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PREFACE

This is the fourth and last of a series of unclassified articles written
for experimentalists to clarify the theoretical basis underlying the plasma A
separation process. The first paper, Task II-1359 (1978), showed how the plasma
wave dispersion curves behaved in the region of the ion cyclotron and two-ion
hybrid frequencies. The second paper, Task II-2185 (1979), concerned electro-
static drive and showed how the endplate sheath conditions affected the waves.
This paper has been published in Phys. Fluids 22, 2346 (1979). The third paper,
Task II-3224 (1980), concerned inductive drive and gave explicit formulas for the
field enhancement effect. A short version of this paper, Task II-3552 (1981), was
“cleared for publication and submitted to Phys. Fluids. After a year's review and
rebuttal, this paper has been rejected by three referees who cannot believe that
the left-hand circularly polarized wave component can be finite inside the plasma
at the ion cyclotron frequency. The manuscript has to be rewritten. The present
paper deals with the question of space charge neutralization originally brought
up by Ken MacKenzie. We show how standard plasma theory takes space charge effects
into account, and we give explicit formulas for the frequency shifts caused by~
density gradients. There are no pléns to publish either Part I or Part IV, which

contain relatively trivial calculations.



The Two-Ion Hybrid Wave in an Inhomogeneous Plasma

Francis F. Chen

ABSTRACT

By extending the well-known theory of resistive drift waves to the
case of a plasma with two ion species, we compute the frequency shift of two-
ion hybrid waves caused by a density gradient. For reasonable experimental
parameters, the shift is extremely small because it depends not only on the
density gradient but also on the fractional concentration of the minor species

and on the fractional mass difference between the two ion species. Specifi-

cally, for the two-ion hybrid resonance with k%,/ki_ << 1, a, = n2/ne << 1,
and AQ = 92 - Ql << @, we obtain
W, '
- _*AQ - o
Re (Aw) = %, =g (A aZQ)
B
o 2
YL .
Inm (Aw) = - 2a2 ) i]j- wcreiAQ, -

where Q and W. are the ion and electron cyclotron frequencies, wy is the ele-
tron drift frequency, wp = k2DB is the frequency for Bohm diffusion across a
perpendicular wavelength, and Tei is resistive collision time.

We also show how drift-wave theory automatically accounts for MacKenzie
space charge and how space charge neutralization is related to the turning

points of the WKB problem.



I. FUNDAMENTAL EQUATIONS AND ASSUMPTIONS
Following the usual treatment of resistive drift waves,1 we assume a
slab geometry in which the equilibrium plasma density is n, = no(x) and con-

sider electrostatic perturbations varying as exp i(k'r - wt), with k = ky§ + kzi

ki << ki. We treat the plasma as a fluid with Ti = 0 and m/M = 0, but with a
finite resistivity n. For each species of ions, the equation of motion is then
Mn (3‘ V-V ‘Zev\-(-V *V'*B)—H}i (v;

YRR IR TCLTH G'S S Tl e (Visve). 1

For isothermal electrons, we have
IV 2.1 . .
M'\e(—f’{e- + Ve Vve ) = ~eng (-Y¢+_\l¢ﬁ§) = KTQVV‘Q'“ee " (Ve-Vi) =~ 0. (2)

The system of equations is closed by the condition of charge neutrality

n = Zini (3)
i
and the equations of continuity

3}“; + V- = ?P_e_ ~ V. (MeVe) = 0. 4)

The neglect of electron inertia in Eq. (2) is essential for keeping the
treatment simple; it is a good abproximation. Extension to cylindrical geometry
causes no problems unless the plasma rotates so fast that centrifugal and Coriolis.
forces become appreciable. Extension to finite Ti can also be done} but the
algebra becomes cumbersome because of finite Larmor radius effects. The conse-
quences of Ti # 0 are discussed in Sec. V. Note that Eq. (1) allows the ion
orbits to be large, but no spread in orbit sizes is included; furthermore, the
orbits cannot span more than one waveléhgth because the ions are pushed only by
the periodic E-field, and therefore no cyclotron harmonics are generated in this
approximation.

