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Consider pump, backscattered, and plasma waves of the form

E, =% E, cos (k x - o t) (1)
gz =y E2 cos (kzx - wzt) (2)
n; =mn; sin (klx - mlt) . (3)

Let the SRS reflectivity be small enough that Eo can be considered constant;
let the amplitudes Ez(x,t) and nl(x,t) vary slowly compared to the sinusoidal
factors; and let (wo,ko), (wz,kz) and (ml,kl) obey both the linear dispersion

relations and the phase matching conditions w=w +w

1 2> ko= kl + k

2.
Standard analysis of the parametric instability then give these coupled

equations for E2 and n,:

2
. ¢k,
1 4 -
E, + ™ E) + v,E, = an; (4)
3v§k
® ' =
n, + ™ ny +yn; = BE,, (5)
szo
where a = —ZR——— (6)
W n
wzki Eo
and g= L= 2 N
2m W, 8w
012



In an infinite plasma (ni = Eé = 0) where the damping rates Y1 and Y, are

much smaller than the growth rate Y, of E, and n,, Eqs (4) and (5) give

2 2 2
2 Yo klmg
Yo °© af = 16 w0, ’ (8)

where we have used Eqs. (6) and (7) and vo = eEo/mwo; The homogeneous thres-

hold is given by ﬁl = EZ =0y Eé = (O, whereupon

i} _ 2
aB = vyv, Y, - (9
We now choose ko < 0, k2 > 0, and kl < 0 so that the qualitative

spatial behavior of E2 and ny in a finite, homogeneous plasma is given by

one of the following diagrams:
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Fig. 1

We first look for steady-state solutions of Eqs. (4) and (5). Since

the group velocities are



2 2
vy = 3v lkll/wl and V,=c lk?_l/m2 (10)

and kl is negative, the coupled equations become

VzEé + YZEZ = an; (1)
—Vlni + Yy = BEZ . (12)

In cool plasmas, electron plasma waves have appreciable Yy due to electron-
ion collisions and rather small V1 while the reflected light wave has large
. ’

V2 ® ¢ and small Y, for n << n.. It is then customary to neglect the Y, and

.Vl terms to obtain

VzEé = gn

E, . (13)

Using Eq. (8), we arrive at the familiar spatial growth rate
K = Y2/CY (14)
o'”'1 °

In this case nlaEZ, so that the plasma wave peaks at the upstream end,
as in Fig. 1la.
In making this approximation, however, we have lost a second root which

corresponds to large ni, such that Vlni is non-negligible even if V, is small.



Thus we treat Eqs. (11) and (12) in full and write them as

E} + Y,E, = an, | (15)

-ni + ;inl = EEZ R (16)

where ;i = yl/Vl, ;é = yz/Vz. , an
o = a/V1 s, B = B/V2 . (18)

Differentiating Eqs. (15) and (16) and combining, we obtain

" - ' - =
n' + (v, Ypny + (v, Y1Yp)ny = 0 (19)
— —_ —2 _—
" ' - =
where ;2 Sa B = YZ/V % (21)
o ol'1°2°
Defining a E-l(— - ;h) (22)
2 71 2
2.2 _—= _=2 =2
C F Yo T YY) T Yo" Y, s (23)
we have nI - 2ani + czni =0 (24)
Ej - 2aE) + czEz =0 . (25)
Solutions are of the form Ae 1% + Besz, where
|, =a+ (a®- D, (26)



The quantity a2 - c2 can be written

2 2 2 2 -2 27)
where T = -LGV +5.) : (28)
= 2\ T Yo

The nature of the solution depends on the sign of dz. If d2 < 0,

n, and E2 are of the form A cos bx + B sin bx, where

b =i - ad)? . (29)

In terms of the boundary values ni and n?, we have

L -aL o
ax o n, e - n,; cos bL
nl(x) = e n, cos bx + Sio bl sin bx s (30)

and similarly for Ez(x). It is seen that for

bL = ar , (31)

nl(x) + o jngide the region 0 < x < L, and a steady-étate solution is not

possible, The instability is then absolute. The condition d2 < 0 is simply

A v

-2 2 1{Y1 Yo L
Y. >T or ‘Y0>2(1 + —;) (V1V2) Sy, - (32)




This is the usual "absolute" threshold given by a number of authors™ .

That an additional condition on L such as Eq. (31) is required in a finite
plasma has been pointed out by Nishikawa and Liu3. When Yo > Ya; the growth
of a pulse is described by the space-time solution of Egs. (4) and (5).
Numerical examples including pumﬁ‘depletion have been treated by Harvey

and Schmidt4 and by Bers et al,5

In the absolute instability? the slope
of nl(x) can be either positive, as in Fig., la or negative, as in Fig. 1b,
depending on the parameters.

Below the absolute threshold Yo = Ya» it is well knownl"6 that -
convective instability is still possible. However, the nature of the
instability in the range Yh <Y, < Ya has never been clarified. Consider

now the case d2 > 0 in Eq. (27). The solutions are exponentials with

k = a + d; let them be of the form

eax( edx —dx) (33)

nl(X)

. (34)

E, (x)

Substituting these into Eqs. (15) and (16) and integrating from 0 to x,

we obtain

— — 1X _ 1 — — 2% 1
[(aA - (‘YZ + Kl)C] ——?;—— + f{aB - ('y2 + KZ)D] -—-—K—z—— =0 (35)
_ KXl - : o eKoX L
e = .
[(y;= xy)A - BC] —-;I——- + [(y; = k,)B - 8D] —-—;;——- 0, (36)

where Ky = a + d, Ky = a- d.



