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1. INTRODUCTION

This is the third paper in a series reviewing the plasma physics
rprinciples involved in the Dawson isotope separation process. In Part I

" (Task 1I1-1359), we derived the simple fluid dispersion relation for the
two-ion hybrid wave and showed how it changed continuously into the
electrostatic ion cyclotron wave as k;, was increased and electrons were
allowed to move along B0 to cancel space charge. The frequency shifts due
to electron flow were calculated, and the main feature of the two-ion
hybrid resonance was explained; namely, that the ac current of minor ions
is independent of their concentration--a result of space charge neutral-
ization requirements.

In Part II, entitled "Axial Eigenmodes for Long - A,, Waves in a
Plasma Bounded by Sheaths" (Task I1-2185), we considered the problem of
electrostatic excitation of such waves by voltages appiied to endplates.
The shapes of resonant modes, corresponding to waves satisfying the
dispersion relation, were found. The off-resonant response was also
calculated. It was shown that even emissive endplates could not suppiy
enough electron current through the sheath to help greatly in cancelling
space charge. However, by exciting an antisymmetric mode with two end-
plates driven 180° out of phase, one can achieve neutralization of space
charge by currents flowing entirely within the plasma.

In Part II1 (this paper), we consider the problem of inductive
drive, in which an electric field is applied throughout the volume of the
plasma. This problem has received considerable theoretical attention
during the past three years. At first, the case of k;; = 0 (uniform
excitation in the direction of go), representing the most unfavorable
space charge conditions, was treated. Field maxima at hybrid resonances
and minima at cyclotron resonances were found; and the heights and
widths of these resonances, which depend on thermal effects, were
calculated analytically! and computationally2. The suppression of the
left-hand circularly polarized component of E (the component that cyclotron-
resonates with ions) at the major and minor species resonances has been
verified experimentally3. More recently, the more practical case of
finite kll has been investigated in cylindrical geometry by fluid
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calculations* and in plane geometry with particle simulationsS. It was
found that the application of a parallel component of E (in addition to
finite k,,;) not only allowed the field to penetrate easily into the plasma,
an effect previously noticed in rf plugging of magnetic mirrors®, but
actually caused an enhancement of the applied field. The physical reason
for this has been pointed out by J. M. Dawson. Our main purpose here is

to reduce the problem to the simplest non-trivial case so as to obtain an
analytic formula for the enhancement factor, and thus to exhibit its
functional dependences.

The problem of space charge neutralization in a homogeneous plasma
is, hoWever, simple compared to that in a bounded or inhomogeneous plasma.
The theory of drift waves should, in principle, automatically account for
space charge in an inhomogenous plasma. We plan, in Part IV of this
series, to apply drift wave.theory to multi-species plasmas and show to
what extent space charge effects are already incorporated in the proper
radial eigenfunctions. '
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2.1

2. THE DIELECTRIC RESPONSE OF A PLASMA _

FUNDAMENTAL EQUATIONS

Let an oscillating electric field Eo(r) be applied to a
homogeneous plasma by currents in unspecified windings.
The motion of charged particlies in response to‘g0 will
create a response field gp, so that the total field
inside the plasma will be
E=E +E (1)
The total field E obeys Maxwell's equations; written in

e.s.u. for fields varying as exp (-iwt), these are:
v x E = iuB (2)
c2y x B =47 J -iwE = - iwe ¢ E (3)

The plasma current J is found from the equations of motion
for the various species, and its proportionality to E can

\

be expressed in terms of a conductivity tensor 9:

=g E . (a)

na

The dielectric tensor ¢ (w) [or ¢ (w, k) if KT # 0] is therefore

+ ﬂ'"_]_ . (5)

€ _
= w

ned

na

.

Substituting Eq. (3) into the curl of Eq. (2), we obtain

vx{yxE)-= -E . K )

Ao
no

The vacuum field go (the applied field) is described by the

same equation with g;set equal to unity:

9x(UxE) = E (7)
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Subtracting Eq. (7) from Eq. (6) and using Eq. (1), we obtain

2

X E) =2 - E +¢- -

Px(@xE) g (crEpte £ K (@
The response field Ep driven by go is therefore described by the
equation

VE -v(v-E)+Y -E=“’2(n- ) - E (9)
- - = P T LT p T RTE =0’
2.2 ISOTROPIC PLASMA (go = 0)
In an isotropic plasma, ¢ is a scalar; and one can define a
scalar dielectric function K by '
E=E/K (10)
As with ordinary dielectric materials, if K > 1, then the internal
~ field E is lower than the applied field go.
2.2.1 Electrostatic Waves
If v x gp = 0, Eq. (8) for scalar ¢ yields -
E =1€ (1)
- € -0
so that
§=§o+5p=§0/e (12)

In that case, K is the same as ¢. When ¢ = 0, go + 0 for finite E,
which means that no external drive is needed to sustain an oscillation.
Thus, € = 0 is the dispersion relation for an undamped wave. Indeed,

since ¢ = 1 - 5§ 2/w?2 when B0
-2

0, we obtain the Langmuir wave dispersion
relation w? = sz, where & '

2 4 2,
p = Ty

2.2.2 Electromagnetic Waves

Ify. gp = 0, Eq. (9) for scalar ¢ becomes

(13)
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Assuming a uniform plasma, we may Fourier analyze in space, replacing
v by ik: '
2 2

-k2 Ep + %zﬂ € Ep s (1-¢) E, (14)

Defining the index of refraction

u = ck/w, (15)
we obtain
E =1e ¢ | (16)
-P €~y< —0
so that
E=f +p =12 ¢ (17)
= =0 —p—e-u -0
Thus, for electromagnetic waves
K=&, o (18)
TwZ

If the dispérsion relation is satisfied, E, >0 and K >~ 0 for
finite E; therefore, the dispersion relatiQn is u2 = ¢'or 2 = Ep2 + c2k2,
as we expect for an electromagnetic wave for B0 = 0. Note that K » =
for u2 - 1, an option that did not exist for electrostatic waves. This
means that a vacuum wave p2 = 1 will be completely shielded out, so that
gp = -E, and E = 0. Suppose we now let ¢ >~ 0. Then Eq. (18) indicates
a finite K; yet we know that no electromagnetic waves can propagate if
w = Eb. The case ¢ = 0 must be treated separately; this is a consequence
of the cold-plasma assumption.

2.2.3 The Case ¢ = 0.

Taking the divergence of Eq. (3), we obtain Poisson's equation

v.(g-E)=0. - (19)

for scalar ¢, this becomes

e (v-E) =0, 3  (20)

so that either v - E=0ore=0. Ifv.E=0,v.E =0also, since



go is a vacuum field. Hence, we recover the electromagnetic results of

the previous section. If e =0 but v - E # 0, there are two cases. If

v xE =0 (electrostatic waves), we recover from Eq. (8) the electrostatic
" result of Eq. (12). On the other hand, if v x gp # 0 (mixed e.s. and e.m.
waves), Eq. (8) yields for ¢ = 0

2

- W \
ux (v x gp) =<z go. (21)

Adding to Eq. (7), we obtain

Eo + Eﬂ = E=0. _ (22)
Thus, waves with ¢ = Gb are completely shielded out; and K = 0 in the

limit ¢ +~ 0, as one would expect.

2.3 ANISCTROPIC PLASMA (B0 £0)

In the case of a magnetically confined plasma, the plasma response;
is given by Eq. (9) with the dielectric tensof téking one of several -
well-known forms. We confine our attention to cold plasmas, in whicﬁ
g has, in the notation of Stix7, the form

s -iD 0
e = iD s 0. S (23)
o o P

Here the elements S, D, and P are defined by the following equations:

S=y(R+L), D=z(R-L) | (24)
2 .
“ps - .
R=1-2 olwtug) | (25)
. - 'wz
_"ps
L= 2;, Cwlo Fugg) (26)
P=1- XY B C(en)



where the sum extends over an arbitrary number of charged particle
species s, Wpg and w.g are the plasma and cyclotron frequencies for
species s, and the upper (lower) sign is to be taken for positive

(negative) species.

