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ABSTRACT

Efficient coupling of rf power to a plasma without the generation of fast
particles is shown to be possible with helicon waves because of the good

match between parallel phase velocity and electron thermal speed.
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@ INTRODUCTION

Recent experiments by Boswell et al.l’2 have shown that nearly fully

ionized plasmas of density > 1012 cm'3 in A, He, and H can be produced in
a 10-cm diam. chamber 120 cm 1ong with only 180 W of ﬁ:ﬁHz power and a
confining magnetic field B, of only 750 G. Magnetic probe measurements
indicated wave profiles consistent with those expected of helicon waves,
but the rate of energy absorption by wave damping was more than 103 times
that expected from collisions. At the measured parallel wavelength of 50
and temperature of 3 eV, the value of Z=w/k,vth was > 4, indicating
negligible Landau damping. However, the latter is so sensitive tol that
a factor of two change in k; or factor of 4 change in Te is all that is
necessary for Landau damping to become efficient.

The classical helicon waves’4 is governed by the equations

V x E = -9B/3t @8]

Y_ XE.= uoi (2)

V'B = 0 ' (3

E =jxB/en , (4)

where all quantities are first-order except B, and ngp. From Eqgs.(2) and
(4) we also have

V-j =0 (5)

E =0 . 6)

z

The helicon is an electromagnetic wave with V-E = 0. This is clearly not

possible in Cartesian geometry, because Eas.(2) and (3) state that k, B,

and j are mutually perpendicular. Since E 1 B by Eq.(1) and E L j by

Eq.(5), E cannot also be perpendicular to k. However, we shall show that

Yfg.; 0 is possible in cylindrical geometry in the absence of damping.
Taking the cross-product of Ea.(4) with By and using Eq.(S)’we find

that

j, =-eng Ex _l}Q/Bo2 . o (7

cm



Thus the current perpendicular to B  is entirely due to the E x B, drift
of the electrons. The frequency has to be high enough that the E x B, and
polarization drifts of the ions can be neglected and low enough that the
electrons' cyclotron gyrations can be neglected. Furthermore, the neglect
of displacement current inEq.(2) gives another upper limit to w. Eq.(6)
implies that the parallel conductivity is infinite. As we show later,

these conditions are not really restrictive, and helicons can exist over a

wide parameter range.

II. STANDARD DERIVATION OF THE DISPERSION RELATION

We assume perturbations of the form exp i(m6 + kz - wt). Eqs.(l)’

(4) and (5) then give

. . . Bo 9
iuB =V x E=Yx (jxBy)/eng = (Bo-D) J/eng = oo 52 (8)
Using Eq.(2) gives
k Bo kBo
B =~ — 3 = VxB (9)
= W en, = wen W =" =
We define
wen L w 2 Q 2
2: 09 = g _E__ = _.u.)__ L
Y=g 6. "z - "2 (10)
0 c c c ¢
K= Yz/k . (1)
Eq.(9) can then be written
VxB=KB (12)
The curl of this, with Eq.(3), gives
.Y x YxB = V' B=-KYxB. (13)

Substituting for V x B from Eq.(12), we obtain

v’ + KB = 0 . (14)



The components of this equation in cylindrical geometry are:-

9B B
2 2 ) T 2, _
VB, - 5 55 -zt KB =0 (15)
T T
9B B
2 2 T 0 2 _
T T
2 2
v Bz + K BZ =0 | (17
where
2 2
2 1 3 .3 1 9 3
v =-'——--(I"——)+—- + —
T ar ar r2 362 822

and the additional terms arise from the differentiation of the unit vector

in taking the Laplacian of a vector. Fourier analyzing in 6 and z, we

obtain
NRAIE NI BT IS e G L S (18
T T T 2 T 2 6 (18)
T T
B+ Llp ' (k% - n’+1 ) B, + B8 B =0 (19
0 r 6 2 8 2 r )
T T
g 2 .2 u?
Bz + ?'Bz + (K° - k™ - ;7 ) Bz =0 (20)
We define a new variable p such that
pz = (K2 - kz)r2 (21)

and write the Bessel differential operator as

L,= & +L123 .. n’ ) 22
m2 5 30 2 (22)



Eqs.(18)-(20) can then be written

2im . _

Lo, By - =58y =0 (23)
P
2im -

Lm2+1 (Be) + —? BI‘ =0 (24)
p

L2 (B,) =0 | (25)

Eas.(23) and (24) can be separated if we transform to left- and right-

handed circularly polarized components BL, BR .