In the equilibrium, we assume Eo = 0 and Voz = 0 and neglect the small

"radial" velocity Vox due to resistive diffusion. The ions then have v, = 0,

and the electrons have only a diamagnetic drift

KT, n; R . v
Yoe =" o Y=V )
o

where (') indicates 3/3x and B is a uniform field in the z direction (in esu).
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II. DERIVATION OF THE DISPERSION EQUATION _
Linearizing the electron equation (2) about this equilibrium and ne-
glecting the effect resistivity n; on Vox and vey’ we obtain for the x, y, and

z components of Eq. (2)

r _ - - -
enoeqbl enoeveyB enlevDB KTenle 0 (6)
en ik ¢ + en v B - KT ik n =0 (7)
oe’ 'y oe ex ey le
en ik ¢ - KT ik n,_ - n2 e2n v =20 (8)
oe’ z ez le oe || ez :

The ion parallel velocity v, has been neglected; this is important only when
ki is so large that w/kz becomes comparable to the ion acoustic speed. We now

define the variables

v = nle(x)/noe(x), X E,e¢l/KTe 9)

and use the relations

- - 2 - )
w, = eB/m, n = m/noe Tei? DB = KTe/eB. (10)
Eqs. (6)-(8) respectively yield
= Dp_( ) = - ik _D_( = 1k D ( 11
Vey ~ VX T V) s Ve =1 y BX ~ V), Ver = 1k Dgu T (¢ - V). (11)

The linearized electron continuity equation is

" . . ] . _
~lwng, = N e (Vo ‘ku\’e:‘* \keve%) + VoMo + Veol\(\av\‘e =0. (12)

4

Substituting Eq. (11) into Eq. (12), we find that the x-derivatives cancel out

(a consequence of m—0) and that v and ¥ are algebraically related by the simple

expression
v=X %;%é’:-::\l ) (13)
where wg =k Vp (‘14)
b =kj a;t (15)
al=¥XTe /MY = Dg 1L, 6
o m, = (kt/ka\l w Teo JL . a”n
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Note thaf v = X 1s just the Boltzmann relation n,6 =ng exp(e¢/KTe) in
linearized form; Eq. (13) expresses the deviation from Boltzmann when w # Wy
and o # ©., The quantity a; is the ion Larmor radius evaluated with the elec-
tron temperature; and b is like the usual FLR parameter, but for cold ioms.

The quantity bcllcan be expressed as

o, 2 .2 ’

boll =k, (KTe/mvei) =k, Dj|gs (18)
which shows that (bcr||)—1 is the time for electrons to diffuse a parallel wave-
length against fixed ions. The ion mass does not appear in Eqs. (18) and (13);

it appears only in the standard definitions (15)-(17), which will be needed

later.
We next linearize the ion equation of motion (1) with the simplifications
v =0, ng =0, v. =0. Solving for v, and v, in the usual fashion, we obtain
—oi iz ix iy
for each ion species ,
e = (20 _L"-ii‘i_)(\ \_a_‘)"
X\ = Q.o B T
'
_ (i - W \cnqﬁ _wtn-t!
vji - B LS JL.t ;
: al )
where Q . = Z,eB/M, . 20
cl J J » (20)
The linearized ion continuity equation is in this case
—iwn, +n_ . (v'. + ik v .) + v _.n*, = 0. (21)
] oj " xj Yy yj xj o]
Eqs. (19) and (21) yield .
n: ' h" ! (‘L k:'\"ﬁ.) \( b\l =1
[ g - (k5 420 A) 6T (age) (1 £
- = F = Y — 3 C R . (22)
“oj “o) \f\os‘w 3 JL(.J
We now specialize to the case of two ion species j = 1,2. Let
aj = Zjnoj/noe’ so that a) +a, = 1, _ (23)
and let
§(x) = nl;/n ; = n$2/n02' (24)
The quasineutrality condition, Eq. (3), now reads
=2 5% '("9:-)_|[¢"*5¢"(“;“ kS 28y 47 (25)
; BJlg (Aﬁ : w .
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Upon normalizing ¢ to ¥, the coefficient B_1 becomes DB [Eq. (10)]. The rest

of the coefficient has the dimensions of time and may be defined as

2
- w” -1
Tj—g.(l—?_) ) (26)
cj Q.
cl

Finally, using the electron equation (13) to eliminate v, we obtain

3 wetibsy,

" , k
(T,+T) (X" + 8% )-[r,(k‘w*gflc.;)* T, (k4 S0 twh b, w-&\bo’“‘ly 0. @n

This is the dispersion equation for drift-type waves in a two-ion-species plasma
with a density gradient 8§(x). For simplicity we have dropped the subscript on

ky’ since ky and total k are‘essentially the same.

