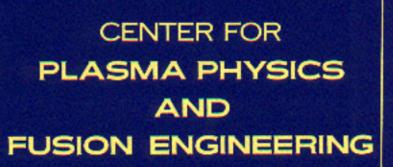


RAMAN BACKSCATTER BELOW THE ABSOLUTE THRESHOLD

Francis F. Chen

PPG-817

August, 1984



UNIVERSITY OF CALIFORNIA LOS ANGELES

RAMAN BACKSCATTER BELOW THE ABSOLUTE THRESHOLD

Francis F. Chen

PPG-817

August, 1984

Electrical Engineering Department University of California, Los Angeles

This report is preliminary and is not intended for publication in its present form.

Consider pump, backscattered, and plasma waves of the form

$$\underline{\underline{\tilde{E}}}_{O} = \hat{y} E_{O} \cos (k_{O} x - \omega_{O} t)$$
 (1)

$$\frac{\tilde{\mathbf{E}}_{z}}{\mathbf{E}_{z}} = \hat{\mathbf{y}} \; \mathbf{E}_{2} \; \cos \; (\mathbf{k}_{2} \mathbf{x} - \boldsymbol{\omega}_{2} \mathbf{t}) \tag{2}$$

$$\tilde{n}_1 = n_1 \sin (k_1 x - \omega_1 t)$$
 (3)

Let the SRS reflectivity be small enough that E_o can be considered constant; let the amplitudes $E_2(x,t)$ and $n_1(x,t)$ vary slowly compared to the sinusoidal factors; and let (ω_0,k_0) , (ω_2,k_2) and (ω_1,k_1) obey both the linear dispersion relations and the phase matching conditions $\omega_0=\omega_1+\omega_2$, $k_0=k_1+k_2$. Standard analysis of the parametric instability then give these coupled equations for E_2 and n_1 :

$$\dot{E}_2 + \frac{c^2 k_2}{\omega_2} E_2^* + \gamma_2 E_2 = \alpha n_1$$
 (4)

$$\dot{n}_1 + \frac{3v_e^2 k_1}{\omega_1} n_1' + \gamma_1 n_1 = \beta E_2, \qquad (5)$$

where
$$\alpha = \frac{\omega^2 E}{\Phi \circ \Omega}$$
 (6)

and
$$\beta = \frac{\omega_{p}^{2} k_{1}^{2}}{2m\omega_{p}\omega_{1}\omega_{2}} \frac{E_{o}}{8\pi} . \qquad (7)$$

In an infinite plasma ($n_1^{\dagger} = E_2^{\dagger} = 0$) where the damping rates γ_1 and γ_2 are much smaller than the growth rate γ_0 of E_2 and n_1 , Eqs (4) and (5) give

$$\gamma_o^2 = \alpha \beta = \frac{v_o^2}{16} \frac{k_1^2 \omega_p^2}{\omega_1 \omega_2}$$
, (8)

where we have used Eqs. (6) and (7) and $v_0 = eE_0/m\omega_0$. The homogeneous threshold is given by $\dot{n}_1 = \dot{E}_2 = n_1^* = E_2^* = 0$, whereupon

$$\alpha\beta = \gamma_1 \gamma_2 \equiv \gamma_h^2 . \qquad (9)$$

We now choose $k_0 < 0$, $k_2 > 0$, and $k_1 < 0$ so that the qualitative spatial behavior of E_2 and n_1 in a finite, homogeneous plasma is given by one of the following diagrams:

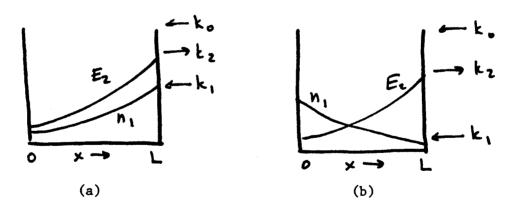


Fig. 1

We first look for steady-state solutions of Eqs. (4) and (5). Since the group velocities are

$$V_1 = 3v_e^2 |k_1|/\omega_1$$
 and $V_2 = c^2 |k_2|/\omega_2$ (10)

and k_1 is negative, the coupled equations become

$$V_2 E_2^{\dagger} + \gamma_2 E_2 = \alpha n_1$$
 (11)