/Z_BL=Br+iBe, /ZBR = B, - i By (26)
We then obtain

Legegy2 (B =0 (27)

Lmey2 8 =0 (28)

L2 (B,) =0 (29)

Solutions of Lmz = 0 are the Bessel functions Jy(p) and Y,(p); we retain
only the J, functions, which are finite at p= 0. Defining the transverse
wave number T so that

2 2 2

=% -1 = ot - (30)

we can write the solutions as

R _ L _ _
B =CJ ,(Tr), B =C,J (Tr), B, =CgJ (Tr) . (31)

We note that, so far, v, k, T, and p are all real.
Having found B, we may now express the other quantities in terms of B.

From the first and last parts of Eq.(8), we obtain

weno
i=% -5 B=u, KB. (32)



Eq.(4) then yields

tm
(]

(_Bo/eno)je (w/k)B9 (33)

tr
]

5 -(Bo/eno)jr -(w/k)Br . ) (34)

Transforming to circular polarization by

VIE_ =E' +E", IE, = i(e" - Y, (35)

we obtain
R . . . R

VZ E = 1(w/k)(Br - iBy) = ivZ (w/k)B (36)

VT EY =-i(w/K) (B, + iB) = -i v2(w/k)B" (37)
Thus

& R _ .

EK'= i(w/k)B = 1(u)/k)C1 Jm_l(Tr) (38)

Eb = Ci(w/iBY = -i

}(- -i(w/k) = -i(w/k) C2~Jm+1(Tr) . (39)
We next evaluate V.B and V.E:

1 B 1 1 im ik - 40

T‘Z'E— Br +—5Br+-p—Be+TBZ—O 5 ( )

where the (') stands for 3/3p . Converting to BR and BL by Eq.(35) and

substituting Ea.(31), we obtain
1

m
p

¢ m-1

J Jm+1) + 1/2 C3(k/T)Jm =0 (41)

1-m !
1 ¥ 0 Jm—l) * CZ(Jm+1 *

We make use of the recursion relation

J = J _EJ = -J +EJ (42)
e e

to obtain

[ -C; + C, +1i V2 C3(k/T) ]Jm(Tr) =0 (43)

A



To evaluate V-E, we note that the result is the same except that, from
Eqs.(38) and (39), the sign of C2 is changed and that, from Ea.(6), there

is no corresponding C; term. Thus V-E would vanish if
(C; +Cy) I (Tr) =0 . )

This is satisfied everywhere if we set C2 = -Cl. Eq.(43) now gives

Cg = -iZa/C, ()

It is therefore possible to have a purely electromagnetic helicon wave
in cylindrical coordinates. The components of B and E are specified by
Egs.(44) and (45), and the current j is parallel to B, as given by Eg.(32).

The complete solution is summarized as follows:

B = c,J__, (Tr), EN = i(w/K)C, J__,(Tr) (46)
L e

B2 Cdnnlrs), e = iwncg g () (47)
B, = -i ﬁ'(T/k)clJm(Tr) E, =0 (48)
i = (k) (en /B)B . (49)

The dispersion relation is determined by the boundary conditions. If
the uniform plasma is contained in a conducting cylinder of radius a, then

. Wwe require Ee = 0 at r=a. Eas.(35), (46), and (47) then give
Jm_l(Ta) - Jm+1(Ta) =0 | (50)

