without resistivity, viscosity,
v- Vv, or finite Larmor radius. Modifications due to
these effects will be considered later. The presence
of a second end plate at which a different potential
distribution is produced by thermal gradients will
also be taken into consideration later. The steady-
state equation of motion for ions and electrons is then

gn(v;xB — V¢) — KTVn =0, j=1de (1)

Here, we have assumed that the plasma is isothermal
and quasineutral. Taking the scalar product of
Egs. (1) with B, we see immediately that ¢ and n are
constant along a line of force in this approximation.
Defining

) = (KT)'“ o = B A
: M. cT M e
nz;?T, .. =n=xInn,
we rewrite Eq. (1) as
&B{—B = a2, Vy,;. 1"

When B, is produced by a hard core, and (&,, &, é,)
defines the cylindrical coordinate system, B is given
by

v

B _ 20\, _ g)A
B, ~ &+ <7'B,)eﬂ =&+ <r €, )

where

2L, abA/G
2L (abA/G).

o =

The r, 8, and z components of Eq. (1) then become,
respectively,

o Chenl),

The last two equations yield
‘l/i = ‘I’i(r7 6 — azr_z))

so that ¥, is constant along a line of force.

It will be apparent that the experimentally
observed potential distributions can be approximated
by

(6)

n(z = 0) = f(r) + g(r) sin ms, ™
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where f(r) is the normal, symmetric potential profile
and g¢(r) is the small asymmetric part caused by
end-plate temperature inhomogeneities. Both f and g
vary on the scale of the plasma radius. From Egs.
(6) and (7), we have

9(r, 8, 2) = f(r) + g(r) sin m(6 — azr™), (8)
so that
7(r + Ar, 0,2)

= fir + 4r) + g{r + Ar)sin m(o - ﬁ7)5>
~ f(r) + g(r) sin m(G - %—i + 27‘;‘: A,-). ©)

" Thus, when az is large, a small change in r can cause
a change of 27 in the argument of the sine, giving
rise to spatial oscillations in 5. Equations (8) and (9)
describe the spiral pattern and radial potential
profile shown schematically in Fig. 9B. Equation (9)
predicts that the amplitude of the spatial potential
oscillations, which we shall henceforth call “ripples,”
is given by ¢(r), and that the spacing between
ripples is

(10)

We next wish to compute the increase in confine-
ment time associated with the twisting of the drift
surfaces. We assume y;(z = 0) to have the form of
Eq. (7). For clarity we shall consider the case m = 1;
a similar argument will hold for arbitrary distribu-
tions n(z = 0). In the absence of shear, an ion-fluid
element can make an excursion in radius by drifting
along an off-center equipotential (see Fig. 9A).
From Eq. 4), the time required to drift from, say,
the mininaim to the maximum radius covered by a
given equipotential is

Ty | T rdr
N / o 11
J , v 1OY 0)gp )

where the integrand is to be evaluated following the
fluid element; that is, at

8 = F(y,, r), (12)

a relation found by inverting ¢.(z = 0) = t(r) +
g(r) sin . Clearly, 8 is double valued. and we must
choose the branch corresponding to v, > 0 When
I, = 0 Eq. .11)1s independent of z However, with
finite /,, we must take Eq (8) for the form of ¢, and
invert 1t to give

0 =y r o {13)

1335.

which is to be used in Eq. (11) in place of Eq. (12).
1t is convenient to transform to the helical coordinate
system suggested by Eq. (6):

=, u =0 — aer? 2 =z (14)
Equations (5), (4), and (3) become, respectively,

% =0, (15)

-GG

Now we have ¥, = f(r') + g{(+') sin u, which can be

inverted to give u = F'(y,, r'). With the use of

Eq. (16), the time At for finite I, and z is given by
T mex ’ ’

At = —-1 _rdr (18)
Comparing this with Eq. (11), we see that the two
equations are the same, for (a) the limits of integra-
tion are the same, since the transformation is radius
preserving, (b) y, is the same function of % in
Eq. (18) as ¢, is of 8 in Eq. (11), and (¢) F’ is the
same function of 7" as F is of r. Thus, the transport
rate is unchanged by shear.

This confirms our previous intuitive statement
that the effect of the increase in drift-path length is
nullified by an increase in drift velocity. However,
it is well known that ions drifting in a nonuniform
electric field have a smaller velocity than E/B. This
finite-Larmor-radius effect will become important
when the shear twists the equipotentials into spirals
with a ripple spacing comparable to a;.

B. Finite-Larmor-Radius Effects

We shall give a rough estimate of the finite-
Larmor-radius effect, followed by a sketch of the
detailed calculation, which will be given in the
Appendix. Consider a single ion drifting in a poten-
tial distribution of the form of Eq. (8). In the
absence of shear (az = 0), we have 3 = f(r) +
g(r) sin @ for m = 1. The velocity with which the
guiding center of the ion makes an exeursion é from
Tmia 60 T'may 18 given by

Eeiwe VKT [317]
B r B | 08],.

TAT rieos A
< "), O
. .Y

[] =

where [cos 8],, 15 the average over the dnft path
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Dropping this factor to get an order of magnitude
estimate, we have

. 1 KT

lvrl N,’, eB g(r) (19)
When az is large, the drift path will be twisted into
a long spiral (Fig. 9B), and the guiding center will
make the excursion or by drifting along the spiral
with a velocity v,. From Eq. (8), we have

. _ KT [@]
B eB | dr]..

_ KT 2 . ( _ %)]
=57 g(’r)[COa 8 2

However, when the ripple spacing is not large
compared to the Larmor radius, this drift velocity is
decreased by the well-known® factor (1 — %kZa?).
This finite-Larmor-radius correction factor is appli-
cable for E, ~ sin k,r and 7 < 1. Again dropping the
cosine factor, we have

Vg =

~ KT 20z — 11242
v R e g — 3k.ay). (20)
The wavelength k, is given locally by Eq. (10),
2% 20
k,. ~ AT ’I’§ (21)

The number of turns N in the spiral is, from Eq. (8),
N = az/2rr". The length of the drift path is then,
approximately, 8 =~ 27rN = az/r. The time
required to go from 7in 10 Tmax is 8t = 8l/vs, and the
radial drift velocity is, approximately, v, =~ or/bt.
If &r ~ r, we have, roughly,

o~ 5 R N g 90— M)

~2KT . (‘E‘L)]
~r eB g(r)[l 2

Comparing this with Eq. (19), we see that the effect
of shear has canceled out, as expected, except In
the factor in brackets arising from the finite-Larmor-
radius effect.

To caleulate v, rigorously from kinetic theory,
we consider the motion of a fluid of guiding centers.
This is appropriate for our purposes because the
diamagnetic drifts which occur in a real fluid, being
perpendicular to the density gradients, cannot
contribute to losses. For simplicity, we employ a
slab model, with

B = B.[¢, + v(@)él).

