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Task II-1369

DSP THEORY FOR EXPERIMENTALISTS

Francis F. Chen, UCLA

A. Introduction

Our purpose here is to elucidate the physical processes involved in
charge neutralization and wave propagation in the Dawson isotope separation
process using the two-ion hybrid resonance. 1t is well known that for kl /kl
<< (lll/M)l/2 a resonance occurs at the lower hybrid frequency w = (wcﬂc)l}z,
while for kll/EL >> (m/M)]'/2 the plasma supports an electrostatic ion cyclotron
wave obeying w2 = ch + kiFSZ. For kll > KL’ the dominant effect should be
an ordinary ion acoustic wave. How does the two-ion hybrid fit into this

scheme, and how does its frequency change with the angle of propagation?

To answer these questions, we start with the simplest set of equations
that still contain all the important effects of linear wave propagation.
The long list of simplifications will be removed one by one in subsequent

papers as more complicated phenomena are treated.

B. Simplifying Assumptions and their Implications

1. Unbounded, homogeneous plasma. Homogeneity implies the absence of

dr;ft-wave or Kelvin-Helmholtz effects arising from zero-order drifts. Un-
boundedness in space and time means that the excitation process is not considered -
i.e., the finite transit time and excitation time of the resonating particles

are neglected. Less importantly, the eigenmode structure of the waves within

the vacuum vessel is also neglected.

2, Fluid jons and electrons. The use of fluid equations without a

viscosity term implies the neglect of two types of kinetec effects. The

first is, of course, Landau and cyclotron damping. This occurs whenever w

or qtpwc is close to kllvthermal for either ions or electrons. Incorporation
of these effects in a homogeneous plasma is straightforward and involves adding
the plasma dispersion function (Z-function). In an inhomogeneous plasma,
inverse Landau damping could lead to drift-wave excitation. The second effect
is finite Larmor radius. For the bulk plasma, this effect is small, but for
the spun-up particles this effect is dominant. Thus, we are omitting the

effect of the accelerated particles on the wave.



3. Collisionless plasma. This assumption is made only to simplify the

algebra. Collisions with neutrals can be included easily by the replacement of
W with wtiv in appropriate places. Coulomb collisions are more tedious to
incorporate, particularly in an inhomogeneous plasma, since the cross section
is density dependent. The main effect on the bulk plasma will be to broaden
resonances and shift their frequencies slightly. In an inhomogeneous plasma
there will also be a tendency toward self-excitation due to the resistive drift
wave effect. For the accelerated particles, of course, collisions can be a

dominant effect in determining their energy.

4, Electrostatic waves. The neglect of electromagnetic terms is justified

if the phase velocity is less than the Alfvén speed (w/kl' >> cA), as is
the case in DSP experiments. The theory, however, extends to regions where

this inequality is violated; the dispersion curves will be shown dashed there.

5. Quasineutrality. We assume n_ = ZZini rather than use Poisson's equation.
2

This results in an error of order k XD <<1l. 1Including this term is trivial

but unnecessarily complicates the algebra.

6. Cold ions (Ti = 0). This simplification has three effects, all of which

are unimportant. First, T, increases cg slightly in a plasma with Te >> Ti'

i

Second, parallel T, causes ion Landau damping, which is important only‘for kII/KL

i

larger than occurs in experiments. Third, perpendicular Ti causes finite Larmor radius

effects, which should be very small for the bulk plasma.

7. Plane waves. We assume infinite plane waves. Cylindrical geometry
complicates the algebra but does not introduce new physical effects. Also,
plane waves comprise both right and left circular polarizations, so cyclotron

resonances are included.

8. Low frequencies. We neglect electron cyclotron effects by assuming

W << -
We

C. Linear dispersion relation

1. Equation of motion for ions (linearized)

v _
Mg 5y = Znge (E+ wa) W)
For v « e_ﬂ”t, this has the solution
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2. Equation of motion for electrons (linearized)

mn_ T— = -en (E+va>-—KTVn,
o \— -0 -

where T = Te (Ti = 0), and the electrons are taken to be isothermal.

