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GENERAL CONCEPT

The basic idea in surface magnetic field (surmac) devicesl
{s to create a magnetic fence surrounding a large volume of
reacting plasma (Fig. 1). The field is created by an inner set

Fig. 1. Idealized surmac field.
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of conductors, immersed in the plasma, which carry current in the
same direction. The return current is carried in an outer sget
of conductors which 11ie outside the plasma and need not be ingide

the vacuum wall. Since the lines of force have alternately good
and bad curvature, hydromagnetic inscabilities are strongly

stabilized by average-minimum-B. The large enclosed volume of
field-free plasma cannot emit synchrotron radiation; hence, the
major advantage of such devices is purported to be the poasibilicy

of burning neutron-free fuels, which require Plasma temperatures
above 100 keV.

Fig. 2. A linear surmac with geometric mirror.

To close the ends of a linear device, ome can bend the rods
to forn a “geometric mirror" (Fig. 2). Though interesting
theoretical results for particle confinement for this existz. the
leak rate is likely to be much larger than for toroidal configur-
ations. The advantage of externally supported rods, allowing the
use of nmormal conductors, is nulliffed by the large ohmic dissi-
pation of such rods. A helical set of conductors has alsc been
tried3, producing a toroidal plasma with a minimum of suppert
loss area (Fig. 3). Present experiments are being performed in a
simpler version of this, a supported dodecapole® (Fig. 4). The
Teturn current is in the walls. For near-term applications 5
surface fields can be used on an axisymmetric mirror machine
(Fig. 5) to increase the mirror ratio without losing hydromagnetic
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Pig. 4. A toroildal dodecapole with six supported rings.
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Fig. 5. A surmac-supplemented high-ratioc mirror.

gtability. By far the most extens%vely studied configuration,
however, is the toroidal octupole {Fig. 6), containing four
supported hoops at General Atomic in La Jolla, California, or four
levitated hoops at the University of Wisconsin. We shall use this

Fig. 6. Cross section of a toroidal octupole. The axis of
symmetry is to the left. Return current flows in the
walls.
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as the standard configyration for discussion. Because of the cost
of the levitated rings and the plasma losses to them, it i{s likely
that a reasonable reactor design cannot be made with less than
four rings or more than six.

MULTIPOLE NOMENCLATURE AND SCALING

The main features of a multipole with poloidal but no toroi-
dal field can be seen in Fig. 6. Near the conductors the field
lines encircle only one conductor. This i1s the region of private
Flux; there 1s absolute minimum-B stability here, The dashed
lines which cross near the center are separatrices of two types:
the minor separatrix connects two rings; the major separatrix
connects all the rings. The B-field is zero at the x-type neutral
points and is very weak in the region between separatrices. One
may assume that the plasma density is uniform and has its maximum
value in this region. The region outside the major separatrix is
the comuon flux region, in which the field lines encircle all the
conductors. The average curvature is favorable (fnward) on the
inner flux surfaces but becomes unfavorable (outward) on the
outer surfaces. The critical flux surface separating regions of
MHD stability and instability, shown by the dot-dash (---) line,
is called Y. .p4y Or V. The plasma density falls to nearly zero at
V., and the waIl may be placed anywhere ocutside this surface. The
narrowv gap between a conductor and the wall through which plasma
particles must circulate is called the bridge region. Since in
MHD equilibrium the density is constant along field lines, it has
a maximum on the separatrix ¢, in the bridge region and falls to
nearly zero at Y_ on one side and at the conductor surface on the
other. The value of B = 2uop!32 is defined differently by variocus
authors, causing some confusion. For p we may take the value .of
plasma pressure on the separatrix, which should alsoc be the maximum
p in the plasma. For B we may take the maximum value on the sep-
aratrix in any of the bridge regioms.

As particles move adiabatically along field lines, they
encounter wildly varying values of B| but maintain the same flux
through their Larmor orbits. For this reason, it is more con-
venient to solve equations in flux space rather than in coordinate
space. For axisymmetric systems this formulation results in
simple equations? equivalent to the Grad-Shafranov equation for
equilibrium. Here we adopt the approach of Samec® and constder
only the simple case of linear multipoles, treating toroidal and
other effects as perturbations. When the conductors are straight
and all currents flow in the ignorable z direction, the problem
becomes two-dimensional, and analytic expressions for the vacuum
fields are available. The geometry is shown in Fig. 7. A multi-
pole of order 2N has N conductors arrayed in a circle of radius
R about the origin, with each rod carrying a current 1. Consider-
Ing this cross section to be a complex plane Z = x + iy, we place
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Fig. 7. Coordinate system for linear multipole.

one conductor on the positive x axis. The magnetic flux ¢ (per
unit length in z) is defined to be 0 on the separatrix (Vg = 0)
and to increase toward the conductor. Thus,

B=vyxz, B =iy, B =-2/kx (1)
If we define a stream function

A=2¢+ 4V (2)

