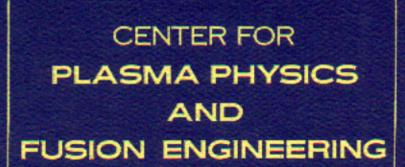
THE CONVECTIVE RAMAN THRESHOLD

IN BLUE LIGHT

Francis F. Chen

PPG-791

June, 1984



UNIVERSITY OF CALIFORNIA LOS ANGELES

THE CONVECTIVE RAMAN THRESHOLD

IN BLUE LIGHT

Francis F. Chen

PPG-791

June, 1984

This paper is not intended for publication in its present form.

THE CONVECTIVE RAMAN THRESHOLD IN BLUE LIGHT Francis F. Chen

I. INTRODUCTION

Experiments at Rochester and elsewhere have revealed two features which are difficult to explain without invoking some other unverified process. We employ a new formula 2 to recalculate the threshold to see exactly the degree of anomaly. Fig. 1 (from Ref. 1) shows a typical backscatter spectrum from a CH target illuminated with 351-nm radiation. The peak at 7000 $\overset{\circ}{\text{A}}$ is due to the $2\omega_p$ and SRS-A (absolute Raman) instabilities at $n = n_c/4$. The peak between 4500 and 6100 Å is attributed to SRS-C (convective Raman), and the problem is that the peak does not extend all the way to 7000 $\overset{\circ}{\text{A}}$ as it should. Fig. 2 (from Ref. 1) shows the growth curve of SRS-C (triangles), and points out the second problem. The backscatter varies so rapidly with intensity that it must be from an instability; yet the threshold is one or two orders of magnitude lower than expected. The fact that the threshold seems to be the same as that for SRS-A (open circles) is probably not as significant because a) SRS-A has not been unambiguously identified, b) the SRS-A data are sparse and barely above noise, and c) the calculated threshold for SRS-A does not take properly into account the accessibility of the scattered light.

II. MATCHING CONDITIONS

Since we consider SRS all the way up to $n_c/4$, where the scattered wave and plasma wave have $k \to 0$, the usual underdense approximations are not valid. The matching conditions for the Stokes interaction are

$$\omega_0 = \omega_1 + \omega_2, \quad k_0 = k_1 - k_2 \quad (\theta = 180^\circ)$$
 (1)

where 0,1,2 stand for pump, plasma wave, and scattered e.m. wave, respectively, and k is the magnitude of \underline{k} . The <u>local</u> dispersion relations are

$$\omega_{o}^{2} = \omega_{p}^{2} + k_{o}^{2}c^{2} \tag{2}$$

$$\omega_2^2 = \omega_p^2 + k_2^2 c^2 \tag{3}$$

$$\omega_1^2 = \omega_p^2 + 3k_1^2 v_e^2 \qquad , \tag{4}$$

where $v_e^2 = KT_e/m$. Eliminating k_0 , k_1 , k_2 , and ω_1 from Eqs. (1)-(4), we obtain

$$(\omega_{o} - \omega_{2})^{2} - \omega_{p}^{2} = \beta [(\omega_{o}^{2} - \omega_{p}^{2})^{\frac{1}{2}} + (\omega_{2}^{2} - \omega_{p}^{2})^{\frac{1}{2}}]^{2},$$
 (5)

where

$$\beta \equiv 3v_e^2/c^2 \tag{6}$$

Equation (5) relates the scattered wavelength $2\pi c/\omega_2$ to the plasma frequency at the density layer at which that component of the spectrum is produced. Since λ_1 is of order 0.4 μm while the density scalelength L_n is \geq 50 μm , we may consider each frequency ω_2 to come from a different part of the density profile below $n_c/4$. The pump frequency ω_0 and vacuum wavenumber k_0 are fixed, while the local value of k_0 is given by Eq. (2).

Eq. (5) can be solved by iteration. For small β , the lowest order gives $\omega_p^2 = (\omega_0 - \omega_2)^2$. Using this value in the β term of Eq. (5), we can solve for ω_p^2 in the next approximation, obtaining

$$\frac{n}{n_c} = \frac{\omega^2}{\omega^2} = (1 - \delta)^2 - \beta [(2\delta - \delta^2)^{\frac{1}{2}} + (2\delta - 1)^{\frac{1}{2}}]^2, \quad (7)$$

where

$$\delta \equiv \omega_2/\omega_0. \tag{8}$$

For KT_e = 1 keV (β = 5.87 × 10⁻³), Eq. (7) differs insignificantly from the exact solution of Eq. (5). Knowing n/n_c , we can obtain from Eqs. (2)-(4) the variation with ω_2 of k_0 , k_1 , k_2 and ω_1 . With the definition

