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Waves such as drift waves and lower hybrid oscillations in a plasma are sensitive to the degree to which
charge neutrality can be maintained by electron flow along the magnetic field. When the plasma is
bounded axially, the sheath conditions on the end plates determine the parallel wavelength. It is found
that the nature of the bounded modes depends on whether the motion of electrons is resistive or inertial.
If it is resistive, the sheath matching conditions can be satisfied by standing waves with the proper
wavelength. If it is inertial, pure standing waves are not possible; there must also be a variation of phase
along B. Application is made to two-ion hybrid waves in connection with isotope separation.

I. BACKGROUND

It has long been recognized' that the frequencies
and wavelengths of waves excited in finite-sized labora-
tory plasmas depend on the boundaries. Plasma bound-
aries are covered by sheaths, and it is not always suf-
ficient to assume that the perturbation amplitude vanish-
es at the wall. Here we treat a problem which appar-
ently has not been addressed in the past. For instance,
the Tonks-Dittner resonances of electron plasma waves
in a finite plasma have been studied in great detail,? but
the concern was with the density gradient and, hence,
variation of w,, in the plasma rather than with the
boundary condition at the wall. The change of sheath
potential and the flux of electrons into the wall were
neglected. Similarly, papers dealing with the reflection
of ion waves at boundaries,?® although treating the sheath
problem adequately, do not address the effect of elec-
tron flow into the wall. In connection with rf heating of
tokamak devices, there is current interest in toroidal
eigenmodes. These do not encounter axial boundaries
except in the region outside the aperture limiter; for
that region the results presented in this paper may be
of some interest.

We consider the following problem: Waves with k, /k,
<1 are excited in a plasma in a strong magnetic field
B,. The plasma is infinite in the directions perpendicu-
lar to B, but is bounded in the direction of B, by hot or
cold end plates. Waves such as a lower hybrid or a
two-ion hybrid* wave can exist if the fluctuating ion
space charge is neutralized not by electron flow along
B, but by perpendicular electron or secondary ion mo-
tions. In an infinite plasma, this requires &, /k,
< (m/M)"2, In a plasma bounded by cold end plates,
the electron flow is basically interrupted by the non-
emitting plates, but a small neutralizing current can be
provided by a modulation of the steady-state electron
loss to the plates through the sheaths. If electron con-
duction along B, is too good, the lower hybrid turns
into a high-frequency electron wave and the two-ion hybrid
into an electrostatic ion cyclotron wave.

Waves such as the collisional drift wave® are also
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sensitive to electron flow along B,. If it is too good
(that is, if B, /k, is too large), the drift wave turns
into an ion acoustic wave. If it is too poor (that is, if
k,/k, is too small), the drift wave cannot exist, but
there can be a flute instability propagating opposite to
the electron diamagnetic drift direction. We have
shown previously® that resistive drift waves in a @
machine of length 2L have k; determined by

kyLtank,L=f(T,) , (1)

where f(T_) is a number depending on the plasma
parameters and the temperature of the emitting end
plates. If electron emission at the ends is large,

S(T,) is » 1, so that the lowest eigenmode is given by
kyL=%n. This is the usual case where the wave am-
plitude vanishes at the boundaries. If electron emis-
sion is small or zero, f(T,) is small, and consequent-
ly 2, Lis small. The wave then has an effective par-
allel wavelength longer than the plasma. This is pos-
sible because the sheath on a cold conductor behaves like
a good insulator. The validity of Eq. (1) has been check-
ed experimentally by Rowberg and Wong.’

This simple result does not apply to a wave like the
two-ion hybrid in a collisionless plasma. There, the
electron parallel motion is controlled by electron in-
ertia rather than by collisions with ions. Because of the
90° difference in phase between a resistivity -dominated
current and an inertia-dominated current, a simple
standing wave in the axial direction cannot satisfy the
sheath-matching conditions on both end plates at the
same time. However, it will be shown in this paper that
a standing wave with an axial phase shift will satisfy the
boundary conditions, giving rise to a rather unusual
eigenmode of the system.,

Il. SHEATH MATCHING CONDITIONS

Consider a plasma that is unbounded in the x and y
directions but bounded by flat conducting plates in the z
direction, as shown in Fig. 1. In the unperturbed state,
the plasma density n, and potential ¢, are assumed to
be uniform except in the sheaths, where ¢ changes rap-
idly to zero at the conducting boundaries. If the end
plates are “cold” (i.e., emitting fewer electrons than
they receive from the plasma), ¢, will be positive, as
in Fig. 1(a), so as to retard the loss of electrons from
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FIG. 1. Schematic of equilibrium potential variation for (a)
ion-rich and (b) electron-rich plasmas.

the plasma. If the end plates are “hot” (i.e., emitting
more electrons than the number escaping), ¢, will be
negative, as in Fig. 1(b), so as to reflect the excess
electrons back to the plate,

For the case ¢,>0 (the usual case), the assumed den-
sity profile in the plasma (8n,/3z =0) can only be satis-
fied approximately, because sheath formation requires
that the ion fluid at the sheath edge have a directed vel-
ocity®

vp (KT, /M) (2)

(the Bohm criterion). (The factor { does not appear in
the usual sheath criterion. Here, it accounts approxi-
mately for the decrease of density in the presheath, so
that the current computed from vy is more nearly cor-
rect.) To produce this drift, there must be an electric
field accelerating the ions in a presheath, whose scale
length depends on such quantities as the ionization
length or collision mean-free-path in the plasma. We
make the basic assumption that the presheath gradients
can be neglected compared with those in the sheath.
We can then write the net flux of electrons info an end
plate as

I'* =nv, exp(-e¢/KT,) -], , (3)

where v, is the random electron velocity in one direc-
tion,

v, = (KT, /2mm)" 2 | 4

and j,; is the thermionically emitted electron flux®
J¢=ART? exp(— eW/KT,). (5)

Here, T, is the cathode temperature, Wis the work
function, and A, is the Richardson constant, 7.5x10%
cm™? sec™! °K~2, The + sign indicates ¢,> 0 (ion
sheath).