The Cauchy~Riemann conditions give

dh _ 3. 3y _dy_, 36 _ g

az "t "y i3y mBEB, - 1B, 3
Thus

B --a-ﬁ-al B -—ai- -2—* ] (4)

x dx 8y’ y gy ax

in agreement with Eq. (1). We also note that B = V¢, so that ¢

is a coordinate, with dimensions of flux, increasing along B.
The flux V¥ 1s really the poloidal flux X in tokamak theory; but
since there 1is no toroidal flux here, there can be no confusion.
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We next normalize A to the current I by defining

i? -ve ZwiA/uol = (Zﬂ/uol) (14 -y). (5)

For conductors located at Z = Rezﬁ'n’N, n=0,1., ., . (N-1), the
flux is given by the simple expression

10 - ¥ = anl(z/0)¥ - 13, (6)
Solving for Z, we obtain an equation for the lines of force:
Z=R[1+ exp(i0 - v)}1/F, (7)

vhere ¥ = const, and ¢ goes from 0 to 2n., The magnetic field is
found from dA/dZ:

u IN (N-1)/K
B~B -18 =2 [ltexpUe-n) ®

y 2wiR exp{i¢ - ¥) *

The width of the bridge region can now be found easily.
Consider the conductor on the positive x axis (¢ = 0). Then
E9. (7) shows that the separatrix (¥ = 0) is located at xg = nzlf'“,
while the center of the rod (Y = =) 13 at x = R,

The position of Yc 1s found by evaluating V' = dV/dy, where V
is the volume of a tube of force. 1If dsl(t) is the width of &
tube of force, we have

ds
- 8¢ - av -1 . ra
B as; * av fds_l(z)dl. v fdz T fn )

Since B = Yé = d¢/d2, we have from Eqs. (8) and (5)

v .st;. a (ﬂf)z(%)z f e2¥ 44
B B Yo 18-y

(8-1)/n
re~i0-Yy

[(Q+e Q1
2 1-N
- 21R_ e-2‘l’f do[1+2e_'¥cosﬁ + e-z‘P] N . (10)
b IN

This quantity ig easily computed for each line ¥, resulting in

the usual min-B diagram of Fig. 8, Hydromagnetic stability is
lost outside the critical surface Y. where this curve hasg a
inimum, The value of ¥., computed from Eq. (10), is well approx-
imated py8,9
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\

Fig. B. (Qualitative behavior of V'(y) = fdzIB, the reciprocal
of the magnetic well in a multipole.

Y.(N) = 0.243 - 0.615 faN + 0.0125 (t=N)2 < 0. (11)

These formulas permit a simple comparison of multipoles of
different orders. For each value of N, the rate of plasma trans-
port loss is determined by -¥.(N); this increases with N, as
shown in Table I, One usually assumes that the loss rate will
not be diminished if the conductor surface is located at least
as far away from Vg in flux space as Y. 1s; namely, at Yy = - ¥,
The width of the bridge region, d = X. - Xy, 1s found from Eq. (7)
for ¢ = O:

x, x_ = n[1+exp(:vc)]1’“ ] (12)

The radius a of the rod or ring is

a = x_ =~ R= R[(l+exp vc)lf“- 1] . (13)

We see from Table I that |¥c| increases with N, indicating
better confinement, even though the width d of the bridge decreases
with N (for constant I and R). The quadrupole (N=2) is excep-
tionally bad in this regard. The space available for the conduc-
tor, indicated by a/R, decreases monotonically with N. For
confinement of the most energetic particles, d must contain a few
Larmor radti, say 6. This means that Bd has s minimum value, or,
since d/R 15 given, BR must exceed a certain mumber. For the
15-MeV protons from the D-He3 reaction, this number s 3.36. The
required value of BR (with B given its value at the separatrix)
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Table I. Scaling of Linear Multipoles with N Rods

N= 2 4 6 8 12
=2 0.177  0.586  0.819  0.982 1,208
d/R 0.125  0.176  0.155  0.136  0.108
a/k 0.356  0.117  0.063  0.041  0.022
BR(1SMeV B')  26.8 19.1 21.6 24,7 31.0
1(M4) 47.3 14.2 10.1 8.4 6.9
182 (MA) 119 3130 810 1591 4538

is seen from Table 1 to increase with N for N > 2. Since super-
conductors probably cannot produce fields larger than 10T, we

gee that R = 2 m is required even for the optimum case of the
octupole {N=4). From Eq. (B) one sees that BR = I x f(N) for

¢ =¥ =0; hence, the required current I is independent of R. It
decreases monotonically with N and is of reasonable magnitude. The
current density j, however, increases sharply with N because a
decreases. The value of jR2 shown in Table I indicates that high-
order multipoles are impractical. An unshielded superconductor can
carry perhaps 30 MA/mz, requiring R = 3.3 m for the octupole and
R= 52 m for the dodecapole (N=6). A shielded conductor with 1 m
of neutron and x-ray shielding can have a net current density of
only 3 MA/m?, requiring R=10 and 16 m, respectively. These esti-
mates will be seen to be somewhat conservative. Increasing N
improves the 8 limit as well as the confinement time. The engine-
ering limits on current density and machine size, however, will
probably cause the optimal conditions to occur for 4 < N < 6.