The equations of motion for a single ion are then

(22)

(23)
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dw/fv) _

v ”
d(w,t) —a.-V") + 5—. x(ez + ‘yév)y (24)
v = 3’7‘- 25)

To solve Eq. (24) by expansion, we require
|a;V 1| < 1, which is not generally true, since 7 X 1
in the plasma, and k.,a; Z 1 in the twisted spirals.
Fortunately, we can break 5 into two parts:

'I'](X) = 7)0(15) + n(l)(x’ Y, Z)7

where 7, represents the symmetric distribution in
the cylindrical case, and n‘* is the asymmetric part.
Now, 7, can be = 1, but it varies on the scale of
R > a:; n" can vary on the scale of a, in the ripples,
but it is found experimentally that |n"| < 1.

Thus, we devise the following ordering scheme.
Let ¢ = a./R, where R is the scale on which 7, varies.
We assume

(26)

(1) )
%I - o, g =00, i = 0@).
@)

We also make the reasonable assumption that v(x)
is small but the scale length in z is large, so that
vz can be large and the spiral patterns well developed.
Thus, we take

a, an"

W@ = 00, HI-=0@). @9

Finally, we make a multinle time-scale expansion

d

dt=wtg;+ewrad7_—l+e2wcadr—2+'--, (29)
where r = w,i, . varies on the scale of (ew,) ™", ete.
The 7 scale is that of cyclotron gyration, and the
other terms describe the drift of the guiding center.

With this ordering scheme, Eqs. (24) and (25) are
solved order by order in e. In lowest order, only the
cyclotron motion appears; this is removed by
averaging over a gyration period. The harmless
drift in the y (or ) direction appears in first order.
The radial drift first appears in second order. The
effects of shear on v, arise only in third order. Finally,
an average must be taken over a Maxwellian velocity
distribution. The details of this tedious calculation
are given in the Appendix. For n of the form 7(x) =
10 + m(x) sin kly — v(x)2], the result is

_ KT
.= —k B n.(x) cos k(y — vz)

-exp {—34lkazy' ()]}, (30)
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= B_lEﬂ(xoy yO’ z = 0)
-exp {—3[kazy'(@))},  (31)

where ¥, is the £ component of the guiding center
drift velocity, averaged over a Maxwellian distribu-
tion, for ions whose guiding centers lie on a line of
force which goes through the point (x,, 7,) at z = 0.
Thus, the effect of shear, given by v/(z) = dy/dz, is
to decrease the “radial”’ drift velocity exponentially
as z increases.

To compare with our previous result, we may put
Eq. (30) into ecylindrical coordinates with the
substitutions k — m/r, z > r, y —> r8, v — a/r,
n(z) — g(r). Specializing to m = 1 and dropping the
cosine factor, we obtain

l,;l___lK_T ) ex [__l(‘ﬁ‘ﬁ)z].
=B Y p 2\ ¢

When the exponential is expanded, this has the same
form as the rough estimate Eq. (22) and differs only
by some numerical constants arising from the proper
averaging over the drift path and over the distribu-
tion function.

(32)

C. Computation of the Loss Rate

To apply the above result to experiment, we must
have a picture of how particles are lost from the
plasma column, and we propose the following one.
Electrons can be lost easily to the end plates, but
the sheath drop there confines the ions, and they
must be lost radially. Let r = a be the radius of the
hard core (more accurately, the radius of the holes
in the end plates), and r =. b the radius of the aper-
ture limiter. When an ion E x B drifts to r < a or
r > b, it has a finite probability of striking a cold
surface and recombining before it can drift back into
the column. This probability depends on the transit
time along B to the ends of the machine. In fact, the
guiding center needs to drift only to within a Larmor
radius of e or b for the ion to be lost with a finite
probability. Hence, the loss rate is proportional to
the radial flux of ions at the loss radii @, = a + r,
and b, = b — r.(r, = v2 a,).

In the absence of shear, ions drift along equi-
potentials with the velocity E x B. If these equipo-
tentials are not concentric with the hard core, some
of them will cross the loss radii r = a, and r = b,,
and ions on these equipotentials will drift out of the
column. According to Eq. (19), the radial component
of the drift velocity depends only on the asy mmetric
part g(r) of the potential distribution. However, not
all equipotentials will cross » = a,, b,. lons on the
“confined” equipotentials cannot be lost by this
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convection process. The fraction of ions on ““uncon-
fined” equipotentials obviously depends on the radial
eXCUrSion & = fuue — Tmia Mmade by a typical
equipotential. By expanding Eq. (7), one can easily
show that & « g/f’. Thus, even if g(r) is large, there
is little convective loss if the equipotentials are made
concentric by a large radial electric field.

It is a peculiarity of the present experiment that
f'(r) is not large, because of our efforts to achieve
isothermal hot plates. Consequently, ér is not small
relative to b, — @,. Furthermore, the ion Larmor
radius is such that it is easy for an ion on a confined
equipotential to jump to an unconfined equipotential
by making one or two collisions in a time short
compared with the confinement time. Therefore we
make the basic assumption, valid in our case but not
in general, that all the ions are on unconfined equi-
potentials. When shear is applied, the equipotentials
are twisted into spirals approximately concentric
with the hard core. In the limit of large shear, an ion
samples the potential asymmetry many times in a
gyration and ends up with a nearly azimuthal drift.
Tons farthest from the end plate will have the most
symmetric drifts and will be confined the longest.

To compute the loss rate, we assume that the
region r < X is a sink for ions. The flux crossing the
plane z = X from above is then

dN £
= d B.loex dy,
e R AN

where dN /dt is the total number of ions entering the
loss region per second from a plasma of length L.
Here, n(x) is properly the density of guiding centers
but can be approximated by the measured ion
density at _the boundary. Substituting Eq. (30)
for 7, and carrying out the integrations, we obtain

dN _ kYL KT

33)

where Y is the width of the plasma in the y direction,
and
I CAREEE S <’£§g)
rX) = <2> k8, erf Vil (35)
8, = ay' (X)L 136)

Equation (34) has the expected dependences on n,
7, and KT eB. When 3, = 0 (no shear), I'(X) is
equal to 1. and dN dt ean be comparable to the rate
of Bohm diffusion when 5 is only 0.1. (Of course,
we must eventually reduce N dt by the probability
P of recombination once an ion reaches the radial
boundary.) When g, 15 large, Eq. (35) shows that
the loss rate is reduced by shear by a factor ~ 3,'.
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Fiac. 11. Theoretical curves for the relative increase in
confinement with shear for various ratios of losses to the
inner (r = r;) and outer (r = r,) boundaries. I, is the current
in the hard core.

To apply the above result to experiment, we re-
place k with m/r, v with a/r, ¥ with 2zr, and X with
a, or b,. Since we have two radial boundaries, it is
convenient to define N, and N, to be the loss rates
to the hard core and to the aperture limiter, respec-
tively. From Eq. (34) one then obtains the following
useful formula:

N(L) _ N.O)T(@) + NOT(®)
N(0) N.(0) + N,(0) '

@37

where N(0) is the loss rate at zero hard-core current
I,. Theoretical curves for Eq. (37) are shown in
Fig. 11 for various ratios N./N,. This relative
decrease of N with shear should not be sensitive to
the probability P mentioned above.
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V. EXPERIMENTAL TESTS OF THEORY
A. Single-Ended Operation

1. Convective Patterns

To test the predictions of the theory of Seec. 1V,
we first looked for the twisting of equipotential
surfaces in single-ended operation, in which one of
the cold plates was inserted to mask off one of the
hot plates. The probe floating potential was then
measured at various cross sections af different
distances z from the hot plate. The entire cross
section was probed by scanning along different
chords as the direction of motion of the probe drive
was progressively inclined. An entire scan took
about 30 min, and although the power supplies were
sufficiently well regulated to keep the plate tempera-
ture constant, the work function of the probe surface
changed in this time. During a single “‘radial”’ trace,
however, the work function did not drift appre-
ciably. To normalize the various ‘“radial”’ traces
relative to one another, a calibration trace was
taken in which the probe was swung quickly through
the plasma in a direction perpendicular to the normal
direction of motion. The various potential profiles
were then cross plotted to give equipotential con-
tours.