If ¢,< O (the case of electron-rich @ machines or
space-charge-limited cathodes), no presheath is needed
to accelerate the ions, and the gradients in the plasma
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can indeed vanish. The net electron flux into the end
plates can be written

I'~=nv, -j, expep/KT,) . (6)

If a wave is present in the plasma, the flux I'* or T
will fluctuate as the values of n and ¢ at the sheath edge
fluctuate. In the steady state, the electron flux is bal-
anced by an equal ion flux into the end plates. A wave
upsets this balance and causes a net flow of electrons
inte or out of the end plates. We make a further assump-
tion that the ion flow does not fluctuate. This flow ean
change only if the presheath changes, but the waves un-
der consideration have periods much shorter than the
transit time of an ion through the presheath or a parallel
wavelength. In equilibrium, there is ambipolar flow of
electrons and ions into the end plates, and Eqs. (3) and
(6) read

Ty=n,v, exp(-e¢p,/KT,)-j, =ngw, , (7

Ty =nv, -j(edpy/KT.)=np,, explep,/KT;) , (8)

where the + and - signs stand for ¢> 0 and ¢< 0, re-
spectively, and n,v;, is the random ion flux. Note that
when j, =0 (cold end plates), only the case ¢> 0 is
possible, and Eq. (7) then states

edy _1n¥% .1 (2 M
KT, In v 2 In Tom) (9)
When j, is at all appreciable, the right-hand sides of
Egs. (7) and (8) can be neglected. In the @-machine
case T, =T, they both become
edp/KT, =In(nyv, /j,). (10)

When this equilibrium is perturbed by a wave, the
density and potential at the sheath edge become n,+n,
and ¢, + ¢,, respectively. Inserting these into Eqgs.
(3) and (6), linearizing, subtracting the equilibrium
values of Eqs. (7) and (8), and assuming that j, and the
ion fluxes are unperturbed, we obtain the following
first-order electron fluxes info the sheaths:

.. ego\(n, _e
riomer ()5 KR @
Iy =n,v,n,/n,) - (nyv, ~T; Yeo,/KT,) . (12)

Here I'; is the right-hand side of Eq. (8) and can safely

be neglected relative to n,v,. Defining
v=n /n,and x= e, /KT,, (13)

we may write Eqs. (11) and (12), with the help of Eq.
(7), as

T =(ngug+j Hv-x) (14)

and
T =nyv, [v=-x(T,/T,)]. (15)

These fluxes must now be matched to the electron
fluxes in the wave. Treating the electrons as a fluid, we
may write the linearized electron flux in the z direction
as
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L,=np, +ny,=n,v, , (16)

where the zero-order drift v,, is assumed to vanish, and
the first-order fluid velocity v, is given by the equation
of motion

ov, 3 on
mn, E-tL =en08—$ ~-KT, E‘L -mngy, v, . (17

Here, v,; is the electron-ion collision frequency, and we

have assumed low frequencies such that the oscillations
are both electrostatic and isethermal. Since the plasma
is assumed to be initially homogeneous between the

sheath edges, we may Fourier analyze in the z direction:

n, ¢, ~expli(k,z ~wt)] . (18)

With the help of Eq. (13), the equation of motion (17) be-
comes

(Ve —iwv, = (KT, /m)ik, (x - v) , (19)

and the flux (16) becomes

T, =ik n (KT, /m)(v,, - iw) Yy - v) . (20)

If this flux is matched to the sheath flux of Eq. (14) or
(15) at the sheath edges, the proper neutralizing elec-
tron currents will be provided by the sheaths to sustain
the wave motions pertinent to an infinite, homogeneous
plasma. The matching determines the allowable values
of k,. When there is either an ion sheath (¢,> 0) or a
thermally ionized plasma (T, =T,.), the analysis is par-
ticularly simple. Since both expressions for I', then
depend only on v -y, it is not necessary to find v and
x separately. Otherwise, one would have to solve the
ion equations of motion and continuity to obtain a rela-
tion

v=glw,k)x , (21)

and solve the corresponding electron equations to obtain
another relation

v=h(w,k)y . (22)

Setting g(w,k) equal to k(w,k) then gives the dispersion
relation w(k) and the relation ¥(x). The sheath matching
procedure, however, can be carried out without solving
for w(k) since it depends only on the z component of the
electron equation of motion and only on the difference

v —x. Thus, the results to be given are quite general
and apply to any low-frequency electrostatic wave which
does not involve resonant particles. The case ¢,< 0,

T, > T, is an exception.

1. PRELIMINARY DISCUSSION

A. Resuits for collisional electron motion

If resistivity rather than inertia dominates the elec-
tron motion, Eq. (20) is approximated by

L, =ik n (KT, /mvy )(x - v) . (23)

1. lon sheath, ¢ >0

In this case we set I'| equal to I', at z=L and to - I,
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atz=-L. Egs. (14) and (23) then give

D O e R U (24)

atz=+ L. By symmetry, we choose the even function

v-x~cosk.z (k, >0), (25)
whereupon Eq. (24) becomes
k L tank, L=L (mv,, /n KT Ynws+j,) . (26)

This can be simplified by defining a mean-free-path

T /2
A, = v :(—LzKT )l 1 ='2£r- . (27)
Vei m Vey Vei

WithEqgs. (2), (4), and (27), the boundary condition (26)
can be written
L (v J L mm \!/2
= { B === ==
k,Ltank, L ( + > [( ZM) +

My \ U, nyu. ) A,

s
nOUI )

(28)

This is identical to the result given previously for re-
sistive drift waves,® except that the ion current term
has been added to allow a smooth transition to the case
of completely cold plates.

