Reprinted from:
LASER INTERACTIONS AND
RELATED PLASMA PHENOMENA, Vol. 3
(Pleoum Press, 1974)

PHYSICAL, MECHANISMS FOR LASER-PLASMA

PARAMETRIC INSTABILITIES*

¥4
Francis F. Chggj/‘sé

University of California, Los Angeles

Los Angeles, California 90024

During the past year, there has been a profusion of theore-
tical results concerning parametric instabilities, anomalous back-
scattering, and other nonlinear interactions expected to occur at
the large laser intensities needed to achieve fusion. It is often
difficult for the experimentalist to gain an intuitive grasp of the
important physical mechanisms involved. Fortunately, most of these
phenomena are generalized parametric instabilities which can be
explained, both qualitatively and quantitatively, by simple physical
descriptions involving the ponderomotive force.

THE PONDEROMOTIVE FORCE

Originally invoked! in connection with laser interactions to
explain fast-ion production, the ponderomotive force is nothing
more than radiation pressure in a plasma. It is most readily
understood from the single-particle point of view. Following
Schmidt?, we write the equation of motion for a single electron

moving in a wave:
m === -ef[E(r) + —1 vxB(r 1
dt - [ ( ) P ( )] > ( )

*presented at the Third Workshop on ''Laser Interaction and Related
Plasma Phenomena' held at Rensselaer Polytechnic Institute, Troy,
New York, August 13-17, 1973,

TThis work was supported by the U.S. Atomic Energy Commision,
Contract AT(04-3)-34, Project 157, Mod. 6, Task II.

291



292 F. F. CHEN

where

E(x) = Eg (z)coswot (2)

and
B(r) = - — VxE_sinw,t (Maxwell's equation) . (3)
- = Wy — S 0

The vxB term in Eq. (1) is vg/c times smaller than the E term (vo

will be defined below), and to lowest order the electron oscillates
in the cirection of E:

v(l) = - —E—-E sinw .t . 4)

~ mw, =5 0
We define the quiver velocity Vg to be the peak value of v(l) in a
plane-polarized wave (E, = ]Esmax|):

eE
- 0
Vo = mw (5)

When the quantity vy/c, which characterizes the strength_of non-
linear interactions, is small but finite, we can use v to solve

Eq. (1) to the next order. We must also expand E(r) about the
initial position rj, for Eq. (1) holds in the frame moving with the
electron., Thus

E(x) X E(ry) + 6V E 6)

where dr is given by the integral of Eq. (4):

e
dr = —5 E_coswyt . (7)
mw
0
Th
us dl(Z) 1)
m g = e[SV E(xy) + o v I xB(ry] . (8)

Using Eqs. (7), (4), and (3) and averaging over time, we find the
secular force acting on the electron:

dV(z) e2 1
< S— > = - ? (

=M< =3 2

L xVxE ) . 9)

The ExYxE term gives rise to a drift of the electrons in the direc-
tion of the wave. This is caused by the wave magnetic field, which
distorts the linear orbit of the electron into a figure-8 path,

as described by Horal. This term drives the backscattering insta-
bilities. The E-V E term is due to the finite excursion of the
oscillating electron, which brings it into regions of different
field intensity. This term is equivalent to the v*V v convection
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term in the fluid equation. The electrostatic parametric instabi-
lities are driven by this term.

is the force per unit volume,

The ponderomotive force FN
n f L
e—NL:
2 2 2
W Es w <E2>
Fap = - 23[16n]=‘ 7Y 8w (10)
“0 “0

where wpz = 4ﬂnee2/m, and the average is over a wavelength.

Although the corresponding force on the ions is m/M times
smaller, the force Fyp on the electrons is transmitted to the ions
by self-consistent fields, provided (a) there are density gradients,
and (b) Fyp varies in time more slowly than the ion plasma frequency
Wpi - As the electrons respond to Fy;, they generate a charge-
separation electric field E; such that Fyp - ngeE; = 0. The ions
feel a force njeE;, and the total force density in the quasineutral
plasma is therefore ENL'

Eq. (10) can also be derived® from the macroscopic viewpoint,
considering the plasma to be a dielectric with e = l-u 2/62, but
the physics is then more obscure. One can consider ENL to be a
radiation pressure

2 2
B <E“> <B“>
e Y - Y= s (1

but this expression does not contain the plasma density explicitly.
To see how the density enters, consider first the case of a

vacuum. If the wave were infinite, the field strength would be
uniform, and Fyj would be zero. If the wave were reflected from a
perfect mirror, Fyj would still vanish, because there is no pre-
ferred direction for it. Fig. 1 shows that in the standing wave
pattern V<E2>/8n is always equal and opposite to V<B2>/8m. On the
other hand, if the wave were reflected from the cutoff layer of an