The nature of the plasma response can be illustrated by taking
the simple example of an infinite, homogeneous plasma in Cartesian
coordinates with B_ =B 2 and

-0 0

i(kx-wt) 9

E, = E, e (28)

—o

Thus 50 has only a y component and k only an x component, end the
zz component of ¢ is not required. In response to go, particles
will oscillate in the 9 direction; this causes no space charge
because the field is uniform in this direction. However, because of
the Lorentz force, partic1es tend to gyrate in cyclotron orbits and
hence develop a motion in the X direction. Since Eo varies in x,
space charge is built up, and an electrostatic field pr is generated
in response to the purely electromagnetic drive (v - E, = 0). The
total fie1d~(Ex, Ey) th;reffre has right- and left-hand circularly

s E7)

polarized components (E even though Eo is plane polarized:

R - (B -1E,) 12, gL - (EHENVZ . (29)

We now solve for gp from Eq. (9). From Eq. (23) we have

o s  -iD pr _ SEj, - DE
E . (30)
® \ip S E iDE__ + SE ‘

Py px Py

Jloo
L]
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Using this in the x and y components of Eq. (9), and defining y as

in Eq. (15), we obtain

-y2 E_+u2E +SE -iDE_ = iDEo

px ~ TTpx T py
-u2 E_ + iDE

+
Py pX

Solving for gp, we see that the electrostatic part of the plasma
response is

p?-1

pr = 1DE, S{us-S) + D° ;
and the electromagnetic part is
S(1-S) + D2

Epy =-k S(u2-S) + D2

The total field is found by adding Eo to the last equétion,and the
circularly polarized components are then obtained from Eq. (29).
Using the identities

S2-Dp2=RL, S+D=R, S-D=1,

we finaT]y obtain

R L (w2
V2 "~ Su2-RL”
o fo RG2-1)
V2 Su2-RL
Both ER and EL become infinite when Su2-RL = 0; indeed, the condition

p? = RL/S is just the dispersion relation for the extraordinary wave
prbpagating across a magnetic field.” Conversely, ER = 0 at the left-
hand cutoff frequency8 W s where L = 0; and EL = 0 at the right-hand

cutoff frequency wp» where R = 0.
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These frequencies are all in the electronic range. Of more
interest to the present application are low frequencies in the ionic range,
where pu2>>1. Since S is as large as R or L, we may neglect the term
RL in the denominator, obtaining

R o -1ss, el s Rys : (37)

At cyclotron resonance for an ion species, L + », according to Eq. (26);

thus, EL >0at w = Q> whﬂeAER remains  finite. This is because EL

rotates in the same direction as the ion gyration, and therefore the
plasma fesponse is so strong that the internal field is entirely shielded
out. On the other hand, both ER and EL become large when S = 0, which is
the condition for hybrid resonance’. With a single jon species, S = 0
yields the upper and lower hybrid‘frequencies Wpy and mg, whi]e with two
ion species one has in addition the two-ion hybrid resonance frequency

Qsse
ii
cyclotron frequencies Q] and 92 and to become 1arg¢ at the two-ion hybrid

In the latter case, one would expect EL to vanish at the ion

frequency in between. If the minor species 2 is much less abundant than
the major speéies 1, one would expect the dip at 2, to be much-narrower
than at Q- Thus the left-hand component of E has the qualitative shape
shown in Fig..1.

let|

Fig. 1
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Because of thermal motions and finite plasma effects, the zeroes and
infinities in Fig. 1 will be smeared out, though their locations will
not be changed. The computation of these effects in a finite length
plasma with ion thermal motions is the essence of Ref. 1. The dips at
Q¢ do not reach zero because each ion sees a different Doppler-shifted
frequency, and the peak at Q34 does not reach « because no ion remains

in the system long enough to feel a sharp resonance.

The above calculation can easily be gehera]ized to an Eo field
with both on and Eoy components, as long as Eoz = 0. In this case
the internal field is

EL = E.Q.)S. _Ez_'i + 1Eoy R (]JZ']) (38)
V2 Su2 - RL Y2 Su2 - RL

Rofox a2 Ty L2 (g
V2 Su2 - RL vZ Su? - RL.

The on cohponent represents capacitive, electrostatic drive, but it
does not alter the general behavior of the solution.

Page 11



3. EXCITATION WITH CIRCULAR COILS

The preceding case is unrealistic in that both Ez and kZ are zero.
We next allow kZ to be finite while keeping EZ = 0. We treat the
Cartesian equivalent of inductive drive with purely circular coils, as

shown in Fig. 2.

Fig. 2

The vacuum field has only a © (or y) component but varies in both r
(or x) and z. Since k has no © component by symmetry, the condition

AR = 0 is automatically satisfied. Taking the lowest Fourier mode

v-&
for simplicity, we may write

- ik x + k_z -ut) A
go Eo e ‘"X z y. ) ‘40)‘

Substituting this into our fundamental equation (9), we obtain from

the x, y, and z components three simultaneous equations for pr, Epy’
and Epz:
Sep 2 _s .
M, iD Myl pr iD .
iD. S-u2 0 =1 1-§ s 41
H Epy Eo (41)
My O P-uZ Epz 0

where 2 = u)z(--i' ug.



The determinant of the matrix is, from the middle line,
D = (S-u?) (SP - Pu,% - Su.2) - D2(P -y 2) (42)
Thus
iD -{D Myl

= - - 2
Dpr 1-S  S-u 0 E
0 0 p-u2

and similarly for Epy and Epz. The total field E is found by adding

EO to Epy’ the other components being unaffected. We obtain

DE, = £, iD (1-2) (P-32)
DEy = E (1-u2)[(P-u2)($-42) - u2 2] - (43)
‘DE, = E_ (-iD) (1-u2) HyHy

The circularly polarized components found from Eq. (29) are then

L iy R(u2-1) (P-yZ) - Pul (u2-1) ‘ (4)
/2 (Su2-RL) (P-u2) - Pu2 (u2-S) o

R Eg LGu-1) (P-u2) -Pu 2(u2-1)

Y2 (Sy? - RL) (P-pi) - Pu2 (u2-5) (45)
e . ip D(u2-1) wym, .
0 (su2-RL) (P-u2) - PuZ (u2-S) (46)

where
2242+ u2 | o (an)

This solution can easily be generalized to finite temperature
plasmas. In the fluid approximation, one merely has to replace P by°
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w2

ps '
P=1-2 5 o 2 , (48)
R ‘s w - kz ’vths ) .
2 A
where Vins B KTs/Ms' (49)

To include kinetic effects in the z-direction (e.g. Landau damping),
one can replace P by '

2
W
P='I-Egsz ' m)’ o (50)
‘ ] kz Vihs kzvths

where Z' is the derivative of the plasma dispersion function®.

0f course, finite Larmor radius and other temperature effects

I3

perpendicular to Eo are not included in this simp]e approach.

When u_ = 0, Egs. (44)-(46) can be seen to reduce to Egs. (35)-(36),
as expected. However, for w £ Qp, P is extremely large, as can be seen
from Eq. (48). Iq-fact, since P 3 M/m, the Pui terms in Eqs. (44)-(46)
will dominate for My > (m/M)Y/2 unless one of the other quantities is
resonant. This is just to say that electron charge neutralization by
motion along go is so efficient that it completely changes the nature
of the wave motions. '

Consider the dispersion relation, found by setting the denominator
D equal to zero. This yields

P(u2-R) (u2-L) B

29 =-

tan2 @ S.Z-RL) (2-P) ° (51)
where tan 0 = “x/“z' Eq. (51) can be recognized? as the general

dispersion relation for a cold plasma. If we let uy?2 » = to specialize-

to slow electrostatic waves, we obtain

tan2 e = - P/S, (52)
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which is just the resonance angle formula, which leads to the Gould-
Trivelpiece modes in finite geometry. If we further take 8 = 0 and
use the warm-plasma expression Eq. (48) for P, the condition P=0
yields the Bohm-Gross and ion acoustic waves propagating along go.

At intermediate angles, electrostatic ion cyclotron waves can be
obtained. Thus, peaks in EL and ER can occur not only at Q54 and W, s
but also at many other frequencies satisfying the dispersion relation,

depending on the angle 8.

We now consider the vicinity of the ion cyclotron resonances,
where L + ». In this limit, Eqs. (44) and (46) show that el and Ez > 0,
since the denominator becomes large with L, and hence S, while the
numerator remains finite. ER, however, contains L in the numerator as
well as in the denominator and hence approaches a finite value. As a
result, the component with the wrong polarization can penetrate into
~ the plasma, but the component that can provide ion cyclotron acceleration
is cancelled by the strong ion response. The introduction of kZ through
the use of circular excitation coils has not changed the fact that EL =0

at the ion cyclotron frequencies.

Note, however, that the ion fluid velocity does not vanish with EL,

for it must remain finite in order to generate the response field Ep that
cancels the applied field. For species s, the left circularly polarized
velocity component Vt is easily found from the fluid equation of motion
to be

Vb= ie et
s

e - . (s3)
s M w- QCS :

From Eqs. (44) and (26), we see that EL'near w = Q. is proportional

to |

L 1 st |
E o T - = . (54)
L [m w - ch)] _
Hence
WEoa ot (55)
s « nos ]



so that the cyclotron current noéqsvg of the species s remains finite
when EL » 0, and furthermore does not depend on how large the density
Nos is. However, the width of the resonance decreases with Nos? and the
effective acceleration of a minor species in the presence of transit
time and Doppler broadening effects requires finding a mechanism for
introducing a finite EL component into the plasma.
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4. EXCITATION WITH HELICAL COILS --
PHYSICAL MECHANISM :

To force an EL component into the plasma, one has to induce a
component Eoz’ as can be done with a helical coil or with circular coils
connected by conductor segments aligned with the B-field. The basic
effect is illustrated in Fig. 3.

