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NONLINEAR OPTICS OF PLASMAS Cl
Francis F. Chen, Professor of Electrical Sciences

University of California, Los Angeles

1. lIntroduction

The current interest in high-powered lasers and laser-fusion
creates an opportunity to make significant advances in understanding
the mechanisms of nonlinear optics. Some nonlinear effects studied

in solids and liquids are:

Raman and stimulated Raman scattering (SRS)
Brillouin and stimulated Brillouin scattering (SBS)
Harmonic generation

Optical mixing

Self-focussing

parametric amplification

Electrostriction

[N - R Y Y - L

Induced transparency and opacity
A similar list of nonlinear effects has been predicted for plasmas:

Parametric instabilities at w = wp’ 2w
Filamentation (seif-focussing)
Stimulated Raman scattering

Stimulated Brillouin scattering
Optical mixing and cascading

Double resonance effect

Spontaneous magnetic fields
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Kinetic nonlinear effects

The first five of these may be considered generalizations of the well-
known parametric decay instability to situations involving more than one

electromagnetic wave, and will be discussed in this light.
Plasmas have several advantages over solid and liquid nonlinear media:

1. Large intensities can be applied to a plasma without danger of
destruction of the medium.

2. Different forms and magnitudes of nonlinear susceptibilities
can be studied in plasmas than can be found in solids and liquids.

3. New nonlinear saturation mechanisms--e.g. wave breaking and

particle trapping--can occur.
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4. Effects in plasmas obey purely classtical laws, and hence can be
predicted by computer simulation.

5. Collisionless wave-particle effects enrich this field of study.
Intense electromagnetic waves can be jenerated by three types of

pulsed lasers, with the following characteristics:

. -3
Type Wavelength (Lm) Frequency (rad/sec) Cut-off density (cm °)
21
Nd-glass 1.06 1.8 x 10'? 10
co, 10.6 1.8 x 1014 1019
. 12 16
HCN 337 5.6 x 10 10

The glass and carbon dioxide lasers can produce powers in excess of 109 watts.
Although the power achievable with cyanide lasers is presently below 103 watts,
these can lead to interesting experiments because the cutoff condition

(w= wp) is achieved with a relatively low plasma density. As is well

known, the field intensity at a laser focal spot can be awesome. At an

15 N/cmz, the oscillating electric and mag-

intensity I = ¢ <E%> /47 of 10
netic fields have peak values of 9 x 108 V/cm and 3 x 106 G, respectively.

The radiation pressure is 3 x 105 atmospheres.

The first seven of the nonlinear effects listed above for a plasma
can be described by fluid theory and have a common origin: the v x B term

in the electron equation of motion

O

m-:-e(gt \_I.KB), (1)

When this last term is neglected, the electrons oscillate in the wave

electric field E = EO cos wt with a peak velocity

vy = eEg/mu ¥ 25 A(k) /I(W/en?) 2)

0

For A = 10.6¥, I = 1015w/cm2, as is required for fusion with CO, lasers,

2
the value of Vor called the quiver velocity, corresponds to an electron
energy of 16 keV. The magnitude of the nonlinear effect can be estimated
by substituting v0 into the v x B term of Eq. (1) and finding B from

Maxwell's equation

ck ~ E = wB. (3)
One then obtains
1
lcv =8 Vg
£ = — za, (4)
|E} c

. 12 P -
For u = 1%, the required intensity is I = 2.5 « 10" W/cn® with €O, and

1=2.5 10" for Nd-glass lasers. Observable effects are predicted to
occur for [ at least an order of magnitude lower than this. Note that the
required power is not easier to achieve with CO2 lasers, since the longer

wavelength means a larger diffraction limit to the spot size.

We shall confine our attention to phenomena in the absence of an
external magnetic field. The subject of nonlinear optics with EO # 0 is

less well developed and constitutes a rich field of study for the future.