A typical result is shown in Fig. 12. In (A), three
equipotential lines measured at Port 1 (Fig. 4)

A INITIAL ASYMMETRY
152 /By =0

B. COMPUTED CONTOURS
1sZ / By =35.5

¢. MEASURED CONTOURS
IsZ /B, =355 Z=76cm

D. MEASURED CONTOURS
Is2/B,=355 Z=259cm

Fig. 12. Comparison between the computed and measured
twisting of equipotential contours by shear. Data taken at
low density and single ended. The dashed equipotential, for
instance, represents the same absolute value of ¢ in each
figure. Full explanation given in text.
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with I, = 0 are shown. This shows that the asym-
metry is approximately an m = 1 distortion.
According to Eq. (6), the equipotential contours
should be constant for constant az « I,z/B,. In (B),
the contours of (A) are.shown as one would expect
them to appear for I,z/B, = 35.5, according to
Eq. (6). In (C) and (D) the contours actually
measured for I,2/B, = 35.5 are shown for two cross
sections at different distances from the hot plate.
The measured contours have the same shape and
orientation as that predicted by Eq. (6), indicating
that the approximation that ¢ is constant along a
line of force is a good one. The slight differences
between (C) and (D) are probably caused by
diffusion.

When the shear is large, complete plots: of the
equipotential contours become too difficult to
construct. However, verification of the tight spiral
pattern one expects from Fig. 9B and Eq. (6) can be
made by taking the radial potential profiles at
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Fia. 13. X-y recorder traces of probe floating potential vs
radius at the midplane as the current I, in the hard core is
increased. B = 1 kG, n ~ 10'° cm™2.
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Fia. 14. Number of spiral turns, as indicated by the potential
profiles, versus I,.

different values of shear. For this purpose, we used
an especially short probe (0.1 mm length) and moved
it along a true radius rather than along a chord
grazing the hard core. Such a set of profiles is shown
in Fig. 13 for a low value of B,. One sees the develop-
ment of the spiral pattern of Fig. 9B. At zero shear,
one has mainly the azimuthally symmetric distribu-
tion f(r), which varies slowly on the scale of a; =
r./V2 but has an amplitude greater than KT =
0.22 eV. The sharp rise in potential at the limiter
is typical of @ machines and is due to the change
in work function and sheath drop at the ends.
At large shear, the asymmetric part of the potential
varies sinusoidally with 7, as predicted by Eq. (8).
Note that the ripple spacing Ar increases with r
because the shear decreases, and that the ripple
amplitude is less than K7, as assumed in the theory.
The potential can vary on a scale smaller than a;
because it is the electron Larmor radius which
determines the lower limit to Ar. However, when
Ar < a,, the ripple amplitude is seen to decrease;
this will be discussed later.

From data such as these, one can check the
predictions of Eq. (8). For instance, the total number
of periods of the sine is clearly proportional to «

‘and to I,. This is demonstrated in Fig. 14. According

to Eq. (10), the spacing Ar between ripples is
proportional to r°; this is shown in Fig. 15 for three
values of B, and two values of I,. The lines are plots
of Eq. (10) and have not been normalized to the
experimental points. Similarly good agreement is
found at other values of B, and I,. These data con-
firm the existence of the potential patterns postu-
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F1c. 15. The spacing Ar between spiral turns vs radius r. The
points have not been normalized in any way.

lated in Sec. III to explain the dependence of the
anomalous losses on shear.

2. Plasma Confinement

To test the predictions of the theory in regard to
radial losses, we performed a single-ended experiment
in which one hot plate was replaced by a segmented
cold plate biased to collect ions. The innermost
segment, surrounding the hard core, had a radius of
2.54 cm, the same as the aperture limiters. The
middle segment, concentric with the first, had an
outside radius of 5.08 em and collected most of the
ions that had drifted outside the main plasma
column. The outermost segment was used to insure
that ions did not drift so far as to be lost to the
vacuum chamber walls; indeed, only 197 of the flux
was collected on the outermost segment.

In this run, no inner plasma catcher was used, and
the flux escaping inwards to the hard core was not
measured directly. Instead, it was calculated by
subtracting the flux to the segmented collector from
the total input flux, as measured by the cold col-
lector (Fig. 5J) inserted near the hot plate. Typical
results are shown in Fig. 16. The theoretical curves
are taken from the 09, and 1009, curves of Fig. 11B,
which predict separately the change in loss rate to
the outside and to the rod, respectively. The absolute
value has been adjusted to fit the experimental
points, but it is clear that the variation with I, is in
reasonable agreement with experiment. This agree-
ment supports our choice of the loss radii a, and b,
in Sec. IVC. The small discrepancy between theory
and experiment can be explained by the existence
of higher m numbers than 1 in the potential asym-
metry, and by stabilization of oscillations. The
absolute value of radial losses can be estimated from
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Fia. 16. Comparison of measured and calculated inward
and outward radial losses as a function of shear in a single-
ended experiment.

Eq. (34) by inserting reasonable values for the
parameters. With n = 10" em™, , = 0.2, k =
m/r = 1/b,, T = 1, one obtains N &~ 6.5 X 10" sec™*
(100 mV), which is in agreement with the observed
loss to the outside at I, = 0. Note that the asym-
metry was large enough in this case that 429, of the
input flux was lost radially by convection by the
time the ions reached the other end of the machine.

B. Double-Ended Operation

1. Convective Paiterns

When both hot plates are used and they have
different asymmetries in temperature, what will be
the potential distribution in the plasma? If the
resistivity is zero, a thermoelectric current will flow
along each line of force which connects points of
different temperature on the hot plates. If the
resistivity is finite, the potentials at the sheath edges
at the two ends of the line of force will be different,
and this difference will drive a smaller thermoelectric
current through the resistive plasma. When the
resistivity is large, the potentials at each sheath
edge will be as if the other end plate were at the
same temperature, and the actual difference in
sheath edge potentials will be uniformly distributed
along the line of force. Thus, the potential distribu-
tion at any cross section should be an average of the
distributions near each plate, weighted by the frac-
tional distance of the cross section from that plate.
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EAST END OF MACHINE
SINGLE ENDED

CENTER OF MACHINE
DOUBLE ENDED
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WEST END OF MACHINE
SINGLE ENDED

Fic. 17. Potential contours in double-ended operation, illustrating that the potential
distribution is an average of those imposed by each plate. Note that although the asym-
metries shown here are large because the radial and azimuthal gradients are of the same
order of magnitude, the absolute value of the end-plate temperature gradient V7'/7 is only

about 0.39,/cm.