REFLECTOR

T

Fig. 1. Standing wave pattern of a reflected light wave in a
vacuum.
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inhomogeneous plasma, one would get the usual Airy-function pattern“
of Fig. 2. As is well known, there is now a ponderomotive force,

[E2|

wp/w
1

Fig. 2. Standing wave pattern of a light wave traveling along a
plasma density gradient.

which reverses sign in each striation. This is because the oscil-
lation of the plasma electrons causes E and B to have different

amplitudes, so that V<E2>/8w and V<B2>7Bn no longer cancell/zThe
in

difference is proportional to_the density. Since ck/w = ¢ a
dielectric, Eq. (3) yields <B%> = -g<E2>| Inserting this in Eq.
(11), one has 2
2 2
_ <E"> _ wE <E“>
B = (6-1)V == - 2 Ve o (12)
0

as before. The macroscopic approach is so circuitous and opaque
that derivations based on the Maxwell stress tensor are often
erroneous.

ELECTROSTATIC PARAMETRIC INSTABILITIES

The parametric decay of an electromagnetic wave with wg = w
into electrostatic perturbations has been extensively studied in
recent years because of the applications to both ionospheric
heating and laser-pellet heating. There are two processes, de-
pending on the sign of wy-wg, where we 1s the Bohm-Gross frequency,
given by

2 2 2

W o= w o+ 3k2v . (13)
e P e

For wg<wg, the oscillating two-stream (OTS) instability can occur,
with Rew = 0. For wy>we, the parametric decay into an electron wave
we and an ion acoustic wave wj can occur. The reason for the dif-
ference is made clear by the ponderomotive force approach.
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The Oscillating Two-Stream Instability

In the OTS instability, wg is less than wg, and density ripples
in the direction of Ey grow without propagating (Fig. 3}. Let a

wp. kg

™

INCIDENT ' E.M.WAVE
Fig. 3. Geometry of the OTS instability.

quasineutral density perturbation nj have k >> k., so that k, can
be assumed to be zero and Ey to be uniform. The motion of electrons
in the direction of -E4 will give rise to a space charge oscilla-
ting at the frequency wg, as shown in Fig. 4 at an instant when
Eg is in the +x direction. This space charge creates a field E

1
- Vg Ep —
n1/\ Eq _/\ Eq _/
4+ — ) —-— 4 —
+ - Eq + —
\-/ \/ x
FnL

e o o

Eq

————— e ——————

Fig. 4. Physical mechanism of the OTS instability.

with the phase shown in Fig. 4. For uniform EO’ the ponderomotive
force is given by

2 2 _ 2 . _
87 (w /wp )ENL = —V(EO+§_1) = —ZEO VEl = -2E agl/ax , (14)

0

and hence has the phase shown in the figure. Since the phase of
Fyp is such as to move plasma into the regions of positive nj, the
density perturbation grows. Although these phase relationships
hold for any wp<we, excitation is easiest when wg is near the
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natural oscillation frequency w_ of the electron fluid. The elec-
trons move in a standing wave, but the ion motion does not follow
a natural mode of the ion fluid. By symmetry, the ion perturba-
tion does not propagate in either direction, and this is an abso-
lute instability with Rew = 0. It is possible® to recover from
this ponderomotive force treatment the exact threshold and growth
rates obtained by standard techniques®. A well-known theoretical
result® is that the threshold for this instability depends on the
damping rate vy, of the electron waves, but not on the damping rate
vi of ion waves. This is because the ions do not oscillate and
suffer friction against another fluid but simply move slowly at
the growth rate y. By contrast, the electrons oscillate rapidly,
and their motion is damped by collisions with ions and neutrals.
Note that the ExVxE part of FNL does not enter in this geometry,

since it gives a drift along planes of constant density.

The Parametric Decay Instability

If wy is larger than we, the OTS mechanism does not work;
instead, the incident wave decays into an electron wave we and an
ion acoustic wave w; = keg. Consider an oscillator x with natural
frequency we driven by a force Fcoswqt:

. 2 Fcoswot
X+ w, X = Fcoswot , X = —s— . (15)
w -w
e 0

If wg<we, the displacement is in the same direction as the force,
and the mechanism of Fig. 4 obtains. If wp>wg, the displacement
has the opposite sign, and electrons would move in the +E, direc-
tion. As Fig. 5 shows, the resulting F  then acts so as to
destroy a density perturbation nj, whicﬁ would then decay rather
than grow. However, if the density ripple of wavenumber k were an
ion wave traveling with velocity Cg, the phase relation can be
reversed. In a frame moving with the ion wave, the density per-
turbation would be at rest, as in the OTS case. In the limit

kip << 1, the plasma is quasineutral, and the electron fluid
follows the motion of the ion fluid very closely. However, in the

Eq -
nq + = — + e U
+ - + £ -
+ — + 1 —
J\:: ::7L'FNL _*<:;.-“’/,47

Fig. 5. Phase of FNL relative to n, if We W



PHYSICAL MECHANISMS FOR LASER-PLASMA PARAMETRIC INSTABILITIES 297

moving frame the electron fluid feels the pump field Ej not at the
frequency wjy, but at the Doppler-shifted frequency wy' = wp-kcg.