$$-V_{1}n_{1}^{\dagger} + \gamma_{1}n_{1} = \beta E_{2} . \qquad (12)$$

In cool plasmas, electron plasma waves have appreciable γ_1 due to electronion collisions and rather small V_1 , while the reflected light wave has large $V_2 \simeq c$ and small γ_2 for n << n_c. It is then customary to neglect the γ_2 and V_1 terms to obtain

$$V_{2}E_{2}^{\dagger} = \alpha n_{1}$$
, $\gamma_{1}n_{1} = \beta E_{2}$

$$E_{2}^{\dagger} = \frac{\alpha \beta}{\gamma_{1}V_{2}} E_{2} . \qquad (13)$$

Using Eq. (8), we arrive at the familiar spatial growth rate

$$\kappa \simeq \gamma_0^2/c\gamma_1$$
 (14)

In this case $n_1^{\alpha E}_2$, so that the plasma wave peaks at the upstream end, as in Fig. 1a.

In making this approximation, however, we have lost a second root which corresponds to large n_1^* , such that $V_1 n_1^*$ is non-negligible even if V_1 is small.

Thus we treat Eqs. (11) and (12) in full and write them as

$$E_2' + \overline{\gamma}_2 E_2 = \overline{\alpha} n_1 \tag{15}$$

$$-n_1^{\dagger} + \overline{\gamma}_1 n_1 = \overline{\beta} E_2 \quad , \tag{16}$$

where

$$\overline{\gamma}_1 = \gamma_1/V_1, \quad \overline{\gamma}_2 = \gamma_2/V_2. \tag{17}$$

$$\overline{\alpha} = \alpha/V_1$$
 , $\overline{\beta} = \beta/V_2$. (18)

Differentiating Eqs. (15) and (16) and combining, we obtain

$$n_1'' + (\overline{\gamma}_2 - \overline{\gamma}_1)n_1' + (\overline{\gamma}_0^2 - \overline{\gamma}_1\overline{\gamma}_2)n_1 = 0$$
 (19)

$$E_2^{"} + (\overline{\gamma}_2 - \overline{\gamma}_1)E_2^{"} + (\overline{\gamma}_0^2 - \overline{\gamma}_1\overline{\gamma}_2)E_2 = 0$$
, (20)

where
$$\overline{\gamma}_0^2 \equiv \overline{\alpha} \overline{\beta} = \gamma_0^2 / v_1 v_2$$
. (21)

Defining
$$a = \frac{1}{2}(\overline{\gamma}_1 - \overline{\gamma}_2)$$
 (22)

$$c^2 = \overline{\gamma}_0^2 - \overline{\gamma}_1 \overline{\gamma}_2 = \overline{\gamma}_0^2 - \overline{\gamma}_h^2$$
, (23)

we have
$$n_1'' - 2an_1' + c^2n_1 = 0$$
 (24)

$$E_2^{"} - 2aE_2^{"} + c^2E_2 = 0$$
 (25)

Solutions are of the form $Ae^{\kappa_1 x} + Be^{\kappa_2 x}$, where

$$\kappa_{1,2} = a + (a^2 - c^2)^{\frac{1}{2}}$$
 (26)

The quantity $a^2 - c^2$ can be written

$$d^{2} \equiv a^{2} - c^{2} = \Gamma^{2} - \frac{-2}{\gamma_{0}} , \qquad (27)$$

where

$$\Gamma \equiv \frac{1}{2}(\overline{\gamma}_1 + \overline{\gamma}_2) . \tag{28}$$

The nature of the solution depends on the sign of d^2 . If $d^2 < 0$, n_1 and E_2 are of the form A cos bx + B sin bx, where

$$b = i(c^2 - a^2)^{\frac{1}{2}} . (29)$$

In terms of the boundary values n_1^0 and n_1^L , we have

$$n_1(x) = e^{ax} \left[n_1^0 \cos bx + \frac{n_1^L e^{-aL} - n_1^0 \cos bL}{\sin bL} \right] \sin bx$$
, (30)

and similarly for $E_2(x)$. It is seen that for

$$bL = n\pi , (31)$$

 $n_1(x) \rightarrow \infty$ inside the region 0 < x < L, and a steady-state solution is not possible. The instability is then absolute. The condition $d^2 < 0$ is simply

$$\frac{-2}{\gamma_0} > r^2$$
 or $\gamma_0 > \frac{1}{2} \left(\frac{\gamma_1}{v_1} + \frac{\gamma_2}{v_2} \right) (v_1 v_2)^{\frac{1}{2}} \equiv \gamma_a$ (32)

