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I. INTRODUCTION AND ABSTRACT

Various expressions for the threshold of stimulated Raman backscatter

appear in the literaturel’ For an infinite, homogeneous plasma, one has
2,
Yo Y1Y2"1%2 1
2 2 2
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which depends on the finiteness of both damping rates Yq and Y,y (the symbols
will be defined later). For an inhomogeneous plasma with density scalelength
L , one has
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which does not depend on collisions at all. For convective instability in

homogeneous plasmas of finite length, one has1

i Y

2y, > (Y_1+ j_z) (v,v,) % 3)
where Yo is the homogeneous growth rate and the V's are group velocities.
Eq. (3) depends on collisions but not on the plasma length L. More puzzling
is the fact that Eq. (3) is also the threshold for absolute instability in an
infinite plasma.
We derive all three of these thresholds from a single straightforward
treatment which clarifies the relationship among them and removes the mystery

of their widely disparate functional forms.

II. WAVE EQUATIONS

We neglect pump depletion and take the incident (0) and reflected (2)

light waves and the electrostatic plasma wave (1) to have the following forms:

§0 =y Eocos(kox - mot) = yEocos ¢o (4)
EZ = §E2(x,t) cos(kzx - wzt) = §E2(x,t) cos Qz (5)
ﬁl = nl(x,t) cos(klx -t 4+ 6) = ny(x,t) cos &y (6)



Here the w's and k's are purely real, Eo is the constant pump amplitude, and
Ez(x,t) and nl(x,t) are the slowly varying peak amplitudes of the decay waves.
To avoid complexity, the polarizations and k-vectors have been aligned. The
phase § for E° and E2 has been set equal to 0 by choice of origin for x and t.

Note that k2 is negative for backscatter and k1 = 2ko in an underdense plasma.

The reflected wave

Maxwell's equations give, for a transverse wave,

32E
2 9xuxE = lE = 4n 21 (7
- T - Btz it '
2~ "2 2
Since V'E = y3 Ey/Bx » we have for the wave E2
a~2 = E! cos ¢, - k. E.sin o (8)
. 2 2 272 2
x
2~
9 EZ = E! cos ¢, - 2k.E' sin ¢ - sz cos & (9)
5 2 2 272 2 272 2°
ax

where the prime indicates an x-derivative on the slow spatial scale. We therefore

neglect the E; term and write
-V°E, = kZE cos &, + 2k E! sin ¢ (10)
2 272 2 272 2

Similarly, neglecting the second derivative on the slow time scale yields

2 . ,
_ 2 = w2E2_cos ¢2 - 2w2E2 sin @2. (11)

The electron current j is due to the quiver velocity vy of wave 2 plus a

nonlinear coupling term jNL:
j = -en v, + jNL' (12)

Since KT has no effect on transverse waves, vy is given by the simple equation

of motion

m 2 = -eE, - mv_v,, (13)
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where Vg is the electron collision frequency with ions or neutrals. In the

small collision term we may replace v, by the solution of

v e
2 =~—E, cos %,,
Y m 2 2
. eE2
or v, = ;;; sin @2. ‘ (14)
Thus
i ajNL e v
47 5t = 4 3t + 4wen0 E—Ez (cos ¢2 + e 'sin @2)
w
2
o]
NL 2 v R
4 5t + wa2 (cos ¢2 + 'GE sin ¢2). (15)

Inserting Egs. (10), (11), and (15) into Eq. (7), we obtain

2
W_ Vv 3j
2 2 _ 272 . 2 ' p_e _ NL
(wz - wp c kz)E2 cos @2 2(w2E2 + c k2E2 + ™ 5—-E2) sin ¢2 = 47 =t -

Thus, a uniform plane wave (Eé = 0) that is undriven has the frequency

w., =w + ¢k (16)

-E, =7y,E, =— — E,. (17)
w
2
Writing Ve in terms of Yo We finally have for the wave E2:
W2 - w? - AAE, cos o 2o, + BB +yow.E) sin 6. = by ML (18)
2~ % 2/ €08 %, WoBg T € Kplig T YpuptyJ) sin &, 3t

Here BjNL/Bt stands for the derivative on the w, time scale of the component

of jNL at frequency W, .