$$\kappa_{j} = k_{j}/k_{00}, \tag{9}$$

these equations give

$$\kappa_{0} = (1 - n/n_{c})^{\frac{1}{2}} \tag{10}$$

$$\kappa_2 = (\delta^2 - n/n_c)^{\frac{1}{2}}$$
 (11)

$$\kappa_1 = \kappa_2 + \kappa_2 \tag{12}$$

$$\frac{\omega_1}{\omega} = 1 - \delta \simeq \left(\frac{n}{n} + \beta \kappa_1^2\right)^{\frac{1}{2}} \tag{13}$$

Fig. 3 shows how these quantities vary with ω_2 and λ_2 , and particularly how k_2 and k_1 approach 0 as $n \to n_c/4$. Note that ω_2 goes negative for $\omega_2 > 0.86$ ω_0 . This is because Eq. (4) is an approximation to the kinetic dispersion relation

$$Z'(\omega/kv_{+h}) = 2k^2\lambda_D^2$$
 (14)

and breaks down for low densities where $\omega_p^2 < 3k_1^2v_e^2$. Landau damping comes in strongly well before this point, so that SRS cannot occur for $\omega_2 > 0.8~\omega_0$ anyway.

The dashed line on Fig. 3 shows the effect of refraction. Since a ray incident on a linear density profile at an angle θ to the normal will be turned back at a density given by $\omega_p = \omega_2 \cos \theta$, each frequency ω_2 scattered at 90° locally will exit at an angle θ given by $\cos \theta = (\omega_0/\omega_2)(n/n_c)^{\frac{1}{2}}$. The dashed curve is a plot of θ for each ω_2 and its corresponding value of n/n_c . The curve

is only approximate because the value of k_1 for backscatter rather than sidescatter was used to compute n/n_c . What the curve indicates is the cone of angles into which all back- and side-scattered radiation is collimated for each ω_2 . We see that in order for the backscatter detector to miss the radiation produced between n=0.2 n_c and 0.25 n_c , it would have to be located more than 30° off axis. Thus the gap in the scattered spectrum is not caused by refractive effects unless the density profile is highly irregular.

III. CONVECTIVE THRESHOLD

The cutoff of scattered light at long wavelengths can be explained by Landau damping at large $k_1^{\lambda}_D$. The cutoff at short wavelengths could possibly be due to collisional damping of the plasma waves, the value of electron ion collision frequency ν_{ei} being quite large at the quarter-critical density of 2.26×10^{21} cm⁻³ for 0.35- μ m light. A formula that includes both damping and convection for arbitrary density up to $n_c/4$ has been given previously²:

$$\left(\kappa + \frac{\gamma_1}{V_1}\right)\left(\kappa + \frac{\gamma_2}{V_2}\right) = \frac{\gamma_0^2}{V_1V_2} . \tag{15}$$

Here κ is the spatial growth rate in a homogeneous plasma of length L: $dn_1/dx = \kappa n_1.$ The threshold is given by $\kappa L = N$, where N is the minimum detectable number of e-foldings above the initial noise level. In Eq. (15), $V_j \text{ and } \gamma_j \text{ are the group velocities and damping rates of waves 1 and 2, and}$ γ_0 is the "homogeneous" growth rate

$$\gamma_{o} = \frac{v_{o}}{4} \frac{k_{1}^{\omega}}{(\omega_{1}^{\omega}\omega_{2})^{\frac{1}{2}}}, \qquad (16)$$

where the peak quiver velocity v_0 is related to pump intensity I_0 by

$$v_o^2 = \frac{8\pi}{c} 10^7 \left(\frac{e}{m\omega_o}\right)^2 I_o(W/cm^2).$$
 (17)

The solution of Eq. (15) can be written

$$2\kappa = -B + \left(B^2 + \frac{4\gamma_0^2}{V_1V_2}\right)^{\frac{1}{2}}$$
, where (18)

$$B = \frac{\gamma_1}{V_1} + \frac{\gamma_2}{V_2} . \tag{19}$$

When $2\gamma_{\rm o}/({\rm V_1V_2})^{\frac{1}{2}}$ is much larger than B, collisions are unimportant and the threshold depends only on the rate of energy convection out of the interaction region of length L. We shall find that this is indeed true for 0.35- μ m lasers and 1 keV temperature unless $\nu_{\rm ei}$ is anomalously large.