Figure 17 represents an attempt to check this
picture of double-ended operation in the case of
zero shear. The potential distribution was measured
at the midplane with first one and then the other
plate heated alone. The distributions were indicative
of the temperature asymmetries on each plate. When
both plates were heated, the contours resembled
neither single-ended distribution but were consistent
with an average of the two distributions. For in-
stance, the large positive island occurs where the
potential maxima from the two ends overlap. A
detailed analysis is not possible because large drift-
type oscillations arise upon changing from single-
ended to double-ended operation.

When shear is applied, the lines of force will
connect points of different temperature on the end
plates at different I,. The resuitant potential dis-
tribution at the midplane should still be an average
of the twisted patterns established by each plate
in the absence of the other. Figure 18 shows a radial
potential profile in double-ended operation at high
shear. It has the same feature as the single-ended
profiles of Fig. 13, but the ripple pattern is more
complex. Plots of Ar vs r for such double ended
profiles are similar to Fig. 15 showing that the
Ar o« r® scaling and the absolute value of Ar are
still in agreement with Eq. (10). These observations
indicate that the picture of twisting of equipotentials
under shear is still valid in double-ended operation.

2. Plasma Confinement

The relevance of this work to thermonuclear
fusion becomes apparent in this section, in which
we show the effect of shear on plasma convection
when it is the primary cause of anomalous loss.
In double-ended operation, ions are confined elec-

trostatically by the electron sheaths on the end
plates, so that axial loss is negligible for a machine
the length of ours. The ions are then lost almost
entirely radially, the way they are lost from a torus.
We are then able to test the effect of shear on this
loss without the confusing effect of toroidal curvature.

To compute the loss rate in double-ended opera-
tion, one should take n(x) to be of the form n(x) =
70(x) + m(x) sin kly — v(@)2A(L — 2)/L] + 7.(2)
sin kly — v(z)(z — L) + ©](z/L), in which we have
weighted the asymmetries originating at z = 0 and
z = L in the manner indicated in the previous
subsection. However, when this form is used, the
expression for dN /di, Eq. (34), cannot be expressed
in elosed form. Fortunately, a rather good approxi-
mation is suggested by the physical picture. Because

1 0.1 V/inch \

HARD CORE

60— 520 25
r{mm)—

Fia. 18. X-y recorder trace of potential profile in double-
ended operation.
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F1a. 19. The increase of peak density with shear for B, =
2.0 and 3.65 kG. The points and curves have been normalized
at I, = 1 and 2 kA, respectively. The curves are the theo-
retical predictions for various ratios of inward to outward
losses at I, = 0; the measured ratios are indicated. The solid
points indicate that the plasma is quiescent; the open points
indicate that the confinement could be affected by oscillations.

the loss rate decreases with 2 as 1/z at large 8.
[Eq. (35)], most of the losses at high shear occur
near each end plate. At the midplane, the spiral
patterns from both end plates are so well developed
that little radial loss occurs. Thus, we may integrate
the losses in z from each end plate to the midplane
using only the potential asymmetry originating at
that end plate. Near each end, the asymmetry origi-
nating at the far end will be well symmetrized by
shear and damped by the resistive drop along the
line of force and will appear only as a small ripple
superimposed on the asymmetry from the near end.
We shall, therefore, neglect the contribution to g,
from the far end in computing the losses in each half
of the machine.

In Fig. 8 we showed that in the range /, > 200 A
both the residual oscillations and the classical proe-
esses (resistive diffusion and end-plate recombina-
tion) contributed negligibly to the total losses. We
now wish to test the hypothesis that the convective
mechanism worked out in this paper is the dominant

AND F. F. CHEN

process. If this is the case, the equilibrium density
n is proportional to (dN/df)™" as given by Eq. (34),
for constant input flux ®. We have assumed that
the density gradient does not change appreciably
with shear; this has been confirmed experimentally.
The error in this assumption is negligible when the
asymmetry has been approximated by a pure m = 1
distribution.

In Fig. 19 we have plotted the peak density as a
function of hard-core current I, for two values of
B,. Points for runs at various densities have been
assembled by normalizing the density to that at one
value of I,. The theoretical curves are taken from
Fig. 11 and adapted to double-ended geometry by
the method indicated above. It is seen that, as far
as the relative increase of n with I, is concerned, the
theory fits the experiment very well if 509, of the
losses are to the rod and 509, are to the outside.
This ratio was checked with the radial particle
collector described in See. IIF. The flux &,,, meas-
ured by the radial collector was, indeed, about 509,
of the total input flux ®, as indicated on Fig. 19.
This is not always the case, however. When one uses
the Type I collimators (Sec. IID), the neutral beam
is focused close to the hard core; and one finds that
the shear dependence of n is consistent with ®,,./®
< 10%. In obtaining Fig. 19, the losses to the hard
core were not measured directly; these losses were
checked in an auxiliary experiment. Note that the
experimental points on Fig. 19 deviated from the
theory only when oscillations were present in the
plasma.

To compare the absolute value of the loss rate
(or equilibrium density) with the eonvection theory,
we must now specify the magnitude of 5, and the
probability P that an ion will recombine on a cold
surface once it reaches the loss radius a; or b,.
In Fig. 20, the experimental n-® curve is compared
with theory. The experimental points are obtained
by extrapolating the high-shear points of Fig. 19
to zero shear, in order to remove the effect of the
oscillations which exist at zero shear. The theoretical
curves for convective losses are obtained from Eq.
(34) by setting dN /dt equal to ®, and T equal to 1,
inserting the measured value of 5,, solving for n(X),
converting this to 7n,.. by using the measured
densitv profile and multiplying by P. The loss
radu a, and b, are used for X; their choice is not
adjustable because it has been verified in the single-
ended experiment. For loss to the hard core, the
probability P must be close to 1 because once a
guiding center has drifted to r = a, = a + r,,
the ion will hit the hard core in one gyration. For
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Fic. 20. Peak plasma density n, vs input flux & at zero
shear in double-ended operation with hard core in place.
The effect of oscillations ﬁeas been removed by extrapolating
the curves of Fig. 19 to I, = 0. The error bar shown is typical
of all the points. The theoretical curve for classical losses
(mainly end-plate recombination) is shown near the top. The
theoretical curves for convective losses are shown, and the
large spread in these predictions comes from uncertainties in
applying the theory to the experiment when absolute values
are involved. Compared with Fig. 1, the densities are about
a factor of 2-3 lower; but a direct comparison is difficult
because of differences in (a) oscillation amplitude, (b) geom-
etry (hard core vs no hard core), (c) neutral beam collimation,
and (d) end-plate temperature asymmetry.

loss to the limiters, P is difficult to determine, be-
cause there are usually large Kelvin-Helmholtz-type
oscillations localized at » = b which can transport
ions farther out with an unknown efficiency. Since
P certainly lies between 0 and 1, we have taken
P = 0.5. Because of the uncertainties in P, in 7,
and in n,/n(X), we can only put a large band on
Fig. 20 for the predicted densities. It is seen that
the experimental points lie well within this band,
indicating that it is possible for the convective loss
mechanism to explain the entire anomalous loss
in the absence of oscillations. Note that n varies
linearly with &, as one would expect from a non-
collisional process, and that the loss rate is Bohm-
like, scaling roughly as 1/B.