N

— < - >
| f'*" dL—— -IO R O
e on )\

Here the excitation is by an rf current in a periodic array of split

circular coils connected by rods running in the z direction. As the
current J increases, a magnetic field B is created as shown, inducing an
e]eétric field in the plasma. Faraday's Law applied to the dotted

path says

fg-dL=-f£3_-d_S_ (56)

Since the coils are periodic in z, the induced field will have finite

kz. In this case, the good mobility of electrons along B will cause

Ez to vanish. Hence, the contribution to the line integral comes

entirely from the vertical legs of the path, and there must exist vertical
electric fields as shown. These are created by electrostatic charge build-
ups caused by electrons moving along B. The applied Eoz component cauges
electrons to move, to the left on the top leg and to the right on the
bottom leg, until their space charge causes an electrostatic Epz opposite
to Eoz and just sufficient to cancel it. The space charge, however, also

creates an electrostatic E which is in the same direction as the Eoy

induced by the current in the circular coils. Hence a plane-polarized E
- component exists in the body of the plasma, and part of this is an EL
circularly polarized component that is useful. Of course, the right-hand
side of Eq. (56) is reduced by the B-field due to currents flowing in

- the plasma (in the opposite direction to the excitation current J); but
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the cancellation cannot be exact under all plasma conditions, because the
current required to establish a given electrostatic field depends on the
plasma dielectric constant. '

A more realistic coil is the bifilar (m=2) helical structure
shown in Fig. 4.

Fig. 4

We wish to simplify the problem by treating an equivalent slab geometry.
Note that all three components of k are needed: kz is needed to cause
the periodic electron charge pile-ups; kQ (or ky) is needed tp'c1ose the
current loop in the excitation structure; and k (or kx) exists because_
the fields must vary radially. The vacuum field go contains all three
components in cylindrical geometry but is simpler in plane geometry,
where on = 0. The plasma response pr is, of course, essentia} and
must be retained.

The simplest plane-geometry problem containing all the es;entia]
elements is shown in Fig. 5.

1
g

2d

14

o]

Fig. §
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The external current flows in an infinite periodic array of rectangular
coils on the planes x = + d. The current density varies sinusoidally in
both the y and z directions, with wavenumbers ky and kz, respectively.
The currents on opposite faces are opposite, and the origin is halfway
between nulls in these current distributions. Since E = v¢ - A and A

is parallel to J, the induced vacuum field (¢ = 0) has no x component as
long as J has no x component.

The configuration of Fig. 5 is not quite equivalent to the helical
coil of Fig. 4. On opposite sides of the plasma in Fig. 5, the exciting
currents are equal and opposite. In Fig. 4, however, opposite points (for
instance, those whére heavy arrows are drawn) have JZ in the opposite h
directions but Jy in the same direction (though Jg is indeed opposite).
This causes a 90° phase shift between induced and electrostatic

.components of E in the two problems, as will be seen exp]iéit]y; but no
- large difference in the magnitude of E will result.

Watari et al. treat a simpler looking geometry (Fig. 6}:

Y
Ve
X

NSNS

AN

F}g. é
Here the excitation current is in the z direction only, and the
system is infinite and homogeneous in the y direction. To allow electro-
static charges to build up, the plasma is given a finite length in the z
direction. This geometry is included in our treatment as the case k -+ 0,
but the formulation is not as neat because the abrupt end of the plasma-

causes all kz harmonics to be generated, and the current system requires
sources located at infinity.
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5. PLASMA RESPONSE TO INDUCED FIELDS WITH FINITE Ez

Before attempting the problem of a plasma slab or cylinder, we
calculate the response of an infinite plasma to an induced E-field
periodic in all three Cartesian directions. Let the driving field be

~

A
E = (Eo y+Ey,

'Z\) e 'i(kxx + k‘yy + kZZ - u)t), (57)

where ? is the direction of §0. Since this is an induced field, v . Eo = 0;
hence,

Eoz = - ‘ky/kz) Eo'. i (58)

~ Because of the electrostatic charges that build up in response to Eoz‘
the field generated by the plasma has all three components:

§p=(ExQ+Ey9+Ez?)ei(kxX+kyy+kzz""t).' S (59)

The field go is not one that can be produced in practice, for'it‘requires
a non-interacting current distribution in the y-z plane inside the plasma:

Jo = Uy + oD e Tk Tyt gz —ut) (e

We must show that this current has no effect on our basic equation,
Eq. (9). ’

- For the vacuum field, Maxwell's equations give

o P S ,
= ‘lmy_xgo driwc A + kO EO’ | (61)
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where ko z w/c. The total field E in the plasma is given by

lxzx'5=iwzx§=1mc'2(%ioq-g.é_), ) (62)

where the plasma currents are included in ¢, and the exéitation current
i, is written explicitly. With E = gﬂ + Ep’ Eq. (62) becomes

~

= . "2. 2 '. . )
vxvx (E + gp) 4riwc = Jo + k2 (g « E + g gp), (63)
Subtracting Eq. (61) from this yields
- 2 o . = k2 - .
TxTXE 4K ¢ - E =k (L-g) - Eg (64)

which is the same as Eq. (9).

We wish to solve Eq. (9) assuming an gp of the form (59) under the

assumption of large electron mobility along 50:

. \

E

tot _ = ; : iy \
2 EOZ + Ez ~ 0, Ez X-EOZ (ky/kz) EO (65)

However, if we straightforwardly substitute Eq. (59) into Eq. (9) and write
out the x and y components of Eq. (9), using Eq. (65) for E, and Eq. (23)
for ¢, we fall into a trap. The two simultaneous equations for Ex and Ey
are found to be as follows, with y = k/k,: '

S-1 + ui HyHy = iD EX HyHy = iD (66)

+iD0 s - 142 E s-1ey2) °

HxHy y \ "y

Since the second column on the left is the negative of the column
multiplying Eo’ the determinant solution of Eq. (66) obviously yields

= Y - t°t= | ;
E, =0, E =+ E°C=0. (67)
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There appears to be perfect shielding of the applied field. This trivial
solution can be avoided by removing the assumption (65) and allowing

€5 = P to be finite. However, the real trouble lies in the disappearance
of the electrostatic component of gp: Since the Ep we obtained is -go

and go is divergence free, E_ is also divergence free. If we compare with
the circular-coil result of Eqs. (44)-(46), we see that in the limit

P > «» that solution gives ;Z/E0 = 0, ER/Eﬁ = EL/Et Nl (aésuming.ui >> S,
R, L). However, that is reasonable for the circular-coil case, where no
field amp]ification due to e]ectrostatic charges can occur.

To retain the e]ectrostat1c component we d1v1de E into transverse
and longitudinal parts: ' ' ' e |

§_p=_E_t+§_£,wheré_\z_-gt=0and_\z_x_E_=O. | (68)

. Eq. (64) now becomes | o

px wxEY +e - (Y - (p-g -

L £,

or w2 te (B -w) = (m-g) - E,. . (69)
where we have introduced the scalar potential ¢: |

B - - w. (70)

g; can be eliminated from Eq. (69) by the condition g;g? = 0:

t__ -1, .t t |
Ez My (uxEx yEy) (71)

Also, the condition §§ + g; + E,, =0 allows us to eliminate ¢:

. -1 t
“TH ¢ = (uy/uz).Eo tu,  (nE +.uy Eyt)- (72)

The x and y components of Eq. (60) then can be written as two simultaneous

equations in Ext and Eyt. Using the notation of Eq. (23) for the components
of ¢, we obtain o
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‘ 2, 2 . . 2 . t
(S -wu )uz +u (Su, - 1Duy) -1Duz + uy(Sux - 1Duy) E,
iDuz2 + ux(Suy +iDu,) (s - uz)uz2 + uy(Suy + iDu ) Eyt
SiDuZ + u (Su. - iDu.)
uy +ou (S, My
= - ) ‘ (73)
(S - Tu,” + uy(Suy + iDy )
Here 2 2 2 2 :
o=, vy, tp > (74)

Note that the r.h.s. is tge same as the second column of the matrix on
the left except that (S-u ) is replaced by (S-1). The trivial solution
gp = - Eo is avoided only because the intérna] drivigg current 10

forces a short wavelength in the plasma, such that y > > 1, or k > > 50.

This point is important in understanding the next section.

To solve Eq. (73), we write the lower term on the r.h.s. as

(S-u") ’

2 Y V2
, ¥ uy(Suy iDu ) + (o -1) u,

Now Eq. (73) takes the form

a b\/E b
c dN\e . 0 d+3$ (75)
y -
2 2
where ; §= (p -1) M, “(76)

and a, b, ¢, d are defined by looking at Eq. (73). The determinant

’
L

a b
c d

"

D,
*

| | (77)
2 2
can be simplified to the following form with the identity S - D = RL:

2 liD. (78

11}

z

D, = -2 2 [? - R+ 2(s - 6] ,
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The solution of Eq. (73) can then be written:

nc t bob | " (79)
= - F 1 = bsE 79

*x 0 d+s d ' ° '
t @ b D, + a6) E (80)

S - ‘ : = - + a6 .