(2)

(3)

(4)

The elec-

trostatic approximation allows us to replace E by -V¢ and to combine the E term

with the yn term. Defining
_ kT n
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o

we see from analogy to (2) that the solution to (4) is
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3. Plane waves.

generality, take the x-axis to lie along E. Thus,

v+ ik, k_=0, k

y < kz # 0, and

= tan 6 = T X

|=

Y
|o

(5)

(6)

We now assume Y « exp (ika) and, without loss of



Eqs. (2) for the ions then become

Y
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As for the electrons, we may neglect 1 compared to wcz/w2 in Eq. (6), but we
must retain the first-order terms in mﬂnc (the polarization drifts) because

otherwise we would lose the lower hybrid resonance. Egs. (6) then become

:e_kx_%_
Ve " Tm wZ V¥
c
v = ieky " (8)
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4, Electron continuity equation (linearized)

3n ( )=

et Ly 0, (9)
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—-—=°~<kv +kv> (k=0) (10)
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This can now be used in Eqs. (8) to solve for v in terms of ¢, with n

eliminated. The result is
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where
k 2 k 2 -1
_ KT X __z
s = [l + ‘—m (—‘(D ) "—'2 ) ] (13)
C w .

Note that y, as defined in (5), is the deviation from a Boltzmann electron

distribution. The latter would give

_ e¢/KT - ed _
n +n = n_e s n no%T e Y 0. (14)

The velocity components, proportional to {/m, would then be in the indeterminate
form 0/0, since (14) is valid only if m > O. We keep the effect of electron

inertia in v, 8o that we can see what happens at very small k This gives

v, a finite value in (12¢). Although the deviation from Boltiiann arises from
inertia in the parallel motion, the perpendicular components v and vy are

also affected; in fact, they are also proportional to y. This is because the E
and Vn terms in the equation of motion normally cancel, and only the

deviation from Boltzmann gives a net force from E and Vp. Finally, note that
if T > 0, s becomes 1, and Eqs. (12) reduce to the usual formulas for the
polarization drift (vx) , the ExB drift (vy), and acceleration due to E

11 V)

We now substitute Egqs. (12) back into Eq. (10):

k 2 k 2
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Remembering that n = n, here, we finally obtain

n kx2 kZZ -1 |-1
—£ == v.2+ | =5 - — , (15
n, * 1Ven 02 w2 )
where
- 1/2
Vep = (KT/m) (16)

5. Ion continuity equation (linearized). Egq.(10) also holds for each

ion species j. Substituting (7) into (10), we obtain

n, 2,¢ Q.2 \-1

S, K R PR . (17)
n_, U’ZB z X m2

oj .

6. PRoisson's equatiop. For two ion species (major species 1, minor

species 2), we have

V o E = 4re (Zlnl + Zyn, - ne) = 0, (18)

The r.h.s. is set equal to 0 according to the quasineutrality assumption

discussed earlier. For the unperturbed densities, we have

Zlnol + 22n02 =n ., or Zlul + Zzaz =1, | (19)

where o = L /noe (20)

Substituting (15) and (17) into (18) for the perturbed densities, we obtain

the dispersion relation:

2 2 \o1]
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Defining the sound velocities

_ 1/2
Coy = (?j KT/Mj> , (22)

we can write this as

2 2 2 2
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The space change effects appear explicitly here: Term A is that due to the
major species, term B that due to the minor species, and term C that due to the

electrons., Eq. (23) can be written

2 2 2 2 2 2
1 kx th kz Vih -1 o 2 kx + kz + 2
® 2 o2 1 %1\ 2 2 %2¢s2
c w - Q w
1
k, K,
5 7t =1 (24)
w - QZ w