This is the usual "absolute" threshold given by a number of authors $^{1-3}$. That an additional condition on L such as Eq. (31) is required in a finite plasma has been pointed out by Nishikawa and Liu 3 . When $\gamma_o > \gamma_a$, the growth of a pulse is described by the space-time solution of Eqs. (4) and (5). Numerical examples including pump depletion have been treated by Harvey and Schmidt 4 and by Bers et al. 5 In the absolute instability, the slope of $n_1(x)$ can be either positive, as in Fig. 1a or negative, as in Fig. 1b, depending on the parameters.

Below the absolute threshold $\gamma_o = \gamma_a$, it is well known that convective instability is still possible. However, the nature of the instability in the range $\gamma_h < \gamma_o < \gamma_a$ has never been clarified. Consider now the case $d^2 > 0$ in Eq. (27). The solutions are exponentials with $\kappa = a + d$; let them be of the form

$$n_1(x) = e^{ax} (Ae^{dx} + Be^{-dx})$$
 (33)

$$E_2(x) = e^{ax}(Ce^{dx} + De^{-dx})$$
 (34)

Substituting these into Eqs. (15) and (16) and integrating from 0 to x, we obtain

$$\left[\left(\overline{\alpha}A - (\overline{\gamma}_2 + \kappa_1)C\right] \frac{e^{\kappa_1 x} - 1}{\kappa_1} + \left[\overline{\alpha}B - (\overline{\gamma}_2 + \kappa_2)D\right] \frac{e^{\kappa_2 x} - 1}{\kappa_2} = 0 \quad (35)$$

$$[(\overline{\gamma}_1 - \kappa_1)A - \overline{\beta}C] \frac{e^{\kappa_1 x} - 1}{\kappa_1} + [(\overline{\gamma}_1 - \kappa_2)B - \overline{\beta}D] \frac{e^{\kappa_2 x} - 1}{\kappa_2} = 0, \quad (36)$$

where $\kappa_1 = a + d$, $\kappa_2 = a - d$.

By virtue of Eqs. (22) and (28), we have $\overline{\gamma}_1 - \kappa_2 = \overline{\gamma}_2 + \kappa_1 = \Gamma + d$, $\overline{\gamma}_1 - \kappa_1 = \overline{\gamma}_2 + \kappa_2 = \Gamma - d$. Defining $F_1 = (e^{\kappa_1 x} - 1)/\kappa_1$, $F_2 = (e^{\kappa_2 x} - 1)/\kappa_2$, we now have

$$\overline{\alpha}F_1A + \overline{\alpha}F_2B - (\Gamma + d)F_1C - (\Gamma - d)F_2D = 0$$
 (37)

$$(\Gamma - d)F_1A + (\Gamma + d)F_2B - \overline{\beta}F_1C - \overline{\beta}F_2D = 0$$
 (38)

The boundary condition at x = 0 gives, from Eqs. (33) and (34),

$$A + B = n_1^0 \tag{39}$$

$$C + D = E_2^0$$
 (40)

The last four equations determine the coefficients A - D in terms of n_1^{O} and E_2^{O} , resulting in

$$2d n_1(x) = [(d + \Gamma)n_1^0 - \overline{\beta}E_2^0] e^{(a+d)x} + [(d - \Gamma)n_1^0 + \overline{\beta}E_2^0] e^{(a-d)x}$$
(41)

2d
$$E_2(x) = [(d - \Gamma)E_2^0 + \overline{\alpha}n_1^0] e^{(a+d)x} + [(d + \Gamma)E_2^0 - \overline{\alpha}n_1^0] e^{(a+d)x}$$
, (42)