This yields _
t _ -2 . 2 2
PE " = E [(1-u™") [-Suxuy +iD (u -uy )]
(81)
- 2 2 . 2 2 2
DE," = EL(I-™) (Su, - Duguy ) = (Su = RL) = (S-u") (w, /)] |

~ The electrostatic potential ¢ is given by Eq. (72), and the gradient of
this gives the longitudinal field E?. After some cancellations, we
obtain '

' P 2
DE, " = E,(1-u)u, [(S-# Juy+ iDu ]
- 2. _
DES = B (1-u™)uy [(S-47) wy + iu,] (82)
- 2
DE," = Eo(1-™ ), [(S-47) wy + 10,1 = - DlEy, + E,F).

When EF, gf, and go are summed, further cancellations result in these
simple expressions for the total field in the plasma:

£ =D7 By -1 (D)
.Fytot =p~} Eq (uz-l) (S-uy2 ¥uzz) | (83)
EztOt = Q (by assumption)

Where D=Su - RL 4 (5-) (84)
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The circularly polarized components are
e LR ' LR _ N -
E =t B /NT BTN = (E 21 EINT | (85)

The total internal field components can then be written:

R 2 2 s
_ Eﬁ . 2e) L My - uz “Tuuy
Eo 1 SWZ R+ 2557 (86)
et Rep2 -2 + 1
._L, - ( 24) 11), uz uxu),
E, ¥ SuZ - RL + 12 (S-uZ) - (87)

Eqs. (86) and'(87) show the amplification of the appiied field that
is possible, and Eq. (82) gives explicitly the electrostatic field
that is responsible for this effect.

For example, consider an'argon plasma of density 1012 cm~3 with

Bo = 20 kG and o v Q- At these low frequencies, S, R,'and L are all

about equal to 1 + c2/vﬁ N2 X 10?, and k.~ 1.6 x 107™% cm-1. Let
Ky ﬁ-ky ~ 2n/10 em™! and k, g_ky/ 5. Then p2 ~ 5 x 107, so that the
inequalities u2 >>'S >> 1 are well satisfied. Except at cyclotron
resonance, Eqs. (86) and (87) are approximately

R,L o o=u2 -uZ 4+ i
ERL N Y 32 X ."ifz
Eo’ ¥z

=
N

h =4

z f (88)
The amplification factor is seen to be purely geometrical and amounts
to ~ 35 in this example, where Ky g_ky ~ Sk,. The plasma dielectric

has no effect because g is too low. Only when g is high enough that

the plasma currents alter the flux-conservation argument of Fig. 3 will

tﬁe off-resonance amplification factor be affected. In the circular-

coil case of EOZ = 0, amplification cannot occur. This can be seen by
taking the P + » 1imit of Eqs. (44) and (45), which become
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et ~Pugu® 1 (89)
ER’L = "“z“ ) |
(o]

- The imaginary term in Eq. (88) can be traced back to Eq. (83), where it
is clear that Ex and Ey are nearly in-phase (because the space charge
pulls simultaneously in all directions), and therefore the field is
close to linear polarization.

The field enhancement effect has been called plasma paramagnetism
by the group® in Nagoya, Japan, who have observed this effect in rf
plugging experiments. However, in a recent paperl® the Japanese seem
to have missed the point about the electrostatic nature of the field; they
calculate the internal magnetic field and use magnetic probes to measure
it, thus ensuring that the main enhancement will be missed.

In the region of ion cyclotron resonance, L goes to infinity and
S to L/2. Egs. (87) and (86) then show that EL goes to zero while ER
remains finite. Screening of the field by the plasma at exact resonance
cannot be avoided, but thevminimum will have finite width and depth
because of thermq] Doppler shifts and tradsit time effects.
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6. INDUCED FIELDS IN A PLASMA SLAB

We finally come to the more realistic problem of fields induced
in a plasma by currents in external conductors. To keep the algebra
as simple as possible, we consider a single Fourier mode in slab

geometry, as shown in Fig. 7. The plasma is uniform and infinite in
the y and z directions,
tv

e

AN

a—2 g —*

2d -

Figure 7

and has a thickness 2a in the x direction. The exciting currents
flow on two sheet conductors at x = + d. The currents vary sinusoidal-
ly in the y and z directions and are either in phase on the opposite

sheet (symmetric excitation) or out of phase (antisymmetric excitation).

With the origin_at the center of the diagram, the surface current
50 (y,z) for the antisymmetric case can be written

: = "'iwt _2_ 3 - __2_ 3 . =
50 t4Koe ( ”y cos kyy sin kzz s sin kyy cos kzz ) , at x = xd
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It will be convenient to use exponentia] notation. If we allow
ky and kz to have positive and negative values, Eq. (90) can be
expressed as the sum of four waves of the type Re [exp i (+ kyy + kig-
wt)] with different combinations of sign. Treating one of these at
a time, we can write s o )

_lgo=:|<o (-J)%-a—i-)e1(kyy+kzuéwt at;étd (91)

The coefficients have been chosen to satisfy L * X, = 0.

The vacuum field Eo due to these currents satisfies

2

Assuming Eo « exp 1 (kyy + kzz), we find solutions proportional to
exp (+ kxx), where

k., =k +k, -k . (93)

The combination corresponding to symmetric excitation is obviously

cosh kxx, and to anti-symmetric excitation, sinh kxx. Furthermore,
goAcannot have an x component because Kox = 0 (this is not true for
the r component in cylindrical geometry) and the y and z component

must satisfy v - E = o. Hence E  has the form

- i-i s .
Es = B ( TRRT ) e “ut ¢ 1(kyy * K2 inh « x . (94)
y z X
for the anti-symmetric case, and similarly with cosh kxx for the
symmetric case. To evaluate E0 in terms of Ko’ we compute the induced
magnetic field at the surface of the conductors. The result, which
will be derived in the next section, is
-kxd

E:iﬂ Ke

o " e Ko (anti-sym.) (95)
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and similarly, with sinh kxd, for the symmetric case. For complete-
ness, we have also considered the case of shifted coils, in which Koy
is in phase at x = +d but Koz is out of phase. This mocks up the
situation with a double helical coil (Fig. 4). However, it cannot
be done in plane geometry without current feeds all over, since 50 is
no longer divergenceless. The vacuum field in this case is given by

- S A ~ =k x . ik y + k_2)
= —l - —}- i - _._&. X -th - yy Zz
E E, ( i cosh k x . s1nhkxx ™ e ) e g

To calculate the plasma response to go, we must solve Eq. (9).
As in the case of distributed excitation current, a straightforward
solution with EztOt E
EFOt = 0. Hence we split Ep into transverse and longitudinal parts, as
in Eqs. (68) - (70), and attempt to solve the equation

= 0 yields only the trivial solution E_ = ’Eo’ or

Though this seems to be a straighforward extension of the problem in
Sec. 5, it is not. Since the x-dependence is not constrained to be
periodic, the present problem is much more complicated; it involves

both the penetration of §o into the plasma and the response of the
plasma to whatever local field exists.

Before launching into the solution of Eq. (97), we wish to discuss
two apparently divergent points of view on this problem. The first is
that the driving field E0 must surely extend into the plasma almost
as far as it does in vacuum, because Eo is divergenceless, and it can
be cancelled only by another divergenceless field generated by plasma
currents. But in a low-8 plasma the magnetic field prevents large
transverse currents from f]owing (except at cyclotron resonances),

and space charge prevents large periodic parallel currents at low
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frequency. In this case, it should be possible to calculate the plasma
response to a given goin the same way as was done in Sec. 5. The second
point of view is that followed in standard calculations of rf excitation
by coi]s7’]J.
on the surface of the plasma. Waves satisfying the plasma dispersion re-
lation are excited at the plasma surface and either propagate inwards (if
k is real) or evanesce inwards (if k is imaginary). If the plasma thick-
ness is just right, a column resonance can be excited. The plasma cur-
rents and charges then generate fields which radiate back into the vacuum
region (scattered field). By matching the proper components of §F°t and
its derivative to the plasma field at the plasma boundary, where §F°t in-

Here a wave launched by the coil is considered to impinge

cludes the driving field and the scattered field, and applying appropriate
boundary conditions at the coil and the vacuum chamber wall, the fields
everywhere can be obtained. This approach seems to neglect near-field
phenomena, in which an internal Eo can drive a plasma response that does
not satisfy the dispersion relation; yet the results]] of this method of
calculation seem to agree with the enhancement factor found in Eq. (88).
We shall attempt to reconcile these two points of view.