II. The Ponderomotive Force

It turns out that almost all the nonlinear effects listed above can be
explained in terms of the so-called ponderomotive force. This effect 1s
most easily derived from the equation of motion (1) for a single electron.
Following Schmidtl, one first solves for the velocity !}1) and position
5(1) of the electron neglecting the v x B term. This solution is then used
in the next approximation, which takes into account the 1(1) x E(l) term and
the fact that E must be evaluated at the actual, rather than the initial,
position. Expanding E about the initial position, using Eq. (3) for Eﬁl), and

averaging over time, one obtains

(2) 2
b Ta o’ Ly VEy v Eg X VX Ep) = £y ()

The first term in the nonlinear force fNL is a convective term v - Vv re-
lated to the longitudinal part of E; this term is responsible for the electro-
static parametric instabilities discussed in Sec. 1II. The second tern in
Eq. (5) concerns the transverse part of E and gives rise to the backscattering
instabilities of Sec. IV. Part of this term cancels the first term, leaving

fyom % L; oy’ )

mw
The force per cn® is negNL, where n, = mwp2/41re2, and ‘the ponderomotive force
is
w 2 2

__I’_Z\Z<E> (7

E 8n

INL T

w

Although the force on the ions is weaker by m/M, the ponderomotive force on
the electrons is communicated to the -massive ions by the charge-separation

electric field, as long as the motions are of low frequency.

C3



Egq. (7) can also be derivedz’J from the Maxwell stress tensor for a medium
2
with a dielectric constant ¢ = l—up“/mz. Although the radiation pressure

Y<E2/8n>+?<82/8n> does not contain w explicitly, these two terms normally cancel
in a vacuum. In a plasma, the electgon motions cause the cancellation to be in-
exact, and the resulting force is proportional to e-1 = w Z/uz. The physical
mechanism is clearer from the single-particle point of view: the electrons
suffer a secular drift because of the distortion of their orbits by the wave

magnetic field or because their excursions take them into regions of different

field strength.
The ponderomotive force has sayeral direct effects. In an inhomogeneous

plasma, a wave entering along the density gradient will have a standing wave
pattern (Fig. 1) which increases in amplitude near the cutoff region (mp N ow).
This well-known Airy-function pattern4 has a large gradient of EZ near cutoff,

and the ponderomotive force can cause ion motions. By modulating the incident

1€
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Fig. 1.
wave at an ion frequency, low-frequency waves can be excited or feedback-
stabilized. This is the so-called double-resonance effects. Since ENL
changes sign in each cycle of the standing wave, the plasma tends to become
stratified by very large amplitude waves, as has been "observed' in computer
simulations .
In a homogeneous plasma there can still be a gradient of 52 if the laser

beam has finite radius (Fig. 2). The ponderomotive force is radially outward,

. 4
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Fig. 2.

causing a decrease in plasma density inside the beam. Self-focussing occurs
when the ensuing change in index of refraction acts back on the beam to
focus it to a smaller diameter. Although the ponderomotive force has been
detected in microwave experiments and self-focussing has been observed in

- . 7
liquids and in plasmas’, there has been no direct verification of Eq. (7)
for a plasma. .

II1. '"Ordinary' Parametric Instabilities

1. Oscillating two-stream (OTS) instability. The electrostatic

parametric instabilities extensively studied in both the laboratory and the

ionosphere  are divided into two types, depending on the sign of w

C5

- - ) O'W .
[For finite temperatures, w_is to be replaced by the Bohm-Gross frequenc
w_, given by w z. w 2+3k2 2 ' i ) .
e e b ve.] The reason for this difference is easily seen from

the ponderomoti 8
ve force . If wg < wp , one has the OTS instability, in which

density ripples in th i i
pp e direction of EO grow without propagation (Fig. 3}.

Let a quasineutral densit i
sity perturbation n, have k >> ko, so that k, can be

0
e, ko

INCIDENT E.M. WAVE

Fig. 3.

assumed to vanish. The motion of electrons in the direction of - 1 1
f 11
: .
on o EU w give

rise to a space charge oscillati
g ating at frequency wge as shown in Fig. 4.