D. Limiting cases

1. Strictly perpendicular propagation (kz = 0). In this limit, Eq. (24)

becomes
“e “1k2°§1 0‘zkzciz
1+ + =1 . (25)
kzv2 wz - Qz wz -0 2
th 1 2

The "1" on the left can safely be neglected, since the condition kzv%h << wcz

must be fulfilled anyway, if cyclotron damping is to be ignored. Since

o2 2.2 2(
c ke Y KT/MI) 2y ey

2 2 2 2 - (2 2)_ 2 2 s
k Vih we - Ql (KT/m) wo - Ql w" - Ql



we have

o, a0 .
- 11 - 22 _ 1 (26)
w’ - ni wo - Q% We

(a) (B) (c)

a) Lower hybrid. This quadratic in w2 yields two roots. We assume

a, << o, * 1, since "2" indicates the minor species. The upper root is not

2 1
greatly affected by the a, term, since y will turn out nowhere near QZ; hence

we neglect term B and obtain

= 2 ~
w 7 t ol T el . (27)
This is the lower hybrid frequency of the major species. The term in Qpi

which normally appears in the lower hybrid is missing here because we did not

use the full Poisson equation., It is trivial to include it if one wishes.

b) Two-ion hybrid. The lower root of the quadratic can be approximated

as follows. If  1s sufficiently close to Qz, term B in Eq. (26) can be

larger than w;l even for small a, - Neglecting term C in Eq. (26) is tanta-
mount to neglecting electron space change and requiring the two ion species

to cancel each other's space charge. It is clear from (26) that this can occur
if w lies between Ql and Qz. Setting the sum of A and B in (26) equal to O,

we obtain

2 2 2
w (alQ + a,.0 ) = .0, Q. + a,0, 0

1 22 271 2 12 11
wz = Q.0 M (28)
12 alﬂl + uzﬂz

This is the Buchsbaum two-ion resonance frequency, which clearly

approaches 92 as o, becomes small. Eq. (26) shows clearly that the smaller

o, is, the closer wmust be to §, in order for term B to dominate over term

2 2
C. Thus, the resonance is sharper for lower 0oy and the minor species is
preferentially excited in a self-adjusting manner. Of course, in this

particular case‘(kz = (0), the electron term is small, arising only from the



the polarization drift across Bo' When electron flow along Bo is allowed, the

electron contribution to space change will be much larger, and the 2-ion reso-

nance correspondingly sharper.

c. Physical intepretation. These two oscillations may be pictured

as follows. In the lower hybrid, the major ion species has a velocity given

by Eq. 7, while the electrons have a velocity given by Eq. (12). Ifw = (mcﬂl)l/2
is substituted into Vi and Ve it is seen that they are nearly the same.

Since all the gradients are in the x direction, this means that these two fluids
move together and have no change separation. Looking at the y components, we

see that Vye is wc/w times larger than vxe; hence, the electron orbits are
elongated in the y direction. The ions have vyi smaller than Vi by a factor

Qllw, so the opposite is true for the ions, as shown in (a) below.

() 2 ©L

(minor)
(a) (b)

The signs of the vy terms yields the gyration directions shown. These happen
to be the same as for the cyclotron motions, even though the LarmOr gyrations
have been neglected in this simple picture. The electron orbit is the result
of a polarization drift in the x direction and an ExB drift in the y direction.
(The polarization drift is the motion in the direction of E which occurs in the
first half-cycle of a cyclotron gyration after E is suddenly switched on or
changes sign.) The ion orbit results from an equal polarization drift in the x

direction and a reduced ExB drift in the y direction, reduced because Qc << .

In the 2-ion hybrid, let Qz > Ql for definiteness. The frequency (28)
results from setting the vx's in Eq. (7a) equal and opposite the each other for
the two species when multiplied by noj' This can occur only if Ql <yp < 92.
The sign of the vy term is -i for species 1 and 4+i for species 2, showing

that the heavier species gyrates in the normal direction, while the lighter
species goes oppositely. Since vy is Q/y times as large as Vs the orbit

is slightly elongated in the x direction for species 1 and in the y direction

9



for species 2. This is shown in figure (b) above. The orbits are not equal
in size because the velocities must be weighted by aj so that the ion currents

in the x direction are equal and opposite.