We use the following expressions for the γ 's and V's:

$$\gamma_2 = \frac{n}{n_c} \frac{v_{ei}}{2} \tag{20}$$

$$v_2 = c(1 - x/\delta^2)^{\frac{1}{2}}$$
 $x = \frac{v}{h_c}$ (21)

$$V_1 = \beta c^2 k_1 / \omega_1 \tag{22}$$

$$\gamma_1 = \frac{1}{2} v_{ei} + \gamma_{LD} \tag{23}$$

$$\gamma_{LD} = (\pi/\epsilon^3)^{\frac{1}{2}} \omega_{p} \zeta^3 e^{-\zeta^2}$$
 (24)

$$\zeta = \omega_p / k_1 v_e \sqrt{2} , \quad \varepsilon = 2.718...$$
 (25)

$$v_{ei} = 2.9 \times 10^{-6} \text{ Zn}_{e} \ln \Lambda / T_{eV}^{3/2} \text{ sec}^{-1}$$
 (26)

$$\ln \Lambda = 24 - \ln(n^{\frac{1}{2}}/T_{eV}) \tag{27}$$

Eq. (24) is an asymptotic expression which breaks down when n/n_c goes negative for ω_2/ω_0 > 0.86; that is, when ζ is so small that the exact equation (14) has to be used.

The value of L for an inhomogeneous plasma can be approximated accurately by the distance between turning points. If the density varies linearly with a scalelength $L_{\rm n}$, the appropriate value of L is given by 2

$$L^{2} = 12 k_{1}L_{n}\lambda_{D}^{2}. (28)$$

The computational procedure is as follows. For given KT_e and ω_o , $\delta = \omega_2/\omega_o \text{ is chosen, whereupon Eq. (7) yields n and Eq. (12) gives k_1. From these, <math>(\gamma_1/V_1)$, (γ_2/V_2) , and (γ_0^2/I_o) can be computed. A choice of L_n and N (the number of e-foldings) then determines κ . The threshold I_o is then found from Eq. (15). The computations can be done on an HP-15C hand calculator.

IV. NUMERICAL RESULTS

Fig. 4 shows the two damping terms $v_{ei}/2$ and γ_{LD} . The long wavelength end of the spectrum is very effectively damped out by Landau damping. (The low-density rolloff of γ_{LD} is due to the breakdown of Eq. (24) and is not real.) Collisional damping, however, does not have any drastic effect as the density approaches $n_c/4$. Fig. 5 shows the terms γ_1/V_1 and γ_2/V_2 . The total plasma wave damping shows a sharp minimum because although v_{ei} does not change rapidly, v_1 decreases rapidly as $n \to n_c/4$ and causes γ_1/V_1 to increase there. The scattered wave damping γ_2/V_2 is always negligible relative to γ_1/V_1 , in spite of the decrease of v_2 to 0 as $n \to n_c/4$.

Fig. 6 shows the threshold intensity $\mathbf{I}_{\mathbf{0}}$ required to produce 10 e-foldings

(kL = 10) and one e-folding (kL = 1) when L = 100 μm . The minimum in γ_1/V_1 does not show up in I_0 because the decrease of V_2 near $n_c/4$ retains the energy of the wave k_2 and increases the drive term γ_0^2/V_1V_2 , thus overcoming the increase in γ_1/V_1 . The monotonic decrease of I_o with λ_2 means that no gap should appear between the SRS-C and $2\omega_{_{\mbox{\scriptsize D}}}$ peaks. However, if the collision frequency $v_{\rm ej}$ is artificially increased a factor of 10 (upper curve), a minimum of I can be obtained. Such an anomalously large collision rate may not be unreasonable in view of the flux-inhibition factors of f = 0.03-0.1 deduced from other experiments. Nonetheless, the absolute value of I_{o} is not easily reconciled with experiments. For $\kappa L = 10$, the threshold is $I_c \simeq 6 \times 10^{17} \text{ W/cm}^2$, and for $\kappa L = 1$ it is $I_0 \approx 7 \times 10^{15} \text{ W/cm}^2$, compared with a measured value of $\approx 1.5 \times 10^{15} \text{ W/cm}^2$. (The value of $4 \times 10^{14} \text{ W/cm}^2$ seen on Fig. 2 has to be multiplied by a factor of \simeq 4 to account for hotspots on the beam.) In the regime where no minimum in I_{0} exists, the collisional term B in Eq. (18) is negligible and I_0 scales as κ^2 and L^2 scales as L_n , so that $N^2 = \kappa^2 L^2$ scales as I_0L_n , or I_0 scales as N^2/L_n . This scaling is borne out in Fig. 7, where we show the cases N = 4, L_n = 50 and 400 μm , for normal and enhanced collision frequency.