If wy = kcg is sufficiently large, so that wp'<we, the mechanism
of the OTS instability can again operate, and the ion wave grows.
Note that the critical condition wy-kcg = wg is just the frequency-
matching relation wy = w +w; for the decay process. Fig. 6A

shows the usual parallelogram construction for w and k matching in
the parametric decay instability.

2_.2 2,2
w —wp+3k Ve

(A) DECAY INSTABILITY (B) BACKSCATTERING INSTABILITY

Fig. 6. Comparison of the w and k matching conditions for electro-
static and electromagnetic parametric instabilities. 1In
each case, wg is the incident electromagnetic wave, and
it decays into an ion wave w; and another wave wy. In
(A), w, 1is an electron Bohm-Gross wave. In (B), Wy is a
backscattered electromagnetic wave (Brillouin scattering).
In Raman scattering, the ion wave is replaced by a Bohm-
Gross wave.

BACKSCATTERING INSTABILITIES

Fig. 5B shows that backscattering is a parametric decay with
one of the products being an electromagnetic wave. Since both
wg and wy can be much larger than w,, backscattering can occur in
an underdense plasma. For simplicigy, we shall assume wy >> w
in describing the physical mechanism. Let w, be electrostatic and
wp electromagnetic. The Stokes and anti-Sto%es lines are given
by wp = wptw]. In backscattering, the Stokes process (minus sign)
is important, and the matching conditions are wg = wytwy, kn =
ky+k,. The most likely process is for k, to be opposite to kg,
as shown in Fig. 7. Since |k2| = |k0| for wy >> wp, We have
ko = 'EO and, therefore, k; = 2_0.
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Let the incident wave be

k = X -
2 EO = EOxcos(th kOy).
kq The quiver velocity
ko eEO o
Vo = - E$6~51n(w0t—k0y)x (16)
Fig. 7.

then leads Ej by 90°. We look for
a ponderomotive force Fyp, at the relatively low frequency wy of
the electrostatic wave; this frequency results from the beating
of the incident wave wy with the backscattered wave wy. The rele-
vant cross terms in Eq. (8) then give

AL 7 Bg L L+ By Y B> - By + vpBy> - (D)

The E+V E terms vanish by geometry in straight backscattering, and
FyL is due entirely to the vxB terms. 1In Fig. 8A the two electro-
magnetic waves are shown at an instant of time when the maxima of

k k k k
0 : 0 : waxBy voxBy : 0 0 :
-vo xB - vgxB
° OF= | | 1= °
| -— o ® T::ﬁb L
o ® b= | -—- o
I -—l= o o =-—=-® I
< ___J'G) | I VO ——--:———-—o
- o o B @ -L-——_—
< B ® +1=#Eo | [ E2 ‘“——-r-" °
2 e——l= o o =70Ad®
o-—=lo | 1 B —f— o
-—H— o ® =" Yo
@-}—— v | Eo I ‘——i--— <
i tk, i ko
ko ka
A B C D

Fig. 8. Phase relationships in backscattering. The incident
wave is indicated by solid lines; the backscattered wave
by dashed lines. They heavy arrows indicate the pondero-
motive force.
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Eg and the qulver velocity vy of the scattered wave are coincident.
Taking B, to be in the direction of koxEy, one finds that the part
of Fyp, due to -v,xB; is downward. As the waves pass, this term
oscillates between 0 and its maximum value and hence has a finite
average (over the wgy time scale) which depends on position. Fig.
8B shows the situation 1/4 of a period later. Eg has shifted
upward and v, downward; hence, -vyxBy is upward at the locations
shown. Making use of the fact that v leads E by 90°, one obtains
Figs. 8C and 8D for the phases of the -v X§2 term at the times
corresponding to Figs. 8A and 8B, respectively, It is seen that
the two terms in Fy; add in phase in such a way as to cause
electrons to bunch up and form a density ripple with half the
wavelength of the electromagnetic waves (k; = 2kg). Thus, a
density perturbation nj results from the nonlinear interference

of the incident and backscattered waves, as depicted in Fig. 9.

ko
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< ® ©® ®
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o ® ® ®©
° ® © ®
<
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o ® ® 6
O
i @ © ©®
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<
<
FNL ny i'=-nqevg B’ By By

Fig. 9. Physical mechanism of backscattering instabilities.