First, let us try to solve Eq. (97). The x and y components are
(for anti-symmetric excitation): '

Zt t |_-'t_.
CVE 4 S(Ex - 4') _1D(Ey 1uy¢)

iDE_u, " Ysinh k_x
oY X (98)

20 t
v Ey

H

. t 1 t 2 - -1 .
+ 1D(EX -¢') + S(Ey - 1uy¢) (1 S)Eouy sinh k x ,

where the prime indicates ko'] 3/3x. We can eliminate ¢ by means of the

conditions
. t = t! 3 t 1 t = (
veE Ex + ‘“yEy ik =0 (99)
tot _ t_ . -
EZ = EOZ + EZ Tu¢ 0 | (100)

This results in two coupled differential equations for"Ex and Ey (we
now suppress the superscript t):
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2 " . 2 2 2 - Vg 2 2
(uz - S)Ex - DuyEX o, (s - My My )Ex - 'ISuyE‘y - 1D(u‘y +u, )Ey
= iSuE cosh k.x + iD(u. 2 + u.2)Eu "V sinh k. x
X 0 X y z "oy X
(101)
2c n ' 2 2 2 . 2
+ + - - - " - t .
My Ey DuXEy (uy *u, )(S u )Ey iDE, 1SuyEx + iDu, E,

= -Du,E_ cosh k x + [uz2 - S(uy2 + 22)] Eo“y-] sinh k x,
where, from Eq. (93),
pé=uf4+quc . (102)
In Eq. (101), the inhomogeneous terms on the r.h.s. have x-dependences of
the form sinh kxx and cosh kxx; hence, if we expand Ex»and Ey as a series of

terms in sinh nkxx amd cosh mkxx, only the terms n=m=1 have non-vanishing
coefficients. Hence we take Ex and Ey to be of the form

Ex = a cosh kxx + b sinh kxx
A (103)
Ey = ¢ cosh kxx + d sinh gxx
Substituting into Eq. (101) and equating the coefficients of the cosh K, X
and sinh kxx terms, we obtain four coupled equations for the coefficients
a, b, ¢, and d:
i u 2(3-1) - sy -Du u ~iD(y, 24u 2) N ) ra )
z X XYy y ‘"z X"y
2 2 . . . 2, 2
-Duxuy u,(S-1) - su, -1Suxuy -1D(uy tu,) b
. 2 2 . 2 .2 '
-'lD(ux -u,, ) -'ISuXuy u, (s-1) + Su.y Duxuy c
: g 22 ) 2 2
i -1$uxuy -iD(u, "~ ) Duxuy u, (5-1)4-Suy~J i dj
iSuxuy
. 2 2
D +
i (uy u,") :
0
= _ — (104)
Duxuy | | Uy
2 24|
- S-1) + S
! (v, ‘ ) My ]J
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We see that the last column on the left is proportional to the r.h.s.

Hence the determinant solution of Eq. (104) gives 0 for all coefficients
‘except d, which is -E, /uy. Eq. (103) then says that Ext =0and E b=

-(E0 /uy) sinh kxx = 'Eoy. Substituting into Eqs. (99) and (100), we

see that ¢ = 0. Hence this is the spurious solution of Eq. (97) in which
the electrostatic effect does not appear and the transverse field completely
cancels the applied field.

Next we attempt to force a non-trivial solution of Eq. (9) by iter-
ating around a solution which, on intuitive grounds, has to be approxi- 
mately correct. This solution is the one obtained by neglecting the
transverse plasma field EF and keeping only the electrostatic response
g?. Clearly, EF'must be small since it is generated by plasma currents,
and these are severely Timited in the perpendicular direction by the _
magnetic field (except at cyclotron resonance) and in the parallel
direction by space charge buildup.

If we neglect gﬁ, the condition for perfect conductivity along Eo can be

written
%_ et |
Ez = --EOZ EZ = Eoz »(105)
or from Eq. (94),
I E -
-1k, ¢ = e E, sinh kxx.‘ o (106)

Hence

2

¢(x) = iEo(sinh kxx)/kouZ (107)

This potential gives rise to the fo]]owing electrostatic field components:

m
©
it

-¢' = -i(ux/uzz)E0 cosh k X
(108)

m
)
n

: _ 2 .
-1ky¢ = (uy/uz )E, sinh kxx
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The total internal field in the y direction is, from Eq. (94),

tot [ . : 2, 2\q
= = + .
Ey Ey + (Eo/uy) sinh kxx N (“y /uZ )] Eoy (109)

The enhancement factor is therefore approximately
2, 2 | :
1+ (ky /kZ ) (110).

independent of plasma parameters, in agreement with what we found in Sec. 5.

However, the components Eys Ey in Eq. (108) do not satisfy Eq; (9).
For gxgp = 0, the latter can be written

- , ()
or
SE, - 1DE, = iD(E/u ) sinh k.x

(112)

SEy + iDEx (1 - S)(EO/uy) sinh kxx

Clearly Eq.(108) does not satisfy this, and a correction in the form of a
transverse field EF must be added. We propose the following iteration

procedure. The approximate solution, Eq.{107) or (108), is inserted for
6 1n Eq.(97), and that equatlon is solved for E and E From the condition

v. E = 0, we can calculate E and use that in Eq (105) to get an improved
value for ¢(x). The process can be repeated.

Ne have carried out this procedure with disappointing reéh1ts. After
the first iteration, one indeed obtains an "improved" value for ¢; namely,

i E_sinh k_x 2 |
#(x) = —0 X 1- L [1 » S - V(pg - 1) ] (113)
ko, [ 25-RL-1

However, the process does not converge uniformly. The next iteration yields
an expression for ¢ that leads to E tot = 0; hence, we are led back to the

spurious solution where the dr1v1ng field is ent1re1y shielded out.
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The trick of separating gp into longitudinal and transverse components,
which worked so well in the case of distributed driving currents, has failed
to give us a non-trivial solution when the driving currents are outside the
plasma. To understand what is happening, we return to the fundamental
equation, Eq.(9), which (in units of k;]) can be written

VE -VL(E) v e B o= (D-g) g (Ma)

With the condition Epz = -E,,» the components of € given in Eq.(23), and

the components of Eo given in Eq.(94), this yields the coupled differential
equations

2 2 . .
(S-wu"-u")E - 1DE, - iy E

cn =1
vEy iDu

y Eo sinh kxx + 1“xEo cosh kxx

q (115)

E n _ 2 . _ ) -
y *(S-u)) E, + 1DE, - iuE, My

2
Eo (M-5s- uy) sinh kxx R

‘where the prime stands for k;] 3/3x.

These are linear, inhomogeneous equations with the driving terms on the
right. We can let gp be the sum of a particular solution and a solution to
the homogeneous equations. The only particular solution we have been able
to find is gp = -go; this is what we find when we solve Eq.(115) straight
forwardly assuming that Ex and Ey are composed of sinh kxx and cosh kxx ;
terms. When this solution is subtracted out from Eq.(115), we are left
with an E-field that has to satisfythe homogeneous set

2 2 1
S - - - - =
( : Hy z ) Ex 1DE¥ iuyEy 0'

(116)
" 2 ' .
+ - - =
Ey (S Hy )?y + 1DEx iuyEx 0
We can Fourier analyze Ex’ Ey so that
E, » Ey « exp (iyx), (m7)

where y is an internal wave number not necessarily related to kx.
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1~ -

Eq.{]]G) then becomes

2 2 .
(s - My * w,) E, ¥ (Yuy - 1D) E, 0

2. . (118)
by + D) E, + (S - wy - 4P  E = 0 |

A solution requires the determinant D of the coefficients to vanish.

Thus y must satisfy
2

- il o4 ot - (n9)

This is, of course, just the dispersion relation for waves in the plasma
with EZ = 0; and the condition D = 0 is exactly the condition under which
the straightforward determinant solution of Eq.(115) is invalid (because

of division by 0). So we are naturally led to natural modes of oscillation
in the plasma rather than locally driven modes. Of course, y can turn out

to be real or imaginary. -If y is real, there will be finite-plasma reso-
nance when the thickness of the plasma slab matches the natural wavelength;
if y is imaginary, the modes will be evanescent at the driving frequency.

(y cannot be complex because we have for simplicity neglected damping terms.)

The dispersion relation (119) easily reduces to

2 _ 2 2 _ .2
O U R

2 .
RL - Su 2 2 :
y2 = —— -y o+ o) 1 (120)
S-wu
z
When u2 >> S, R, L, as is usual except near cyclotron resonance,vwe see

that v2 = -(uyz + uzz), and hence the waves are indeed evanescent. The
e-folding length is set by the periodicity of the external coils. To be
more exact, we can make the standard low-frequency approximation

(w2 < ch << wcz), obtaining

2 2 2
Q Q. -/0 Q “/a
S'—"I-—-?_—p——z—, RL = (]+§P.+_E) (]+_E___C_)=52. (121)
. w Q. -w
) w -SZC (o Cc
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Eq.(120) then becomes

LI S | (122)

Y y uz'

For the case of the Nagoya Type III coil (uy = 0), good penetration (y = o)
requires

c? k2 7,2 | |
— i - I-IPQ—Z (123)
Cc

Except for our neglect of KTe, this is identical with the condition for
good field enhancement given by Watari et a1.% in their Eq.(13). In the
1imit of low density (ﬂp*-o. S+1), Eq.(122) becomes [c.f. Eq.(93)]

2 2 2
Y "]"lly'-uz = My s

and we recover the vacuum-field decay length. Propagating waves (yz >0)

require S > ”y2+ pzz , or

Q
—— > 2+ kAn? (124)

where the "1" in Eq.(121) has been neglected. Thus w must be close to .
and just below it. When finite temperature is taken into account, w can
be above Q.3 and, in fact, Eq.(122) simply becomes the dispersion relation
for an electrostatic ion cyclotron wave.