Density profile steepening between n = 0.2 $\rm n_c$ and 0.25 $\rm n_c$ has been suggested as the cause of the gap between the SRS-C and $2\omega_p$ peaks. To study this effect, we choose a density-dependent scalelength $\rm L_n$ given by

$$L_n = L_2 - (L_2 - L_1) \left(\frac{x - 0.15}{0.1} \right),$$
 (29)

where

$$x \equiv n/n_c$$

and L_1 and L_2 are respectively the scalelengths at n = 0.25 n_c and n = 0.15 n_c.

Fig. 8 shows I_0 for N = 4, L_1 = 50 µm, and L_2 = 150 µm. A clear minimum appears, but the absolute value there is $I_0 \simeq 5 \times 10^{16} \ \text{W/cm}^2$, which is too high. Fig. 9 shows cases for N = 1 and greater steepening (L_1 = 50 µm, L_2 = 400 µm), and also for reduced temperature (KT_e = 600 eV). It is clear that the parameters can easily be adjusted to reproduce the limits of the observed SRS-C spectrum even for normal collision frequency. However, the absolute value of I_0 can be brought into agreement only if L_n is much larger than expected and a very high initial noise level exists so that only one e-folding is necessary.

Incidentally, we note that the sharp onset of Landau damping at short wavelengths λ_2 permits the use of this cutoff as a sensitive measure of KT $_{\rm e}$.

V. CALCULATED SRS-C SPECTRA

The scattered spectrum for a given intensity \mathbf{I}_{o} can be calculated from

$$P_{S}(\omega_{2}) = P_{O}e^{2\kappa L} \qquad , \tag{30}$$

where P_{o} is the initial noise power, κ is computed from Eq. (18), and L is computed from Eqs. (28) and (29).

Fig. 10 shows the spectrum P_s/P_o for T_e = 1 keV, L_1 = 50 μm , L_2 = 400 μm , and I_o = 2 and 7 \times 10¹⁵ W/cm². These spectra do not resemble those of Fig. 1 because a) the peaks do not extend to small enough wavelength, and b) the dynamic range between the peak and the "gap" is much too small; a contrast ratio of \geq 100 is observed in Fig. 1.

To shift the spectrum, we lower the temperature to 500 eV, and to improve the dynamic range we increase the steepening to L_1 = 20 μ m, L_2 = 200 μ m. The result shown in Fig. 11 for I_0 = 7 × 10¹⁵ W/cm² still falls short on points (a)

and (b).

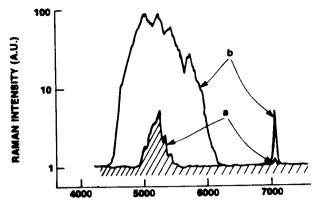
Of course, the noise level $\mathbf{P_{o}(\omega_{2})}$ does not have to be independent of frequency. Simon and Short 3 have suggested that hot electrons produced by the $2\omega_{\text{p}}$ and SRS-A instabilities at $n_{\text{c}}/4$ could enhance the initial level of plasma waves. If so, one would expect $P_0(\omega_2)$ to vary as γ_1^{-1} . This would be true even if the initial turbulence were produced by any other violent effect during the formation of the plasma. To see how this would deepen the "gap", we can divide the value of P_s/P_0 computed above by $\gamma_1(\omega_2)$, obtaining the spectrum $P_s(\omega_2)$ in arbitrary units. In Fig. 12 we show the result for T_e = 400 eV, L_1 = 20 μm , L_2 = 200 μm , and I_o = 4 \times 10¹⁵ and 4 \times 10¹⁶ W/cm². Only the shapes of the curves are significant, not their relative magnitudes. We see that the contrast ratio is still too small at $4 \times 10^{15} \; \text{W/cm}^2$, but by increasing the number of e-foldings one can make the contrast sufficient at $4 \times 10^{16} \text{ W/cm}^2$. The actual amplification above noise is also below the observed factor of 100 (Fig. 2) at 4×10^{15} W/cm², as can be seen from Fig. 10. The flat-topped spectrum seen on Fig. 1 can be reproduced by invoking a nonlinear saturation of the plasma waves, but then the contrast ratio would again be too low.