HYDROMAGNETIC STABILITY

The basic minimum- B principle that the plasma is stable
inside y. applies only to flute modes, whose amplitude is constant
along B. One must also guard against ballooning modes, which are
localized in the regions of bad curvature and therefore do not
sample the stabilizing effect of the good curvature regions. The
standard method for treating this problem is the energy principle
of Bernstein et al.10, in a form applicable to axisymmetric
toruses with no toroidal fieldll,1Z, oOriginal estimatesl3 of the
3 limit for ballooning were based on the growth rates of these
wodes compared with the time for communication at the Alfvén
speed between good and bad curvature regions. These estimates
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yielded optimistic B's of the order of 25%. This problem has now
been treated more exactly by solving the Euler-lagrange equation
for the shape of the perturbation that minimizes tw. The
results’ 9113 indicate that the most unstable ballooning modes
are not line-tied in the good curvature regions; rather, they are
flutelike near wy; and become localized only near ¥,. Since these
perturbations require less change in magnetic energy, the @ limite
are considerably lower, around 4-8X. In addition, the effect_of
finite £ on the equilibrium configuration has been calculated’ 13
by solving the Grad-Shafranov equation; the § limit is not greatly
affected.

Though the details of the stability calculations cannot be
given here, the nature of the results can be seen from the example
of the linear nultipoleg. For flute modes the instability criterion
& < 0 can be written®

(V" - p M) [V 4 ('vV'/vyp)] <0, 14

vhere p' = dp/dy, V"' = d2v/dy?, M = de/B3, and y is the ratio of
specific heats. For p, p' + 0, the leading term gives V'p'V'/yp <
0, or since y, p, and V' -fd!./B are positive,

vllpl < 0- (15)

This leads to the definition of ¢. on Fig. 8. When p is finite,

the magnetic well can support & finite pressure gradient. In the
region between y, and ¥, where V" > 0, the second factor in

Eq. (14) is positive for p' > 0 (the normal direction for p'),and
the first factor then is negative if

p' > V'/u M. (16)

For a reverse gradient, p' < 0, the second factor of Eq. (14) is
negative if

Pt <= YVUnV' < 0. a7

A stable reverse gradient is possible because of finite plasma
compressibility. These limits on p' in the normal and reverse
directions also apply to the private flux region, where V' < 0.
The value of p' vanishes at the critical layer V' e 0, The value
of B on the separatrix is found by integrating Eq. (16) from Y,
to 0, using the vacuum field shape, and dividing by the known
valve of BZ at y = 0. The result is shown as 8¢ in Table II.

For ballooning modes at marginal stability {6w = 0), the
displacement X in the ¥y direction must satisfy the Euler
equation
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3 1 )4
2 (—> 353)-p'PIX(y,¢) = 0O, {18)
% ( 2 3¢) ’

NOB J

where D = (-zuolnz)(a/aw) (p+nzl2u°) and J is the Jacobian for the
transformation from (x,y,z) to (y,¢,z). The numerical solutions
have the shape described previously. Knowing these functions
X(v¥,4), one can compute the maximum p' for stability, and then
integrate to find the critical B for ballooning. This is showm
as f) in Table II. Except for the quadrupole, flute interchange
is more dangerous than ballooning.

Table II. Beta Limits for lLow-8 Flute and Ballconing llI::u,’tes9

Na= 2 4 6 12
Bf(Z) 4.7 7.3 8.9 11.7
Bb(z) 2.7 11.¢c 18.0 31.0

These values of B are large enough to affect the vacuum
fields. Now one must assume a pressure profile p(y), compute the
field shape and the critical B'(y) it permits, and iterate to
find the maximum stable B. It is reasonable to take p(wc) -
p(¥) = 0 and P'(¥g) = 0, withp = Po = const. between separatrices
if there are more than one. For linear multipoles, Samee® agsumes
a symmetric profile

PV = b, (1-¥*1¥D) (19

with adjustable psrameters Po and ¥,. For toroidal multipoles,
D'Ippolito et al.’ take profiles of the form

y-v -y
p(y) = posinz[% £ ] and p(y) = pouinz[% -——-LZJ(ZO)

Ve1~¥ Ve Va2
for the common and private flux reglons, respectively. For limear
tultipoles, vhere B = ¥y x £ and V x B = u,iz, the force balance
equation Yp = § x B reduces to
vy + 1 dp/ay = 0. (21)
With Eq. (19), this becomes 7

vy -y =0, 2= 2u p /42, (22)
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with a solution

u,I N1 K (kR)
j=0 o
vhere pj is the distance to the jth rod. This finite-g8 equilibrium
is then“used to compute the critfcal p'(y) or B'(¢) on each surface.