The recursion relation (42) simplifies this to

J, (Ta) =0 . (51)
On the other hand, if the plasma is bounded by an insulator, we require

jr = 0 at r=a. Eq.(49) then shows that By = 0 or BR = -BL. Eas.(46) and



(47) then give Jm_ICTa) =J . .(Ta), leading to the same boundary condition,

m+1l

Ea.(51). 1If we define

Pén = nth zero of J; (0> (52)

Re.
the eigen’}alues of Tare T = P;n/a . Eq.(30) yields the dispersion

o
relation

=k -1 = (p) /a) (53)
with

K = (w/k)(enouo/Bo) . (54)

If the plasma is nonuniform, gg’:z;id be a function of r proportional to
no(r)/Bo(r). The differential equations (18)-(20) would then be changed,
but it may be possible to choose functions of r that lead to other known

functions, or to use a WKB analysis.

III. VALIDITY OF THE HELICON EQUATIONS

Neglect of the displacement current -iw p_€ Ein Eq.(2) requires that
00 4

the uoj term be much larger. Since j is given by Eq.(7), we have

weOE WHLE E i wgho €M i W, i wQe (55)
] poenoE7B0 moo e2 wp QpZ
Therefore, displacement current is negligible if
Q.2 2 w2
éi-<< —E§-= E‘g , or 2 <« -J%? . (56)
‘e fc VA We W,

To neglect all electron motions except E x Eo drift, consider the velocity

components in a cold plasma:

_ e E . - 1(wc/w)Ey _ EZl , iw Ei _ EX , 57
ex mw 1 - wcz/wz B w, B B

o o 0 (o}



tr
tm

v _ -ie Ey + i(mc/w)Ex

. E
w y . _X
* W B B (58)

X
B
o c o 0

2,2
1 - "/w
The approximations require w/wc << 1, and what is left is the E x Eo

drift. This condition is more stringent than Eq.(56), since wpz/wez

usually exceeds unity. ‘ Q-L.“”“br
ncz\c (7 o
To all the ion motions, and hence the)f.x B term that usually

appears on the left-hand side of Ea.(4), consider the ion velocity

components:
. . 2
v i ie Ex + 1(Qc/w)Ey ) JQC EE ) Qc EX 59)
ix Mus 1 - ch/wz w B0 w2 B0
. E. -i(@/wE.  iQ. E. o° E
ie y c X c y c X
V. = —— = ==+ —= = (60)
iy Mw 1-0 2/w2 w Bo w2 Bo
(]

where we have taken wz >> QCZ in the denominator. The contribution of

V. to ii is therefore less than the electron contribution by a factor of
ch/wz in the E x §0 drift (second term) and by a factor of Qc/w in the
polarization drift (first term). Hence, the ion motion can be neglected

if w/Qc >> 1., The helicon equations are therefore valid for

QC << W << W, (61)

which gives a range of over 1000 to 1 in w for argon waves.

IV. HELICONS WITH FINITE RESISTIVITY

In this case, Ea.(4) is modified to

E=mnj+]xB/en, , (62)

and Eq.(6) to

(63)



Now Eqs.(1), (62), and (2) give, by analogy with Eq.(8) ,

B .
. _ _ o 3 .
1 U)E- Y—xg._ eno az + n.Y-xl-
ikB0 n .
= YT, VxB +ﬁ— Vx (VxB). (64)
oo o

Defining K as in Eqs.(11) and (10), we have

« i g2 (65)

UxB 4
uO

=

1
B=x

To make further progress, we must assume that the damping due to n is
small, so that in the last term Vzg can be approximated by the n = 0

value, -KOZE_[Eq.(14)]. Eq. (65) then becomes

(1+ i8)B = K'l VxB , (66)

where we have defined

2 R
n Ko /wuo << 1, (67)

[e)
[11]

Ko2 being the real value of K in the n = 0 problem.