The plasma wave

The governing equations are

2}2& = -4ﬂen1 _ (19)
Oy | n Vev. = 0 (20)
—= T Y
ot
v :

1 _ Vn F

m 3t = -eEl - 3KTe 1 - mvevl + 'NL , (21)
Y s

where FNL is the ponderomotive force of waves E° and E

9
2
Defining v, = 3KTe/m, (22)

we may write the divergence of Eq. (21) as

v2 V’FNI
3 Vev, = - S y.g, --= Vzn - Vv Vev, + —:;—~f . (23)
-— — =1 m — —1 n 1 e— —1 mn
ot o o

The Ve term can be written in terms of Bnllat by Eq. (20). Taking the time
derivative of Eq. (20) and substituting Eqs. (23) and (19), we obtain

2

dn : an VeF
1 en 2.2 1 NL
- _o (<4reny) - v V'n, + v + = 0,
— t

5t2 m , e 1 e d n
an an VeF

1 4 wzn -v292n 4 v —t 4 N&_ 0, (24)
ot pl e 1 e ot m

where n, is really ﬁl. Its derivatives are, from Eq. (6),

1
a~1 = 1 + i (25)
- n; cos ¢ + wmn; sin ¢,
2%, . ) |

% = 2wlnl sin Ql - wyn, cos ®1, (26)
ot



where we have neglected n, cos ¢.. Similarly, the x derivative is approximately

1 1

2. .2 .
-V n, = klnl cos @1 + 2k1nl sin ¢1. (27)

Substituting Eqs. (25-27) into Eq. (24), we obtain

(—mz + w2 + k2v2)n cos ¢. + 2(w n. + k v2n' + w XE n,) sin ¢
1 p 1'e’1 1 11 1'el 1 271 1
VeF
NL .

= - - Vely €08 2. (28)
We now neglect the last term in veﬁl’ which is smaller than the wlﬁl term if

v, << Wy A uniform, undriven plane wave has the damping rate

v
-n, = Y.n, = —n_. (29)
1 11 271
Replacing ve/2 by Y;»> we finally have

2 2 2.2 . 2, . _

(wl - wp - 1ve)n1 cos @l - 2(w1nl + klven1 + Ylwlnl) sin @1 =V FNL/m. (30)

ITI. NONLINEAR COUPLING

The nonlinear current jNL that drives the wave E_, is the result of

2

“the density modulation ny quivering in the wave EO:

lo
where vo satisfies
ax“ro
m o = —eEo cos ¢o. (31)
eE
Thus we have v = —2 sin o , (32)
o mw o
n; = mn; cos ¢l, (33)



dg = - ma_ nlEo sin Qo cos Ql. (34)
e2 1
= - Ea;nlEo 5-[s1n(<1>0 + Ql) + sin (Qo - 91)]- (35)

The frequency and k-number matching conditions are wo = wl + Wy s ko = k1 + k2,
or

¢o = ¢1 +0, - S. (36)

Thus the sin (@o + @1) term is nonresonant with E_, and can be discarded.

2
We are left with

e nlEo
i T - sin (¢2 - 8). (37)
3] wz w, N
NL _ p_ 21 -
4 5t o, n E cos (@2 8). (38)

The ponderomotive force F is due to the Lorentz interactions of waves

E and E
0

NL

2

By T 7 (g % By + 3y % B, 39

Eqs. (14) and (32) give v, and Vo while gj is the solution of

2
oB
—j=-VxE, cos ¢,
| t - J
; = -z 2 [E, cos (k,x - w,t)]. (40)
t ox  j J h|
Thus B, = (k,/w,) E, cos ¢,, i = 0, 2 41
J J J) J J J (41)

Using Egs. (14), (32), and (41) in Eq. (39), we find the x component of F to be

NL
eEo k2
FNL = - en EG; sin ¢° —; E2 cos QZ + (0« 2) (42)
w; Eo 2
= - o o i (k2 sin @o cos @2 + ko sin ¢2 cos @o). (43)