2. Electron sheath, ¢, <0

In this case, we set I' T equal to + ', at z=+ L,
Equations (15) and (23) yield

T, n, KT, o
- Wy _0Q0 "¢ __ -
oo, [v=x(F) il IR (29)

If T,=T,, use of Eqs. (25) and (27) leads to
k, Ltank, L=L/xA, . (30)

Except for notation, this is identical to the result given
previously® for drift waves in a @ machine. It is clear
that this simple result will not hold for discharge
plasmas with electron emitting end plates, where T,

> T,. The fact that the emitted electrons are at a dif-
ferent temperature from the plasma electrons not only
complicates the solution of Eq. (29), but also calls for
reexamination of the equilibrium for the possibility of
a nonmonotonic (double) sheath. This is deferred to
Sec. VI.

3. Numerical example

Let L=31.4cm, n=10"" cm™3, KT, =0.2 eV. Then,
A.=1cm, and Eq. (30) gives, for the lowest mode,

k, L tank,L =10, k,L=1.43=82° cosk,L=0.14.

Thus, the perturbation is quite effectively tied to the
emitting end plate by the electron sheath, and the value
of A, (=2L) is nearly what it would be if the sheath had
been neglected altogether. On the other hand, if cold
plates are used, Eq. (28) gives, for M=40 M,,,

k,Ltank, L =(10(4.6X107%)=0.05, k,L=0.21=12°,
Now the parallel wavelength is about 30L, and the fluc-
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tuation in potential occurs almost entirely in the sheath
drop. The ion sheath acts like a good insulator. For a
discharge plasma with K7, =~ 2 eV, the factor (L/7A,)
is decreased by a factor 100, since A, T2, so that

kg Ltank,L< 0.1. The sheath acts like an insulator even
for electron sheaths. However, A, is now larger than
L, and our neglect of electron inertia breaks down.

B. Results for inertial electron motion

If collisions can be neglected, Eq. (20) becomes, in
the opposite limit,

T, = (nok, /W)KT, /m)(v-Y) . (31)
1. lon sheath, ¢5> 0
Equating I'] [Eq. (14)] to T',, we obtain
w/k, =(KT,/m)vg+j,/n)"". 132)

Thus, it appears that the length of the plasma does not
matter as long as the wave has the proper parallel
phase velocity. However, if k, > 0, Eq. (32) ensures
only that the boundary condition at z = L is satisfied. At
z=-~L, we must set I'| equal to - T,

w/k, =~ (KT, /m)vg+j,/n)"". (33)
A traveling wave cannot satisfy the sheath condition at
both ends at the same time. Superposing two traveling
waves to make a standing wave does not help, since each
component has a time-varying mismatch at one end or
the other.

To find a solution, we return to the original differen-
tial equation, Eq. (17), and write it for v,; =0 as fol-
lows:

(34)

The sheath condition, Eq. (14), requiresv,, atz=% L,
to have the value

Ve=x{vg+],/m)v-x) , (35)
or

1% ]g a

ha 2 — (y-

2] i@ﬂ%)w(vv. (36)
Define

¥=v-x, a=(vg+j,/n))m/KT,) . (37
Equations (34) and (36) require that y satisfy

W _c. ¥ -

52 %5 Gtz=tL. (38)

Consider the qualitative behavior of the wave variable

¥ assuming that it varies as cos wt at the sheath edges,
as if driven by an oscillator onone of the end plates.
The lowest symmetric mode would fluctuate in the man-
ner shown in Fig. 2, with the slope large at the ends
when 8¢/8¢ is large, and hence ¢ is small; and vice
versa.
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FIG. 2. Axial variation of perturbed potential as a function of
time for the case of inertia-limited electron motion.

Each of the curves in Fig. 2 is a section of a cosine,
since the equations governing the wave motion between
the sheaths are the same as for an infinite, homogen-
eous plasma. The cosine describing ¥ can have wave-
length, amplitude, and zero-point varying with time.
Let ¢ have the general form

Y, t)=A(t)+ B(t)cos| r(t)z]. (39)
The boundary conditions are

Y( L, t)=y,coswt, (40)
and

zp'(xL,t)=¥az’p(iL,t), (41)

where the prime indicates 8/3z and the overdot indi-
cates 8/9¢. Substituting Eq. (39) into these yields, for
r=ivl,

A(t)+ B(t)cosyL = g, coswt, (42)

+ B(t)y(t)sinyL=+ a(f'l +B cosyL - BLy sinyL ). (43)

The first of these shows that if y varies with time,
harmonics of w will be generated, and it will be im-
possible to solve these equations without some method
of truncation. If ¥ =0, however, we can find a simple
solution if cosyL=0, y=7/2L. Equations (42) and (43)
then become

A(t)=y,coswt, (44)

¥ B(t)y =+ awy, sinwt, (45)
or

B(t)= - (2Law/7)y, sinwt, (46)

¥(z,t)=yo[coswt - (2Lw/ma cos(nz/2L) sinwt]. (47)

Antisymmetric solutions varying as sin yz can easily
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be shown to be incompatible with the boundary condi-
tions,

We can write Eq. (47) in terms of a spatially varying
phase shift 6

¥z, t)=y,secdcos(wt +6) , (48)
where
2wl , m 4
ta.n6—7m° (n°v"+]‘)(K_T,) cos 57 - (49)

Since 0§ is normally small, the eigenmode in the ion
sheath case has little variation in amplitude along z but
must have a phase shift varying with z in order to sat-
isfy the sheath boundary conditions.