V1. ANCILLARY OBSERVATIONS
A. Production of Asymmetries

Up to now we have assumed that asymmetric
potential distributions can arise from temperature
nonuniformities in the end plates. We now show that
this assumption is justified. Figure 21 shows a
comparison of the temperature contours on the hot
plate with the potential contours in the plasma. The
former were taken with an optical pyrometer, and
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ISOTHERMS ON HOT PLATE

ISOPOTENTIALS N PLASMA

Fiac. 21. Comparison of contours of temperature on the
hot plate with contours of potential in the plasma. Changes
in temperature are in degrees Kelvin, and changes in potential
are in units of KXT. In the two sets of contours the orientation
of the asymmetry has been purposely changed, with all else
kept constant. B = 4 kG, T, = 2500°K.

the latter with a floating probe only 15 e¢m from
the hot plate to minimize diffusion and convection
effects. These data were taken in single-ended opera-
tion with ions streaming unidirectionally towards a
negatively biased cold plate. Hence, the ion density
is given by

_ (Jdo _ _ e Jo
ng = (2,.)) exp (—n)[1 — erf (—n) ]N%,

where 7 = e¢/KT, o; = (KT;/2xm;)"?, and j, is
the emitted ion flux. Since electrons are reflected
at the cold plate, the sheath drop ¢ at the hot plate
must be such as to provide the current balance

S _ e¢w> ( ed )
nyoy, = ATc exP< KYVC exp KTc ?

in which 7. is the local plate temperature and the
Richardson current has been written out explicitly.
Setting n, = n, and differentiating, we find

Vyn=Vinuj— 2+ — VT, (40)

where nw = e¢y/KT is the normalized work function
of tungsten, and we have assumed T'; = T, = T'in
the plasma. If 3 In j,/30 = 0, n =~ —35, and 7w =~ 20,
as they are in practice, the asymmetry is given by

am dlnT.
Y 2 27 LY

(38)

(39)

(41

This is nearly twice as large as the expression given
in Ref. 25 for double-ended operation. Thus, a
change of 10° in T, would cause a change of about
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0.1 in » (r being kept constant), and regions of high
T. would correspond to regions of low 5. Both the
magnitude and the direction of the asymmetry
are borne out by Fig. 21. Furthermore, when the
temperature asymmetry is rotated by 90° simply
by changing from space-charge-limited to emission-
limited operation of the hot plate bombardment
system, with all else kept constant, it is seen that
the potential asymmetry also rotates by 90°.

B. Density Contours

So far, we have been concerned with the effect of
shear only on the potential distribution. According
to Eq. (1), both n and ¢ are ideally constant along
a line of force; and therefore, n(r, 6) should also
exhibit a spiral structure at high shear. Figure 22
shows that this is indeed true. However, it is sur-
prising to see that the ripples on the density profile
are 180° out of phase with the potential ripples,
for one normally expects high potential to be as-
sociated with high density because of the sheath
relations. This phasing is independent of collisions,
for it is the same at n ~ 10® as at n =~ 10" ¢m™.
To understand this phase reversal, one must take
into account the convective loss of ions as they
stream toward the probe on the way from the hot
plate to the cold plate. The probe is sufficiently far
from the hot plate that most ions have made at
least one revolution around the hard core by the
time they reach the probe; the ions with small v, will
have made many revolutions. If the equipotential
on which an ion is drifting crosses a loss surface, the
density of ions on this equipotential will be dimin-
ished. Since this is a single-ended measurement, ions
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crossing the outer loss radius b, will not be lost, for
they will drift back in (if the equipotentials are
closed) and strike the probe before striking the
end plate. However, ions crossing the inner loss
radius a, will strike thé hard core before reaching
the probe. Looking at Fig. 22, one sees that the
symmetric part of the potential—averaged over the
ripples—is peaked near the hard core. When the
potential distribution is shifted by the temperature
nonuniformity of the end plate, the drift surfaces
with high potential will be shifted even nearer to
the hard core and, hence, will suffer from convective
losses more than other drift surfaces. This is the
reason that, as far as the asymmetric part is con-
cerned, the density is low where the potential is
high, and vice versa. Once the value of az is large
enough for the convective losses to be greatly dimin-
ished, this relation between n and ¢ is frozen; and
for larger z one simply has » and ¢ constant along
a line of force. Since only losses to the hard core in
a length Az of ~160 em are involved, this is a
relatively small effect. Indeed, Fig. 22 shows that
the density ripple amplitude is only ~59%, whereas
the potential ripple amplitude is ~259, of KT.

Note that an alternative explanation turns out to
have the wrong sign. Although n and ¢ are in phase
as far as the symmetrie part of the distribution, due
to jy(r), is concerned, they might be expected to be
out of phase as far as the asymmetric part, due to
VT., is concerned, because high ¢ is associated with
low T.. However, the ionization probability of a
neutral atom on the hot plate does not decrease as 7T,
15 lowered; it increases because the Suha equation
is of the form v n, = exp [e(¢w — ¢,)/KT], where
é, 15 the wnization potential and is less than ¢u.

Iigure 23 illustrates turther the change in density
distribution due to eonveetive losses. Atz = 15 em,
1 asvimmetry due to VT,
but the won density s deternuned mainly by jo(r)
and i quite svnimetre Atz = 76 em, the potential
contours retain thew general shape. but the density
contours  have been greatly distorted. Looking
closelv at the curves one will see that the density on
equipotentials passing close to the hard core has
been greatly deereased, while the density on equi-
potentials far from the hard core has deereased only
shightly

the potentwl "o anow =

C. Damping of Potential Ripples

It potential were truly eonstant along a line of
e amphtude of the ripples in the radial
notenten profile would be constant. as shown by
g oS Lagnre 13 shows however, that the ampli-

torece
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Z=l5cm

POTENTIAL DENSITY

Fia. 23. Development of potential and density profiles in
single-ended operation as the plasma streams along the axis
in the absence”of shear. The potentisl contours are labeled
in units of ep/kT, and the density contours in units propor-
tional to the ion saturation current.

tude actually decreases with the ripple spacing Ar.
A plot of the ripple amplitude A¢ vs (Ar)~! is given
in Fig. 24. A¢ is found to follow the relation

o).

where A is a constant. We believe that the fine-
scaled ripples are damped by collisions. Ion-electron
collisions would affect only scale lengths of the order
of the electron Larmor radius, but ion-ion collisions
could provide a cross-field mobility which short
circuits potential variations on the scale of ;. To
estimate this effect, we consider that the ions undergo
a random walk with a step length & a.. The number
of steps, or collisions, experienced by an ion in
traveling a distance z from the hot plate is approxi-
mately z/X,:. The random-walk excursion (AL) 1y 18
then given by (AZ)me ~ ai(z/7)"". When this
becomes comparable to Ar, the potential variations
will be shorted out, so one would expect a law of
the form

(42)

_ M) 43)