Here

1 .
sin @ocos ¢2 = ‘E[Sin (¢° + 02) + s1n(<1>o - Qz)]

_L e
sin chos @o— 2[81n(<I>2 + @o) - 51n(<1>0 ¢2)]

Dropping the nonresonant terms and setting éo - ¢2 = Ql - § and k2 - k.0 = kl’
we obtain
w2 EoE2
A = ww, 8r SN0y - ® | (44)
o2
1 “’Ezki Eofa
AN R w w, 8m cos(@l - 8. (45)

IV. COUPLED WAVE EQUATIONS

Inserting the nonlinear terms (38) and (45) into Eqs. (18) and (30),

we obtain the result

2 2 22 . 2. .
(mz wp -c kz)Ezcos ®2 - 2(w2E2 + ¢ k2E2 + yzszz)sin @2
w2 w, n
. _p_2_1 -
=g == Eocos(¢2 8). (46)
o o
2 2 2.2 . 2 ' .
(wl wp - vekl)nlcos @l - 2(wln1 + veklnl + ylwln1)51n @l
wz ki EOE2
= BBB —~ & cos(Q1 - 68). (47)
o2
V. INFINITE, HOMOGENEQUS PLASMA
Here Eé = ni = 0, and at threshold ﬁz = 61 = 0 also. The lowest

threshold will occur for exact frequency matching, so that the first terms

in Eqs. (46) and (47) vanish. We then have

-7-



ooy ny
- 2y2w2E2 sin @2 = 3 B—~;—-Eocos(¢2— 8) | (48)
oo
2 2
w k, E E
= 2y wyn, -sin ¢1 = p 1 02 cos(<I>1 -6). (49)
ww, m 8rm
o 2
Choosing ¢§ = -90° and multiplying these together, we have
%9 %
Bypv g, = 2 16m ° (50)
n mw

The threshold can be written in terms of the peak oscillating velocity v by
using Eq. (32):

2.2 2 2 2 2
w k m w v 4Tn e v
4 - 1 . o _o_ . - ~9-k2m2
Y1Y2%1%2 ol o2 Iem T m 41 “1%p?
o .

16y, v, w,w

V2 - 12221 2 . (51)
kow
1p

This is the usual homogeneous threshold, Eq. (1). Substituting k1= 2k0 and
the y's given by Eqs. (17) and (29), we can write this as

2 2 2
2 “1 ve Yo v Ve
v = ——— or 2 - 2 _£ (52)
o 2 2 w 2
2 k c o w
o o
The growth rate y is found by setting ﬁz = yEz, ﬁl = o, in Eqs. (46)

and (47) and again neglecting the space derivative and the frequency mismatch.
Far enough above threshold that y >> Y15 Yoo the damping terms can also be

neglected. The value of y is then called the homogeneous growth rate Yo!

f; w, ny
—2m2yoEzsin @2 =5 T n Eocos(¢2 - 68) (53)
o o
wz k% E0 E2
—Zwlyonlsin @l = 5§5£-5 e cos(@1 - §) (54)



These are the same equations as (48) and (49), except that yz replaces Y1Yo-
Thus the solution from Eq. (51) is

2 2 2
v k] w
YZ =9 1 p (55)
o 16 Wy 0, ?
or, for kl = 2k0, Wy = w, = cko, Wy * W,
v2
2_1 o
YO = 4 cz wowp’ (56)

(57)

This is the usual formula for the homogeneous growth rate of SRS. Note that the

threshold (51) can be expressed as

2
Yo = Y1Ysp- (58)

VI. FINITE, HOMOGENEOUS PLASMAS

Since the plasma is homogeneous within an interaction length L, we
can assume perfect frequency matching for 0 < x < L and neglect the first

terms in Eqs. (46) and (47). We consider a steady state with EZ =nqn, = 0,

1
obtaining

2 : ff)_‘*’z !