A typical result is shown in Fig. 9. Here it is seen that the

4 05

\ 4

Fig. 9. Profile of flute and ballooning 8'(y) limits for an
octupole with k = 3 (from Ref. 9).

assumed parabolic p(y) gives a linear B3 (B) which lies well below
the flute and ballooning limits 8¢ and Bp except at the edge.
Beyond the surface Vo this profile is ballooning unstable; and
beyond V4. the surface where the average curvature is zero, the
profile is flute unstable. It is clear from Fig. 9 that the
parabolic profile does not make optimum use of the stabilization
available: integration of B' yields By = 1.8%, B¢ = 4%, and

By = 10%. A p(¢) profile with decreasing rather than increasing
slope would give higher B limits, but it may not be consistent
with the diffusion mechanism, as we shall see. Theoretical 8
limits for linear and toroidal multipoles with finite pressure
are shown in Table III,

The main effect of finite B on the equilibrium 1s to push
out the field lines where B is weak--in the fnward curving regions.
Since this diminishes the amount of good curvature, the value of
V. goes down. The shape of the field in the bridge region hardly
cﬁanges, but the stable region gets narrower. This 1s also seen
in Fig. 9: {if go is increased, B; increases, and ¥, moves in.
It can be shown’ that the decrease in V. accounts for almost the
entire finite-g effect. Toroidal multipoles have higher £ limits
than linear multipoles, but only because the B's are calculated
at the outer rings. Unless extraordinary shaping is done, the
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Table 1II. Theoretical g Limits for Finite-g Multipoles (X)

N= 2 4 6 i2
Linear9 0.22 1.8 3.5 8.0
Toroidal7 1 4 7 -
Toroidall3 - 3.9 - -

field will be stronger at the inner rings. More magnetic energy

is required to perturb the plasma at the inner rings, and therefore
flute modes tend to be stabilized by toroidal effects. However,
the B values are not larger than for linear multipoles if normal~
{zed to the B value at the inner rings.

Whether or not these calculations can be extrapolated to the
reactor regime depends on their agreement with cbservations in
present—day plasmas. Unfortunmately, the experimental situation
{s unclear. Recent measurements on the Wisconsin octupolelé
(Fig. 6) showed bridge B = 8%, twice the theoretical limit, under
the following conditions: n = 5 X 1013 em™3, T = T4 = 15 eV,

B = B6OQ G, Lp =5 p4, T 600 usec, where Lp = p/¥p, pj is the
ion Larmor radius, and T is the decay time. The plasma is
created by gun injection; quiescence is reached in 400 usec. At
lover B, a 8 of 35% was observed with n = 2 x 1013 3, T, =Ty =
9evV, B=200G, L, =2py, andT™= 350 usec. In neither case
are oscillations ogserved; beta was limited only by the plasma
sources, not by MHD instability. The observation of B8's exceed-
ing the MHD limit was attributed to collisional ion viscosity.
Collisionless finite Larmor radius (FLR} effects were claimed to
be unimportant because the measured diamagnetic current profiles
agreed with both the fluid and FLR predictions. However, this
statement applies only to the finite-B equilibrium; the effect of
FLR on stability was not treated and could have been the dominant
effect.

Recent work on the UCLA dodecapole4 (Fig. 4) with gun
injection has yielded B = 8% on the outer bridge under conditions
vhere n = 5 x 1013 cm=3, Ty = 200 eV, Ty = 25 eV, B = 2.3 kG,

T, * 2 ms, Te = 100 usec, and Lp = py. Though the theoretical
lgmit for this case’ (Table III? i also g = B%, the agreement

{s accidental. The limit on B is imposed by the requirement that
the bridge region contain at least one or two Larmor radii; this
implies Ty = B2, which is observed. The density profile was seen
to narrow to half-width = py as B was increased, in agreement
with the theoretical picture of finite-8 equilibria. No MHD
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activity was observed, but a 100 kHz oscillation localized to the
bad curvature regions and resembling a drift-ballooning mode was
seen for § > 3X, when the density profile has steepened. Since
the conditions here are more collisionless than in the Wisconsin
experiment, collisionless FLR effects probably cause stabilization
of MHD modes, The B field is being increased to 6 kG to increase
/o3 but if neutrai-beam heating is also used to increase T
to the Lp & py limit, the MHD ballooning theory will remain
untested.

We now discuss possible ways to Increase the rather low
predicted f limits. 1) Toroidal effects, as we have seen, can
increase the B on the outer hoops, but not the overall 8. 2) Wall
stabilization can help, but the calculations of Ref. 13 already
incorporated this effect. 3) The use of square rather than
circular arrays (Fig. 4) way affect B, but the work of Ref. 7
treated square arrays without yielding a significantly different
value of B. 4) The calculations reported here assumed infinitely
short wavelength in the z (toroidal) direction. This permitted
each ¢ surface to be analyzed separately. A recent calculationl’
for finite torcidal m-no. reveals that 8 can be doubled if m > 20
modes are suppressed. 5) FLR stabilization is a strong effect which
apparently dominates the experiments. So far no theory of finite~pi
MHD modes in multipoles exists. 1In a reactor, there will always be
a8 number of large-orbit reaction products, and these could play
an important role in short—circuiting potential fluctuations.

6) Another important effect is that of shear. If a toroidal
field is added, it will increase synchrotron radiation, but, as
we shall see, perhaps not significantly, since the surface region
dominates the synchrotron losses. Theoretical estimates of g

in a sheared system exist only for single-ring levitrons; indi-
cations are that much larger £'s can be attained. Thus, the two
best hopes for larger 8, effects (5) and (6), are not yet analyzed
theoretically.