NS

Fig. 4.
This space charge creates a field El with the phase shown in Fig. 4. For
uniform EO' the ponderomotive force is given by
2 N aEl
g1 —2_F. = -V(E.+E,)" = -2E,°VE, = -2E; 7o (8)
« 2 ~NL -0 =1 =0 -1 0 3x
P
and hence has the phase shown in Fig. 4. Since ENL acts to move plasma into the
regions of positive ng, the density perturbation grows. This is an absolute
instability with Rew = 0. Although these phase relationships hold for any

w. < w_, excitation is easiest when wy is near the natural oscillation frequency

0
W The electrons move in a standing wave, but the ion motion does not follow

a natural mode of the ion fluid.
2. Parametric decay instability. if wo is larger than we the OTS

mechanism does not work; instead, the incident wave decays into an electron

wave w_and an ion acoustic wave wy = kcs. Consider an oscillator x with

natural frequency w, driven by a force Fcoswot:

. 2 ~
X + wy X = Fcoswot, X = =57 . 9)

If wy < Wer the displacement is in the same direction as the force, and the

mechanism of Fig. 4 obtains. If wo > wes the displacement, and therefore

F
NL’
However, if the density ripple is an ion wave traveling with velocity ¢, the

has the opposite sign; and a static density perturbation would decay.

o
~J

electron flui ] E ency i
id can feel a frequency o ' X we in the Doppler-shifted frame,

0
and the previous mechanism can operate in that frame. The requirement . ' =
w.-ke_ % is j i -
o keg A w, is just the frequency-matching condition Wy = wetw,. Fig. SA
e .

shows the usual parallelogram construction for w and k matching in the
- parametric decay instability.

w
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(A) DECAY INSTABILITY (B) BACKSCATTERING INSTABILITY
Fig. 5.
IV, Backscattering Instabilities
1. Introduction. Fig. 5B shows the w and k matching condition for the

?arametric decay of an electromagnetic wave ¥ into an electrostatic wave w,,
in this case an ion wave, and another electromagnetic wave w. in the opposiie
direction. This interaction has received recent attention bzcause of the
possibility of reflection of laser radiation in the outer, underdense layers

of a plasma created by the laser, rather than absorption near the critical

layer by the processes of Sec. III. In the most likely process, the backscat-
tered wave is exactly opposite to the incident wave, and the matching conditions
are wy = w tu,, ky = k vk, = (|k1|-|k2|)(50/k0). We shall illustrate the case
w > @ (Fig. 6), where k, % -ky. and therefore |3 ] 2k,



2. Physical mechanism. Let the incident

4 wave be EoiCOS(th—kOy). The quiver
ky velocity
L k eE
1 _ __(_)_ . . A 10
1 Vo < - moy sxn(mot koy)x (10)
k, .
then leads E0 by 90" .
Fig. 6.

We look for a ponderomotive force FNL at the relatiYely low frequen:y :1

of the plasma wave, caused by beats between the incident wave wy an ; e
i i . (5) vanishes

backscattered wave w,. The first term in the analog of Eq. ( )

by geometry, and the second term gives

x (§29)]

v x

By = engly, *By v ¥y *Bp).

i time when E
Fig. 7A shows the phase of the -v, x EO term at an 1n?tant of A ﬁ
and the quiver velocity v, of the scattered wave are in phase. Fig. 78 shows
i thick
the situation % of a period later. The vy % EO term, shown ?y the
arrows, oscillates between 0 and the peak value in the direction shown

(depending on position), and hence has a finite average over the fast time

scale of Wy
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Fig. 7

Since v leads E by 90°, one obtains Figs. 7C and 7D for the phases of the

Vo < B2 term at the times corresponding to Figs. 7A and 7B, respectively.