Thus we have been forced to consider waves in the plasma which satisfy
the dispersion relation. The amplitude of these waves cannot be found
from the homogeneous equations, of course. If undamped cyclotron waves
are excited, they can reach arbitrary amplitude. If evanescent waves are
excited, their amplitudes can be found by matching the plasma solution to
the vacuum solution at the plasma boundary. We have therefore shown that
calculating the plasma response to a local induced electric field is

entirely equivalent to calculating the surface excitation of natural plasma

modes by a launched wave impinging on the plasma. The latter method is the

only method feasible in the present case, which explains why it is the
standard procedure.
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7. SOLUTION BY STANDARD METHODS

To obtain a working formula for the field enhancement factor, we now

. solve the excitation problem using the standard method of finding solutions
in the different regions and matching them at the boundaries. The procedure
is tedious, but it cannot be avoided. Let a uniform plasma extend from

x = -a to x = a, and let a perfectly conducting boundary lie at x = b, as

Z

shown in Fig. 8.

x>
' 1 ' ' ]

-b -d -a 0 a  d b
Figure 8

Antisymmetric sheets of noninteracting, periodic currents lie at x = +d, as
in Figure 7. The sheet currents are as in Eq. (91):
- 2 i(k y+k_z-wt) _
- Yy o_ oz Y
I_<o + Ko( )e | (125)

Uy IJZ

At this point one has to be careful about the use of exponential
- notation for the y and z spatial variations; indiscriminate use of
Eq. (125) leads to erroneous results. Suppose we wish to represent
sinusoidal current distributions whose current maxima are lined up with
_the origin as shown in Fig. 9. ' '

» \r‘; |
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N ol

The cuirent sheets at x = £d then have components

i
= o — i k
Koy =% ™ sin | yly cos |k, |z
g ! (125a)
0
Kop = ¥ luzl sin |k,|z cos lkyly

Now let Koy have the form of Eq. (125) and sum over the four possible
combinations ky = i_lkyl, k, = i_lkzl. At x = +d, we have

K K
0 . . 0 ..
ik |y + [k |2) ol -i(lk Jy-1k_.[2)
Ko Ko .
+ l;“]'e‘(lkyly - 1k, l2) -] e“(lkyly + lkzlz)
y y .
= 4iK

-Ta;?—sinlkyly cos [k |z.

Thus the sum yields Eq. (125a) if we set Ko' = 41K0. A similar conclu-
sion holds for Koz and for x = -d. Consequently, we may use the ex-
ponential form (125) if, at the end, a sum is taken over the four waves

withuy =+ Julow, =+ Ju,l.

In the exterior region d < x < b, EF satisfies VZEF + g? = 0, where -

lengths are normalized to ko']. Hence g? is of the form exp (:uxx), where

2,242 (126)

Since £ € and Ezenmst vanish at x = b (for brevity we write the formulas

only for positive x), they must be of the form -~
u, X | 2u, (b-x) ]
Eye = Aye e X [ 1-¢ % J
(127)
X 2u (b-x)]
e _ e X - X .
Ez = Az e [1 e
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The condition v - E€ = 0 gives

e _ . -1 e ey "x* Zux(b'x)]
Ex —-1ux (uyAy + pZAZ e [1 + e (128)
which need not vanish since it is normal to the conducting boundary. Thus
E? is expressed in terms of two undetermined coefficients, Aye and,Aze.

ZEW + EW = 0 and so

ijs of the form exp (tuxx), with My satisfying Eq. (126). The component Ezm
must vanish at x = a because we assume EZ = 0 inside the plasma. Thus it
will be convenient to use the following linear combination of exponentials:

In the middle region a < x < d, Ew also satisfies v

ES" = A sinh € + B cosh £
Eym = C sinh £ + D cosh ¢ (129)
E," = E sinh g,
where
£ = u,(x - a) - om

The condition v - gT = 0 allows us to equate coefficients of sinh £ and of
cosh £ to obtain

m
n

1., |
w, (iuB - uyC) | . (131)

L)
i

= i/ A (132)

Matching the tangential components of g? and ET at x = d yields

R 0. € sinh Eq t A(iux/ux))COsh_gd
Y u d 2u, (b-d
e x. [l- e X ]
, (133)
A 0. (1uxB - uyC) sinh Ed

Z u.d 2u_(b-d)
u,e X [1 -e % ]‘
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where
Ed = ux(d - a)

The undetermined coefficients at this point are A, B, and C. The normal
component Ex must also be continuous at x = d because there is neither a
jump in ¢ nor a surface charge there. C does not appear in this matching
condition, and one obtains o

sinh &g t cosh &4 ctnh ¢

B=-A (134)
cosh gd + sinh gd ctnh ¢ .

where
r = ux(b -d) . : (135)
The [Bn] jump condition yields nothing newf but [Btan] yields
e8] = u (£ - EM + (£, - E7) = (d/c)K, -
[cB,] = w (E° - _Exm) + 1(1-:ye' - ey"") = (4n/c)ky, e

The Ex terms cancel since E, is continuous, and the two equations (136)
yield the same result for C:

-

4wiK0 Hy R
C= - iA ;-—(sinh gq + cosh £q ctnh z) | (cosh gt sinh Eq ctnh t)

Cu u
(137)

X'y Ty
Using Eqs. (131), (132), (134) and (137), we can write Eq. (129) in terms
of the single coefficient A:

_Ex'“ = A(sinh £ - F cosh &)
iy 9 _ .
M= _X [(u 2 K - FA) sinh £ + A cosh g] (138)
y uy X 0
m = _3 -] - '.‘ '
B T(uuy) ’Ko sinh ¢ , )

Page 40



where K

g 4o ] |

Ko =T W F = N/M : (139)
N = sinh g, + cosh £, ctnh g ‘ o (140)
M = cosh Eqt sinh Eq ctnh ¢ (141)

We now consider the interior field E} in the plasma region. This
must satisfy the homogeneous equation
%' iyw . E)+e-E =0, - (142)
which we have previously evaluated in Eq. (116) for the case Ezi = 0. The
solution is of the form exp (*+gx), where g = iy satisfies the dispersion
relation (120):
2

2 2 2 Su, - RL

g- = w4 Z 5 . (143)
S - M,

In the case of antisymmetric excitation, it is clear that E T will be anti-
symmetric and thus vary as sinh gx. The electrostatic part Ex1, however,

will be symmetric because of the way the space charge accumulates (see
Fig. 7). Thus we let

i

Ex = Ax cosh gx

V= AT sinh gx O (148)
y ~ Py | 3

I

£, = 0.

. i m .
Matching E ~ to E ields
g y WOE,Y
i . .
A h ga = iA 145
, sinh g b/uy (145)
We cannot evaluate [Dn] and match E* because an unknown surface charge can
develop in the surface of this ideal dielectric. However, no surface cur-
rent can exist on a dielectric, so all components of B must be continuous
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at x = a. The [Bx] condition yields nothing new. The [By] condition
yields

i -2

cosh ga = u, “ K - AF . (146)

AX o

After some manipulation involving Eq. (145), the [BZ] condition yields
K6(1 + 2/u 2)

A9 ¥ . (147)
My F + gu, ctnh ga

Putting all this together, we finally obtain
V . . H 2 . |
SRR 6 + X sinh gx (148)
Y oy n Nuxsinh ga + Mg cosh ga

¥4

; g‘gr__K_o_z_ < 1 - gux(M/N)ctnh ga ) cosh gx (149)
c )

I gux(M/N)ctnh ga

osh ga
My cosn g

where N and M are defined by Eqs. (140-141), g satisfies Eq. (143), and
g4 and ¢ are defined by Egs. (133) and (135).

The boundary at x = b is an unnecessary complication; if we let
b->w=,we find g =« , ctnh ¢z = 1, and

N=M=exp [u(d-a)l. | " (150)

For b - =« we have

i_ 4ni n? “hgld-a) "

= 3T1 Y e ~ sinh gx

E-V ¢ KO)’ (] ¥ _2> u, sinh ga + g cosh ga (151)‘

Yz .
4 K '
e ~u, (d- 1-gu_ctnh .
x ¢ §2£ ex(d-2) gux 9 cosh gx (152)
z T QPXCtnh ga J cosh ga .

e, = 0. . L (153)
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We note that this is finite when d = a, so we could have put the coils on
the surface.of the plasma. On the other hand, if b = d so that z = 0,
the field gf would have to be zero, according to Eqs. (148) and (149).
This is because the image currents on the conducting plate would have
‘cancelled the applied currents.