- M 1 = — — -

2(c k2E2 + Y2w2E2)51n @2 7 6y g Eo cos(<I>2 8) (59)
w2 k2 E E :

—2(v2k n! 4+ y.w.n, )sin ¢, = —B 1 02 cos(d, -~ &) (60)

el’l 1171 1 w wy, m 8t 1

We can write these in terms of the group velocities VlAand V2 of waves 1 and 2.

Differentiating the plasma wave dispersion relation

2 _ 2 2 2
w = o + kv, (61)
we find 2
1 1



Similarly, from Eq. (16) we find

l k2c2
V2 = wz (63)
.
Here k2 is negative, but V2 is defined as a positive quantity. Dividing
Egs. (59) and (60) by -2w2 and -Zwl, respectively, we have
W n,
— ! = - r— -
( V2E2 + Y2E2)sin ¢2 zg——— = Eo cos(<I>2 $) (64)
o o
2 2
w k; EE
1 . - P 1 "072 cos(®, - 6),. (65)
(Vynp + vynp)sin o) T 2w, mu] 8 1

Again the phase § of ﬁl is obviously —900, and the other factors are just what
we called Yz in Eq. (56). Thus

2
- N ' =
(VzEz + YZEZ> (Vlnl + Ylnl) Yo By o
E! n!
W) (nlen) -
(V2E2 v, V1n1+Y1 = Y - (66)

Let E2 and n, have the same spatial e-folding rate K, with E2 growing in the —x

direction and n1 in the +x direction:

v - L
E2 KE2 . ny Knl . (67)
Now we have
Y ¥ Y2
<K+'V—2><K+ V—1->=V3 ’ (68)
2 1 12
Y Y YqY Y2
K2+K<Vl * V_2>+ Vlv2 =y ’ (69)
1 2 12 172
Y Y Y Y 2 Y2-YY L
2K=-<V_1+V_2)t<v_l+v_2>+z._ov_vﬁ. oo
1 2 1 2 12

~10-



There is a positive root «, indicating growth, as soon as Yo exceeds the
homogeneous threshold Yz = YyYp- However, for appreciable growth in a length

L, we require kL > 1. 1If the first term in the discriminant dominates, this
severe condition cannot be satisfied by increasing Y- Therefore, when convection
is the limiting factor, the yg term in the discriminant must dominate. Assuming

2
Yo >> Y{Yps We then have

(71)
3
v, v,/ 12

270 > (j!l+ ZZ-)JV‘V
which is Eq. (3). What this means is that in any given Ax within the interaction
length the amount of wave energy gained by instability is larger than that lost
by damping. The total length L does not matter. Of course, if the plasma
is infinite, this condition means that thé wave can grow everywhere at all times,
which means absolute instability.

Suppose now that Yo satisfies Eq. (71). Then k is approximately

1

~3
kK =y (V,V,) (72)

Appreciable growth still requires kL >> 1, or, from Eqs. (62) and (63),
1

Y Cklve ?
YOL >> (VlVZ) =\ (73)
1

Using Eq. (57) for Yo and noting that

2
- nl (74)

>> 24 — |, ’ (75)

VII. INHOMOGENEOUS PLASMAS

When wp or v varies with x, perfect phase matching cannot be maintained

throughout the interaction region. Since wl is fixed by w, = wo - m2, kl must

-11-



vary in space to satisfy the local dispersion relation

wi - wl";(x) + vz(x)ki(x). (76)
Let kl(x) = klO + A(x), an

where klO = k1(0) satisfies ko = k10 + k2, the origin'x = 0 being defined as
the point where k-matching is perfect. To simplify the discussion, we neglect

the gradient in Te and the relatively small changes in kb and k, in an under-

2
dense plasma. Taking 6§ = -m/2, as we found previously, we can write ﬁl as
ﬁl = n1 cos @1, where
X
= ] L . - _Tl
¢1(x) f kl(x )dx wit 2
0
ul
= klox - wlt -3 + ¢(x), (78)
with X
dp(x) = f A(x")dx' , (79)
0
N = =
¢l(x) klO + A(x) kl(x). (80)
The spatial derivatives of ﬁl are now
aﬁ1 = nlcos ¢, - k. (x)n,sin & (81)
- 1 1 1 1 1
9x
Bzﬁ 2
- ~ \J : 1 .
21 klnlcos ¢1 + 2klnlsln @1 + kln151n ¢1 (82)
9x