It is seen that the two terms in FNL add in phase in such a way as to
cause electrons to bunch up and form a density ripple with half the wave-

length of the electromagnetic waves (kl = 2k0). Thus, a density perturbation

n (Fig. 8) results from the nonlinear interference of the incident and
backscattered waves.
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Fig. 8
It remains to show that n, causes the wave wy to grow at the expense of
the wave ugr and hence there is instability. Since v, is perpendicular

Yo
to an, we do not have the charge separation mechanism of the OTS in-

stability. Instead, the effect is a spatial modulation of the oscillating
current -nev, caused by Vor Let us neglect the motion of the density
ripples and consider a phase 1/8 of a period after that of Fig. 7C. The
m?xima of v, and n, are then aligned, and the current modulation

i' = - nev, is as shown in Fig. 8. This current drives a magnetic field
B with the phase shown. At this instant of time, the phases of B2 and

Bo are as shown. It is seen that B' is in phase with Bz and out of phase

t
with Bo. Thus, j excites the backscattered wave at the expense of the



incident wave.
The density perturbation may or may not be a natural mode of the plasma,

but is naturally more easily excited in the former instance. We distinguish

three cases:

A) If wp = e, (an electron plasma wave), the process is called stimulated
Raman scattering (SRS).

B) If w = kcS (an ion acoustic wave), the process is called stimulated
Brillouin scattering (SBS).

) If wy does not correspond to a normal mode, the process 1is called
resistive quas1mode scattering. The density perturbation must be maintained
against diffusion, but the process may be important because of the large
range of wy possibleg.

3. Results for homogeneous plasma. In a homogeneous plasma the

thresholds and linear growth rates for the SBS and SRS processes can be
calculated from the general theory of Nishikawalo. The results, which are
well klwwng'l'l'14 although difficult to find in print, are approximately

as follows.
Threshold Growth Rate
v 2 8y.v v
0 _ Tivei w120 1/2
SBS 7 G YRy Wolugd 9pg (2)
v i’0
e
v 2 2w 2 Y v
Yo Zp Yeler vl 1/2 (13)
SRS i e YRz (bgep)

c @y p 0

Here Ve is the electron thermal speed \f and Y are the damping rates of the

ion or electron wave, and ; ei® /w is the dampxng rate of the electromagnetic
waves. These colllslonal thresholds are exceedingly low, even for SRS --
typically, I 3 10 H/cm for COZ' The growth rates are appreciable, and
depend only weakly on density. If these values were relevant, anomalous
reflection from underdense plasmas would have been observed long ago.
However, there are complications.

4. Finite length effect. If the interaction region is limited in

length d by either the depth of focus of the laser or the plasma size, the
growth rate must be large enough to overcome the loss of wave energy by
convection out of the region. The backscattered wave starts at the far
end at thermal level and grows as it travels toward the laser at a group
velocity =c. The plasma wave starts at the near end at thermal level and

grows as it travels downstream with the group velocity vg. It turns out

that for a normal mode it is the geometric mean that matters, and the condition
for appreciable growth is

Y >> chg/d , (14)
where y is the linear growth rate given above. The detailed treatment of

the spatially varying problem“’13

has manysubcases, but Eq. (14) has wide
applicability.

5. Plasma inhomogeneity. If the plasma is infinite but inhomogeneous,

a different effect occurs. The plasma wave has a different wavelength in each
part of the plasma, so that the backscattered wave, which has a nearly fixed
wavelength if the plasma is quite underdense can maintain the correct phase
relationship with the plasma wave only over a finite length. Crowth occurs
only in this region; there is pure oscillation outside. The backscattered
intensity grows by a factorls'13

/1, = exp(Zwyz/cvgk') , (15)

where k' = dk/dx. In SRS, it is the density gradient length Ln which
matters, since the Bohm-Gross dispersion relation is sensitively dependent
on - In SBS, it is the temperature gradient length L which is important
in the ion wave dispersion relation. Using these relations and the values
of y from Eqs. (12) and (13), one obtains the following 'inhomogeneous
thresholds' from Eq. (15):

v 2, 2
SBS 0,90 8 16)
v 2,2 kOLT (
¢ P
v 2
SRS g 2
2 kL : (7
< 0'n
The space an?}time behaviors of the perturbations are interlinked in a com-
plicated way ~. Note that the density dependence has cancelled out in

Eq. (17). SRS can occur in a very underdense plasma because although the
growth rate is small, so is the phase mismatch. In a finite, inhomogeneous
plasma, Eq. (17) is likely to be the controlling condition for SRS and
Eq. (14) for SBS.