It remains to show that n; causes the wave w, to grow at the
expense of the wave wgy, closing the feedback loop for the insta-
bility. Since v is perpendicular to Vnj, we do not have the
charge separation mechanism of the OTS instability. Instead, the
effect is a spatial modulation of the oscillating current -nevg
caused by vj. Let us neglect the motion of the density ripples
and consider a phase 1/8 of a period after that of Fig. 8C. The
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maxima of v, and n; are then aligned, and the current modulation

J' = -njevgy is as shown in Fig. 9. This current generates a
magnetic field B' with the phase shown. At this instant of time,
examination of Fig. 8 shows that the phases of B, and B are as
given in Fig. 9. It is seen that B' is in phase with B, and out of
phase with By, as needed for excitation of B,. The ponderomotive
force approach can be used” to derive the exact results for these
instabilities.

The density perturbation, as yet unspecified, may or may not
be a natural mode of the plasma. We distinguish several cases:

1) If w, = W (an electron plasma wave), the process is called
stimulated Raman scCattering (SRS).

2}y If wy = kcs (an ion acoustic wave), the process is called
stimulated Brillouin scattering (SBS).

3) If wy is not a normal mode, the density perturbation can
still exist if E; is large enough to maintain it against diffusion.
This has been called resistive quasimode scattering.

4) If w; = kjvg or kyv., where vV, and v; are thermal velo-
cities, there can be interaction with resonant particles to give
instability. This has been called induced Compton scattering
or nonlinear Landau growth, a process that can be important when
the natural modes are inhibited, say, by Landau damping.

Homogeneous Plasmas
The thresholds and growth rates for SBS and SRS in a homoge-

neous plasma have been computed by a number of authors’-!l! and are
listed here for future reference. Note that Vo is the peak

Threshold Growth Rate
v 2 8y.v v
0 _ i'ei 170 1/2
SBS 2 w.w Yo 73 (wO/wi) wpi (18)
v 10
e
v 2 2w 2 Y. v v
0 _ ™ Te ei L1700 1/2
SRS 2 mlradrm Yo = 7T (Wgup) (19)
c w p 0

quiver velocity in a plane-polarized wave. Here v 2. KT _/m, vi

. . e e’ 2 2
and v, are the ion and electron wave damping rates, and (& /wo )
(vei/Z) is the damping rate of the electromagnetic waves. ' The
growth rates are for the intermediate-intensity regime (see below),
where yg = Eg. Note that Yo depends very weakly on density --
hence the possibility of anomalous reflection from the outer
layers of a plasma. The collisional thresholds above are easily
exceeded but are not relevant to actual experiments.
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Finite Homogeneous Plasmas

If the interaction region is limited in size either by the
length of the plasma or the depth of focus of the laser beam, it
is not sufficient to exceed the threshold; the growth rate must be
large enough to overcome convection of wave energy out of the
region. This problem has been treated by Pesme et al.!l, whose
results may be summarized as follows. If £ is the length of the
interaction region, yp is the homogeneous-plasma growth rate
given above, and V; and V, are the group velocities of the product
waves, an absolute instability is possible if V;V, <0 and

yoi 2

1/2

>—27I- or
v, v, |

y
— 9 7T for sBS . (20)
7772

S

This result holds for weak damping such that Yo >> Yoo where

Yp = (YlYZ)l/z = (yiyei/Z)l/z(wp/wO) for SBS . (21)

Y. is just the threshold given in Eqs. (18) and (19).

We shall discuss specifically the Brillouin case, which has a
higher nonlinear saturation level than Raman scattering. In SBS,
ion Landau damping for reasonable ratios T,/T; causes yi/wj to be
non-negligible. In such a case, the growth length is greatly
increased by the damping, and Eq. (20) is valid only if yg further
satisfies vy >> y., where

1
“ 3y tere )P (22)

Fl_F_Z_
c

_ 1 1/2
ve =g vy, 1|
2 ''1°2 ViV,
In most cases y, lies in the range YT < Yo < Yes when no absolute
instability is possible, but the waves can grow in space regard-
less of the sign of VjV,. The condition for a large number of
e-foldings in & is

Yozz/cyi >> 1 . (23)

This condition is considerably more stringent than Eq. (20) and
greatly reduces the large disparity between the SRS and SBS thre-
sholds given in Eqs. (18) and (19).