CROSS-FIELD TRANSPORT

In the last 15 years research on multipoles, spherators, and
levitrons have yielded a large amount of information on classical
and anomalous transport mechanisms. This large body of work has
recently been summarized in table form? and discussed criticallyl6,
Losses can be caused by field errors, guarded or unguarded ring
Supports, or convective cells connected with supports. We dis-
pense with field errors as a known phenomenon that can be suppressed
by proper design. Guarded supports will be treated later. The
main loss mechanisms are 1) classical diffusion, 2) anomalous
diffusion with Bohm scaling, and 3) vortex diffusion. Most
results come from the GA and UW octupoles.
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First we consider the results with poloidal field only. In
collisional plasmas such that Vei £ vo/L., where Va 18 the
electron thermal speed and L. the connection length between good
and bad curvature regions, classical diffusion is observedl?
with D=D, = n/BzTek. Furthermore, i{n almost all experiments
the plasma is quiescent inside ¢_. and noisy outside ¥o+ Thus,
the effectiveness of min-§ stabiiization at low B seems well
established., At lower density, Bohm scaling (Dg = KTe/16eB) 1s
observedls, but with & much smaller ceefficient: D = DBI300.

At high B and low n, the GA group observedl® that /n decayed
linearly with time, implying D = n'%; more precisely, D« (T/Hn)k.
This is exactly the dependence predicted by Okuda and Dawsoni0
for convective transport in thermal-level vortex motions. The
coefficient was also about right, so D =3Dgp, and was not
affected by weak shear. Note that Dop is independent of B.

The UW octugole experiments at Wisconsin were dominated by
vortex diffusion?l at a hyperthermal level: D = 30 Dop = n~k,

The dc convective cell patterns could be mapped out with probesZZ,
Since Dop scales as (T/e)“ B'{ wgere € is_the low frequency
dielectric constant ¢ = 1 + ﬂpzfﬂc =1 + czfvﬁ. expects that
vortex diffusion would change from Dop = (T/n)% to Dop = T3/B as

€ approaches 1. This change in scaling has been observed?3, 1t
18 now believedl6 that the strong convective patterns are produced
by the plasma gun injecting the pPlasma; the pulsed nature of the
levitated rings did not permit waiting until the cells decayed

to thermal level, as could be done on the dc octopole at GA.
Enhanced vortex diffusion could be reduced to classical diffusion
by viscous dampin324 or by shearZ4, The addition of 100 G of
toroidal B-field reduced D by a factor of 20.25 1p all these
experiments the oscillations could not account for the losses,
contributing at most D = Dg/1000.

When shear is added with a toroidal field, an additional
stabilization mechanism is active; furthermore, the field lines
are ne lomger closed, and potentials between field lines can be
shorted out. The tokamak regimes of banana, plateau, and Pfirsch-
Schluter diffusion were first seen in the GA octopolel6, Vortex
diffusion is also greatly reduced. Early UW experiments?’? showed
a large reduction in fluctuation level with shear, but no overall
change in confinement. Measurements at GA in the trapped electron
tegimez indicated a poloidal Bohm diffusion rate, where D==D3 /1000,
th being Dy evaluated with the peloidal field only. Though exper-
iments on other machines such as tokamaks also could be fitted
to this law, the fit is probably accidental, since the Alcator
results contradict this. Recent work at Uw29 revealed vortex
diffusion in the private flux region and two collisionless
trapped fon modes in the common flux region; these increased
diffusion by an order ot wagnitude, At GA29. a 40% amplitude




348 . F.F.CHEN

trapped electron mode was observed, peaking near Vos 88 well as
a 20X amplitude ion mode inside Vg.

To summarize, it appears that, with poloidal field alone, a
gentle plasma production mechanism may allow D to be as small as
D. or DOD' vhich would be small enough for reactor purposes.
With a toroidal field added, Dop should be even smaller, but
microinstabilities are found to arise, possibly leading to D's
scaling as 10~3 Dp. The ultimate relevence of these modes is
not yet known.

To estimate the value of nt for any given diffusion coeffi-
cient D, one must solve the diffusion equation

- %9V « (Dwn). (24)
Again, we may use Samec's9 two-dimensional example of linear
multipoles for 1llustration. If we further assume n to be con-
&tant along field lines, n = n(y,t), the problem becomes one-
dimensional. Then we have from Eq. (9) ¥n = yyn = dn/ds, =
B dn/dy. Eq. (24) becomes

.52 (o in) oot (i

at Banp (DB W/ ' B At 3y DB ay /S (25
Integrating over d2 and defining

D=SDB ar, Vi = faus, (26)
we obtain

n _ 1 3fson

t v 3¢.( s (27)

with V' given by Eq. (10). The solution n(y,t) will depend on
the form of D. For constant temperature, the three possible
diffusion laws described above give

2 -
classical: Dc = ucn/B s D = ucnv' (28)
Bohm: DB = uB/B, D= uBL (29)
Okuda-Dawson: D = a_(al)~%, B = 4 u 1" (nL)"? (30)
oD D * D "o .

where L *_[HE and we have used Eq. (26). 1In Eq. (30), Bde has
been replaced by uol', where 1' is the sum of al] currents
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enclosed by the field line. L{Y¥) is found by integrating Eq. (7)
over %.