III. RECOVERY OF FAMILIAR RESULTS

1. Resistive drift wave. Let ay = 1, a, = 0, and w2 << Qi, so that

T = Q;l. The "local" dispersion relation is obtained by setting x" = x' = O.

Eq. (27) then becomes

2 w, + ibo
K ks | Ux i
Dy a, 0t oTF ibo) | 0. (28)

From Eq. (16), the first term is b; and from Eqs. (14) and (5), the second term

is —w*/wo Clearing the denominators, we obtain

. . . (29)
ow (WA bR ) - by (waidey) 4w, +ibo ) = 0, .

One root has Im (w) = -io|| and is heavily damped. The unstable root can be found
most easily in the limit o >> |w*|, so that w - w, must be small. Solving for

w - w, and approximating w by w, on the r.h.s., we obtain the usual expression for

*
asymptotic growth rate of the resistive drift wave:

w - w, = ~bw, + iwi/ol}. (31)
2. Electrostatic ion cyclotron wave. Let a; = 1, az = 0 and make the
local approximation X" = X' = 0. Further, let ki be large enough that the elec-

trons follow the Boltzmann relation, so that the fraction in the last term of

-



Eq. (27) is unity (bc{l—+ =), Eq. (27) then becomes, for w = Qc

D Wy -1 Y -
—-E;(i- —n-;,) (k‘+k86.)+ 1 =0, (32)

)

Te ey - 3
Be (W ekig) = o

KT, £
JL e e (l*- ). (33)

This is the usual formula for the ESIC wave except for the addition of the
8/k term for an inhomogeneous plasma. This correction term comes from the
charge separation caused by the Ey X B drift in the x direction along Vn,.

3.. Drift-cyclotron instability. We now make the same approximations

as in the previous case for the e.s.i.c. wave, but we allow boll to be finite.

Eq. (33) then becomes (for w = Qc)

JL *\50‘
2 .t |\
w—" = 'D'c, + % Ce ((+ ) Lo, ;\od"“ * (34)

We may drop the §/k term, which gives a numerical correction of no interest
to us. We might expect drift excitation of the cyclotron wave when there is a
matching of the frequencies w, and Qc. It is clear that the threshold occurs at

w, = Qc’ when wz is real. Rationalizing the denominator of Eq. (34), we obtain

*

1 JLU‘ *blo_“ *|\oo‘“(w,‘ ‘n-)

1
L, * *-% oW

Wt = n. -r\c_1 i (35)

It is clear that there is instability only if w, > Qc. From Eqs. (5), (14), and
(16), we see that this implies

- kDgé/a > 1, or |ka ||sa ] > 1. (36)

The Larmor radius has to be large with respect to both the wavelength and the
density scale length, and this formulation cannot be expected to give accurate
results for the drift-cyclotron instability.

4, Two-ion hybrid resonance. The standard two;ion hybrid resonance

frequency w_ can be recovered from Eq. (27) by assuming uniform n (§ =w, =0),

-5-



perpendicular propagation (kz = oll = 0), and an infinite plasma (x" = x' = 0).

Eqs. (26) and (27) then give T, + T, = 0, or

1
o 2 o 2 .
S Sy R N I i R (35)
& 02 2 Q2
‘ 2 1

where the subscript ¢ in ch has been suppressed. Thus

2/ %1 2\ % %
m( 2+ 2>— Q+Q s

9192 Qzﬂl 1 2

Q + a.f

2 %1% 21

w” = Q.Q w . (36)
172 alnl + aznz r .