2. Propagation at "large'" angles 6. Consider the electron term C in
pag:

2 2
Eq. (23). For kz/kx >> m/M, the (kzvth/w) term dominates over the (kxvthﬂuc)
term when w is in the ion cyclotron range. Furthermore, if (m/kzvth)2 <L 1,
the kz term can be neglected, and the term C reduces to 1. This is the limit

of Boltzmann electrons.

2\ -1
Consider now the terms A and B. If ki >> ki ( -E%Z) s
w

the dispersion relation simply becomes

2 _ .2 2 2
w kz <&lcs1 + ayCs, ), (29)

which is an ion acoustic wave with qz weighted by the relative abundances.
On the other hand, there is a large range of kz where it is small enough to be
neglected in A and B but large enough to make term C equal to 1. 1In this range,

Eq. (23) becomes

(wz - “i) <m2 - sz%) ) (30)

. . 2 .
This is a quadratic in w~ with two roots.

a. Electrostatic ion cyclotron wave. The first root can be found

by neglecting the minor species 2. We then have

2 _ 2
w® = a2 +ki (KTe/Ml). (31)
Introducing the a, term as a perturbation to this solution, we find
K &
2 ®2%x s2
W=+l &) (1+ak2c2 e 32)
17x “sl 1 2

10



This is the electrostatic ion cyclotron wave in the presence of two ion

species.

b. Minor species resonance. The second root must have w = 92,
so that the a, term can become comparable to the others. Taking w= 92 + e

and expanding in e, we easily obtain

2 2 2 2 QZZL B 922
W =0 +a)lc — - (33)
2 2x s2 ulkx csl + ﬁ{' Q%

This is a cyclotron resonance of the minor species, with a frequency shift
different from that of Eq. (28) for the 2-ion hybrid. Here the minor species
space charge cancels the sum of the electron space change and the major
species space charge. If the major species did not participate, the first
term in Eq. (30) would be dropped, and the fraction in Eq. (33) would be unity.
If the electrons did not participate, the r.h.s. of Eq. (30) would be dropped,
and we would recover the 2-ion hybrid, Eq. (28). Thus, a wave withw2 = sz +

0 (az) exists for both "large" and small k,. These lie, however, on different

branches of the dispersion curve, as the following computation shows.

E. Computed dispersion curves

1. Dimensionless form. Denoting the major species by "1" and the minor

species by "2", we define the following quantities normalized to species 1:

nol

y @, = (; - Zlal)/z2
oe

Q = w/Ql, R = QZ/Q1 = (M1/M2> (ZZ/Zl)

3
1

tan ¢ = kz/kx’ ay

=]

2
cg Z, KT My M\ (2,
. = . = f— . = R
Cs M, Z,KT \M, J\Z, (34)

1



The dispersion relation (24) can be rewritten

2_2\-1 2
|:1+(K25—K§)]|}1K2—-21 +—T—2-+
eQ N°=-1 Q

or

2 1 2
1 T T 1
o (=2 + L )+ aj[——— + &)= (35)
2,2 _ 2
(4) (B) (V) (D) (B)
nl 1'12 ne

The three terms correspond to the first-order Ny, M, and n_, as indicated.