The nature of the problem can be illustrated by taking the
case of classical diffusion. Eqs. (27) and (28) then give

A R W AN VT NEID
Separating variables, we let

a(g,t) = n SHOTO) , (32)
wvhere

T= (+t/t) " and £ = v/]v] . (33)

Straightforward substitution then yields the spatial equation
2

d’s , a 'y 48 .
d2+d5(2nv)dg+hnfs— 0, (34)
£

vhere
A= szlnoucrc (35

The boundary conditions are
n(y) =0 or 5(-1) =0
n'(ws) =0 or $'(0) =0 (36)
n(y,) =0 or 5(1) =0

"If we require in addition S(0+) = (0 ), the Interior and
exterior solutions would give different values of 1.. For the
same 1., S(0%) would be larger than S(07) because classical dif-
fusion is slower toward and rods than toward ¥, owing to geome-
trical effects. In practice, the matching of solutions at the
separatrix may be affected by convection between separatrices.

A reasonable approach would be to solve for the exterior region
and match at £ = 0 to an interior solution with the same t..
Then n would fall to O before the surface ¢ = - ., allowing

us more space for the conductor than previously assumed.

The numerical solution of Eq. (34) is delicate because
8 + w at y=¢_.. The density prof11e59 resemble parabolas,
wvith n falling to 0 much closer to ¢5 as N in increased. To see
the scaling of 1. with N, we can use an approximation good to 20%:
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2 -
T*'G/D salco' (37)
where § = x(? ) - x(0) 18 found from Eqs. {7) and (11). Then Tg
can be uritten
1/N

t* = (v2/a.n )T* , THN) = (s/R)2(2n/2

2
c' %o’ e Y . (38)

Here o. 1s the Spitzer coefficient, and the Bzﬁzlno dependence of
classical diffusion is evident. The values of T and of the

exact value T. are shown in Table IV. There is a slow increage

of confinement time with multipole order; the rapid increase3l
found with assumed trapezoidal profiles of n{y) does not hold true.
Note that classical diffusion would give n'(y) increasing ocutwards,
just opposite in shape to profiles which would give the highest

B limit.

Table IV. Scaling of Diffusion Times with Multipole 0rder9

N = 2 4 6 8 12
Classical T. 1.42 1.67 1.78 1.84 1.89
(approx.) T: 1.14 1.42 1.56 1.65 1.76
Bohm Ty 0.18 0.49 0.56 0.56 0.51
(approx.) Tﬁ 0.23 0.39 0.38 0.35 0.29
Okuda-Dawson N 0.25 2.27 2.40 2.26 1.68

For Bohm scaling, the decay is exponential in time, and we
can factor n(y,t) into

n(y,t) = G(y) exp (-t/tg) . (39)
Eqs. (27) and (29) then give
2 '
e +Id-(!,n L+ A6 =0 , (40)
dg

with A = w /a 7, and G{(-1) = G'(0) = 0. Numerical sclution of
Eq. (40) leads go density profiles which resemble triangles and
are not sensitive to N, The eigenvalue )\ leads to a Bohm time
Ty given by

g = (ch/qu)T . ' (1)
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and an estimate Tﬁ can be made by taking r§ - 521DB. These are
shown in Table IV. Note that TB has & maximum around N = 7,

Finally, Okuda-Dawson scaling leads to the factorization
n(¥:t) = n_(1-t/1)? F2(g) (42)

and the eigenvaluye
2

PF_1d b dF s 1/22

Rt T (n ) §E 439 LV 262 | (43)
wvhere

A -wfnoll zlaD'rDuoI and & = R/ 2?5 no” 2,1 zuD'rD ] (44)

The dependence of Tp on nU2 is seen here. Since Dop 1s indepen-
dent of B, the quantities X, L, and V' have been normalized to
fixed B and R, as shown in Eq. (44). The numerical solution?

of Eq. (43) results in a peaked n(¥) profile somewhat more tri-
angular than a Gaussian., These profiles should be a better fit
to the local B limit than the classical profiles. The relative
values of th(N) shown in Table IV indicate a peak at N = §,

In summary, once the transport scaling law is known, the
confinement time can be calculated easily for the vacuum field
of linear multipoles. It appears that N = 6 is near the optimum
regardless of the scaling law. Classical diffusion gives asym-
setric profiles in ¢ space which leave more room for the conductor
than normally available. It is also possible, of course, that
different scaling laws could be operative in different regions
of ¢ space.

SYNCEROTRON RADIATION

The reductfon of synchrotron radiation by surface confinement
is critical to the use of advanced fuels; yet an accurate evalus-
tion of this effect, because of its difficulty, is only now being
conducted. Initial optimism was based on the large value of <g>,
vhere the averaging includes the large volume of almost field-
free plasma, Single-particle radiation, however, varies as

-26 n2

PB = 5 x 10 e

Tk:v gL w/m3, (45)
80 that one should average B'l instead of g; the low-g8 bridge
region then dominates. To be more specific, let us compare

two cylindrical plasmas with the same n, T, and volume, one

(A) with magnetic field in a shell of radius R and thickness

d << R, and the other (B) with field everywhere (Fig. 10).
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A B
Fig. 10. Comparison of surmac (A) and tokamak {B) for synchrotron
radiation.