IV. EFFECT OF THE DENSITY GRADIENT )
We now make the local approximation on Eq. (27) to evaluate the effect of

the density inhomogeneity on the modes in a two-ion-species plasma. Defining
€, = (§/%) (Ql/w) and ¢, = (§/k) (Qz/w), (37)

we can write Eq. (27) as

L w0 v ibey
T(re) + U+ 6) + gt S T O (38)

Inserting the definition of Tj from Eq. (26), we have

W% (2 0 2Y(Wt- ) = KDy (X, (14 ) (uts 2 2) +
W 6‘“

+ ol 2, (1 €)(W- )] (39)

Note that D Qc = KTe/M = cz, so that we can define

wsj = kcSj (40)

and write Eq. (39) in the alternate form

B

ibe,
35-;7‘:—1‘ (F-ar) (v .ﬂ.:') = d.“:'. CIHIOS J\.:) + a(zwgz; GI S JL}) (41)
L +ibey

It is not possible fo find a simple exﬁression for the frequency shift for

—-6-



arbitrary values of bcll covering the transition from the two-ion hybrid to the
two-ion electrostatic ion cyclotron waves. We must treat the small bc!l and

large bcl| cases separately.

1. Damping of the two-ion hybrid. We first take the case bclls o(w*)

<< w, = Qc to examine the effeat of Vn° on the imaginary part of w. Let

w=w_ + Aw, Aw << w_, w2 > &2 + 20w_Aw, (42)
r r T by

where the homogeneous two-ion hybrid frequency w. is given by Egs. (35) and

(36), which we repeat here for convenience:

o,

2 2 _ 22 2 2
wr - 92 T T AR ( wr - Ql ) (43)
11
a.Q., + a.N
w2 172 271 (44)

= Q.0
Tr 172 alﬂl + GZQZ

Since Iw*l << W, and boll is also small, the 1l.h.s. of Eq. (41) is small, and
we can replace w by W, there. We also set w = w_ in €4 and €, [Eq. (37)].

Eq. (39) then becomes

U"*;.tr" (wi-ay )(w:\ AY) = kD, ['(\&'(“’rl“n':) + o, (og- ) +
W=+ 1 boy

: (45)
+20 B0 (0 +a, 2,) +a L€ (u\}-n:).,. o 1,€, (Lt -n})] + O (e Au) )

-

The first two terms on the l.h.s. cancel by virtue of Eq. (43). Substituting

for wi —’Qg from Eq. (43) in the remaining terms, we obtain

Xy (L2 n_})"' Wy xiboy

N = a LoartYe e ) -
2o, (e 2,)A0 = 4,0, (0= )(e R ¢€,) Ay KDy Laibe, © (46)

Separating into real and imaginary parts and noting that Iw*l x boll << W,

we have

wy + 1boy Wy bo|| w. = wg

- .o + 1 . 47
w +ib0|| wr ' wr wr ( )




The frequency shift Aw is then approxmately

o, 8L (uz~JL")lu &y (i, pa\t .
iy (0F-02)ere) - ST Do) e et (bdo A by,
. vy k‘Dg v AWy ttDg Wy
Aw = - ©(48)
o, (R4 N,)

‘

The damping rate is given by

| T
s b e (0f-an)t _ o &, fetsal)
slh(u) = boy, = - 2 T s (49)
» &Ly )'vDB""'L AW vl Ly 2*Dy &, R CR LN LR |

where we have used Eq. (44).

From Eq. (18), we see that

1 1A
o, | kiKTe 8 k¢ LeTes (50)
l}bB bt ""\’Q; ‘e k" Yo

so that

t 'l T
= ln(w) = \3.0’{i b (ol-al)

- L TCei - (51)
A PR R

In particular, for a small concentration of the species 2, so that a, << al, and

w_ = Q,, we have
T 2

‘
-Ih(w)~ 4y \‘%1 (.!L,,"JL\")
2 k\.- A:.‘n'\t

WeTei o (52)

.The drift terms do not appear here, since resistive damping dominates
over drift-wave growth. This is not surprising, since we found in the treatment
of the drift-cyclotron wave that instability required w, > w. We see the depen-
dence on w - w, again in Eq. (47). There is a simple physical reason for
Im (w) e w, = w. In the physical picture of how a drift wave is destabilizedl,
a phase shift between the density oscillation v and the potential oscillation X

must exist such that v leads x. Let the phase of x be zero so that x = X exp i(ky-wt)



and v = v exp 1(ky - wt + 8). For v to lead X ,we must have § < 0, or

Im (v/x) < 0. The modified Boltzmann relation, Eq. (13), and Eq. (47) then
tell us that w, > W is required for instability. When v lags yx, as occurs
for Iw*l <w = Qc, the drift terms are stabilizing.