These results can be understood physically as follows. In
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Fig. 10. Spatial variation of wave intensities in backscattering
in a finite interaction region.

Fig. 10, we have shown schematically the behavior of the wave
intensities in the weak-damping case (absolute instability). The
pump wave is from the left; the ion wave grows from thermal noise
from the left; and the backscattered wave grows from essentially
zero amplitude from the right. To avoid questions of reflection
from plasma boundaries, we assume the interaction region is
limited by the focal depth alone, and the waves propagate with
weak damping outside the region. The growth of each wave depends
on the amplitude of the other one when it exits from the region,
The light wave e-folds yoz/c times in the length &, while the ion
wave e-folds ygi/cg times, ¢ and cg being the respective group
velocities. Since each wave bootstraps the other, the net e-
folding of the normal mode is the product of these two:

YOR.YOQ B Y0222

c c cc > 1 (24)
s s

This is essentially Eq. (20). Thus it is the geometric mean
of the group velocities which determines the convection.

In the intermediate damping case, v, [Eq. (22)] is determined
by the ion wave damping, the light wave damping term being negli-
giblei The damping length is cg/vj. The1§£owth length is
(ceg) /YO, since we have seen that (ccs) is the effective
group velocity of the normal mode. For the damping length to
exceed the growth length, we require

/2

c (cc )1
2 Yo > Vs (c/c )1
? 0 i s

S /2 _
;;‘> = 2Yc (25)

Yo

This is the meaning of Yoo If Yo < Yoo the ion wave loses energy
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by damping more rapidly than by convection out of the growth
region. In the length £, the ion wave exponentiates yp&/cg times
while being damped yj&/cg times. The net exponentiation is then
Yo/Yi. Meanwhile, the light wave e-folds yol/c times. The pro-
duct of the two is

—_— ¢ —— = . (26)
Eq. (23) is just the condition that this be >>1.

Inhomogeneous Plasmas

If the plasma is infinite but inhomogeneous, a different
effect occurs. The plasma wave has a different wavelength in
each part of the plasma, so that the matching conditions wg =
wy+wo, ED = kj+k, can be satisfied only over a finite region.

As a wave travels away from the point of perfect matching, it
grows until the phase mismatch is so large that the proper phasing
for growth is lost. The wave equation has a turning point there,
and the wave propagates without growth from there on. The number
of e-foldings is given by Eq. (24), with & replaced by the
distance %t between turning points. A turning point occurs when
the phase mismatch fAkdx = Akf; is of order 1, where Ak = k"%,

k' = dk/dx. Thus Qtz = 1/k', and Eq. (24) gives the approxi-

mate condition YOZ/cc k' >> 1 for appreciable growth. The exact
number of e-foldings in E, isl?

nyoz/ccsk' s> 1. 27)

In SRS, k' is determined by the density gradient length L, since
the Bohm-Gross dispersion relation depends sensitively on w,. In
SBS, it is the temperature gradient length Lt which is important
in the ion wave dispersion relation. Using these relations and
the values of yy from Eqs. (18) and (19), one obtains the
following "inhomogeneous thresholds' from Eq. (27):

\% 2 w 2
S @)
v w 0T
e P
v 2
SRS 0 2
77 XL (29)
c 0n

Note that there is no density dependence in Eq. (29). This is
because the density dependences in yO\and k' exactly cancel. Thus,
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SRS can occur in a very underdense plasma. On the other hand,
both Eq. (23) and Eq. (28) for SBS show that the threshold power
varies as no‘1 (when Landau damping dominates).

Nonlinear Behavior

Analysis of the nonlinear regime® shows that the growth rate
(both temporal and spatial) varies with pump amplitude in the
manner shown in Fig. 11. Region B is the region of linear growth
rate described by Eqs. (18) and (19). Since the electrostatic

56/3

A: RESISTIVE QUASIMODES
(o B: NORMAL MODES
C: REACTIVE QUASIMODES

Eo
Fig. 11. Behavior of the growth rate of parametric instabilities
with pump amplitude.

wave, say w;, is driven by the ponderomotive force, the ion wave

equation is of the form

2 2 . 2
who- et 21yiw « FNL EO . (30)

In region B, the damping term is negligible, and the quadratic
equation yields y = Ep. In region A, only broad, damped responses
rather than normal modes are excited. In this case, Ziyiw term
dominates in Eq. (30), and y is proportional to Ep®. In region C,
the ponderomotive force is so strong that the right-hand side of
Eq. (30) determines the frequency w rather than the natural
frequency w;. The E02/3 dependence of vy is a result of optimi-
zing the phase shift w-wi, a process for which we have not found
a simple physical explanation. The result is that a factor w
appears in the denominator of the right-hand side of Eq. (30),
making the equation a cubic in w, so that y « E02 5. This beha-
vior at large amplitudes is quite general®.