A o exp ( Ar

To test this formula, which agrees with Eq. (42),
we studied the density dependence of the coefficient
A = a.(z/\)"? = n'% In Fig. 25 we plot A¢ vs
(Ar)™* for various densities at constant magnetic
field. In Fig. 26, the slopes of these curves are used
to give a plot of A vs n. We see that the n'’? de-
pendence of 4 is obeyed. However, the B dependence
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Fie. 24. Peak-to-peak amplitude of potential ripples vs
reciprocal of ripple spacing Ar. The various points at a given
magnetic field are obtained by varying the shear or the radius.

predicted by Eq. (43) is not found in Fig. 24. We
have not been able to explain this, and it remains a
loose thread in our analysis. '
The comparison between theory and experiment
made in See. V was made neglecting this change
in A¢ with Ar. We now show that this omission is
justified. The important point here is that the
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Fia. 25. Ripple amplitude vs (Ar)~? for various densities.
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Fic. 26. The slope A of the curves of Figs. 24 and 25 as a
function of density n.

convective losses oceur mainly in the region near the
ends of the machine, where the convective patterns
have not been tightly twisted into spirals. In the
region near the midplane, the drift paths have been
symmetrized by shear, and very little loss occurs
there. The transition oceurs at a position 2z where
Ar =~ a;. Since A¢ is significantly decreased only
for Ar < a,, the change in A¢ affects only the region
near the midplane, where the radial losses are small
anyway.

To do this quantitatively, we note that in the
evaluation of the loss rate N [Eq. (33)], the effect of
a varying A¢ would make 7, vary with zin a different
manner. In the expression Eq. (30) for 7,, we see
that the effect of ripple damping can be included
merely by allowing #,(z) to also be a function of z.
According to Eq. (43), we take

n «< exp (—af),
where ¢ = wa./2'"* Ar. The exponential in Eq. (30)

or Eq. (32) can also be expressed in terms of { with
the use of Eq. (10):

=[]

Redoing the z integration in Eq. (33), we find that
the ratio of loss rate including collisional effects is
decreased by the factor

¥ fmax {mas
—\7]\7~f0 exp(—{* — (a) d(/fO exp (—¢°) d¢

exp (—¢°).

_exp (@®/N[erf (Cue + 30) = erf (30)]
- erf g‘l“ﬂx !

where {u.x is the value of [ at the midplane. For high
shear ({m. > 1), we have

TR )
A.Nexp 4 1 erf 5/ |

(44)
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F16. 27. The effect of ion-ion collisions on the computed
convective loss rate as a function of density.

This relation is shown in Fig. 27, with the n depend-
ence of the coefficient a taken from the data of
Fig. 25. It is seen that for the densities of < 10" ¢m™
used in this experiment, the correction due to
variation of A¢ is less than 2097,.

D. Measurement of Inward Losses

In most of this work the flux to the hard core was
inferred from the input flux and the measured flux
to the outside. In a separate run, we inserted internal
limiters and plasma eaters (see Fig. 6M) to try to
measure the inward loss directly. There were two
inner limiters 1.9 cm in diameter, each placed about
10 em from a hot plate. Each limiter consisted of two
metal rings. The ring facing the hot plate was floating
and served to shield the other ring from the hot plate.
The rings facing the midplane, 3 m apart, were then
biased like a double probe. Since the limiter radius
was only 0.48 em larger than the hard-core radius,
the serape-off layver was only about 2 Larmor radii
thick; consequently, some of the inward flux was lost
to the hard core without being measured on the
collectors. The outer flux collector was described
in Sec. I1F. According to the theory presented there,
the currents to both collectors was doubled to give
the fluxes &, and ®; to the outside and the inside,
respectively. Both sets of collectors gave current-
voltage characteristics with rather good saturation.
The currents were found by extrapolating to zero
voltage, and the error in this extrapolation was less
than 59%,.

Figure 28 shows the total radial flux &, + &; and
the ratio ®,/®, as a function of 7,. At low shear, the
total radial flux was somewhat less than the input
flux because some ions were lost to the hard core,
and some escaped beyond the outer radius of the
outer collector. The discrepancy was not due to
recombination, which was negligible. At higher
shear, all of the input flux shows up on the radial
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Fi1a. 28. Measured radial ion fluxes to the outside (&®,) and
to the inside (&®;) vs shear in double-ended operation. The
points show the sum ®, + ®, as compared with the measured
total input flux ®;y. The lines show the ratio ®,/®;. The
plasma was quiescent except for the open points, when
oscillations of 159, amplitude were present.

collectors. The fact that &, + &; exceeds ®,5 at
I, = 2 kA is probably due to an increase in &,y
arising from the evaporation of neutral potassium
from the hard core when it warms up. The ratio
$,/®, at zero shear is approximately 1. This confirms
the assumption made in Sec. V, where it was shown
that theory and experiment agreed if the inside and
outside losses were about equal.

VII. CONCLUSIONS

Our results may be summarized as follows:

(1) At low densities in a double-ended @ machine
there is an anomalous loss process of magnitude
> Bohm diffusion, and the loss persists when osecil-
lations are absent.

(2) Small temperature irregularities on the end
plates are shown experimentally to give rise to
asymmetric electric fields in the plasma. The result-
ing convective drifts are large enough to explain the
losses.

(3) Magnetic shear is shown experimentally to
reduce the anomalous losses dramatically. The
improvement in confinement is much larger than
can be explained by suppression of oscillations, by a
decrease in recombination, by an increase in total
magnetic field strength, or by the creation of a
magnetic well.

(4) A mechanism is described by which shear can
reduce plasma convection. A detailed theory is given
to prediet the increase of confinement with shear.
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(5) The predictions of the theory are verified
experimentally in both single-ended and double-
ended geometry. The amount of twisting of equi-
potentials is verified to better than 109,. The
increase in confinement with shear agrees with
theory to within ~309,. The effect of collisions is
shown to alter these results by less than 209,

We wish to point out that the possibility of adding
shear was essential to proving that convection is the
cause of nonoscillatory losses in @ machines. Al-
though one can easily estimate that E x B drifts can
bring ions to the vicinity of the radial boundary
with sufficient rapidity, it is difficult to know if the
ions will actually be lost there. A complicated
situation exists at the limiter radius: equipotentials
tend to be parallel to 6 there, a large radial potential
barrier exists to prevent ions from going out, and
there is the question of finite transit time along B
to the limiter. The observed dependence of the
losses with shear, however, leaves little doubt that
convection is the loss mechanism. For instance, this
dependence rules out the possibility that the losses
are due to enhanced end-plate recombination or to
simple scrape off of ions with large Larmor radii.

Our picture of the loss mechanism would predict
that losses would decrease if the equipotential con-
tours were made more symmetric. This has been
verified recently by Guilino,® who symmetrized
the end-plate temperature distribution by rotating
the heating filaments, and by Jassby and Motley,*
who circularized the drift surfaces by deliberately
introducing a large radial gradient.

There still remains a question of what would
happen in the limit of very small Larmor radii or
very low collision frequency. In our experiment we
had to work in the regime in which an ion could
easily jump from a “confined” equipotential to an
“unconfined” equipotential by making one or two
collisions. At higher magnetic fields and tempera-
tures, the loss rate should eventually be limited not
by the convection velocity but by the diffusion from
confined to unconfined drift surfaces. The mecha-
nism would then be similar to that described by
Galeev et al.*’ for enhanced collisional diffusion.