To find the enhancement factor, we need to know the vacuum field Eo;
This cannot be found by taking the limit mg + 0, S, R, L+ 1 because the
approximation E' = 0 breaks down when there are no electrons to short out

Z
Ez‘ From Eqs. (143) and (126) we see that when S =R =L = 1, we have

This is as expected, but there is no way the finite value of Eoz or the zero
value of on can be obtained from a 1imit of Egs. (152) and (153).

We now solve for the vacuum field go when b, For x<d, symmetry re-
quires go to be of the form

i i i(wy + iz -ut)

EOX on cosh Pxx e yJ b4
i - i(My +u_z -ut)

Egy = Agy Sinhux e y T | - (154)
i a1 . ' i(ny +¥4_z -wt)

Eoz = Aoz sinh H X e yJ z

where My satisfies Eq. (126). For x>d, only solutions finite at infinity
are acceptable, so we can write

e _ e _-ux i(vy+H z -ut)
on on e "x" e yy z
- j(u - )
B8 = a5, et Ty ¥z o) (155)
e _ e _~ux i(vy+u_z -ut)
EOZ Aoz e "x" e yy z

Matching these to the interior solutions at x = d results in
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e _ gy ai 2u.d _
Aoy %Aoy (e“Fx~ -1) {156)
= 3l (e2xd o)
cys e,i _ .
The conditions v-E)’ =0 gives
e,i e,i | . e,i _
-u Eox *iu Hy Eoy + Tu, Eyz =0 (157)

Substituting Eq. (156) into (157), we obtain

Al 28 Ly,

2u d -
(™ x +]) Uy ox

ux ox

gx = 0, as expected, since K had no x component This

simplicity is lost in cylindrical geometry As in Eq. (136) the [B ]
condition gives '

i _
Hence, on = E

.ei‘_ o
1(Eoy —Eoy) = 4nK0y/cv | | (158)
The middie equations in (154-156) then yield

Ao dn

oy ~ T, Koy (159)
i = iﬂ “H d 5 ]
or Eoy , Koy e "x sinh X (160)

and similarly with Ei

The enhancement factor Q for the case b»» is given by the ratio of
(151) and (160):

u.da
qQ = 51 1 + y2 My €X - sinh gx. (161)
EyT w,2 ) u _sinh ga +g cosh ga sinh u x
oy X X

Note that the position d of the current sheet does not matter. Here g
satisfies the dispersion relation
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2

2. 2,2 .S, -RL 162
g uy *u, - z (162)
-u :

Z

When w is not near cyclotron resonance, the values of S, R, and L are
usually much smaller than uZZ. Hence, we may take the low-density limit
S=R=L=1,0rgqg-= - In that case, Eq. (161) yields simply

<

Q=1+ (163)

=
N
-

X

which is exactly the value found previously [Eq. (110)] by neglecting the
transverse field. Note_that we can take the 1ow-density limit without.
getting Q = 1 because E; does not converge to E;y under the infinite-con-
ductivity assumption.

At ion cyclotron resonance, L goes to » and S to L/2, while R remains

finite. Then 92 becomes

,
Lué - 2RL
2 _ 2 2 , Mz L 2 2 2
9" =uy *+uy [“:_5;37_—' g * u, > g (164)
Z

One sees from Eq. (161) that Q remains finite even at w = Q. and in fact
has a value that differs from Eq. (163) only by a factor of order unity.
Thus, the intuitive answer is verified by exact calculation.

Besides E’, there is also a component E; that did not exist in'vacuum;
this is given by Eq. (149) or, for b»=, by Eq. (152). Combining this with
E; according to Eq. (85), we can obtain the circularly polarized components:
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LA _zﬂt | ..f\(A-a.) m(smhﬁa.—smuskga.)osk g% £ (Pt P2 eoshaa sirhgx
c

E PePylia cash ga (I“i"““ﬁ“' *qoushga) (165)

“for E in V/cm and Ko in A/cm, the numerical coefficient should be replaced
by 60nv2. The vacuum solution from Eq. (160) is

V'iEL*"-::E, =‘LK° e'r"dsinkhx

o M‘? (166)
Dividing this, we find the enhancement factor to be
W S t 2 sinhgx
Q r;-“d‘ ‘j“(t‘us"““ﬁ“*au’i‘ﬁ“) [rx(r‘j*r\i)“ﬁ\ﬁﬁ sinh r‘x
t ‘Aj (S\n‘\ 5& -%r\,C'Skgﬁ) ‘SIT'\F?:;( ] . )

The first term is due to Ey; the second, to Ex. Since these have different
x-dependences, they cannot cancel everywhere; and there is always field
enhancement. However, for large gx ablarge degree of cancellation does
occur for the L component, and one has to analyze this case more carefully.

To do this, let us simplify the problem by taking the low-density

limit 92 = uxz = uyz + pzz - 1. From the dispersion relation
2
Su,” - RL A
92=u2+u2+——5———-ﬁ - (162)
y z S 2
- u )
z
. . 2 2 .
we see that the approximation g~ = . requires
2 i 2
IRL/S| << M, and ISj << My - (168)
The low frequency approximation w2 << mcz puts S, R, L into the form
Ccf. Eq. (12101
? 2
o & IJ).‘,
S i I =1+ %
S=1i~+ S qroo R, L=\ z (169)
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where the sum is over fon species. Let us choose a set of parameters to
see when the conditions (168) are satisfied. We take

B = 20kG, M = 238M,, Z=2, n-= 10'%em™3,

a = 10cm, A, = 20rcm, Az = 60rcm, ky/kz =3

fFrom this we obtain

2, = 1.61 x 10° sec™!, f. = 2.56 x 10° Hy
b, = 5.44 x 107° e, k,2 = 5.44 x 1074
u; = 1.84 x 10%, u2 = 3.39 x 108
b, = 6.13 x 102, w2 = 3.76 x 10° - (o)
w, = 1.94 x 10°, ut = 3.76 x 10°
k.a = 1.055, |
oy = 1.71 x 108 sec71, ng = 2.91 x 10'6 sec™?
When » is off resonance (w2 << ch, say) then Eq. (169) gives for one
species :
s=R=L=11x10"
Hence |RL/S| = [S] = 10 <<’u22 = 3.8 x 10°, and Eq. (168) is satisfied.

However, S and L can become large near cyclotron resonance,.and there will
be a range of frequencies where the low-density approximation g2 =y 2

X
fails.
To study the behavior of g near v = Qs define
A=z1+ (k§/k§) "~ (=10 in this example)
y = Qg/ng | (=104 in this example)
' : (171)
A=z (w - nc)/szc
With the use of Eq. (169), Eq. 5162) becomes
2 2 Mz 7Y vf (A+ 1+ 2m2apy) - Y
9" = Auy + T2 2 ° —t - (172)
1 - (uz/np)(oc ) 1+ 2u, Ay
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where we have replaced m+ﬂc by ch. The last y in the numerator shifts
the zero only slightly, since y is = 300 times smaller than Auzz. We see
that 92 goes through « at A = —%y/uzz = ~.015, and through 0 when a is
(1+A)/A 1.1 t1mes this. Far from resonance, the A terms dominate, and
92 = 10u . At exact resonance, A = 0 and g2 = (1+A)uz2 = llug.
Thus the behav1or of g (m) is as shown in Fig. 10. ’

e l\ |
| A+
' A
l
I @i
| e
' Fig.l0

Since the internal field E' varies as ejgx, positive 92 means that

the wave is damped as it propagates inward. Negative 92 means that an
undamped propagating wave is excited, but this can happen only between
A= -1.493 x 1072 and -1.642 x 1072
propagating region is only y/ZAuZ2

in this example. The width of the -
= 0.15% of .- Since B is not usually
uniform to this accuracy, there is to all intents and purposes no excita-
tion of non-evanescent waves. Except in this narrow zone of w, gz can be
. 2 _ 2 2 _ 2 L. 2
approximated by Auz =¥y tu, =t 1 = My .

approximation is almost always valid.

Thus the low-density

Now let us add a second ion species, say with M=235MH, n=10.'0 cm"3

and Z=2. There will be two terms in the sums of Eq. (169), but the re-
sonances will be separated, since the Qc's differ by 1.3% while the
resonance zone is only = 0.3% wide. For the minor species n is 100 times
less, so that y is also 10C times less. The resonance region is then
on]y 3 x 10 59 wide and can be completely neglected. We have computed

(w) for this two -ion case, but the curve need not be reproduced because
1t is just as described above.