Eq. (18) for E2 remains unchanged as long as we neglect the variation in k2,
but Eq. (30) now becomes

2 '
+ vekl(x)n1 + Y@

2 2 2.2 .
[wl - wp(x) - vekl(x)]nlcos @l - 2[m1nl 1%
+-l vzk'(x)n ]sin ¢, = V.F.__/m. (83)
2 el 1 1 NL

-12-



The ponderomotive term, from Eq. (44), is

w EoEZ
FNL T o w 87 (ko - k2) 31n(¢o - ®2)'
o 2
From Eq. (78) and the definition of klO’ we have
ke ~ky =Kk
- _ = LU
and ¢o - ¢2 = klox wlt @1 + 2 ¢(X),
2
w E E
so that - _Pp o2 I
LT % w, 81 10 sin(®) + 5 - ¢).
Using Eqs. (79), (80), and (77), we have
13 “’22 ) xr
m 9x FNL = W Wy 8mm k10 cos(¢1 + 27 ¢)[k1(x) -]
2
wp EoEZ 2

T % . Bm Ko sin(ey - 0).
o 2

‘Similarly, the other coupling term, from Eqs. (35) and (85), is

(84)

(85)

(86)

(87)

(88)

(89)

2

_ e n E sin(® - )

jNL = e lo [o) 1

o]
82 i 82

T T Zmo npEpsin(e, + 5 -¢) = - 2 n Ejcos(®, - ¢)

Thus w2 ® n
a_ . _-_p 2 1 -
4 5t INL 5 wo n Eosin(¢2 $).

The coupled equations (46) and (47) now become

2 2 2 2
by ‘“’p(") " Ve e1™M

2
2
- _ Y EE k1o sinf[®; - $(x)]

- © mz 81m

o

~-13-

2 ) . 12, _
kl(x)]nlcos ¢ Z(wln1 + v k,n! + Yi0q®y + Evekln1)51n 3,

(90)



2 2 22 . 2.,
(w2 - wp -c kz)Ezcos ®2 - 2(m2E2 + c k2E2 + yzszz)sin ¢2

032 (Dz nl
= - ——-—LZ E n—o Eosin[<I>2 - ¢(x)]. (91)

If kl(x) satisfies the local dispersion relation (76), the first terms can be
dropped, and again introducing the group velocities (62) and (63), we obtain

2 2
. : 1, wy EE2 Ko
(nl + Vln1 + Yy + fvlnl)Sin ¢1 = 5 0, 16s o, sin(d>1 - 4) (92)
1] . —_ — - :
(E2 - V2E2 + Y2E2)51n @2 = 5 o n sin(<I>2 $). (93)

We learned in Eq. (50) that the product of the factors on the r.h.s. is just

yinlEz. These two equations can be symmetrized by splitting the difference. We
therefore introduce the new variables

A = nl/C . A, = CE, , (94)
2
k n ;i k w li
where C = 10 ° = A0( p . (95)
2 wmwlwz 4me wlwz

In exponential notation Egqs. (92) and (93) can now be written

3A 3A

_l _1 l ] = -i¢ (X)

5t T Viax T ify ot FViAL T v ALe (96)
5A 9A

2 _ _2 _ -1 (x)

3t Voax T oYahy = Y Al . (97)

With the exception of the odd term in Eq. (96), these are the usual equations1

for an inhomogeneous plasma. The ratio of the Vi term to the V1 term is

' '

VlAl kl Al
T T o, RV

ZVlAl 2 1 A

R
i -

!
I
N
HW‘I ~
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where L is the interaction length. From Eq. (76), we have

X' 2! 2
1. % 1 1%
== Y ’
1 v2 2k2 2 k2 L v2
e 1 1 "mne
where Ln is the density scalelength. Thus
\J
VA .11 1 11 1 (98)
1 .
2V1A1 4 Ln 3k2A2 48 Ln k2>\2
1D oD

In a typical experiment kikg might be 10—2 and Ln/L = 10 or more. Thus the ratio

(98) is of order unity, and the neglect of the Vi term is not justified.