2. Numerical estimates. Consider a cylindrical plasma column with radius

a = 10 cm and length L = 100 cm, immersed in a 20 kG magnetic field. The plasma

has n, = 1012 cm_3, Te = 2 eV, Ti = 0. Let the local disperison relation be
evaluated at r = a/2, where the density scale length is A = r = 5 cm, and let
the mode have All = 2L = 200 cm and X; = 3.9 cm, corresponding to azimuthal mode
number m = 8. The two ion species have M1 = 238 MH and M2 = 235 MH. The plasma
parameters are then as follows:

k=m/r = 1.6 cm T, k, = 2n/n| = 3.142 x 1072 em?

§=-1/A =- 0.2 cu >, 6/k = - 0.125

= (KT /M )!i = 8.97 x lO4 cm/sec
s e’ 'l )
a; = cS/QC = 0.111 cm

2.2

b = k%a’ = 3.18 x 1072

_ b _ 7
Ven = (KTe/m) = 5.93 x 10’ cm/sec

t
w_ = 3.516 x 101 sec?
Vg = 1.5 x 10 za 1n A/Tzéz = 5.3 x 10° sect
wT . =6.6x 10"
Cc el
_ 108 _anh 2
DB = 10 TeV/BG = 10" cm“/sec

The relevant frequencies are then ordered as follows (in rad/sec):

-

Wy = - k8D = 3.2 x 10°
kZDB = 2.56 x 10%
5
ke_ = 1.436 x 10
2 2 _ 5
boll = kz vthTei = 6.55 x 10
5 . 5
q, = 8.051 x 10°, 2, = 8.154 x 10
v . =5.3x 10°

ei



w = 3.5 x 1011
c

Frequency ratios are:.

_ _ -2
(92 - Ql) = AQ/Q1 = 1.28 x 10

2

AE(Q2

2, ,.2 _ -2
- nl)/nl = 2.575 x 10

wy/9, = 4.0 x 1073

w*/bc” = 4.9 x 1073

boy /2 = 0.81
e

Usinglthese numbers in the damping rate of Eq. (52) for a, << a,, we

2 1
find

—

l\m("‘) 3 \L%t (uﬂ.\)" T -3
~ VA .= £217107 N
W, 2 g? “eled o (53)

which is entirely negligible.
3. Frequency shift of the two-ion hybrid. The real part of Eq. (48)

gives for the frequency shift

qa LR A TR R
oy (0002 )(€,~€ ) - 2 e (e -Q)7)

v = KLy Wy kidg
20, (AN + &2, N,
- Ol‘,\n-g (U}-JL?') [ 'y ,n_‘~.n.1_ w(’-__\n_‘t Wy
2o, A0+ "LJL.L) k Wy ,{\\n_‘w.bs Wy
_ oy, (v lr-al) | i1
= 1,12 C T %[-\n_r&_z_‘_ e~
au (ot va,0)) oL\ L, )
(54)
where we have used w, = - kGDB. Replacing wi in the denominator by Eq. (144),
we obtain .
-\ °(l— ) u\}"a\l ‘(\&'\(‘L\"‘n';) * l"\’L "nﬂ
A\A) T ag T‘
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T JLt wr‘-_o(‘JL\SLZ—JL:'(\"ol‘)
\f\\'— oly ‘n'L-dt,‘n’l ) (55)

Specializing to the case a, << a,, we may replace a! by 1 and W by QZ’ obtaining

2 1

2

s, 2 |
koo, t % " 9 e ). (56)

If A is also small, let AQ = Q, - @, and A = 2AQ/Q2. We then have

2 1

8

A
Aw = e,y E-AQ( - - az). . (57)

The sign of the shift depends on the relative size of a, and AQ/Q. For the

parameters of Sec. IV-2 and a, < 1%, we have

Aw -3 ;
== - 1.6 % : 58
AQ 1.6 10 Cys (58)
which is extremely small. However, for a, >> ,01, we have