2. Electron sheath, $e<0

Again, we must defer discussion of the difficult case
T, # T, and assume that the emitted electrons have the
same temperature as the plasma electrons. Equation
(15) then reads

] =nv,(v=Y), v,E(KTG/znm)‘/2 . (50)
Setting this equal to +n,v, at 2= L, we have

v 9

'—‘- = — —-—

e "t Vrgy v=-x). (51)
The equation of motion (34) then yields

1 o
o _ v (z=x L), (52)

ot 2w, at

which is identical to Eq. (38), except that a is now giv-
en by

(53)

The axial eigenmode is again of the form of Eq. (48),
with & now given by

a={(2v, )",

tand=(wL/v,n?) cos(nz/2L) . (54)

The phase shift 6 is larger than in the ion sheath case
by about (m/M)'/2,

IV. GENERAL SOLUTION

The unperturbed plasma is assumed to have uniform
density n, and potential ¢, relative to the end plates.
In the presence of linear oscillations, the sheath edge
conditions are n=n,+n,, ¢ = ¢,+¢,. We consider only
the case 7, =T,. The electron fluid velocity in the z
direction is given by Eq. (17):

v, KT, 8 _ -_KTL, 8y _
Bf—m Iy (x-v) -y, = m oz ~ leiler (55)

where v, x, and ¢ are defined in Eqs. (13) and (17). The
sheath conditions at z =+ L are given by Eqs. (14) and

(15):
B> 0: navt =% (novy+7, )0, (56)

< 0: nov; =xngv, ¢y (T,=T,), (57)

where v, v,, and j, are defined in Eqs. (2), (4), and
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(5). Taking the time derivative and substituting into Eq.
(55), we obtain for either case the sheath matching
equation

W, = -

pye xaat ;taued»—o (2=%1L), (58)
where, for ¢,> 0,

a=a*=@y+j, MNKT, /m)"", (59)
and, for ¢,< 0,

a=a"=v,(KT,/m)"' = (m/21KT,)"/? . (60)

We assume that a wave is symmetrically excited in the
body of the plasma (for instance, by grids or an induc-
tion coil), so that the wave variable § = v — x fluctuates
sinusoidally at the sheath edges. Alternatively, we may
consider the wave to be excited by a sinusoidal voltage
applied to one or both end plates. The latter may be
segmented, so as to permit excitation of a finite-%,
mode with k, =k9. The only way energy can be supplied
by the end plates is if a current is drawn through the
sheath; this implies that a difference v — x must exist at
the sheath edge, and therefore ¢(+L) must fluctuate
sinusoidally. Thus, for either method of excitation, we
may assume

P(2L)=y,cos(wt —ky) . (61)

The problem, then, is the simultaneous solution of Egs.
(58) and (61).

Since the unperturbed plasma is uniform, the solution
may be expressible in an even series of the form ¢(z)
=by+2; b,cos(nnz/L). However, we must allow the co-
efficients to be time dependent, We also limit the series
to the first term, since the modes being considered
favor small 2. Thus, we assume a solution of the form

W(y,z,t)=A(y,t)+ B(y,t)cosyz (v>0). (62)
Substituting this into Eqs. (61) and (58), we obtain
A(y,t)+ B(y,t)cosyL = y,cos(wt —ky) , (63)

and
FBysinyLta :—t (A+BcosyL)sav, (A +BcosyL)=0.
(64)
Using Eq. (63), the latter becomes
B{t)y sinyL = av i, cos(wi — ky) — awi, sin(wt — ky) .

(65)
A solution incorporating both inertial and resistive ef-
fects is, therefore, Eq. (62) with

B(t) = ady(v,; cos¢ — w sind)(y sinyL)™!, (68)

Alt) = ¢y cosd — apy(y tanyL) (v, cosp — w sing), (67)
where

d=wi—-ky. (68)

A. Resistive limit

When resistivity dominates the electron parallel mo-
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tion, the terms proportional to w in Egs. (66) and (67)
can be neglected. The solution then becomes

b= cos(wt—ky)[l+;7a:—;;/—ll<%g:%— 1)]
The choice of the parallel wavenumber vy is apparently
arbitrary. This is to be expected, since the assumed
solution, Eq. (62), had three constants, 4, B, and y, to
be determined by the two boundary conditions (58) and
(61). The third boundary condition, of course, comes
from the matching of the ion fluxes through the sheaths.
Physically, we would expect that the solution would not
depend greatly on the ion motions. We shall now show
that this is indeed true, since (z) is not sensitive to
the value of y.

(69)

Define

g=R/yLtanyL, R=av,L. (70)
Equation (69) reads

P = Py cos{wt —ky)[l +g<%— 1)] . (71)
A particularly simple solution is g=1, giving

=y, secyL cosyz cos(wt - ky) . (72)
The condition g=1 is equivalent to

yLtanyL=R=qav,L . (73)

With the values of a given in Egs. (59) and (60), this is
identical to the special solutions found earlier [Egs. (28)
and (30)]. If yL takes on other values than that speci-
fied by Eq. (73), nonetheless i(z) is not greatly affected.
This is seen in Fig. 3, where §(2)/y, is plotted against
z/L for fixed R and the entire range of yL. The value
R=10/7 is chosen to correspond to L/x, =10 in the
electron sheath case, where R=L/7x,. For fixed R,

if g is large, YL must be small. For g> 1 and yL «< 1,
Eq. (71) gives approximately

zl‘max R ( 1 272 ) R

—| ~]14—— + — - =1+-—.

(L) 1 L7 1 TR L -1 1 5 (74) |
If g is small, then yL ~ 47, and this ratio becomes ‘

Pmax 2R ( 1 1 ) 2R

imE 142 - =1+,

(L) 7 \singm tanjm T (75)

Thus, the line-tying effect of the sheath boundaries is
insensitive to yL and depends only on R. For ion
sheaths, R is much smaller than 10/7, and one has

| $max/ (L) | > 1.

B. Inertial limit

In this case the v, terms in Egs. (66) and (67) can be
neglected, and Eq. (62) becomes

= ")O[Cosq’ - yLatZrI;yL (EZ:Z - 1) Si“¢] : (76)

Y= zpo[cosqb —g’(%— 1) sind)] , (77)
where

g'=R'/yLtanyL, R'=qwl, ¢p=wt-ky. (78)
This can be written in terms of a phase shift 6(z):

» =i, secd cos(¢d +6),

(79)
tand =g'<§%‘:—%— ) .