2. Behavior of the electron term. We are interested in how the nature of

the roots Q changes with T (i.e., with kz for given kx). If Q@ were fixed, the

term E representing the electron space charge would vary as follows as T is

changed.
®n, |
1!
2 = - - = -
K

€ F~\\\\\\‘ ‘
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° f jare T

K
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a) When T is 0, the n, term is small (ve) because the wavefronts
are parallel to Bo’ and the only way the electrons can move at low frequency
is via their small polarization drifts. There are two roots. If term A in

Eq. (35) balances term E, we get the lower hybrid frequency 92 = e—l. If term

A balances term C, we get the 2-ion hybrid QZ = R2.

b) As T is increased, one first arrives at a point whyﬁre T = €Q,
and n, = 0. This happens at very small kz such that the electron motion parallel
to Bo cancels the effect of electron motion across B . Clearly, the lower hybrid

o
cannot exist here. Since Q = e—l/z for the lower hybrid, this occurs at T =

5/51/2 = 61/2; hence the well-known result that the lower hybrid cannot exist

for Ikz/kxl > (m/M)l/z. On the other hand, the 2-ion hybrid persists (T = ¢R

for it), because the electrons are not involved in this resonance anyway.

¢) As T is further increased, the electron term is approximately

This goes to + = at T = Q/e/k. To balance the large electron density, one or

the other of the ion terms must be large; this can happen only near a cyclotron
resonance. Thus, one would expect roots near Q = 1 (major resonance) and

Q¢ = R (minor, or 2-ion, resonance). However, the condition T = QVe/k corresponds,
in either case, to w/kz = Ven? which implies strong electron Landau damping.

Thus, both resonances are inadequately described by fluid theory in this region.
In fact, it is just the resonance of electron parallel motion with ion

cyclotron motion that caused n, to diverge in the first place. This effect is

non-physical, because all electrons do not have a common velocity Vehe

d) For larger T, the electron term reduces to K—Z, independent of m/M.
This is the limit of Boltzmann electrons. Terms B and D, representing ion
acoustic effects, can still be neglected if T << 1. When term A balances term
E, we have the electrostatic ion cyclotron wave. When term A balances term

C, we have the two-ion hybrid.

e) For large T, term B eventually dominates the ion motion except
near the cyclotron resonances. If the electron term is K—Z, terms B and E
yield w = kzcsl, the ion acoustic wave of the major species. If Q is
sufficiently close to R, term C can balance term B, with E being a small

correction. This yields

13



a, T azR
+ = 0,
2 QZ _ R?
2
a,T
Q2 - R2 1 - RZ, w2 - Qz2
alT + azR

Thus, the minor resonance survives even at large T. The same is true for the

2

. 2
major resonance, because for T® >> Q° terms A and B can cancel each other,

with E as a correction term. We then get

Z

The frequency must lie below Ql in this case. For both these cyclotron waves,

one must have

kz < Qc/vthi

to avoid ion Landau damping.

Because of its insensitivity to electron motions, the minor resonance
£,

has the remarkable property thagfexists over almost the whole range of kz/kx'
A

3. Computation. For illustrative purposes, we have computed the dispersion

relation (35) for parameters appropriate to MIlA:

14



Argon

=

]
£~
o
mf
=

L]

, =30 My

= .0036

e N

W

.

O

(Yo}

o

£

e N
[\

o
l—l

B
R = 10/9, e = 1.362 x 10'5
k

= m/r = 8/4 cm_1 (this corresponds to an m = 8

X
excitation of a l6-segment plate)
Ql = 7.186 x 105 sec_l
cg . =2.19x 105 cm/sec
1
2

K“ = 0.371 (fixed, while T is varied)

Eq. (35) can be solved for Q(T) on an HP-25 calculator by iteration. Such
root tracing, however, incurs troubles when the curves cross. Alternatively,
Eq. (35) can be solved directly for T(Q), since it is a quadratic in T2.
Unfortunately, the equation is too long for the 49-step program of the HP-25,
and furthermore there is a problem of underflow when subtracting two large
numbers in finding the lower root. The following overlapping approximations,

however, give accurate results.