There is therefore a genuine problem in the explanation of the SRS-C spectra at 0.35 μ m. Even by assuming severe profile steepening, a damped noise spectrum, and anomalous dissipation it is not possible to produce the contrast ratio between the peak and gap intensities without requiring I_0 to be at least 30 times the filamented value.

This work was supported by NSF Grant No. ECS 83-10972, DOE Contract DE-ASO8-81DP40196, and Livermore Purchase Order 3446905.

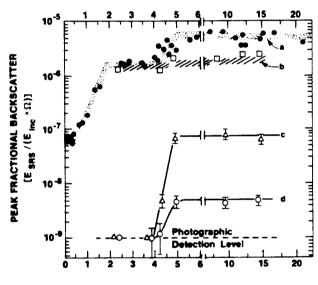
REFERENCES

- 1. K. Tanaka, L. M. Goldman, W. Seka, M. C. Richardson, J. M. Soures, and E. A. Williams, Phys. Rev. Letters 48, 1179 (1982).
- 2. B. Amini and F. F. Chen, UCLA PPG-746 (1983).
- 3. A. Simon and R. W. Short, Paper Bl, 14th Annual Anomalous Absorption Conference, Charlottesville, VA, May 6-11, 1984.



WAVELENGTH (Å)

FIG. 1 SRS-A instability spectra from CH targets. Curve a, $I_{\rm inc} = 1.1 \times I_{\rm SRS-A}$; curve b, $I_{\rm inc} = 3 \times I_{\rm SRS-A}$, where $I_{\rm SRS-A}$ is the SRS-A threshold intensity. The spectra have been recorded on Kodak high-speed ir film. The curves shown have been corrected for film response.



AVERAGE INTENSITY (1014 W/cm2)

FIG. 2. Intensity dependence of SRS. Curves a and b are absolute backscattering measurements using calibrated photodiodes at 700 nm. The vertical axis represents the peak fluence in the angular distribution normalized to the incident energy in units of J/(J sr). Curve a is for scattered light polarized parallel to the incident laser; curve b is for opposite polarization. Curves c and d are similar curves obtained from spectrographic recordings at 700 and 500 nm. The vertical axis for these two curves is not absolutely calibrated. Curves c and d correspond to backscattering from the convective and absolute Raman instabilities, respectively.

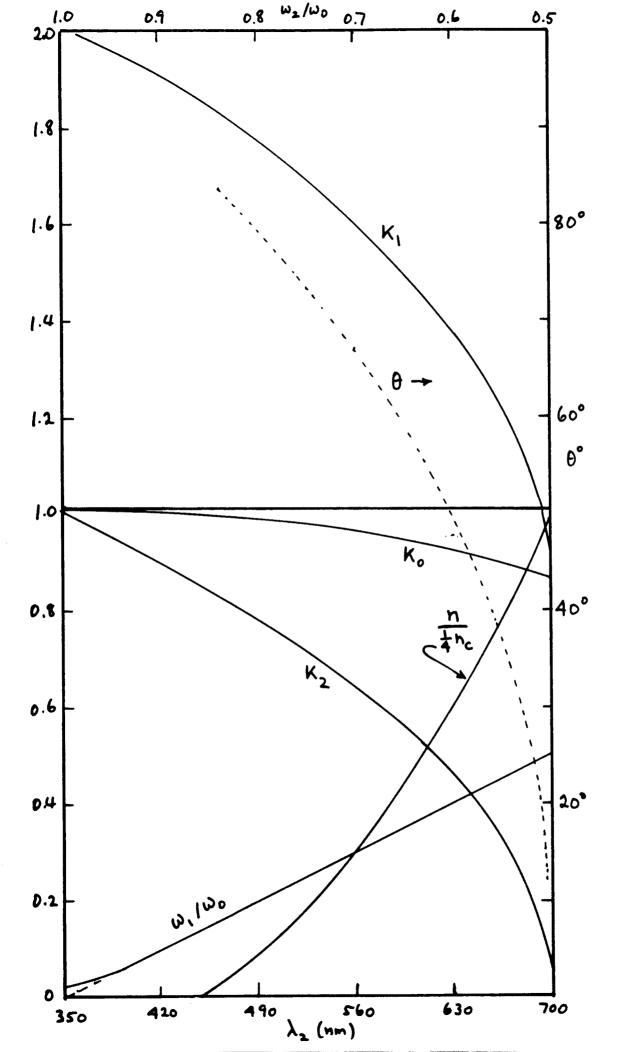


FIG. 3

KONTEL DESERTO 359-96

KEUFFEL DESERTO HAVING A. 7 CYCLES X 60 DIVISIONS

DATE