The nature of this mode is illustrated in Fig. 4, where
the constant amplitude contours are shown in compari-
son with the case of an ordinary standing wave (the col-
lisional case). The special solution previously dis-
cussed [Egs. (49) and (54)] corresponds to yL =47, or

b= yo[cos¢ — (2L/m)aw cos(nz/2L) sing)],

and

(80)

tand = (2L/m)aw cos(nz/2L) . (81)

s/¢

FIG. 3. Axial variation of wave amplitude
between the midplane and the sheath edge,

for the case of collision-limited electron
motion in a plasma 20 mean-free-paths
long. The curve YL =69.2° corresponds to
the approximate solution of Eq. (72), but
the solution is insensitive to the assumed
value of YL,

zZ/L
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In general, other values of yL are possible; but as in
the resistive case, the factor

R’ cosyz
yLtanyL \cosyL

is insensitive to L and depends only on R’.

The question arises as to what is the effective value
of k, in this mode. In the resistive case, where the
mode is a standing wave in the axial direction [Eq. (72)],
one cannot go far wrong by taking k, =4y, where y is the
solution of Eq. (73). The other amplitude profiles of
Fig. 3 are so similar that the E, seen by the electrons
is about the same in all cases, and the resonant fre-
quency w can be found from the wave dispersion rela-
tion using this value of k,. In the inertial case, how-
ever, the solution of Eq. (80) is a superposition of two
modes 90° out of phase: one with k,=0, and one with
k,=m/2L. These may have different eigenfrequencies;
yet we have assumed, because of the small amplitude,
that only one frequency is present at a time. The dif-
ficulty is that the sheath matching conditions have
caused linear mode coupling, and one should use the
frequency of the coupled modes rather than the fre-
quencies calculated for each individual mode in an in-
finite plasma. In practice, there is no problem as
long as one is dealing with waves of small parallel dis-
persion (w a weak function of k,), such as drift waves,
lower hybrid waves, or two-ion hybrid waves. The
finite bandwidth of the system, as set by some damping
or lifetime consideration, should be large enough to en-
compass the w’s of both the k,=0 and the &, =7/2L
modes.

C. Summary of results

We have found the following symmetric solutions
where ¥ has an amplitude y, at the sheath edges z=xL:

collisional limit;

dlf_o: [1 ¥ 122 thvL (22:Zi - 1)] cos¢ ; (82)
collisionless limit:

-d‘)/}—o-z cos¢p — L falnyL (gg::}; - 1>sin¢ ; (83)
where

R=av,L, R'=qwL, ¢=wi-ky, (84)
and

a=(vg +j,/ny)/(KT,/m) (85a)
for ion sheaths, and

a=(m/27KT)"/? (85b)

for electron sheaths. The solution with both resistivity
and inertia is given by Eqs. (62), (66), and (67). Anti-
symmetric solutions will be given in Sec. VI.

The collisional limit will be valid when v,; » w, and
vice versa. For @-machine plasmas with K7 ~0.2eV and
B ~4kG, collisions dominate aboven ~3 X 10°cm-3 for
waves with w less than the potassium cyclotron frequency.
For discharge plasmas with K7 ~3 eV and B ~4 kG,
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inertia dominates below n=~2x10'! ¢m™ for waves with
w above the argon cyclotron frequency. For fusion
plasmas the collisionless limit is almost always valid.

V. APPLICATION TO DRIFT WAVES

The case of resistive drift waves in a @ machine is
particularly simple because the ions, electrons, and
end plates are all at the same temperature, and no po-
tentials are applied. The sheath conditions can then be
written exactly® without resorting to an approximate
treatment of the presheath. We shall make use of the
known dispersion relation to see in detail what would be
involved if one were to match ion fluxes as well as elec-
tron fluxes at the end plates.

In the collisional limit, the simplest nontrivial sym-
metric solution satisfying the end plate conditions is
given by Eq. (69)"

aveil _ fcosyz )]
yL tanyL (cosyL IR (86)

where yL is arbitrary. Although y(z) is not sensitive
to yL (cf. Fig. 3), we wish to see whether the use of

ion matching conditions will specify the exact value of
vL, at least in principle. For definiteness consider the
case of electron-rich sheaths (¢ <0). Plasma electrons
then reach the end plate at their random velocity, and
emitied electrons are repelled by a Coulomb barrier.
The value of ¢ is given by Eq. (60). As for the ions,
those striking the end plate reach it only after over-
coming a Coulomb barrier; there they recombine into
neutrals and have a finite probability p of being contact
ionized again. To supply the unspecified losses in the
plasma (by radial diffusion or volume recombination),

a source of neutral atoms is directed at the end plates,
and the neutrals are contact ionized to create an ion
flux j,. This flux and the reionized flux flow down a
potential hill into the plasma. The net ion flux into the
sheaths in equilibrium is therefore®:

=1y cos(wit — ky)[l +

Ty = (1 - p)nyv,, explxy) - js (87)
where
vy, =(KT,/20M)1/ 2, (88)

In the presence of a wave, the values of n, and y, at the
sheath edge change to n, +n, and x, + x, while j, remains
fixed. The perturbed ion flux is then

Tu=dolx +v) . (89)

Ion motion in a drift wave is mostly perpendicular to
By; nonetheless, the flux I, can be matched only to the
small ion flux in the z direction. This is specified by
the z components of the perturbed ion and electron
equations of motion (for v,,=0):

vy 8¢ an

Mn, 8t' =—eny ——Laz - KT, _Laz +mngre (Ve — vy,), (90)
BVes 3o any

mny = eng ;;L—KT, B2~ "MMoVer(Ver = Vi) ~0,

(91)

where the ion collisional term has been set equal and
opposite to the electron term by conservation of mo-
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mentum. Addition yields