a) Far from cyclotron resonances. The quadratic for T2 has the

solution

Q 2A - B , Where (36)
A=x2(a, +a R
- 1 2
o a,R
B=E14+ (e + Kzez) (al + az R) - Kz 21 + 5 Z >
Q 1 ¢ - R

a
m
]
N
I
—_——
%]
+
=
[y
[}
-
SA
N
Q
I =
H
+
2
3%
Q
' N
=5
w
ro
\—/

If the denominators in C are not resonant, C is always small, and the square

root can be expanded. We then obtain

15



2 2(B _51)
Tyo= o (A B (37)
_2C
T = Q B - (38)

b) Near the cyclotron resonances

Small T (T << 1): 1In this case, since Qz =], the acoustic terms

B and D in Eq. (35) can be neglected, and we have

o a.R
K2 + € > 5 1 + ; 2 - =1 . (39)
2 T N” -1 Q" - R
e -3
Q
Defining
a o,R
2
Qs (40)
Q" -1 Q- - R
we have the solution
le 1
P G ey B (41)
Q k® - Q

Large T (T >> 51/2):

the electron term E in (35) to K—Z. Thus, Eq. (35) becomes

o a.R 2
Kz[ 2 4 ) 2 7 25' (al + 0‘ZR)]= L (42)
Q- -1 Q" - R Q
whose solution is
T22 K-z - Q
= , with Q as in (40). (43)
Q2 oy + azR

16

Here we retain the acoustic terms but can simplify



4, Results. Fig. 1 shows the frequency Q =w/Ql vs. T = kz/kx over 10
orders of magnitude in T. Regions where kinetic or electromagnetic effects
are large are indicated by the dotted lines. It is seen that most of the
curves lie clear of these regions. Cyclotron damping has not been shown,
but the same is true for that. In particular, these effects are unimportant

in the region of experimental interest, shown by the circle.

There are three branches representing essentially the waves in the major
species alone, plus a straight line representing the two-ion or minor species
resonance. The upper branch starts at the lower hybrid frequency (Q = 271),

and at T = el/z changes to a modified electron cyclotron wave

w = w_ tan 6. (44)

This frequency is the result of the vanishing of the electron denominator
2
(e

density perturbation can be made arbitrarily small through a cancellation

= TZ/QZ) in Eq. (39). This means that at this frequency the electron

of the x and z motions of electrons, and therefore a small ion space charge
can be neutralized regardless of what it is exactly. If the term of order
wzlJi had been kept in the electron equation of motion, we would probably
have obtained the more familiar result w2 = wZ sin2 8 for the cyclotron
wave in a magnetic field. In any case, this %ranch is too high in frequency

to be of interest here.

The middle branch starts, at small kz, as a lower hybrid oscillation

reduced in frequency by the finite angle:

2 2
W= wcﬂctan 8. (45)

At kz/kX = (m/M)l/z, it changes to the electrostatic ion cyclotron wave,
gseen as the flat part of the curve extending over two orders of magnitude
in kz/kx' At T = 1, this curve bends upwards into a 45° line representing

the ion acoustic wave.

The lowest branch of Fig. 1 starts as the continuation of the ion wave
wz = ki cil ; at @ = 1 it changes to an ion cyclotron wave wl ch. This
branch must always stay below ch, as can be seen from the dispersion relation

(35). In this range, the minor species term is negligible because a, << o

17



and o # 2,5 while the electron term is K—z = 0(1) (Maxwellian electrons).
Thus, the two ion terms A and B must cancel each other: the ion charge
separations due to parallel and perpendicular motions are equal and opposite.

Since TZ/Q2 >> 1 in this range, Qz - 1 must be small and negative.

So far, the waves we have described involve the major species only.
The minor species is so dilute that its effects are felt only near the
line drawn at @ = R. The fine structure near the minor resonance can seen
by expanding the scale, as in Figs. 2 and 3. The horizontal scales are
the same in these two graphs, but the vertical scale is successively
expanded. It is seen how one branch goes from the two-ion hybrid into
the electrostatic ion cyclotron mode, and the other branch goes from the
frequency-reduced lower hybrid into the minor species cyclotron resonance.
The frequency shift from 92 is slightly different on either side of the
intersection. The region of the major resonance has not been shown on

an enlarged scale because there is no fine structure to be seen there.