Finally, we wish to emphasize that de convection
is not the sole cause of anomalous losses in a Q
machine. As shown clearly in Fig. 8, oscillations also
cause anomalous losses; but these are outside the
scope of this paper.
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APPENDIX

With the expansion (29), the components of
Eq. (24) become

du | du, adu | _
d‘r+ed-rl+ed1'2+ U
= —a;mf — ain”’ — yu,,
€ € €
do, | dv, | . dy, _ o
d‘r+e‘rl+e 1.2+ + v, = a; oy (A1)
e2
dv, | v adv g
d'r+edr,+edrg+ T = @i~
3

€

where ' = 3/dz and v = v/v,. The ordering given
by Eqs. (27) and (28) has been shown. To lowest
order, we have

dv.” 9 dul(IO) — (0)
ar T U dr T TV ‘
(0)’ 0) (A2)
d—;‘T =9 d(l;'r = au®
This deseribes the cyclotron motion:
v = v, cos (r + &),
vy? = —y,sin (v + @), (A3)
v,” = v,,
' = zy + aw, sin (r + @),
¥ = yo + aw, cos (r + &), (A4)

)
4 =2 + VzoT,

where v,, ®, v,0, %o, Yo, and 2, are constant on the
7 time scale but may vary on the slower r,, ,, - --

time seales.
In first order, Eqs. (A1) become
) dn )

d? | dy”
o T T = ey i,

D. MOSHER AND F. F. CHEN

dv(l) du(O)
= = + v,("

df d‘rl = 0, (A5)
d :l) d :0)
pRTE R
a dx(l) dx(o)
= e T

in which v and 9»/dz are to be evaluated at x = x*,
To obtain the guiding center motion, we average
over a cyclotron period to remove the gyratory
motion. If

©=0en" [ ¢ar.

we have
<i£
dr

Expanding y(z‘’) about z'® =
the lowest term, we then find

0\ ¥ )
=0, a(®) = I d"—> =0. (46)

dr,’ \dr,

z, and keeping only

dvro

€ dT]
W) = v(@ov + aln’(x)).

Thus, there is no radial drift to this order, and the

azimuthal drift is simply the sum of the E,/B drift

(averaged over a Larmor orbit) and the rotation

due to motion along a helical line of force.
In second order, the last two of Egs. (A1) give

<U;l)> =0, =0,

(A7)

dv® dvi? 2 dvl” @ [61)]

dr T dr, T dr, Tl = - Y dzaxtor,
dv® dvlV 2 dv®

dr T dr, dr,

(A8)
= 1@ + awiy'(xo) sin (r + .

The term edv;"/dr,, when averaged over 7, can be

shown to be actually of O(¢*). Since (v} is a func-

tion of the zcro-order guiding center position x,,

this term can be written

dzy 9

i Y _ )
dyo 8, ) dz 3, )
+ € dTl ayo (Uy ) + edr, aZo (Uy >.

With the help of the middle of Egs. (A6), this
becomes

a - [ wy 9 wy _9_
Ed"l (vv ) a; (U: >axo + (v, >ayo

+ () 5(:—0](%”) = 0(").
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The first term in [ ] vanishes because (v"’) = 0,

and the other terms are of O(¢’) because the gra-

dients in the y and z directions are small; it is only
a; 9/0z which can be of O(1). With this simplifica-
tion, the short-time average of Eqs. (A8) gives

<U(2)> _ _a_<6n(1>(x(o>)>
z i 3y s
(A9)
d oy _ 2. d
€ . W,y = —e dre Vo = 0.

The last equality is a consequence of the condition
that (v") must not be allowed to blow up on the
7, time scale; one integrates the last line with respeet
to r, using Eq. (A7) to show that v., is constant on
the 7, seale. Thus, the loss term v, first appears in
second order, but we must go to higher order to
find (v{").
In third order, we have

d )

+ & —v
dry °

(3) + € (2) + € l),(,”
d T2

_ o1
- & I:azl-,(.)

+ Y@ + aw, sin (v + By (zo)v;”
4+ Law, sin (r + By (@™ .
Taking the short-time average, we find

d

sz

2 d ,w
¢ dT2<U‘ >+

- - ,<"’"("(°))> F @) 6®).

The extremely slow variation of (v.) is due to the
fact that the driving term a; d4/9z was taken to be
of O(&%).

To evaluate "’ (x) it is convenient to transform
to a coordinate system complying with the lines
of force:

(A10)

’

xl=x7 =y—'7(x)zy 2 =2,

d9n _ 97 L

= = @) S

or ax oy (A11)
ﬂ_ dn Qﬂ_i’l_ ’ @_
"oy’ oo "3

where v'(2') = dvy/dz’. The potential n now varies
slowly in z’; the rapid z variation across the ripples
of the spiral pattern is contained in the large
coefficient, vz’

We next expand 7 in a Taylor series about x,
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2(x®) = nofat) + ; (—1y %
-sin’ (7 + <1>) =7V (x) 4 O(e), (Al12)
where we have used Eqs. (A4) and (A11), and
B = an'(x))zf = an'(xo)z, = O(1). (A13)

Upon substituting Eq. (A12) into Eqgs. (A7), (A9),
and (A10) and taking the average over r, the odd
terms in the sum disappear, and the result can be
written

L N O /oy d’?o o, Ox
G = a0 @) + a G~ B
J
< i2>> = —a 6—;<7 )
’ (A14)
2i ) s d o o 6_
€ dT2 V. >+ d Vg - a; azl )
where
@ 22 g2
=z @ G ey 1) = 0@, (A1)

We have dropped the subseript zero; it is understood
that the variables refer to the ion guiding center.
Note that v,, v,, and v, are taken along (z, y, 2),
and not (2, ¥/, 2’). Note also that we have neglected
3/0x’ relative to +'2'd/9y’. The approximation
breaks down at small v’2’, but the 3/dz’ term gives
only a small and harmless azimuthal drift in any
case.

When 8 = 0 (no shear), x reduces to » ~, and
Eq. (A14) merely gives the E x B drifts in the zero-
Larmor-radius limit. When g8 is small but finite,
Eq. (A15) gives

2 2 (1)
0
x ~ 1Y + (g) vi aZ/z'

1)

2 (1
~ (1)+122377
~ 2,V ax ’

(A186)

which is the usual finite-Larmor-radius correction.
Note, however, that the finite-Larmor-radius correc-
tions in 349" /8y and dn,/dx are higher-order in € and
have been neglected. The only short scale lengths in
our geometry come from the tight spirals caused by
shear.

Finally, we must integrate over a velocity distri-
bution in order to get an expression for the motion
of the fluid of guiding centers. Equation (Al4)
gives the motion of a guiding center at a point in
space. We average over all particles with guiding
centers at the same point but with different values
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of a;. Note that this does not give a fluid velocity
but an average guiding center velocity. It will be
sufficient to choose a Maxwellian distribution
fu(v), with possibly a shift 5! along the z axis.
Defining

|

o= [ fullwh) dv,
NN

i=0 il oy
and averaging Eq. (A14) over velocities, we obtain

(A17)

=1 _ 7\=(0) 'Qﬂg _ . 9%
Uy 'Y(x )vz + a; dz’ B ayl ,
N ) 4
ve %oy (A18)
ox dv.” dng 88, | -0 08 %
a; ayl dz’ + a; dz’ é)y' + v, 07 o

In the last equation, we have replaced the time
derivatives with the appropriate convective deriva-
tives.