= -(KT,+KT) 2. (92)

The perturbed ion flux in the z direction is then given
by

. ¥ 8v
Flz:nl)vlz: ‘"ovz g’ (93)
where v=n,/n, and
Vi=(KT,+KT)/M=2KT/M; (94)
at z=zL, T; must match I}, given by Eq. (89)
av .0
00§ 5, =Fo o X+ v) . (95)

Since x and v no longer occur in the combination =y
- v, we must find v and y separately. The electron

equations of motioen and continuity in a linear density
gradient give the following relation!’ between v and y:

_Ww +ib0|[

“ws tiba, %9

x=Av
where w« is the electron diamagnetic drift frequency, b
is a finite Larmor radius parameter, and o, is a paral-
lel diffusion frequency proportional to kf/ve,. (The same
result can be found in Ref. 5, but the notation in this
earlier work was not adopted by subsequent authors.)
In terms of , we have

v=01-M7, x+rv=[1+10)/1-A. (97)
Equation (95) becomes
novﬁ ?"f—ijo(l +A)z—'td)‘=0 at z=4+L. (98)

This has the same form as Eq. (38) for inertia-limited
motion and cannot be satisfied at both ends by the stand-
ing wave of Eq. (86). Ion matching, therefore, requires
an axial phase shift. This is because electron drag is
unlikely to dominate over the inertia term for the ions.
The effect of ion motion is not simply to determine the
value of ¥L in Eq. (86); in fact, since A depends on w
and kﬁ, Eq. (98) is a rather complicated differential
equation in ¢ and z. An exact analysis of ion matching
is of academic interest only, and we have not attempted
it.

In experiments, drift waves have been found! to be
stabilized by ion viscosity if their intrinsic growth rate
is too low. Since the growth rate depends on |Ie‘| , the
effective value of |k,| as given by the sheath conditions
determines whether or not a mode of given %, will be
stable. A numerical example was given in Sec. III. The
tendency for magnetized plasmas bounded by ion
sheaths to be noisy can be explained by the fact that
small |k,| values corresponding to the maximum growth
rate for drift waves are then allowed.

VI. APPLICATION TO TWO-ION HYBRID WAVES

A. Dispersion relation

Interest in the two-ion hybrid resonance® has arisen
in connection with its use in isotope separation!!' and
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heating of DT plasmas.'? The resonance exists only
when k,=0: as |k,/k,| is increased, the two-ion hybrid
mode turns first into an electrostatic ion cyclotron
wave and then into an ion acoustic wave. To see this,
one can consider electrostatic waves of the form
exp[i(kyy - wh)] in a uniform, magnetized plasma con-
sisting of electrons of temperature 7, and two species
of ions of zero temperature. The linearized electron
and ion equations of motion and continuity and Poisson’s
equation then yield the following dispersion relation for

w? <w?and 2} «<1:

k?.vZ k2v2 -1 k? kZ
(1 (B - ot (e

[4

2 2
+a2022(w—k:’§%‘+%‘2>] =1. (99)
Here
vt =KT,/m, w,=eBy/m, Q,=Z,eB,/M,
¢ =ZKT,/M,, (100)
and
a;=ng,/ng, (@, +0a,=1)

is the partial density of the ion species j. If k,=0, Eq.
(99) reduces to
IO (101)
The three terms are, respectively, proportional to the
charge densities of species 1, species 2, and electrons.
When «@,=0, the charge fluctuation of species 1 is can-

celed by electron polarization drift, resulting in the
lower hybrid frequency

(102)

When «, #0, it is possible for the two-ion space charges
to cancel each other at a lower frequency, where the
electron drift would be negligible. Setting the right-
hand side of Eq. (101) to zero yields the two-ion hybrid
frequency.

wi=q? tw 2w Q.

(103)

We shall let a, designate the “minor” species and o,
the “major” species, so that a,<a,. If a,<a,, Eq.
(103) shows that w lies near 2,, the minor species cy-
clotron resonance, as is clear from the second term of
Eq. (101).

At very large |k,[ , the &, terms in Eq. (99) dominate,
and one obtains a simple ion acoustic wave in a two-
species plasma. Now consider small but finite |k,| and
frequencies near the ion cyclotron frequencies, so that
the k, can be neglected in the ion terms. In the elec-
tron term (first bracket) of Eq. (99), the term k’vf,/w?
can be neglected for |k,/k,| > m/M and 0 ~Q. I,
furthermore, w?/k? < v?,, the electron term becomes 1;
this is the limit of Boltzmann electrons. In this range
of &,, Eq. (99) becomes

aklcl(w? - Q) + ayklcl(w? - @) =(w? - Q)(w? - Q) . (104)
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For a,< a,, the two roots of this biquadratic are ap-
proximately

2.2
2_ 02 4+ o b2 +__92273ﬂzf_7)
wl= 0 alkycsl(l PR (105)
and
92_ 2
w?= Q%+ azkicl, 1= (106)

7 3 7
aikycg + R~ Q3

The first of these is an electrostatic ion cyclotron wave
in the major species, with a small correction due to
the minor species. The second is a minor-species cy-
clotron wave whose frequency shift from Q, is always
toward €,. In isotope separation, where a, < a,, both
Eq. (103) and Eq. (106) are close to £,, but the fre-
quency shifts are different, and the two waves lie on
different branches of the full dispersion relation (99),
shown in Fig. 5. The transition occurs near kZ/k%
~m/M,. The branch which is excited depends on the
spatial structure of the exciter and the sheath matching
conditions on the end plates.