We neglect reabsorption for the time being. Let us require that
the particle confinement T be equal for these two cases. For
classical diffusion, D = acnfBz, and the radial flux T is given by
r= 2nRj, where

§ = -D%n = a_n’/Bjd in (A), and
(46)
= 2a nszZR in (B)
c B *
Thus the confinement times T = N/(dN/dt) = N/T are
2 2
X _yr%n B KBy
A 2R 2 2na
-0 c
(47)
2 2.2
. 2 Bk RBy
B 2R 2u2n2 4na
For these to be equal we must have
1/2
BA/BB = (R/2d} . (48)

The synchrotron radiation, from Eq. (45), 1is
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W, = C 21Rd B2, w, =c B, 49)

Eq. (48) then requires WAIWB = ], The radiation is not reduced

at all if B is incrfeased in a multipole-surmac to keep the diffusion
losses the same. The only advantage of a surmac lies in the better
filling factor, which gives a higher fusicn power. If Bohm diffu-
sion is assumed, the situation is even worse: one obtains WA/WB =
R3/2d3 >> 1. Okuda-Dawson scaling 1s independent of B. 1In this
case the loss rates are equal only if R/d = v2, in which case

Wy/Wg = V2.

In large plasmas the lower harmonics of the cyclotron
frequency are reabsorbed before they escape, and the synchrotron
losses are not as large as in Eq. (45). For harmonics lower than
a critical harmonic m*, the plasma radiates like a black body
from its.surface; higher harmonics have lower amplitude but are
not teabsorbed. An early estimate by Dawson?l for a p-B
reactor with Ty = 2T, = 300 keV showed that m* = 13 would be
required for synchrotron radiation to be lower than bremsstrahlung,
and that this was possible if 8 = 1 and walls of reflectivity
r = 97% were used. Since B = 1 is apparently not achievable
because of ballooning, more accurate estimates need to be made.
Theoretical results exist only for simple slabs of thickness L.
For instance, Trubnikov3Z gives, in simplified form?:

3 .3 7 3 (BEBL 1/2
- - * * = —
Is 0.08(1 r)TkevB m W/mc, m 12.5Tkev T . (50)

In the limit of large reabsorption, we see that W scales as the
surface area times B3/2., 1In the example of Fig. 10, both (A) and
(B) have the same surface area; hence, from Eq. (48), we have

. 5/2 _ 5/4
wA/wB (BA/BB) (R/2d) > 1. (51)
Again, we find that surface fields do not offer an obvious gain.

In practice, reactor designs are likely to be limited not
so much by classical diffusion as by the maximum field achievable
with superconductors. In Fig. 10, if (A) and (B) have the same
Bmax and Bmax, 8¢ that n is the same, then W,/Wp 1is the ratio of
aagnetic volumes 2d/R if there is no reabsorption, and is the ratio
of areas (=1) if there is complete reabsorption. Surface fields
have a gain which lies in between, but only at the expense of
T., which scales as 2d/R.

- To investigate the dependence on N, Samec? has evaluated

P averaged over the linear multipole fields given by Eq. (8).

He finds that P; 1s constant to within + 11% for 3 < N < 10. To
estimate nt, he approximated a multipole with a slab of thickness
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L equal to four times the distance d between yg and y.. The
radiation cooling time was found from Eq. (50) to be

2 1/2
R,

33 Bec . (52)
eVB

For B= 5T, R=4m, ny =1 (or n= 10"
and r = 99%, the value of n1; 1is 1.36 = 10
dangerously low for advanced fuels.

T = 2.5 = 10&
d(l-r)'I‘k

gm_S), Te = 150 keV,
15> gec/cm3, which is

It should be noted that synchrotron radiation, like bremsstra-
hlung, is not an energy loss; radiation constitutes the entire
fusion output of a nmeutronless reactor. Nonetheless, ignition
will depend on how low synchrotron radiation can be made. Highly
reflective walls for infrared radiation will be needed. The
rippled nature of multipoles is expected to give some improvement,
since the radiation from the interior is at low frequency and will
be strongly reabsorbed in the bridge region. A calculation taking
these complex geometrical factors into account is being performed®.
Another beneficial effect3l is that high energy electrons and
those in the bridge near the walls will preferentially be cooled
by radiation, so that the losses will not be as bad as for a
Maxwellian distribution.

MAGNETIC SHIELDING OF SUPPORTS

Most experiments to date with N > 1 have supported internal
rings; the normal-conducting UW octupole is fully levitated,
but the finite levitation time has caused difficulties in the
interpretation of results. A reactor would surely require levi-
tated superconductors. In that case, no large current feeds would
be required, and it appears possible to design rings that float in
stable mechanical equilibrium. Nometheless, engineering design
would be greatly facilitated by leads which carry liquid He coolant
through the plasma. If these leads carry no current, they would
suffer a heat load from particle bombardment as well as from pho-
tons and neutrons., Furthermore, plasma would be lost on the leads,
causing a depletion of density on some 1ines of force and also the
ejection of impurities. An asymmetry in electric potential would
ensue , leading to emhanced convective losses. For these reasons,
{t is important to study the possibility of magnetic shielding of
the leads by a running current along them. Massive neutron shield-
ing would not be required if the leads are normal conductors.