One expects the initial noise level n_1^{O} to be above the thermal level, since a spectrum of plasma waves is usually excited in the plasma creation process. The initial level of E_2 then arises from Thomson scattering off the n_1^{O} oscillations, and E_2^{O} is larger than the bremsstrahlung level. The relation between n_1^{O} and E_2^{O} can be obtained by considering Eqs. (15) and (16) at the

homogeneous threshold $\gamma_0 = \gamma_1 \gamma_2$. There being no growth or damping at this intensity, the derivatives E_2^{\dagger} and n_1^{\dagger} vanish, and these equations become

$$\overline{\gamma}_2 E_2^0 = \overline{\alpha}_h n_1^0 \tag{43}$$

$$\overline{\gamma}_1 n_1^0 = \overline{\beta}_h E_2^0 , \qquad (44)$$

where $\overline{\alpha}_h$ and $\overline{\beta}_h$ are evaluated with E_o such that $\overline{\gamma}_o = \overline{\gamma}_h$. Thus we have

$$E_2^{O}/n_1^{O} = \overline{\alpha}_h/\overline{\gamma}_2 = \overline{\gamma}_1/\overline{\beta}_h . \qquad (45)$$

The last equality shows that $\overline{\gamma_1\gamma_2} = \overline{\alpha_h\beta_h} = \overline{\gamma_h^2}$, which is self-consistent. Since α and β are proportional to E_o and γ_o , we can write α_h and β_h in terms of α and β as follows:

$$\alpha_{h} = (\gamma_{h}/\gamma_{o})\alpha$$
 , $\beta_{h} = (\gamma_{h}/\gamma_{o})\beta$. (46)

Eq. (45) then can be written

$$E_2^{O}/n_1^{O} = (\overline{\gamma}_1/\overline{\gamma}_2)^{\frac{1}{2}} (\overline{\alpha}/\overline{\gamma}_0) = (\overline{\gamma}_1/\overline{\gamma}_2)^{\frac{1}{2}} (\overline{\gamma}_0/\overline{\beta}) . \tag{47}$$

Substituting into Eqs. (41) and (42), we obtain the final result

$$n_{1}(x) = \frac{n_{1}^{o}}{2d} \left\{ \left[d + \Gamma - \overline{\gamma}_{o} (\overline{\gamma}_{1}/\overline{\gamma}_{2})^{\frac{1}{2}} \right] e^{(a+d)x} + \left[d - \Gamma + \overline{\gamma}_{o} (\overline{\gamma}_{1}/\overline{\gamma}_{2})^{\frac{1}{2}} \right] e^{(a-d)x} \right\}$$
(48)

$$E_{2}(x) = \frac{E_{2}^{0}}{2d} \left\{ \left[d - \Gamma + \overline{\gamma}_{0} (\overline{\gamma}_{2} / \overline{\gamma}_{1})^{\frac{1}{2}} \right] e^{(a+d)x} + \left[d + \Gamma - \overline{\gamma}_{0} (\overline{\gamma}_{2} / \overline{\gamma}_{1})^{\frac{1}{2}} \right] e^{(a-d)x} \right\}, \quad (49)$$

or equivalently,

$$n_1(x) = n_1^0 e^{ax} \left\{ \cosh dx + \left[\Gamma - \frac{1}{\gamma_0} (\overline{\gamma_1}/\overline{\gamma_2})^{\frac{1}{2}} \right] \sinh dx/d \right\}$$
 (50)

$$E_2(x) = E_2^0 e^{ax} \left\{ \cosh dx - \left[\Gamma - \overline{\gamma}_0 (\overline{\gamma}_2 / \overline{\gamma}_1)^{\frac{1}{2}} \right] \sinh dx / d \right\}. \tag{51}$$

Before discussing the SRS reflectivity, we first demonstrate that these expressions give reasonable results in two limits. For $\overline{\gamma}_0 = 0$, we have $\Gamma = d > a$, and Eqs. (48) and (49) become

$$n_1(x) = n_1^0 e^{(a+d)x} = n_1^0 e^{\gamma_1 x/V_1}$$
 (52)

$$E_2(x) = E_2^0 e^{(a-d)x} = E_2^0 e^{-\gamma} 2^{x/V_2}$$
 (53)

This shows that, in the absence of a pump, both n_1 and E_2 damp at the expected rate as they propagate to the left and to the right, respectively.