The customary procedure is not only to neglect the Vi term but also to

assume Vl, 1o and Yo to be constant in Eqs. (96) and (97), when in fact all these

vary with density. Then one uses a Laplace transform BAi/Bt = yAl, aAz/at = YAZ
to obtain
dA
1 - -1 (x)
Vl ™ + (v + yl)A1 = YOA e (99)
A
—2 - -i¢(x)
“Vyax P (r+ypA = yAe , (100)

the function ¢(x) depending on the density profile. One variable can be
eliminated to give a single second-order differential equétion. By a standard
change of variable, the first derivative term can then be eliminated to bring
the equation into WKﬁ form. For particular density profiles, the equation

can be brought into the form of a standard confluent hypergeometric equation

and can be solved. For profiles like linear or parabolic density distributions,
the equation can be solved in the WKB approximation to give the eigenvalues of v.
The instability criterion is then Yy > O.

Though mathematically elegant, this procedure is not guaranteed to give
an accurate threshold because Eqs. (99) and (100) are themselves very approximate.
We therefore employ a simpler procedure. We consider the plasma to be homogeneous
between the turning points of the WKB problem; that is, the points where the
accumulated phase error §(x) is of order m/2. We then apply the distance

-15-



.

between turning points to the finite-length criterion, Eq. (75). In a
homogeneous plasma, Eqs. (99) and (100) are accurate. Multiplying them together,
we see that

Al Al
1 _ 2 _ .2 =2i¢(x)
(y + Y1+ Vl A ) (Y + Yo V2 i ) Y8 . (101)
1 2
The driving term on the r.h.s. goes to 0 when 2¢(x) = n/2, or ¢(x) = 7/4.
Hence, we take this to be the interaction length ¢ (L) = n/4. We may expand

A(x) in Eq. (77) in a Taylor series around the phase-matched point, x = O:

1.2

= - - ' = "
A(x) kl(x) ko + k2 xA'(0) + 5 X 4 (0) + ... (102)
Let n = no, wp = wpo at x = 0. Then the plasma wave dispersion relation (76)
can be written (if Te = const.)
2 _ 2 n(x) 2.2
wy mpo n + vekl(x). (103)
Successive derivatives with fixed wy give
w2 2
' = - '
DBO n'(x) 2ve klkl(x)
o
(104)
2
w " = o 2 " '2
ngo n"(x) 2ve(klk1 + kl )
o
wzon'(x)
Thus A (x) = ki(x) = - _E__E__
2nlvekl
(105)
1 (@ n'" (x) 2
" _ " = =
A"(x) = kl(x) = -k 3 + kl
1 2n v
oe
Linear profile
= X
Let n(x) = n_ (1 + Ln ) . (106)

-16-



+no
Then n'(x) = —1 n"(x) =0 , (107)
n
and w n w
v - _ _PO__ i_2>=—l_p2 1 _z 2,-1
A 3 < I + 3 7 R L + (6k1LnAD) , (108)
2n.v 'k n v 1™n
l el e
S
A|l=__k =_k , (109)
1 1

where k1 = kl(O). The turning-point condition is

L
§(L) = fA(x)dx =+ 7 = *1 (110)

(e}

Substituting from Eq. (102), we have

L
' 1 2w
[xA'(O) + 5 X A"(0)] dx = + 1. (111D)
o
Thus
27 212+ a0 217 = 11,
2
L La')_
2A(1-3k>—11. (112)
1
If the second term were negligible, we would have lA'I = 2/L2. Substituting

this into the second term, we find its magnitude to be [LA'/3k1| = 2/3le = (3koL)_l

<< 1. Thus we may neglect the A" term and choose the sign in Eq. (110) so
that L2 is positive regardless of the sign in Eq. (106). Eq. (108) then gives

L2 - 12k1Ln>\]2) ) (113)

Inserting this into the finite length threshold (75), we have

R

(114)

>>

| <
[3% 1 1o N (V]

le koL

(¢]
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This is within a factor of 2 of the usual condition for convective instability
in an inhomogeneous plasma, Eq. (2). Note that no plasma parameters appear

except for density scalelength.