The curl of Eq.(66) yields

(1+i§) VxB=-K" VB , (68)
and substituting Eq.(66) for V x B gives

V2B + K2(1 + i8)° B =0 . (69)

Let w be real and k complex to represent a spatially damped wave.
Eg.(11) states that

Kk =y, | (70)

where yz = wZﬁo(no/Bo) is real. Since k is-now complex, K will necessarily
be complex, as evident from the form of Eq.(69). Comparing Eq.(69) with
Eq.(14), we see that the entire analysis is unchanged if we simply replace
K by K(1 + i§). We therefore define the variable p, in analogy with

Ea.(21), by
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2
02 = KPeis) - K] 1 = TP (71)

To satisfy real boundary conditions (assuming that they are not significantly
changed by the small damping), Tg.must be real, and hence p must be real.
The dispersion relation, Eq.(53), now becomes

2

2
T° = K2(1+i8) - K2

= (. /7. (72)
With Eq.(70), this can be written

2
% = yH+i8) k% - K2 . (73)

Since T and y are real, k must be complex in such a way as to make T real.
In previous literature, the k2 in the first term of Eq.(73) was replaced
by its real part and Im(k) was found from the second term of Eq.(73).
This yielded the spurious result

4
Ko n

MW Re(k)

oo -

In fact, it is the k2 in the first term that determines the damping,

the second term usually being small. To see this, we solve the quadratic

2
¢ e 1?k% - a9 =0, (74)
obtaining
.2 2 2 2,22 2.
2k” = -T" + T7 [1 + (2y7/T7) (1+i8)7] . (75)

To simplify this, we note from Eq.(73) that T2 = (y4/k2) - k2 in the

§ = 0 case, so that y4 = kZ(T2+k2). In the usual case k2 << Tz, then,

we have Y4 = k2T2, and 2Y2/T2 =~ 2k/T << 1. We therefore expand the square

root, keeping the + sign, which gives the least-damped root:
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4
k% = A (1 + ig)2 (76)
T2
2
k = L @1+ig 0N

Comparing Ea.(76) with Eq.(73), we see that our solution is tantamount
to dropping the last term in Eq.(73).
In summary, the approximate solution for k2 << T2 can be written

with the help of Eqs.(10), (53), (67), and (70) as follows:

1
wenouo B p

2
Y a W o mn
Re(k) = - = =, = o= (78)
T B P kz enouo a
0 mn
K 2 4 2
_I.rn_(k_)_= 6 = o = -T-T—Y-— 1 = nT (79)
W
Re (k) o uo[Re(k)]2 WH,
In terms of the electron-ion collision frequency Vei given by
ei m ’ (80)
we can also write the damping rate as
Im (k) _ nT? - Vei T2 - Vei IE. (81)
Re(k)  wu o  w?  w K
o) P c

To account for electron neutral collisions, we merely need to replace Vei

i V., +V .
with ei co

We next consider the effect of n on the fields and currents given by
Eqs.(46)-(49). If we assume that BR and BL are relatively unchanged, we
see that Bz’ whichvcontains 1/k, is now multiplied by =(1-i§); it is no
longer 90° out of phase with BR and BL but now has a small component in phase
with BY. The current Jj, also contains 1/k = (1 - i§) and now is slightly

advanced in phase relative to B. The field E ,, which was 90°,out of phase

with B, now contains an in-phase component. The component E_ = nj_ is
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3
- 75 nT

E, = -iv/ 2 — €I, (Tr) . (82)
HoY

It is the jZ due to this field that causes the main part of the damping.

If one evaluates V .- E , the perpendicular components cancel as before,

but EZ now contributes the amount
. 2
_V:E - ﬁ(ﬂ/uo)T ClJm(TI‘) s (83)

giving rise to a small electrostatic component of the wave.