5. Further results. We have also computed a case where QcZ < ch;

namely, a U238 minor species in an A40 major:

M1 = 40 MH M2 = 238 MH
z, =1 Z, =1
a, = 0.9977 a, = .0033
KT = 2 eV KT, = 0
e i
B = 15 kG n =3x 107 a3
(o] [o]
R = 0.168 e =1.362 x 10™°
1

k =8/(5cm) = 1.6 cm

Ql = 3,59 x 106 sec_l 92 = 6.04 x 105 sec—1
5

cg1 = 2.19 x 107 cm/sec Cgp = 8.97 x 104 em/sec
2 3

k" = 9.53 x 10

18



The resulting dispersion curves are shown on Fig. 4. The minor species
resonance is seen to extend over all values of kz/kx with undiscernible
frequency shift. The electrostatic ion cyclotron wave in this case lies
far from the minor resonance. Figures 5 and 6 show the structure near
ch on successively larger scale so that the frequency shift can be seen.
Figure 7 shows the structure near the major resonance ch. Note that
excitation of the major resonance could be achieved if either branch near
2 . were excited. The right-hand branch, with w R

cl cl’
ity lying well within the ion velocity distribution and would be Landau

has a phase veloc~

damped. But the electrostatic ion cyclotron branch in this case should
be observable; and, since its frequency is within.O.SZ of‘ch, it should
be capable of accelerating argon ions for over 100 cyclotron periods.
The relative difficulty in detecting a major resonance with a radial
energy analyser may be due to the fact that the wave saturates before
the ion orbits become large. For the minor species, since there are few
resonant particles, their orbits can become large even if the amplitude

of the wave near Qc2 is small.

Finally, we have computed the case of a 50-50% D-T mixture, in which
the two ion species play equal roles. Our previous approximations [Egs.
(37), (38), (41), and (43)] are still valid, since they did not depend on

the smallness of o,. Taking tokamak parameters, we have:

2
Mp=2M My =3 My
Z1 =1 22 =1
oy = 0.5 az = 0.5
KTe = 1 keV KTi =0
B = 30 kG n =3x 107 3
o o
R = 2/3 e=2.723 x 10°%
k.X = 8/(4 cm) = 0.2 cm_l
Ql = 1.437 x lO8 sec_l QZ = 9,58 x lO7 sec—1
7
€1 = 2.19 x 10" cm/sec Cyp = 1.79 x 107 cm/sec

2 =9.28 x 107°
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The result is shown in Fig. 8. Because neither ion species plays a minor
role, the wave frequencies do not lie close to either cyclotron frequency.
The two-ion resonance occurs at the geometric mean gyrofrequency, and

there are two electrostatic ion cyclotron waves. The two cyclotron waves
for kz > kx are Landau damped. The two isotopes cannot be separated when

their concentrations are comparable.

F. The Space Charge Problem

Although this simple treatment was not designed to address the problem
of space charge, much of the physics is already clear. As long as the plasma
is unbounded, it can provide space charge neutralization for waves near the
minor resonance. If kz/kx < (m/M)llz, the major species moves so as to

cancel the space charge of the minor species. If kz/kx > (m/M)l/2

, the
electrons move back and forth along the magnetic field to cancel this space
charge. Which mode will occur in practice depends on the sheath bounding
the plasma axially. In either case, a wave near QZ can be propagated from

an electrostatic exciter and will cyclotron-accelerate the minor species.

If the plasma is bounded, and the spun-up species goes outside the
plasma, space charge cancellation will not occur naturally. In a plasma
with a gentle radial density gradient, space charge problems will occur
only outside a radius where the main plasma does not contain a sufficient
reservoir of charge (major ions in the small k case and electrons in the
intermediate kz case). The collector, therefoie, must extend into a plasma

of finite density.
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