The magnetic perturbation of a current dipole normal to a
floating ring 1s shown in Fig. j1. It is seen that two magnetic
null lines are introduced which follow along the leads. Particles
can escape along these nulls without being confined magnetically.
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Fig. 11. Geometry of magnetically shielded supports
(From Ref. 30).

Furthermore the introduction of an orthogonal field destroys the
axisymmetry of the magnetic aurfaceg and can cause them to inter-
sect the wall. Initial experiments 3 ghowed that magnetic guarding
indeed reduced the particle flux to the supports but that the over-
all confinement was not greatly improved. Lehnert34 pointed out
that these early experiments did not disprove the ultimate useful-
ness of magnetic shielding. Three-dimensional effects, such as

the reversal of the VB~-drift of a particle as it passes the
perturbed region, would greatly cancel the persgrbation. These
effects have been treated in detail by Lehnert~-, and we do not
presume to summarize them here.

Recent data by Schumacher36 have thrown light on the loss
mechanism. The experiment was on the UCLA dodecapole (Fig. 4)
vith bridge field B = 2.3 kG, and two support wires 8 mm in diam
and 14 mm apart, carrying 50 KA, Photographs of the plasma near
the supports, looking upwards in Fig. 11, showed three streaks of
1ight: along the side of the support, where the plasma flowed
around them and was seen tangentially, and between wires, where
the plasma flowed along the null lines. Particle collectors
betwveen the supports measured the current of ions lost by the
¥B-drift in the direction of the wires. This drift changes sign
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scross the support midplane, giving rise to a potential gradient
between wires. The resulting E x B drift, always in the outward
direction, has & magnitude intermediate te the ion and electron
B x VB drifts, as if an ambipolar mechanism were operative. The
loss region has width = 2 P4+ This loss mechanism was predicted
and has now been seen. The support loss was computed to be 60
times lower than for unguarded wires., Clearly, experiments with
longer confinement times are needed to clarify the situation with
magnetic shielding.

SUMMARY

The feasibility of multipole~surmac advanced-fuel reactors
depends on three critical physics questions. Of these an accurate
theoretical calculation of synchrotron radiation losses seems the
most urgent. The second question is that of the g limit. Here
one requires incorporation of finite Larmor radius into the theory.
Present experiments are limited by the small number of gyroradii
in the bridge region, and by collisions, particularly charge
exchange., It appears that larger, more expensive devices will be
needed to test predictions on the £ limit. The third question is
that of transport loss rate. Experience to date indicates that
diffusion of collisionless plasmas will be dominated by convection
in thermally generated vortices. A small toroidal field may be
needed to lower these losses. The effect of trapped-particle
wmicroinstabilities in the presence of a toroidal field has been
insufficiently studied. In reactors there will be the additional
effect of non-Maxwellian distributions. Again, a larger experi-
mental device is needed for further progress.

To reduce the collisionality of present experiments, various
heating methods, such as ICRH, ECRH, and neutral-beam injection
have been tried. We have omitted this body of work because it
is probably irrelevant to reactor-grade devices. The possibility
of direct ion beam injection is one of the major advantages of
wmultipoles and appears to be the easiest and most efficient way
to heat a reactor.
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Note added in proof:

It has become apparent that the preceding discussion of
synchrotron radiation gives a false impression that multipoles do
not offer a significant reduction in synchrotron losses,when in
fact the point I was trying to make was that the improvement factor
involves a difficult calculation and cannot be approximated by a
simple estimate., Neither the single-particle nor the blackbody
formula can give a reasonable answer, and classical diffusion is
probably not as relevant as maximum B and £ in comparing different
devices.

The only calculations available all presume uniformly magnet-
ized glabs or cylinders surrounded by reflecting walls. A recent
estimate by Dawson3’ assumes that radiation below a critical har-
wonic m* bounces between the walls until it is absorbed, and that
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tadiation above this frequency can be neglected. For B= 3 T,
L=100 co, 8 =1,and 90X reflectivity r, m* is = 21 at T, = 100 keV,
The amount of radiation above m* = 21 has not been checkeﬁ On

the basis of this type of reasoning, Dawson est:l.mates that the
synchrotron cooling time T is given by n 1 = 3 x 1013 gec/em? at

Te w 100 keV, B= 5T, R» 1 =, and r-89. Though this at is
s2all compared with a bremsstrahlung nt of = 1015, 1t is clear

that the large region of 8 > 1 in a multipole would greatly increase
the synchrotron nt. $Since each point in the nonuniform field gen-
erates a different spectrum, and each ray direction involves a dif-
ferently varying absorption coefficient, the actual nt for synchro-
tron loss requires a tedious, sophisticated calculation which,
unfortunately, will not be finished for some time.