B. Antisymmetric solutions

If the excitation mechanism is symmetric in the z di-
rection, one would expect that the solution given in
Sec. IV would be the longest parallel wavelength mode
obtainable. If a charge imbalance should arise in the
plasma, due to, say, a density inhomogeneity, electrons
could stream in from the end plates to cancel the charge
imbalance. For this purpose, one would want to use
electron-emitting end plates, since ion sheaths are
basically insulators. Eventhen, the electron current
available from the end plates may be insufficient: Inthe in-

canceling capability of the end plates one can excite
higher-order longitudinal modes using asymmetric or
periodic drivers. In this section we give possible solu-
tions which are antisymmetric about the midplane.

1. Resistive limit

Imagine a wave excited by external coils or electrodes
that are driven out-of-phase on either side of the mid-
plane in such a way that =0 at z=0 and § = £, cos(w!?
- ky) at the sheath edges. From Eq. (58) for w/v, -0,
we {ind that the wave amplitude { must satisfy

g%t(w“zpzo at z=+L. (107)
Since

(£ L) = £y cos{wt — ky) , (108)
we have

&, avg o cos(wt—ky) =0 at z=zL. (109)

8z

The simplest solution satisfying this boundary condition
is

b=, csey L simy z cos(wt - ky), (110)
where y L is the solution of
yLetnyL=—av, L=-R. (111)

This is the antisymmetric equivalent of Eqs. (72) and
(73). Equation (111) has no solution for small yL; the
smallest parallel wavenumber possible is y ~7/2L.
For small R, expansion around yL ~ 3} 7 yields

- . . L=7/2+2R /7. 112
ertia-dominated case we saw that k£, = 0 component is al- L4 "/2+2R/ (112)
most always dominant. To increase the space-charge Higher modes are possible withyLZ ~3 7,37, etc.
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FIG. 5. Dispersion curves for electrostatic waves in a two-species plasma, drawn for a case where n,<<ny and M, > M,.
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2. Inertial limit
For v,; < w, Eq. (58) requires

EZ-‘b—ia?—w-=0 at z=4+L .

9z al (113)

An antisymmetric solution of the form of Eq. (108) must
then satisfy the boundary condition
RN

— =awi, sin(wt - ky) at z=3+L.

pys (114)

Surprisingly, this simple condition cannot be met by so-
lutions proportional to simyz, even if an axial phase
shift is allowed. The simplest solution we have been
able to find includes a term linear in z:
b= ,[simyz cos(wt = ky) - awl (sinyz ~ z/L)
X sin{wt = ky)], (115)

where y =7/2L. In terms of a phase shift &, this can be
written

b=1,secd sinyz cos[wt — ky +6(2)], (116)
where y =7/2L and
tand =awL<1—-2- lﬁ-—) (117)
7 sinyz

The appearance of this solution is shown in Fig. 6,
computed for R’ =awl =0.2. In this antisymmetric
mode, |aw/az | is small near the sheath edge at all
times, either because the amplitude is small or be-
cause the sine wave is near an extremum. This means
that the sheath is not required to supply a large electron
current. Most of the axial electron current flows from
one-half of the machine to the other without having to
leave the machine.

C. End plate excitation

A simple way to excite waves is to apply a sinusoidal
voltage to one or both end plates. In this section we
give the boundary conditions for this mechanism and
exhibit the simplest modes that satisfy them. No at-
tempt at generality is made.

1. Sheath conditions with electrostatic drive
Let a potential ¢ ,(t) be applied to an end plate. The

wt-ky

0
45°

67.5

90

¥/,

112.5

135
180

-0.5 0 0.5 1.0

FIG. 6. Axial variation of wave amplitude for the simplest an-
tisymmetrically excited mode in the inertia-dominated case.

2356 Phys. Fluids, Vol. 22, No. 12, December 1979

electron fluxes into the end plate for ion-rich (+) and
electron-rich (-) sheaths are then given by the following
modification of Egs. (3) and (6):

I =nv exp[-e(d - ¢,)/KT,]-7,,
D=, - i, exple(d — & ) /KT,

(118)
(119)

Treating ¢, as a perturbation, we obtain for the first-
order fluxes

(120)
(121)

T} =(nyvg +j ) (v =x +x,)
Ty =0 [v = (T/T)x —x ],

where y , = egb,/kTe, Matching to the electron current in
the wave motion yields (for T,=T,) the following match-
ing condition, the analog of Eq. (58):

LA i 9_xL) 3
v ta(at iy rav, (b+y,) =0, (122)
2. Resistive limit
In this limit we require
oL )=0 atz= 123)
Eiauei(d)ﬂ(, =0 atz=+L. (
a. Symmetric drive, At both ends, let
Xp=XmCOSD, (124)

where ¢ = w!—ky. Equations (123) and (124) are satis-
fied nontrivially by

av,; COSy 2

= I soeT X (125)

»COSD .

This is resonant for yLtamy . =R=av,; L, the same as
Eq. (73). Wheny has the right value for this normal
mode, the excitation amplitude y, can be infinitesimally
small, since wave damping has been neglected. In
practice, damping will determine the y,, required to ex-
cite a given amplitude ¥. Here, we usually have R« 1
and yL «< 1,

b. Antisymmetric drive.
180° out-of-phase, we have

If the end plates are driven

Xp=X,C08¢ atz=z[. (126)
A possible solution of Eqs. (123) and (126) is
b= Do S COSG . (127)

T yetmyL+av,, simL

This is resonant for yLctnyL =-R=-av,, L, the same
as Eq. (111). Here, the normal mode has y ~7/2L, and
¥/x , = for this wavenumber,

c. Asymmetric drive. In single-ended drive, let the
end plate at z=~L be grounded while that at z=L be
driven. We then have