So far, the potential distribution n,(z) + 7V (x)
has been arbitrary. To make further progress, we
must now take a specific form for ‘*':

7Y = p(x') sin ky'. (A19)
Using this in Eq. (A18), we finally obtain
» N d ,
5, = v@)” + a Zigg — kB, (x)
-cos ky’ exp (—3k’6°), (A20)
0 = —kam(x’) cos ky’ exp (—1k*6%).

The last line is the same as Eq. (30).

One might have thought that this result could have
been obtained from the theory of waves in a hot
plasma*’ by setting @ = 0. However, it is not easy
to adapt the theory for our purposes because
k., k,, and k, are interconnected in a particular way
by the shear. We have preferred to derive the result
from scratch with an ordering appropriate to the
experiment. An advantage of this is that the 2
dependence is explicitly obtained.

* Based on doctoral dissertation. Present address: Los
Alamos Scientific Laboratory, Los Alamos, New Mexico.

! N. Rynn, Rev. Sci. Instr. 35, 40 (1964).

2 F. F. Chen, J. Nucl. Energy, Pt. C 7, 399 (1965).

3 H. W. Hendel, B. Coppi, ¥. Perkins, and P. A. Politzer,
Phys. Rev. Letters 18, 438 (1967).

¢+ F. F. Chen, D. Mosher, and K. C. Rogers, in Plasma
Physics and Controlled Nuclear Fusion Rescarch (International
Atomic Energy Agency, Vienna, 1969), Vol. I, p. 625.

¢ F. F. Chen, Phys. Fluids 9, 965 (1966). A large number
of other authors have also treated the question of shear
stabilization.

D. MOSHER AND F. F. CHEN

¢ N. D’Angelo and N. Rynn, Phys. Fluids 4, 1303 (1961);
N. Rynn, ibud. 7, 1084 (1964).

7 S. von Goeler, Phys. Fluids 7, 463 (1964).

8 T. K. Chu, H. vf; Hendel, R. W. Motley, F. Perkins,
P. A. Politzer, T. H. Stix, and S. von Goeler, in Plasma
Physics and Controlled Nuclear Fusion Research (International
Atomic Energy Agency, Vienna, 1969), Vol. I, p. 611.

® M. Hashmi, A. J. van der Houven van Qordt, and J.-G.
Wegrowe, in Plasma Physics and Conirolled Nuclear Fusion
Research (International Atomic Energy Agency, Vienna,
1969), Vol. I, p. 675.

10 N, D’Angelo, Phys. Fluids 7, 1086 (1964).

11 R, W. Motley, Phys. Fluids 8, 205 (1965).

12 1, Spitzer, Jr., Phys. Fluids 3, 659 (1960).

133, von Goeler and R. W. Motley, in Proceedir%]s of
Conference on Physics of Quiescent Plasmas (Euratom-CNEN,
Frascati, Italy, 1967), Pt. I, p. 243; also Phys. Fluids 10,
1360 (1967).

( 1 N) D’Angelo and S. von Goeler, Nucl. Fusion 5, 279
1965).

15 M. Hashmi, A. J. van der Houven van Oordt, and
J.-G. Wegrowe, Plasma Phys. 10, 861 (1968).

18 N. 8. Buchel’nikova, Nuel. Fusion 6, 122 (1966).

17 N, 8. Wolf and K. C. Rogers, Phys. Fluids 9, 2294 (1966).

18 J, A. Decker, P. J. Freyheit, W. D. McBee, and L. T.
Shepherd, Phys. Fluids 10, 2442 (1967).

19 B. J. Eastlund and C. K. Chu, Phys. Fluids 9, 161 (1966).

20 B, J. Eastlund, Phys. Fluids 9, 594 (1966).

2 K. Josephy, B. J. Eastlund, and T. C. Marshall, Phys.
Fluids 10, 1112 (1967).

2 H. W. Hendel, T. K. Chu, and P. A. Politzer, Phys.
Fluids 11, 2426 (1968).

% F, F. Chen and D. Mosher, Phys. Rev. Letters 18,
639 (1967).

2 Note that only the transport of ions is under scrutiny
in @ machines operating under so-called electron-sheatﬁ
conditions. The end plates supply electrons as needed for
charge neutrality, and the transport does not have to be
ambipolar.

% F. F. Chen, Phys. Fluids 9, 2534 (1966). The danger of
temperature gradients in the end plates has also been pointed
out independently by L. T. Shepherd, G. Grieger, and C. W.
Hartman.

% C., W. Hartman and R. H. Munger, in Proccedingslejf
Conference on Physics of Quiescent Plasmas (Euratom-CNEN,
Frasecati, Italy, 1967), Pt. I, p. 49.

77 D, Bohm, E. H.S. Burbop, H. S. W. Massey, and R. M.
Williams, in Characteristics of Elecirical Discharges in Magnetic
Fields, A. Guthrie and R. K. Wakerling, 1ids. (McGraw-Hill
Book Company, New York, 1949), Chap. 9.

28 R. A. Dory, D. W. Kerst, D. M. Meade, W. E. Wilson,
and C. W. Erickson, Phys. Fluids 9, 997 (1966).

® W, L. Harries, Phys. Fluids 13, 140 (1970).

30 B, F. Chen, Rev. Sci. Instr. 40, 1049 (1969).

3t F, F. Chen, C. Etievant, and D). Mosher, Phys. Fluids 11,
811 (1968).

22 F. F. Chen, in Proceedings of Conference on Physics of
Quiescent Plasmas (Furatom-CNEN, Frascati, Italy, 1967),
Pt. 11, p. 563.

3 F. F. Chen, Physics Today, October 20, 115 (1967).

1 R. W. Motley and D. L. Jassby, Phys. Rev. Letters 22,
333 (1969).

% H. Dreicer and D. B. Henderson, Phys. Rev. Letters 20,
374 (1968).

36 We are indebted to J. D. Jukes for the germ of this idea.

3 (3. Schmidt, Physics of High Tempcrature Plasmas
(Academic Press Inc., New York, 1966), p. 292.

3¢ E. Guilino, P. Miiller, K. Sahner, and K. Trambauer,
in Proceedings of the International Conference on Physics of
Quiescent Plasmas (Ecole Polytechnique, Paris, 1969), Vol. 2,
p. 108; E. Guilino and N. Troppmann, ibid., p. 117; Phys.
Fluids (to be published).

# D. L. Jassby and R. W. Motley, Phys. Fluids 12, 258
(1969).

«# A, A. Galeev, R. Z. Sagdeev, H. P. Furth, and M. N.
Rosenbluth, Phys. Rev. Letters 22, 511 (1969).

@ T. H. Stix, The Theory of Plasma Waves (McGraw-Hill
Book Company, New York, 1962), Chap. 8.