6. Finite linewidth. If the laser beam has a frequency spread dw ,
the resulting phase mixing can greatly reduce backscattering. This has
been shown in numerical computations16 and in experiment17

7. Convective and absolute instabilities. In the theory of beam-

plasma instabilities, convective and absolute instabilities can be distin-
guished by the behavior of the dispersion curve near the intersections of
the uncoupled modes. In backscattering, the relevant uncoupled modes are the

electrostati if c 1
ic wave ul,b‘ and the difference wave Wy Wy 50452. Fig. 9 shows
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the specific situation of Figé SB, ;n ;h;ch w = klcS (SBS). As the point w,,
k2 is moved along the curve w = wp +k“c” with wo,ko flxed,lthe curYe wywye
ko-k2 is traced out. Instability occurs near synchronism with the ion wave

ml,kl. Because the group velocities are oppositely directed, th? instabi%ity
is absolute, as is indicated by the shape of the coupled dispersion relation
(dashed curve), with complex w for real k. This hol?; in the absence of
dissipation. With damping, the Bers-Briggs analysis™  must be made with

The result19 is that there is a convective instability with a
The OTS and filamen-

complex w,
lower threshold than that for the absolute instability.
tation instabilities are intrinsically absolute and do not have a convec-
tive counterpart. This analysis19 has been made only for an infinite plasma;
but, of course, it is in a finite medium that convection is important.

8. Nonlinear saturation. Current interest is centered on the

nonlinear behavior of these instabilities, since this dfiermines their
practical importance. Analysis of the nonlinear regime = shows that the

growth rate (both temporal and spatial) varies with amplitude in the manner
shown in Fig. 10.

u3
{ | Ee A: resistive quasimodes

C B: normal modes

C: reactive quasimodes

Fig. 10.

Reglon B is the reyion of linear yrowth as given by kys. (12) and (13). At
lower intensities {(Kegion A), the plasma waves are damped by collisions,

but density perturbations which do not follow a dispersion relation but simply
diffuse can be excited. At high intensities (Region C}, the ponderomotive
force term affects the frequency of the plasma waves, and the growth rate
varies as E 2/3.

0
parametric instabilities

This dependence at high intensity is quite general for
10

Possible saturation mechanisms for SRS are electron trapping, heating
followed by increased Landau damping, mode-coupling with nonlinear Landau
damping, and modulational instabilitiesl4. The last mechanism is the
refraction of plasma waves away from regions of high density because the
index of refraction for them is less than unity. The waves then pile up
in regions of low density, and the ponderomotive force causes the density
to decrease further there. The large density perturbations have a
stabilizing influence because of Eq. (17). Ion waves are not subject to
these saturation mechanisms, and consequently SBS is expected to have
large amplitudes. This is borne out by numerical simulations carried
out at Los Alamosll and Livermorelb. These one-dimensional computations
with a linear density profile show that (1) SRS occurs first, because of
the larger growth rate, but then decays as electrons get trapped and the
waves break; (2) SRS reflects at most 50% of the incident energy; (3) SBS
starts later but reaches large amplitude; (4) there are relaxation oscilla-
tions in the reflected power, which can reach 99% for appreciable periods;
(5) the light eventually pushes its way through any finite slab of plasma.
These results are for w, % 10-100 w_. For g
instability develops which effectively splits the plasma at that point.

= 2wp, a very strong

This is because the backscattered wave then has frequency s and cannot

propagate out of the plasma.