Nonlinear saturation levels in collisionless plasmas with
wg * 10w  have been investigated by numerical simulations in one
dimensiog9’13. Although SRS grows faster than SBS, the former is
easily saturated so that no more than 50% of the incident energy
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is reflected. Possible saturation mechanisms for SRS are electron
trapping, electron heating followed by increased Landau damping,
mode-coupling followed by nonlinear Landau damping, and modula-
tional instabilities. The last mechanism® is the refraction of
plasma waves away from regions of high density because the index
of refraction for them is less than unity. The waves then pile

up in regions of low density, and the ponderomotive force causes
the density to decrease further there. The large resulting
density perturbations stabilize the backscattering by the inhomo-
geneity effect. Ion waves are not subject to these saturation
mechanisms, and consequently SBS is expected to grow to large
amplitudes. In numerical simulations, there are relaxation
oscillations with reflected power reaching 99%. Given enough
time, however, the light pressure eventually causes the incident
wave to bore through any finite thickness of plasma in spite of
SBS instabilities. At the point where wg = 2w,, a particularly
strong interaction occurs which causes a rift in the plasma. This
has a simple physical explanation: SRS occurring at this point
generates a scattered wave w, = wp. This wave cannot propagate
out of the plasma and is trapped.

SIDESCATTERING

Consider now the orientation of wave vectors as the angle 6
between k; and kj is changed, as in Fig. 12. Since ]kol and |kj|
are fixed at = wo/c for w, >> w_., the locus of the tip of the k
vector lies on a circle. It is clear from the geometry that kg
and - k, are at an angle 26.

| vn, | or |
b ‘
kq
B

A

Fig. 12. Vector relations for (A) backscattering, (B) side-
scattering, and (C) forward scattering. The incident,
electrostatic, and scattered electromagnetic waves are
kgs Ky» and 52 respectively; and EO =k + k.

Case A in Fig. 12 is backscattering. Case C is forward scatter-
ing; this is a weak interaction because k., and hence the electro-
static field, is small. Case B, sidescat%ering, is important if
EO is parallel to the plasma gradients. The wave k, then pro-
pagates at right angles to the gradients and does not suffer the
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phase mismatch due to plasma inhomogeneity.

F. F. CHEN

For SRS, Mostrom et

al.l* find that the growth rate in an inhomogeneous plasma is
limited only by the beam radius a (cm) and the damping rate v,.
They have also calculated statistically the required number G of

e-foldings from the thermal level.
sities are:

Sidescattering:
Backscattering: Ib > 0.7 Gb/Ln x 1012 w/em?

where G_ = 35 and G, = 30.

s
Gb = 2m.

I, > 4.56 Yl/wpa x 1012 w/cm?

For CO,, the threshold inten-

(31)
(32)

Eq. (32) agrees with Eq. (29) for
Thus, depending on the ratio a/L_, sidescattering may be

as important as backscattering if the plasma is inhomogeneous.

The physical mechanism of sidescattering is illustrated in

Fig. 13, ~ky

20
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k4 =2k COS 6
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v
2
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—
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¥y xBy
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POLARIZATION

Fig. 13.

The wave fronts of the incident wave kg,
shown by the solid lines.

—VZ X BO

—V2 X BO

["":FNL
-VoXBZ

VERTICAL
POLARIZATION

Physical mechanism of sidescattering.

traveling upward, are
The dashed lines show the wave fronts
of the sidescattered wave ky, traveling to the left.

For the case
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of horizontal polarization, E is in the plane of the page, and the
wave 52 is simply rotated by 90° from Fig. 8. At the peoint A, E
and v, are assumed to be at their maxima. As shown in the center
column of Fig. 13, the term - v, x B, of the ponderomotive force
Fyp» Eq. (17), is then to the right. At the same point A a quarter
period later, v, and B, are in phase, and the term - v, x B, is up-
ward. Since these two terms are equal in magnitude, the resultant
Fy; 1s at 45°, as shown. At the point B in Fig. 13, both v and E
are reversed in direction, and F is the same as at A. At the
point C, v and E are shifted 90 %rom A in opposite directions;
their product, therefore, is the negative of that at A, and F., i
in the opposite direction. The resulting pattern of the ponagro-
motive force causes density striations at 6 = 45°, in agreement
with Fig 12B. The wavelength is A o/2 cos 6, or k; = 2k, cos 6--
also in agreement with the geometrlcal construction of Fig. 12.