Parabolic profile

Now let 2
n=n<lix—->, (115)
(o) 2
L
n
| 2 " 2
so that n' = * 2n x/L° , n" =+ 2n /L , (116)
o n o''™n
- “’zo My — 2,2,-1
A'(0) = 0, A" (0) = + P C =¥ (3k,L25) (117)
2 2 1™ nD
2n kv L
ol e n

Eq. (111) now gives, for either a density hill or density trough,

3 _ 2,2 :
L™ = 18k1LnAD. (118)
Eq. (75) can be written
v3
3/2 3,3
—% >> 24777 a0/,
[od
so that Eq. (118) leads to
v P CI)
o . (128) D = (;g) D 1 (119)
3 3 Kk 2 3 L k L -
c 1Ln n on

This i1s equal to the linear-profile threshold with the same Ln when

1
o -(22) D
c 3

“

n

For reasonable plasma parameters, this corresponds to a 10-um intensity of

-18-



= 105 W/cmz, so that at higher intensities than this the threshold for a para-
bolic profile is much more easily satisfied than for a linear profile. The

"exact" solution for a parabolic profile1 works out to be

» 1
L kL’
n on

1
s> 62 (120)

' <
wio W

(¢]

in remarkable agreement with the approximate result (119). These results

can be trusted only to within a factor 3 or so because they are sensitive to
whether the integral in Eq. (111) is taken from -L/2 to +L/2 or from O to L, and
to the constant chosen on the right-hand side. The.thresholds in any case

refer to a number of e-foldings above noise which is not specified.

VIII. A NEW THRESHOLD

A numerical example will show that none of the conventional thresholds
given above is appropriate to experiments in cool, underdense plasmas. The

homogeneous growth rate Yo @S given in Eq. (55), can be written in terms of

N ~ ~ o~ = 2
pump intensity Io for Wy T W, Wy wp, kl > 2ko, Io ch/SW as
2 w
2 _ 2me P
Y 3 Io > (121)
m e o
2 _ 20 Y
or Y, = 6.47 x 10 (n/nc) 19 (122)
where 19 is Io in GW/cmz. The damping rates are
Yy =g t Yy o Yo = (/n )G ;/2) , (123)
where
- -6 3/2
Voy = 2.9 x 10 Zne 1n A/TeV , (124)
4
In A = 24 - 1n(n /TeV) . (125)
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_ 3.4 3 -z
Yip = (n/e™) w, & e , (126)
g = u)p/klvth s e = 2.718... (127)
The group velocities are
Vv, = c V., = 3k v Ju = 6k 22w . (128)
2 ’ 1 o th' p oDp

Let us take, for example, T _ =10, n = 1017 cm_3, and.AO = 9.55 um. The

eV
homogeneous threshold y2 = y,Y, then gives
o 172

I0 =1.3 x 108 W/cmz,

which is exceeded in almost all experiments. The collisional-convective
threshold, Eq. (71), gives

I, = 3.1 x 1012 W/cm2 ,
which is not exceeded in most small laboratory experiments. Thus the use of

Eq. (75) is not justified in calculating the inhomogeneous thresholds.
We therefore go back to Eq. (70) for the spatial growth rate «:

_ 2 . 4 2 15
2¢ = =B+ [BY + o () - vy )17, (129)
1°2
Y Y
where B = Vl' + 2 . (130)
1 VZ

It is safe to neglect Y1Ype If the collisional-convective threshold (71) is
greatly exceeded, B can be neglected, and k « IE . But in the important inter-
mediate regime, B2 is large, and k « Io. Expanding Eq., (129), we have
2¢ = B[-1 + (1 + 2y2/V,v.3%)]
o° 12 ?
2 -1
K = Yo(ylvz + szl) . (131)
Thus the relevant threshold is
kL = 2L (y.V, + v,V )_1 >> 1 (132)
Yo YY1¥2 T Yo'y '
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Since Y, << Y1 and V1 << V2, this condition is close to

o >> 1, = (133)
C‘Yl

which is the threshold normally used for Brillouin scattering but never quoted for
Raman scattering. The only difference between SBS and SRS is that SBS is
insensitive to density gradients, so that L is determined primarily by the
interaction length, while in SRS L is determined by the density scalelength Ln.
From Eqs. (113) and (118) we have, for SRS,

|
1]

(linear profile) (134)

oN

24 kK L X
on

=
]

36 k Lik (parabolic profile). (135)

(o)

oN

The last three equations give the correct SRS threshold in most situations.