V. Sidescattering and Filamentation

Consider now the orientation of wave vectors as the angle between El

and k, is changed, as in Fig. ll. Since Ikzl is fixed at Jw /c, the locus

ne ! VAR

v
(l||||||||’ (llll‘llll) ‘.~\u 4“" NuleP
A B C

Fig. 11



of the tip of the k, vector lies on a circle. Fig. 1l is for the case

= = k- i discussing. The corresponding
Wy = wgTwps 52 50 51 which we have been di g ; -
diagrams for w, = wytw,, 52 = 50454 would have the 54 arfow 1n.the opposite
direction. The latter case is not important for scattering (since wy > wo)
but will have to be considered for filamentation (where Reu1 = 0). Case (A)
above is backscattering. Case (C) is forward scattering; this is a weak
interaction because 54, and hence the electrostatic field, is small.
Case (B), sidescattering, is important because 52 is perpendicular to the
gradients in n, and T if 50 enters the plasma at normal incidence;
consequently, the phase mismatch due to plasma inhomogeneity is absent,
and the growth rate is limited only by the finite beam radius a (cm) and
damping rate Y- For SRS, Kaufman et al.20 calculate the threshold inten-
sities for CO, to be

2 12 2
sidescattering: Is > 4.5 Gs yllupa x 10" "W/cm (18)

backscattering: 1, > 0.7 G/i x 10" w/en® (19)
where G_ % 35 and G, % 30 are the required number of e-foldings of growth
from thermal fluctuations. Eq. (19) is the same as Eq. (17) for Gb = 2n.

Thus, depending on the ratio a/Ln, sidescattering may be as important as

backscattering. Fig. 12 shows the physical mechanism. The wave fronts
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Fig. 12.

of the incident wave 50

shown. At the point A, EO and v, are at their maxima; the force °e!2x§0 is

and the scattered wave 52 (traveling to the left) are

then to the right. A quarter period later, Yo and EQ are in phase at the

same point A, giving rise to an equal force 'e!0x§2 directed upward. The

. - o
L at A is therefore at 45° to 50. The EO'VEZ + EZ'VEO

pari of Eq. (5) is in the opposite direction, diminishing the effect. At

time-averaged force N

the point B, both v and E are reversed in direction, so that is as at A.

: Ly
At C, v and E are shifted 90° from A in opposite directions, so that their
product, and therefore FNL’ is the negative of that at A. The resulting
pattern of the ponderomotive force causes density striations at 45°, in
agreement with Fig. 11B. Note that the regular spacing of the density
ripples is possible in SRS only if w = wp (cold plasma). For finite
temperature, the relation ulz = up2+3k12ve2 requires kl to vary if w
does, and phase mismatches occur even in sidescattering.

Filamentation, or self-focussing, occurs when the incident wave vector

lies along incipient density striations (Fig. 13). The refraction caused by

ttrr ottt

Fig. 13.

the density perturbations cause the light beam to be channeled into the less
dense regions. The resulting ponderomotive force pushes plasma away from
such regions and increases the density perturbation. If ENL is large

enough to overcome the plasma pressure, the instability grows at the rate9

YR (VO/C)”pi‘ For a Gaussian beam, the self-focussing threshold is21

P, = ssoomo/up)z(xr)ev watts (20

Note that it is the total power Pc, not the intensity, which matters.
Filamentation may be considered a parametric decay in which the ion wave
51 is at right angles to 50 (Fig. 11C). Since 51 is small in this limit, the

process 52 = 50051 is indistinguishable from k, = k -kl; and both must be

2~ =0 =
considered. This is, therefore, a four-wave, rather than a three-wave,
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interaction. The forward-scattered waves k, interfere with the incident wave

to produce the self-focussing. The geometry of this instability is identical
with that of the OTS instability (Fig. 3), and both are non-convective.
However, since 52 is a light wave, the simplification k0 << k1 cannot be
made in filamentation.