Having justified the low-density approximation, we may set g= My in

Eq. (165). For simplicity we also omit the factor e “ (d- a), assum1ng

that the plasma extends up to the excitation coil. we then get
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B ) cor\I‘K(A)

_..ré)askr\*x "’ (H )Smk("«,x-] (173)

Dividing by the vacuum field of Eq. (166), we get for the enhancement
factor

QF st g e (W R o

In these formulas, it is understodd (because of the way the x-dependences
were defined) that g and u, are positive, while My and u, can take both
positive and negative values. Q becomes infinite at x=0 because
E0 vanishes while Ei does not.

The last term in Eq. (174) comes from Ey and is simply the factor A
we obtained earlier in a cruder treatment [Eq. (110)1. The first term in
Q comes from Ex and can cancel part of most of the last term. Near x=a,
we have B X = 1 (x is really kox here) since.kxa,= 1.055 according to
Eq. (170). 1In that case, ctnh u,x = tanh u,a = 1. Q then becomes (since

ux2_>> 1) . .
R - .
Q* ~ 3 bebs () +(\+.’§.51),
P
thetl meaning positive or negat1ve X. S1nce My 2, y2 1f uzz'is com-

paratively small, we see that Q = 1 for x > o, and Q =1 for x < 0.
A more careful treatment shows that Q is =% on one side of the plasma and

is > A on the other, the left- and right-handed components peak1ng on -
opposite sides.

This peculiar behavior is removed if we remember that the real coil
is represented by the sum of four exponentials with positive and negative
choices for My and M- So we must add four solutions of the form (173),
varying the signs of Hys By The first term of Eq. (173) does not depend
on either sign, so the sum will yield a coslk)}y cos|k |z dependence. The
second term depends only on the sign of Hys so the sum will yield
i coslk |z sinlk Iy Now it is clear that the two terms in E-°R cannot

cancel because they are shifted by 90° in y. Also, there is a factor "i"
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between the (Ex, Ev) components. of (EL, ER) which means that the wave is
not circularly polarized at all -- it is linearly polarized. So we may
as well go back to the expressions for Ex and Ey.
For b+ », d = a, and g = By Eqs. (151) and (152) become

- 40 Ko P ol VadPR _
Fioz -YE Ko Cothp¥ I-Pg chnh p &
x SR byt N (1 omh pA)
_ (176)
- Q‘“ ° - a — i‘ “ a
= 'E]:;.er"h(‘ _".Fl:{_.)ughhx
The vacuum field is given by Eq. (160):
‘ - _
Ej = o f}‘ne AREULIW (177)

Now if we add four waves with +ky k » the exponential factors will give
4i s1n|k ly coslk |z for Eq. (175), ~4h°re the sign changes with My and
will give 4 coslk !y coslk |z for Eq. (176), where there is no dependence
on sign. In any case, it is clear that Ey is always A times E °, while
E;/Ey0 varies with position. We obtain

Ei ___‘I_ﬁﬁ_ —H‘Q(ﬂ__ﬁ__
s C r\t.

Deshpr cosll)y cos Ik |2

(178)
v RALNN L
B = “{“tﬁmlem “W}‘“‘“M sy casliole (179)

where K'=41K0. We see that Ex and Ey are in phase, so that the wave is
linearly polarized. The enhancement factors are
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E‘)o ) P r\*\- (180)
E_g = |+ .‘fi . B

The x-component is finite (in fact, maximum)) at x = o and so has an in-
finite enhancement factor there. Near the edge, where X > 1 so that
ctnh uxxztanhuxazl, we have

E; ety
Eg 2

The factor [u.u,/ ny/u, ] is

eh by -

Pbs s 0 2o Wl Py py 1_'!» Bs o Pty t
R ""{\';{(\*3*“%") ’pe(‘,::lf{*" P K(‘*’Fi'») =|+%\"§-

Thus the Ex and Ey-components have about the same amplification factor
but are shifted in the y-direction.

The formulas (178) and (179) describe a linearly polarized field which
is primarily the electrostatic field due to the space charges that build _
up to oppose Eg, plus a small correction due to the induced electromagnetic
field. There is no distinction between left- and right-hand circularly
polarized components as far as how well they penetrate into the plasma
is concerned. This result holds at exact cyclotron resonance and fails
only in the negligibly narrow frequency region where g + 0. The infinite
plasma theory, where the plasma response to a given internal field is )
~ calculated, does not give a finite total field at exact cyclotron resonance.

Finally, we wish to comment on the effect of the phasing of the Koy
and Koz currents on the two excitation plates. In particular, one wonders
whether a v-Ky # 0 arrangement with antisymmetric Koz to mock up the
situation in a cylinder would greatly affect the enhancement factor.
Clearly not, since Ex and Ey are primarily due to a quasistatic distribu-
tion of space charges. On the other hand, the phasing would make a big
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difference if we had propagating waves of the form exp i(kyy +kz - wt),
as we saw from the cancellation that can occur. The difference is that
the "coil" we chose was excited at a frequency much lower than its natural
frequency, so that L and R components were excited equally. If we had
chosen [u| closer to unity, it would have been possible to excite the L
and R wave preferentially, especially if the coil were helical.

Another peculiarity of the geometry treated here is that E; and E; both ]
depend on cos Ikzlz, as seen in Egs. (178) and (179). This means that gf
vanishes altogether at some positions z. In a be]ical coil, the components
'Er and Ee are out of phase, so that the total gf has approximately constant
amplitude along z. A particle moving along z, however, will see a Doppler
shift as Er and Ee alternately become dominant.

The radial variation of Ei, E; and |E| in the low-density limit for
the parameters of Eq. (170) is compared with ES in Fig. 11, showing the
variation of the enhancement factor with radius. Here the y and z depen-
dences have been neglected; in practice, the enhancement is lower by v2
because EX and Ey do not peak at the same value of y.

The validity of the low-density approximatign is illustrated in Fig.
12, where we plot Q = (sz +Qy2)]/2 vs. density ny of the major species,
allowing g to vary from My (depending on n]) and fixing the position at
Xx=a, tan Iky[y = 1. The value of Qy is given by Eq. (161), and Qx is given
by the corresponding equation

Q.= _\‘3_\ P Tnh 40~ g1y o sh ax ‘krvs\\u,\g . . (182)
X lpeps Jonh 44643y cosh ga  sinh peX

In Fig. 12 it is further assumed that there are two ion species, with

n2/n] = 0.1, M2/M1 = 235/238, and w = 2, exactly. The expression for g(n])

analogous to Eq. (172) is then

S .
| Ve \ Myt |
32 = r; (A+)) - (l+ 'ﬁ"; *—:;,; | (183)

It is seen that Q is very close to the low-density value until g2 goes

negative, whereupon Q abruptly goes to «.
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8.  SUMMARY

We have obtained analytic expressions fof the rf field inside the
plasma when excited by a Nagoya Type III coil in plane geometry. If the
plasma response to a sinusoidal-in-x drive field is calculated, one
gets approximately the right field enhancement factor, but its variation
with frequency and position is misleading. In particular, thic method
predicts zero internal field at w Q. If the plasma response to the
actual vacuum field of the coil is calculated assuming that this drive
field is unaffected by the plasma, then a non-trivial answer cannot be
obtained, since we are dealing with a boundary condition problem rather
than an infinite plasma. However, if only the electrostatic plasma re-
sponse is calculated, a finite answer can be obtained, again with approxi-
mately the right enhancement factor [Eq. (110)]. We show that, to obtain
an exact answer, the volume-excitation problem must be replaced by the
usual surface-excitation problem, which is equivalent.

The resulting internal field is given by Eq. (165) for the case
where the conducting boundary is at infinity; more complicated formulas for
b # = are given in Egs. (148) and (149). Particularly simple formulas

. are available in the low-density 1imit, in which the plasma parameters do

not appear at all. The region of validity of this limit does depend on

the plasma, but we show that the approximation is always valid under the
conditions of interest. There is then no difference between penetration of
the L and R components. The plane-polarized components in this limit are
given by Egs. (178) and (179). The enhancement factor in the Tow-density
1imit is purely geometrical: '

Q=1+ kyz/kzz. |
In particular, it retains approximately this value at W=,
This analytic treatment was possible because a cold, uniform plasma
was assumed. Furthermore, the plasma was assumed to have perfect con-
ductivity along the magnetic field. This last simplification can be re-

moved by allowing Ezz to have a finite value depending on the thermal
yeﬁocity and collision frequency in the fluid model, or on the Z' function

~ in the kinetic model. The 2 x 2 matrices then become 3 x 3 matrices._ A

plasma which is warm also in the direction | to B will have much more
complicated perpendicular elements of €. Whenever the temperature is finite,

.- £ will depend on k, thus making‘it hard to so]ve'forA53 However, ky and .
" 'and kz are fixed in this treatment, and kx can be given an approximate
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value in the small thermal correction terms.

More complicated effects such as inhomogeneity of the plasma and

the range of k's excited by a finite coil are best treated by computation.
Our results seem to agree with such computations where a comparison can
be made.

10.
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