This polarization is not the optimum for excitation, however,
because of the E‘VE terms in Eq. (17), which we have neglected
These terms oppose the v x B terms in the 6 = 45° case and diminish
the net F The E-VE terms 1dent1cally vanish by geometry in the
case of vertlcal polarization, in which both Ey and E; are out of
the page. In that case, By - B, are in the plane of the page, and
the vectors in the third column of Fig. 13 indicate the total
ponderomotive force.

Note that the regular spacing of the density ripples in Fig.
13 is possible in SRS only if T, = 0, so that w = w_. For finite
T_, the Bohm-Gross dispersion relatlon requires k 0 vary with w
The wave fronts of k, must then be curved, and a plane wave k
cannot exist without phase mismatches even in sidescattering.’

p

We wish now to explain the angular dependence of stimulated
Brillouin scattering, whose growth rate’ varies as cos ¢(cose)%
where ¢ is the polarization angle between E, and Ep. The cos ¢
factor is easily understood, since the entire expression of Eq.(17)
for Fy; is proportional to V <E *E>>. The cos 6 factor is best
seen_¥rom the v x B terms in the case ¢ = 0, when the E-VE terms
vanlsh From Eq. (9) it is clear that F,, is proportional to

—O x (k x E, )> + <Ep X(EO X EO)> These terms are of equal mag-
nitude and are in the directions of k; and k,, respectlvely The
phases are such that the averages are of opposite sign. The total

is, therefore, proportional to Ik -k | From Fig. 12, we see
tﬁat |50 -k l |k ] = 2k, cos 6. The growth rate y, is proportion-

al to FNL’ and hence to cos 6. In Eq. (1§), however, we see that

is also proportlonal to w;™% = (kjc )72 = (ZkOcscose)'/. This
agdltlonal factor is due to the fact tﬁat the electric field in the
ion wave depends on its wavelength. The growth rate y,, therefore,
varies as (cos8)2. This weak dependence on 6, which is valid only

for linear ion waves, is in dlsagreement w1th the experimental ob-
servations of Eidmann and Sigell®, which show strongly collimated
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backscattering. If the ion waves are nonlinear, however, it is
possible that the fastest growing mode--that with 6=0--is the only
one that survives.

FILAMENTATION

Filamentation, or self-focussing, occurs when the incident
wave vector lies along incipient density striations (Fig. 14). The
refraction caused by the density perturbations of wave number k
channels the light beam into the less dense regions. The resul%ing
ponderomotive force pushes plasma away from such regions and in-
creases the density perturbations. In steady-state, F,. balances
the electron pressure V(nKT,), giving rise to the Boltzmann-like
relation

w (f <EZ2>
n =n, exp - [--R--2 §FHBKT;_] (33)
¥o

which is independent of gradient scale length.

wonq

A

Fig. 14. Physical mechanism of filamentation.

If the light waves are not damped and Debye shielding were
perfect, this equilibrium would occur with any intensity; and
there would be no threshold for filamentation. The deviation from
strict neutrality due to finite Debye length, however, means that
Fyp must overcome a small electric field proportional to k%ADZ.
The filamentation threshold given by Kaw et al.”?16 ig

2
Yo T o 2
—2 > 40+ T—e-)kl;\D (34)
The first density perturbations that grow will be of smallest k
and longest wavelength, comparable to the plasma or beam radius.

Since v,? is proportional to intensity, or power divided by beam
radius, “the threshold for self-focussing depends only on total
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beam power. For a Gaussian beam, this threshold is

2
PC = 8500(wc/wp) TeV watts . (35)

For k; = r_l, Eqs. (34) and (35) are identical to within a numeri-
cal factor. Although the threshold for filamentation is lower than
that for absolute parametric instabilities, the growth rate is
slower /,16;

v
0
- wpi . (36)

<
[
ST

This is a factor (wi/wo)l/z smaller than that given in Eq. (18)
for SBS.

The preceding picture of self-focussing is well-known;
indeed, it was the first application of the ponderomotive force.
This phenomenon, however, can also be considered a parametric
instability in which the ion wave ki is at right angles to k,, as
in Fig. 12C. Since k; is small in this limit, the anti-Stokes
process k, = kg+tky is indistinguishable from the Stokes process
52 = 50-51; and both must be considered. Filamentation is, there-
fore, a four-wave, rather than a three-wave, interaction.

[The anti-Stokes diagrams corresponding to Fig. 12 are obtained
by reversing the directions of the ky arrows.] The forward-
scattered waves k; interfere with the incident wave to produce
the refraction and self-focussing in the usual physical picture.
The geometry of this instability is identical with that of the
OTS instability (Fig. 3), and both are non-convective. However,
Since k, is a light wave, the simplification kg << ky cannot be
made in filamentation.