&2
Aw 2
—_— o~ —_— 59
AQ 8 ° (59

which may be appreciable. Our choices of A = a/2 and m = 8 were quite arbitrary.
For m = 1 or 2 and A smaller than a/2, Aw can be an order of magnitude larger
than in Eq. (59). ‘ o

Note that Aw is independent of KTe’ and its sign is not necessarily related
to that of w,. The two terms in Eq. (57) do not have simple physical interpreta-
tions, since they are combinations of other terms. In Eq. (54), however, one
can trace the first term (Q1 - Qz) back tg the charge separation due to the
difference of ion Ey/B drifts along Zpo,_and the last term to the electron Ey/B
drift along Zpo. To lowest order in w/ﬂc, the electron and ion Ey/B drifts of
course are equal, so that there is no net charge separation. When there are two
ion species, the electron charge cannot cancel the ion charge for all ion mixtures;
this is probably why.the second term in Eq. (57) depends on ag-

4. Frequency shift of the ESIC waves. The regime of electrostatic ion

cyclotron waves is obtained in the limit bol’ >> w >> w,, when the Boltzmann

relation holds and

0)* + ibO’H

w + ibcll 1. ' (60)

-11-~



The dispersion relation Eq. (41) is then approximately

(\D‘L‘ﬂ?)("’t‘&:)" o, g, (Wt €)W~ 0t )« “z“ftt (e X Lt-aM) .

(61)
Let Wy be the solution of the homogeneous-plasma equation
| a wz a mz
17s1 ~2°82
7 v + 7 92 = 1. (62)
Yo 1 o 2

We replace w by ER in the small terms containing sj and assume a small shift

Aw such that

- 2 '
w = wo)+ Aw w wg + 2w0Aw. (63)

The first-order part of Eq. (61) then reads

dw buw (wl-at+uwr-ar)z 2w, Bw (W + £ L5 ) +

T L3 L (64)
+ o\ Vg, 6\(“’: “JLzL) + Vg, €, (W, "’L\I),
or
1 ! 1 at
A ) &\ Vsy €, (WoL‘ﬂ-:) + ol ugy €, (L0 )
w = a0 .
e T N L R (65)
Call the denominator D, and add-and subtract a term in the numerator:
T
A“_ (UDL~J\.:L)(U JL‘L) d uSl “ J‘L"’S} . + d;"’s: ¢ — dzbs'l— é
nbob \A'L-JL'L ‘ %1_4\_\} t wcL-'n"I} \ U‘-J\t \ )
The first and third terms cancel by virtue of Eq. (62). Thus,
2 L -
%2, , .
Aw = Zu D (w™ - Ql) (e, el). (66)
Since e, - e, = (8/k) (AQ/w_) and wz = 2 2 . k2D gy = - (k/8)w,Q,, we have
2 1 o s2 €s2 2 *20
the frequency shift
1
A o, WAL D, -8,
w = 7T 1 v
: ot it (bt g Y]+ (Lt - (@l t o bet ] (67)

-12-



For the particular case a, << a;, the root of Eq. (62) that is close.to Qz

is given by

v s, =1 '
3 L - —t
lo° - ‘L.L - d\,l‘OSL ( \ a.:__ 'nh‘.‘_ ) . (68)

22 2
The last fraction is equal to k csl/QlA = kZDB/QlA = 1.2 for the numerical parameters

of Sec. IV-2. Unless there is a fortuitous coincidence between the acoustic shift

m2 and the frequency difference Qg - Qi, the denominator of Eq. (68) is of order

uiity, and W, differs from 92 only by a term of order ye With W, = Qz, Eq. (67)
becomes N 1
O L
2 VRN R
ﬁ’—él—bi’f-bﬂ_(\- LtDg )“|
2T N n, A : (69)

Again, there is a possible resonant denominator, and the general case requires
a more accurate approximation for w, . However, we have taken the m = 8 mode;
for smaller m-numbers, the kzDB/QlA term would be negligibly small. We then

have the simple formula

Aw > =%t Yx An | | (70)