At the homogeneous threshold $\overline{\gamma}_0 = \overline{\gamma}_1 \overline{\gamma}_2$, we have c=0, d=a, and $\overline{\gamma}_0 (\overline{\gamma}_1/\overline{\gamma}_2)^{\frac{1}{2}} = \overline{\gamma}_1$. Eq. (48) then becomes

$$n_{1}(x) = \frac{n_{1}^{o}}{2a}[(a - \overline{\gamma}_{1} + \Gamma)e^{2ax} + (a + \overline{\gamma}_{1} - \Gamma)]$$

$$= \frac{n_{1}^{o}}{2a}[(-\Gamma + \Gamma)e^{2ax} + 2a] = n_{1}^{o}.$$
 (54)

Similarly,

$$E_2(x) = \frac{E_2^0}{2a}[(-\overline{\gamma}_2 + \overline{\gamma}_2)e^{2ax} + 2a] = E_2^0.$$
 (55)

Thus, n_1 and E_2 have the initial noise amplitude everywhere.

As γ_0 increases slightly beyond γ_h , the exact cancellation of the coefficients of e^{2ax} in Eqs. (54) and (55) does not occur; and the instability grows at the extremely fast (spatial) rate e^{2ax} , while the dependence on I_0 is linear, not exponential. As we shall show, the damping length 1/a can be much shorter than the interaction length I_0 , so that I_0 can represent as many as I_0 000 e-foldings. Therefore, either nonlinear saturation or the finite growth rate is needed to limit the exponentiation, and in this sense the instability resembles an absolute instability.

If one neglects the $V_1 n_1^*$ term in Eq. (12) or assumes a spatial dependence of the form of Fig. 1b, one obtains only the second terms of Eqs. (48) and (49), terms with the slower growth rate $e^{(a-d)x}$. To see this, assume $\gamma_0 >> \gamma_h$, so that $c^2 = \frac{-2}{\gamma_0}$ [Eq. (23)], and write a-d as $(a^2-d^2)/(a+d) = c^2/2a = \frac{-2}{\gamma_0}/2a$ [Eq. (27)]. The exponentiation is then $(a-d)L = \frac{2}{\gamma_0}L/2aV_1V_2 = \frac{2}{\gamma_0}L/2\gamma_1$, as in Eq. (14). Since d < a for $\gamma_0 > \gamma_h$, both terms in Eqs. (48) and (49) grow in the $+\hat{x}$ direction, so that the waves in the convective regime behave as in Fig. 1a.

At the absolute threshold $\overline{\gamma}_0 = \overline{\gamma}_c = \Gamma$, Eq. (27) gives d=0. Eqs. (50) and (51) then become

$$n_1(x) = n_1^0 e^{ax} \left\{ 1 + \Gamma x \left[1 - (\overline{\gamma}_1/\overline{\gamma}_2)^{\frac{1}{2}} \right] \right\}$$
 (56)

$$E_2(x) = E_2^0 e^{ax} \left\{ 1 - \Gamma x \left[1 - (\overline{\gamma}_2/\overline{\gamma}_1)^{\frac{1}{2}} \right] \right\}$$
 (57)

of e-foldings estimated form Eq. (14) is only a few. If this picture is correct, the presence of even a small amount of dissipation will cause the standard formula for the convective threshold in an inhomogeneous plasma, $v_0^2/c^2 = 2/k_0 L_0$, to be inapplicable.

This work was supported by NSF under grant no. ECS 83-10972, Lawrence Livermore National Laboratory under P.O. #3446905, and DOE under contract no. DE-ASO8-84DP40196.

REFERENCES

- 1. D. W. Forslund, J. M. Kindel, and E. L. Lindman, Phys. Fluids 18, 1002 (1975).
- 2. C. S. Liu, M. N. Rosenbluth, and R. B. White, Phys. Fluids 17, 1211 (1974).
- 3. K. Nishikawa and C. S. Liu, in Advances in Plasma Physics, ed. by A. Simon and W. B. Thompson (Wiley, 1976), Vol. 6, p.1.
- 4. R. W. Harvey and G. Schmidt, Phys. Fluids 18, 1395 (1975).
- 5. A. Bers, D. J. Kaup, and A. H. Reiman, Phys. Rev. Letters <u>37</u> 182, (1976).
- 6. K. Estabrook and W. L. Kruer, Phys. Rev. Letters 53, 465 (1984).
- 7. B. Amini and F. F. Chen, UCLA PPG-746 (1983), unpublished.