By virtue of Eqs. (22) and (28), we have ;& =Ky =y, + Ky

Tr+d,

+x, =T- d. Defining F, = (1% /ey 5 F, (" 2% 1)/,

1° 72 2

we now have

oF.A + oF

1 2B - (r + d)F1C - (r - d)FzD =0 (37)

(r - d)FlA + (T + d)FZB - BFlC - BFZD =0 (38)

L]
o

The boundary condition at x gives, from Eqs. (33) and (34),

A+ B = n; (39)
(o]
C+D=E, . (40)

The last four equations determine the coefficients A - D in terms of

ni and Eg , resulting in

(a+d)x (a=-d)x

2dny(x) = [(d+ I’)ni - EE(Z)] e + [(a - I‘)n: + EE(Z’] e (41)
2d E,(x) = [(d - T)Eg + Ehi] DX | g 4 F)EZ - an]] elatd)x (42)

One expects the initial noise level ni

a spectrum of plasma waves is usually excited in the plasma creation process.

to be above the thermal level, since

The initial level of E2 then arises from Thomson scattering off the ni

oscillations, and Eg is larger than the bremsstrahlung level. The relation

© and E2 can be obtained by considering Eqs. (15) and (16) at the

between ny 2



homogeneous threshold Yo = Y1Ype There being no growth or damping at this

intensity, the derivatives Eé and ni vanish, and these equations become

-0 _— ©
Y2E2 = a,n; (43)
- 0 _ 70
Y0y = BLE, » (44)
where &, and §£ are evaluated with Eo‘such that ;; = ;ﬁ. Thus we have
0,0 -
E,/nq a /vy Y1/By - (45)

The last equality shows that ;&;é = a. B. which is self-consistent.

Since o and B are proportional to Eo and Y, we can write ap and Bh in

terms of a and B as follows:
ay = (Yh/Yo)d s By, = (Yh/Yo)B . (46)
Eq. (45) then can be written
ES/nS = Gy fr)? GV = Gy /vp)* G /B | (47)

Substituting into Eqs. (41) and (42), we obtain the final result

no e !
n, (x) = -2-3— {[d +T - 70(71/72);5]e(a+d)x +[d-T+ Yo(YlﬂZ)kle(a-d)x} (48)



ES L )
Ep(x) = %l R R RS DG LR N e P d)x} :

or equivélently,

nl(x) = nieax {cosh dx + [T - ;;(;i/;é)%]sinh dx/d} (50)

Ez(x) Egeax {cosh dx - [T - ;;(;é/;i)%]sinh dk/d} . (51)

Before discussing the SRS reflectivity, we first demonstrate that these
expressions give reasonable results in two limits., For ;; = 0, we have

I'=d > a, and Eqs. (48) and (49) become

n, (x) = nle(8¥d)x o v1x/V) (52)
1 1 1 |
Ez(x) = Ef,;e(a-'d)x = Ege—YZX/V2 . (53)

This shows that, in the absence of a pump, both n, and E2 damp at the expected
rate as they propagate to the left and to the righf, reépectively.
At the homogeneous threshold ;; = ;1§é s we have ¢=0 , d=a , and

;;(;i/;é)% = ;i. Eq. (48) then‘becomes

ni - 2ax -
Ea—-[(a-y1+I‘)e +(a+y1—I‘)]

nl(X)

[(-T + I‘)ezax + 2a] = ni .

nO

(49)



Similarly,

EO

_ 2 — — | 2ax _ 0
Ey(x) = 5—[(-y, +vy)e” " + 2a] = E

9 (55)

Thus, n1 and E_ have the initial noise amplitu&e everywhere.

2
As Yo increases slightly beyond Y0 the exact cancellation of the
coefficients of ezax in Eqs. (54) and (55) does not occur; and the instability

grows at the extremely fast (spatial) rate e2ax

, while the dependence on Io
is linear, not exponential. As we shall show, the damping length 1/a can

be much shorter than the'interaction length L, so that 2ax can represent as
many as 100 e-foldings. Therefore, either nonlinear saturation or the finite
growth rate is needed to limit the exponentiation, and in this sense the

instability resembles an absolute instability.

If one neglects the Vln' term in Eq. (12) or assumes a spatial dependence

1
of the form of Fig. 1lb, one obtains7 only the second terms of Eqs. (48) and (49),
terms with the slower growth rate e(a—d)x- To see this, assume Yo >> Yp» S©

2/2a = ?i/Za [Eq. (27)].

that c2 = ;ﬁ [Eq. (23)], and write é-d,as (az-dz)/(a+d) = c
The exponentiation is then. (a-d)L ='y§L/2aVlV2 = ygL/cyl , as in Eq. (14).
Since d < a for Yo > Yo both terms in Eqs. (48) and (49) grow in the +x
direction, so that the waves in the convective regime behave as in Fig. la.

At the absolute threshold ;; = ;; =T , Eq. (27) gives d=0. Eqs. (50)

and (51) then become

nl(x) = nieax {l + Ix[1l - (7i/;é)%]} (56)
E,(x) = Egeax {1 - rx[1 - CVQ/Ji)%]} v (57

- 10 -



of e-foldings estimated form Eq. (14) is only a few., If this picture is
correct, the presence of even a small amount of dissipation will cause
the standard formula for the convective threshold in an inhomogeneous

plasma, vg/c2 = 2/koLn, to be inapplicable,
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