V. EFFECTS WE HAVE NEGLECTED

1. Radial eigenfunctions. In making the "local" approximation, we

dropped the terms (Tl + 12) (x" + 8x') in Eq. (27). These terms are related
to the radial electric field Er which must exist in ordgr for ¢ to satisfy a
boundary condition. The §X' term represents the ion space charge due to polar-
ization drift along Un . The y" term Is due to the nonuniformity of this drift
if Er varies radially; this effect would exist in a finite cylinder even if

Zpo = 0. If there is a strong shear in equilibrium quantities such as Bo’ Eo,
or né, the modes would be localized between closely spaced turning points, and
the radial wave equation must be solved carefully. However, in a non-sheared
system, the radial (x) gradients are generally smaller than the azimuthal (y)
gradients unless m is as small as 1 or 2. In any case, since the frequency shifts

are so small, it is not worthwhile to evaluate them more accurately by removing

the local approximation.

2. Finite ion temperature. In fluid theory, finite Ti has two main

~-13-



effects: there is a Doppler shift due to the ion diamagnetic drift, and there
is a charge separation because the ions E x B drift more slowly than electrons,
due to the ions' finite Larmor radius. The latter effect can be taken into

accaunt by adding the viscosity term V ° 71 to the equation of motion.1 The
effect is to increase the pressure-driven effects proportional to w, by a factor
1+ Ti/Te)' Collisional viscosity can also be included in 1. The algebra

- becomes much more cumbersome, even with the local approximation, and no new
effects or order-of-magnitude changes are expected. 1In kinetic theory, finite
Ti introduces Qc harmonics, and there will be new physical effects.

3. Finite radial electric Field E . 1If E0 is uniform, there is a simple
U

Doppler shift of the frequency, unless Eo is so large that the centrifugal
force2 in a cylindrical system causes a Rayleigh-Taylor instability. If Eo is
nonuniform, the azimuthalng_x_g drift is sheared, and there are Kelvin-Helmholtz
instabilities that can be excited. The treatment of K-H instabilities in an
inhomogeneous plasma, including finite Larmor radius effects, has been treated

in only a few papers. The analysis is necessarily complicated, because no
local approximation can be made; the K-H instability depends on the radial grad-
ients of first-order quantities. If nonuniform E-fields are present, it would

not pay to attempt an analytic treatment.

VI. HOW DRIFT WAVE THEORY ACCOUNTS FOR MACKENZIE SPACE CHARGE

Some years ago, Ken MacKenzie suggested that ion oscillations near QC
could never become large in an inhomogeneous plasma, because there is no adequate
mechanism for neutralizing the space charge as ions gyrated into regions of
different density. 1In the k,, = 0 case, neutraliéing electron currents must come
from a modulation of the endplate currents, and these are limited in magnitude
to the ion losses at the acoustic velocity. By exciting finite-k,, modes, one is
able to provide neutralizing currents by allowing electrons to flow along B between
wave crests and troughs within the plasma. Actually, there are many other mechan-
isms for generating neutralizing currents, and dyift wave theory takes all these
into account, though generally only to order ki E + In particular the ions them-
selves can effect charge neutralization by changing the wave amplitude profile.
We shall show how this mechanism is related to the location of the turning points
in the WKB problem.

With the help of Eqs. (5), (14), (16), and (24), the radial wave equation

(27) for a single-ion-species plasma with T; = 0 can be written as follows:
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Here, we have converted from plane geometry to cylindfical geometry, and the

prime indicates 3/3r. Eq.- (71) is an equation of continuity, and each term

can be traced back to its origin in the equations of motion to find the physical
effect that caused a separation of charge. The last term is easily recognized

as coming from the modified electron Boltzmann equation (13), the bcll part
representing electron diffusion along B, and the w, part representing Eb x B

drift along Zpo. The factor (1 - wzlﬂi) causes the electron contribution to space
charge to be negligible when w = QC, because then all the other terms (which are
due to ion space charge) become large. The —m*/w term is the ion accumulation

due to EB x B drift along Vn . Since this is equal to the electron E x B drift

at low frequenc1es, it normally cancels the w*/w part of the last term when kII— 0.
The (m/r) a1 term is from the polarization drift of the ions along Ee There

is a divergence of ions from azimuthal locations where electrons accumulate
because of Ee x B drift; hence, the polarization term adds to the electron space
charge. .