An equilibrium density distribution exists in which

n=n exp[e(¢+¢NL)/kTe] » (21)

where QNL = -(w /w )<E >/8nen As the intensity is increased, the
filaments break up 1nto smaller and smaller ones until the minimum radius

c/ p (the collisionless skin depth) is reached . The stability of these

equilibria is unknown.

VI. Optical Mixing and Cascading

By using two lasers with a frequency difference, it is possible to
couple strongly to an underdense plasma by mak1ng wyTey T Wpe This was
first suggested by Kroll, Ron, and Rostoker 3 and exper1mentally tested
by Stansfield, Nodwell, and Meyer24. Recent work25 20,27 treats nonlinear
saturation and plasma inhomogeneity. Fig. 14 illustrates the basic idea.

In the Raman process, two electromagnetic pump waves v, and uy beat with each

.
We PLASMA
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PRGN w a2
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Fig. 14.

ol = W R
other to generate a plasma wave w;, such that wy-w, = W, Kook, k 2k,
The plasma wave, in turn, interacts with the incident waves to change their
amplitudes: the higher-frequency wave w, is damped, while the lower-frequency
wave w, is enhanced. The interaction is strongest with 5 = -50, as shown.

This process will be recognized as just stimulated backscattering: the

backscattered wave w,, with the proper frequency shift, is imposed on the
plasma, so that it does not have to grow from thermal noise. The threshold,
therefore, is lower than in SRS. The theory differs only in that the
amplitude of w, is assumed fixed, with the consequence that the “p oscillation

grows linearly with time rather than exponentially.

It is tempting to try to heat a plasma by this anomalous absorption

process. For instance, the 10.6p and 10.2u lines of the CO2 laser can

beat to couple with a plasma of density 1.5 x 1016 cm-s, or the 10.6u and

17 -3
cm T

9.6u lines with n = 10 Unfortunately, the energy given to the

wave w. is much less than the energy exchange between w, and w5 This is

1 0
a consequence of the conservation of action. From a quantum mechanical
viewpoint, the energy of a wave is W = Niw, where N is the number of

quanta. Since N is conserved, one has

0 _ "1 _ "2
W Th o ' )
where Nl is small because Wy << wg,uy. However, the wave momenta p = Nhk
are such that they add rather than subtract, and electromagnetic momentum

can be transferred to the plasma to achieve low-frequency coupling.27

To circumvent the restriction on energy coupling, Kaufman et al.28

suggested a cascade process (Fig. 15). Two incident beams wo,k and

b7
ke -

k, ‘=>—~v-kr

kl

ky —ky

k, >

ks————————————ﬂr-—s-kp

Fig. 15.

m1,£1 undergo forward scattering to produce a plasma wave wp = wpTEp
Ep = EO'LI‘ The plasma wave then interacts with 51 to produce wy T wpcw o,
= 1 p
k, = k 'Ep' and so forth until the laser energy is almost all converted into

-2 =l

plasma waves. Repeated k-matching, unfortunately, works only for forward
scattering, which is w /uo times less efficient than backscattering.
Because of this, the threshold for cascading is rather high. At I = 2 x
1014W/cm for LOZ, energy absorption is about 508 in a 10 cm length. By
contrast, optical mixing with opposing beans gives 90% energy exchange
between beams at [ = 6 x lOllN/cmz.



VII. Conclusion

We cannot also review at this time the kinetic nonlinear theories
pioneefed by J.M. Dawson, nor the work of our Soviet colleagues, nor the
available experimental results. In any case, definitive experiments have
yet to be done; theory is more advanced than expériment at this moment.
We hope that this situation can be reversed in the near future.

We are grateful to a large number of authors for discussing their
unpublished results. Above all, we wish to thank Prof. George Schmidt,
without whose guidance and bhysical insight this work would have been
impossible. This work was supported by the U.S. Atomic Energy Commission

under Contract AT(04-3)-34, Project 157.
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