IX. NUMERICAL RESULTS

The exact growth length K-l, computed from Eq. (70), is plotted vs. Io
in Fig. 1 for Ao = 9.55 ym. Four combinations of n and Te are shown. Case A
is a low threshold case where the combination of collisional and Landau damping
is minimized. At low Io’ the curve becomes vertical at the homogeneous threshold
Ihom’ which is marked at the top of the graph. The central part of the curve
has Kk « Io (ideal slopes are indicated by dashed lines). At intensities above
the absolutelthreshold Iabs [Eq. (71)], marked by the sign‘J: the slope gradually
changes to I:. The effective interaction length L is marked by the point P for
a parabolic profile and the point L for a linear profile. In both cases Ln
is taken as 10 cm. For case A the condition kL >> 1 and Io >> Iabs are
identical for the parabolic profile, but the agreement is accidental. The other
curves show that the criteria are different. Case B has a higher threshold but
still shows the three regions of different slope. Case C is collision dominated,
and Ihom is high; the absolute threshold is extremely high. Case D is Landau
damping dominated and has a very high Ia

and a very low I om (identical, in fact,

bs
to that of case A). The large disparity between I

h

and 1 is because in this
hom abs

case v, is small and Yy is large, and Ihom depends on the product while IabS
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depends of the sum. The result is a very large middle range where k « Io'
From these curves one sees that the instability criterion of Eq. (71), and
formulas such as Eqs. (75), (114), and (119) which are based on it, are not
valid most of the time. One should use Eq. (70) and the condition kL >> 1.
Fig. 2 shows the result of doing this; i.e. solving for « from Eq. (70),
calculating L from Eq. (135) for a parabolic profile with Ln = 10 cm, and
setting kL = 10. The threshold intensity is plotted vs n for various Te'
The turnover in the high—Te curves is not real; it is the result of using
the Landau damping formula (126), which is not valid for ¢ < 1.
Fig. 3 shows contours of constant Io on the n—Te plane, obtained by
cross-plotting from Fig. 2. The minimum Io is shown by the dashed lines
in Figs. 2 and 3. On these lines the value of klxD is approximately constant
at 0.2, 1If the plasma is made by a theta pinch, the nTe product is fixed by
the B = 1 condition and the maximum B-field the capacitor bank can produce.
For instance, if nTe = 2 x 1018 cm_3 eV, the plasma lies along the thin
straight line in Fig. 3. From this one sees that the threshold intensity

is about 5 x 1011 W/cmz, occurring when n = 7 x 1016 cm_3 and Te = 26 eV.

2/3

If Ln is not 10‘cm, k varies as 1/L or L; , so that the thres?;}g intensity

Io’ if it lies in the unity—si;pe region of Fig. ii varigs as Ln . For instance,
to reduce the threshold to 10™" W/cm“ from 5 x 10°" W/em® would require a
scalelength increase to Ln = 112 cm.

For comparison, we have also computed the so-called "absolute" threshold
given by Eq. (71). This is plotted in Fig. 4 vs. n for various Te' Cross-
plotting gives the constant-—I0 contours of Fig. 5. This threshold is about
a factor 5 lower than that of Fig. 3, but the two thresholds would be comparable
if Ln 2 100 cm. Note that the curves of Fig. 5 are narrower than those of Fig. 2,
but the sharpness of the minima does not greatly affect the shape of the
constant—Io contours of Figs. 3 and 5. Rather, it is the range of I° which is
affected; Figs. 3 and 5 differ by two orders of magnitude in the variation of

I withnand T .
o] e
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