The remaining terms in Eq. (71) depend on the radial variation of the
potential x and are neglected in the local approximation. The (né/no)x' term
is due to the Er—driven polarization drift alone Zpo, and the x" + x'/r terms
come from the radial inhomogeneity of this drift, which causes ion space charge
to pile up. The néx' term is the lowest-order MacKenzie space charge effect.

It causes ions to '"stick out" radially past the electrons when the ions are
pulled out by the radial electric field.

If electron currents are insufficient to cancel ion space charge when x
is constant with radius, then a radial bé;iation in x develops so that the Er—
driven ion currents can provide neutralization. The more severe the charge im-
balance, the faster X must vary with radius. This implies either a high-order
radial mode or closely spaced turning points.

To see how space charge imbalance is removed by adjustment of the turning
points, let us examine the particularly simple case of constant wy. The radial
density profile is then a Gaussian:

-r?/a?

n =n e . v (72)
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We further consider low frequencies such that m2 << Qi, and ki large enough

that boll >> w, w,. Eq. (71) then simplifies to

n 2 w

1°0° 1 2 m *

” + e L, = n _ —_— =

X ( r no>x a2 (ai r2 w * l) X 0. (73)
i

In terms of the dimensionless variables

s = r/a’ A= ai/a’ (74)
this can be written
2
2 1 Dy 2 m _
A (xss + G- 28)x8> <l - ta s2>x = 0. | (75)
The first derivative Xg can be transformed away with the substitution
—32/2
W(s) =\s e X (76)
giving the WKB equation
2 1. m2 w
*
¥ + 2 - s2 + LA l-(1 -— )] Ww=0. (77)
2 2 2 w
ds s A
The turning points are determined by
i _ m2 w
s 4 P S . A
Q(So) - 2 + 2 2‘(1, o ) So 0. (78)
s A
o
2
Since w, - w = 0(\"w,), let
2 :
W, - 0 = 2\ w,f, (79)
where f = 0(1). Then Eq. (78) becomes, approximately,
s4 - 2(1 + f)s2 +mé Lo 0. (80)
o o] 4
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This quadratic is easily solved to give the turning point locations S, as a

function of frequency shift f and azimuthal mode number m, as shown in Fig. 1.
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For a given value of m and f, there are two turning points, Sy and 82,
between which W(s) oscillates, and beyond which W(s) exponentially decays.
[Inclusion of the bcll terms in Eq. (71) would give rise to complex turning points,
which simply means that the interior solution is not a pure sine wave and the
exterior solution not a pure exponential.] As f is varied, the ratios among the
various polarization and E x B drifts change, and a charge imbalance can occur.
Moving the turning points changes the drifts dependentron x' and x" and therefore

adjusts the charge accumulations due to these drifts. However, charge neutrality
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cannot be achieved for all values of f, since the WKB quantization condition

must also be satisfied:

f QLi (8) ds = (n + %)Tr. (81)
8

This gives the eigenvalues of f (or w) for which charge balance can occur every-
where. These are entirely analogous to energy levels in a potential well, but
here the levels are set by space charge. Tﬁere is usually one value of f for
each set of mode numbers (m,n). For other frequencies, the radial E-field
cannot be adjusted so as to cancel éll space chérges arising from unequal ion
and electron drifts,

In practice, the second turning points in Fig. 1 would lie well outside
the plasma. The radial eigenmode is in this case determined by the boundary
condition at the wall plus the inner turning point. When wy is not constant,
the shear in w, (s) would bring the turning points closer together. In that
case, s, can lie inside the plasma, and the radial mode profile would be insen-
sitive to the wall boundary condition. 1In tokamaks the shear in B produces a
large shear in k,l so that bc,! is a function of Sl’ and it is this effect that
localizes the drift wave. Thus we see that standard drift wave theory takes
MacKenzie space charge into account, though the way it is done is often obscured
by the mathematical details. When the plasma has a sharp boundary, the wave
function contains many radial harmonics, and analytié solutions are not useful
because the short radial wavelengths involve very large finite Larmor radius
corrections. The plasma column then behaves like a crankshaft, and this has been

described in computer models.

-
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