Xp=XmCOSP atz=L, (128)

x,=0 atz=-L,

There are now several “simplest” solutions satisfying
Eqgs. (123) and (128). There is no solution with a cosyz
dependence, but we can expect spatial variations going
as sinyz or sine or cosine of (z+ L). With the abbrevi-
ation
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e=av,,/y, (129)  solution y, resonates for
these solutions are ycosyL =—av,;sinyL , (137)
_ cosy(z—-L)-1 ) which is the same as Eq. (111). All of these normal
Y =X n O8O (1 *€ singyL+e(l-cosH L) )’ (130) modes have y ~7/2L, or \,~4L; the value of yL for
1-cosy(z+L) small R =av,; L is given in Eq. (112).
by =—x , COSD| € — , (131)
sin2y L + €(1 - cos2yL) 3. Inertial limit
Uy = =X, COS (1 + -E simy(z-L) -1 ) , (132) In this limit, Eq. (122) becomes
€sin2y L +1+cos2yL " 8
. —-ia(—+ m) =0 atz=zL. (138)
. €sim(z+L)+1 82z at at
b= =XmCOS T v costy L / (133)
Y Y a. Symmelric drvive. A mode satisfying Eqs. (124)
¢5=—-1-meOSd> (1+ € sinyz ) . (134) and (138) is
2 cosyL+€siny L .
Y=<y _secyL ysiyl sind + cosyz cosd>) (139)
The first two of these resonate for Xm aw ’
y sin2y L =—av, (1 - cos2yL), (135)  which resonates for yL =3 7. Since x,xcoso, this
while ¥, and 1, resonate for means that sheath edge potential oscillates 90° out-of-
3 4 phase with the end plate drive.
v(L+cosZyl)=-av, sin2yL, (136)  ,  Antisymmetric drive. The following mode satis-
which turns out to be identical to Eq. (135). The final fies Eqs. (126) and (138) in this case:

J

yL cosy L(sinyz + z/L) sing — awL(1 + siny L) sinyz cosd

y=x awk (yL cosyL)(1+yLcosyL)+{awL)*simy L(1 +sinyL) ’ (140)
The denominator vanishes, for small awlL, at
yL =71/2+ 4/t awl)?, (141)
which defines the wavelength of the normal mode.
c. Asymmetric drive. With single-ended excitation, Eqs. (128) and (138) must be satisfied. Substitut-
ing ¥(z)’s of the form
(A cosd +B sing + C){sm }y(z +L)+Dcos¢ +E sing ,
cos
as well as sinyz and sinyz +(z/L) dependences, we have found the following solutions:
3y = —awy lcosy(z+L)=1] aw(cos2yL - 1)cosd +y s1f12-yL sind , (142)
[7e{cos2y L - 1)P+(y sin2y L)?
5, = =y COS + Aty o [c08y(z = L) = 1] aw(cos2yL — 1)cos¢ +y sin2yL s:nqb ’ (143)
[awlcos2yL - 1)F +( sin2y L)
) = ~Xm
® [y(cos2y L +1) P+ (awsin2y L)?
x{ ly*( cos2y L +1) + a®w? sin2y L siny(z + L)] cosé +yaw([sin2y L -~ (cos2y L + 1) siny(z + L)]sino}, (144)
Py ==X m COSO + Xm
[y(cos2yL +1)E+[awsin2y L}
x{ly*(cos2yL + 1) - a*w? sin2y L siny(z — L) cos¢ +yaw[sin2y L - (cos2y L +1) siny(z — L) sine}, (145)
1 ' 1 aw siné - (aw/y)tanyL coso .
Vs ==5 XmCOSO+ 5 X by secyL T+ (ao/y Flans L simz, (1486)
" _1 cos (tany L +yL)yL ctnyL/awL) sinyz sijyz  z
6~ g Xm v L%/awl)cosyL +awl tamy L sim L simy L ~ L
1 . tany L +yL ) .
g Xm sm¢( @’L%/awLl)cosy L + awl tamy L sim L / 5% - (147)

The first two solutions have denominators which vanish at 2yL =0, 2, 47,..., so that the lowest nontrivial mode
has y =7/L. The solutions ¥, and 3§, have denominators which vanish at 2yL =7, 37,..., so that the lowest mode has
y=u/2L. The last two solutions, s and 3, do not resonate for any value of y. These appear to be driven oscil-

lations that have finite amplitude for finite y,.
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D. Double sheaths

We finally discuss the case of emitting end plates
which are colder than the plasma electrons, as in any
discharge plasma which is not a @ machine. The emit-
ted electrons are then at a temperature T,, while the
plasma electrons are at a temperature T,>7,. The
most obvious adverse effect of this is to require the
retention of the factor 7,/T, in Eq. (15). The first-or-
der quantities v and y then no longer occur only in the
combination ¥ =v -y, and a relation must be found be-
tween v and y. To do this, one has to specify the wave,
or at least the approximations used to derive the wave,
as was done in Eq. (96). More troublesome than this
is the possibility of double-sheath formation. It is not
our intent to analyze this effect in this paper; we shall
only make a few qualitative remarks.

If the plasma is very positive, as with a cold plate,
and one begins to emit a few electrons, the ion sheath
is not sensitive to the emitter temperature, since the
electrons are accelerated into the plasma and leave the
sheath with an energy much larger than their initial
energy. As emission increases and the plasma poten-
tial falls toward zero, a space-charge problem devel-
ops. Plasma electrons leave in great number because
the Coulomb barrier has been depressed. To replace
these electrons with emitted electrons requires a large
density of the latter, since they move at slow speeds.
The large negative space charge causes a potential dip
next to the end plate surface. When the plasma potential
is negative relative to the end plate, there will be a po-
tential dip that is further negative, caused by the pile-
up of emitted electrons. The sheath is nonmonotonic
and presents a Coulomb barrier to electrons coming
from both sides. Tons are trapped in this potential well
and tend to obliterate it. Whether a double sheath in
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fact forms in steady state depends on the ion lifetime.
In the oscillatory state considered here, the jons may
not have time to move, and double-sheath formation
may occur. In general, one may expect the space-
charge effects caused by T <7, to decrease the flow of
electrons into the plasma and make the sheath a better
insulator than in the isothermal case.
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