OPTICAL MIXING AND CASCADING

By using two lasers with a frequency difference, it is
possible to couple strongly to an underdense plasma by making
wp-w) = w,. This was first suggested by Kroll, Ron, and Rostokerl”
and experimentally tested by Stansfield, Nodwell, and Meyer!®8.
Recent work!9,20,21 treats nonlinear saturation and plasma inhomo-
geneity. Fig. 15 illustrates the basic idea. In the Raman process

two electromagnetic pump waves wy and w, beat with each other to
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Fig. 15. Laser-beating at Aw = wp

generate a plasma wave w;, such that w,-w, =wj=w , k,-k, = ky=2kg.
The plasma wave, in turn, interacts wigh %he inc?deﬁ? waves to
change their amplitudes: the higher-frequency wave wgp is damped,
while the lower-frequency wave w, is enhanced. The interaction is
strongest with k, = -k;, as shown. This process will be recognized
as just stimulated backscattering: the backscattered wave w;, with
the proper frequency shift, is imposed on the plasma, so that it
does not have to grow from thermal noise. The threshold, therefore,
is lower than in SRS. The theory differs only in that the amplitude
of wy is assumed fixed, with the consequence that the w_ oscillation
grows linearly with time rather than exponentially.

It is tempting to try to heat a plasma by this anomalous ab-
sorption process. For instance, the 10.6u and 10.2u lines of the
COp_laser can beat to couple with a plasma of density 1.5 x 1016
cm‘s, or the 10.6u and 9.6u lines with n = 1017 ¢p-3, Unfortunately,
the energy given to the wave w; is much less than the energy
exchange between wp and Wy Tﬁis is a consequence of the conserva-
tion of action. From a quantum mechanical viewpoint, the energy of
a wave is W = Nhw, where N is the number of quanta. Since N is
conserved, one has

—_—F = = = > (37)

where W, is small because wj << wg,wp. However, the wave momenta
p = Mhk are such that they add rather than subtract, and electro-
magnetic momentum can be transferred to the plasma to achieve low-
frequency coupling?2,

To circumvent the restriction on energy coupling, Kaufman et
al.?3 suggested a cascade process (Fig. 16). Two incident beams
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ks kp

Fig. 16. Decay of wave vectors in cascading.

wg,kp and wj,k) undergo forward scattering to produce a plasma

wave wp = wg-wl, k; = kg-k;. The plasma wave then interacts with
kj to produce w, = wj-w,, ky = kj-k,, and so forth until the laser
energy is almost all converted into plasma waves. Repeated
k-matching, unfortunately, works only for forward scattering, which
is wp/wg times less efficient than backscattering. Because of this,
the ghreshold for cascading is rather high.

KINETIC INSTABILITIES

There are a number of parametric instabilities involving reso-
nant particles which cannot be treated by fluid theory. One of
these is nonlinear Landau growth, discussed previously. Another is
a kinetic modulational instability, which is driven by particles
resonant with the group velocity v of a large amplitude wave.

The physical mechanism is made clefr in Fig. 17. The ponderomotive

Fig. 17. Mechanism of kinetic modulational instabilities.
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force associated with the envelope of a modulated wave interacts
with particles traveling near v to produce Landau damping or
growth, depending on the sign o% fo' (v

The plasma laser is an interesting idea suggested by J.M.
Dawson. Let a density ripple of wavenumber k; exist in a plasma,
and let a light wave E, with frequency wq and kg << ki be imposed
(Fig. 18). As in the_8TS instability, a high- frequency field E;
is set up by charge separation. The field Ej is the sum of two
waves with phase velocities +w0/k. and can therefore interact with
particles at these velocities. If" the electron distribution is

B ————_— Eo(wo)

Eq
—
+ -
l‘l1 ++ iy
E4 MOVES WITH vy = ""Olki
RESONANT PARTICLES:
f(v) fv)
i=0 i*0
k; k; k; k;

Fig. 18. Mechanism of the plasma laser.
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symmetric, no instability occurs. However, if a current exists in
the plasma, so that f(v) is shifted as in the lower right-hand part
of Fig. 18, the resonant particles can feed energy into Ei, and
hence Eg. Thus, lasing action occurs without molecular transitions.

10.
11.
12.
13.
14,
15.

l6.
17.

18.

19.
20.
21.
22.

The author is indebted to Prof. George Schmidt for a large
number of clarifying discussions.

z o 2E=EX (@}
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-L. Stansfield, R. Nodwell, and J. Meyer, Phys. Rev. Lett. 26
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