The magnitude of resistive damping can be estimated from Eq.(81)é>

F

f%r a small tube with T =1 cm_1 and a (E;;V plasma driven at 8 MHz, we

find that

Im(k) . 5.2 x 10
Re (k) TeV3/2 (2m) (8x10%)  4q

V. HELICONS WITH LANDAU DAMPING

With some care, Landau damping can be added to the cold plasma

equations by a trivial modification. We now write Eq.(2) as

c22x§= -iwe - E , (85)

where the plasma currents j have been incorporated in the dielectric

tensor € . For a cold plasma, € can be written in Stix notation as
S -iD 0
£ = iD S 0 (86)
h 0

where S = (R+L)/2, D = (R-L)/2, and
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2 2 2 2
w Q
R=1- oy -~ (pm“*g%‘ghz (87
wwwc ww*c c W
wpz szpz : 0?2 g2
L=1- - 1 - B4+ B : (88)
w(w+wc) w(w-Qc) wﬂc wz
2 2 2
w Q-
1>=1-—P-2---P--2-=1-ﬁ'@7 ) (89)
w w w

We have made the helicon approximation of Ea.(61) that Qc Cw << -

In this regime, we see that S = 1 and

Q2 . 2,2
D = D o= - 1) = xe . (90)
2 Q 2
W c w
The plasma current j = VxB/uo is given by
2c2
I = -lwe (E_ - 11—5—- Ey) (91)
W
2c2
Jy = -iwe (E_ + 11—5- Ex) (92)
W
j, = -iweg PEz (93)

The first terms of Egs.(91) and (92) are the displacement current, which
we have shown to be negligible, and the second terms are the §;§0 drifts.
To incorporate kinetic effects in the parallel direction, Ea.(93) has to

be replaced by the solution of the Vlasov equation for electron motion

along go' The result is5
w 2 w w 2
t
P =€ =1-—Ly 2 (— )=1--2L2 7% (94)
2z kzv kK V we
th th
2

where k = kz, Vth =

derivative. Electron collisions with ions or neutrals with a frequency v

Zklge/m,and Z'(Z) is the plasma dispersion function
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can also be incorporated by adding a Krook collision term to Vlasov's

equation. In that case we define { to be

iV )
==, _(99)
kVth ,

i

and P becomes

2
W

P = ¢ =1 - p 19i (v/w)
zZ 2

w”  1-i(v/2w)Z'(T)

222’ () (96)

The "1'" again represents displacement current, which we can neglect.
Furthermore, since we can solve the helicon equations analytically only
for small damping, we make the same assumption here and expand Z'(Z) for

large T :

2
CZZ'(C) 1 + 3/2?;2 - 2ivm Cse-g oo, (97)

In the collisionless case, Egs.(93) and (94) then give

2 2y, 2
w k°V 2
Co p 3 th . 3 -z
i, 1weo Ez wz (1 + > wz 2ivm " e ) . (98)

This contains non-dissipative terms which correspond to the Bohm-Gross
dispersion relation for plasma waves and which we do not need. To see
how these can be neglected, consider the generalized Ohm's law including

electron inertia:

1 1 %
B+ VxBo=ni+gnixBet — 3F - (99)
€ W
°op
For 3j/9t » -iwj, the z-component becomes
i .
E,= (n-—=5 )7, (100)
€ W
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To compare this with Eq.(98), we solve Eq.(98) for Ez, assuming that the

Landau term is small:

2. 2 A
2
a-z ——)/ (1 + 2ivm 2% j/z\ . (101)

The imaginary part of this is identical with that of Eq.(100) except for the
small Bohm-Gross thermal correction, which we may neglect. Since the inertial
term in Ohm's law is negligible at our low frequencies, we may also neglect

We iMahfy Nle veal gaqr e ueffreet i Eq. (101)
that term in Eq.(101), with an equivalent resistivity due to Landau damping:
A

= am L Bt | (102)

From Eq. (80), the equivalent collision frequency takes an even simpler form

.3 _gz ’
\)LD/w = 2v7m e s . (103)

where ¢ w/kVth . Inserting this into Eq.(81), we obtain the Landau

damping rate

N L N P (104)

This is such a steep function of [ that a small change in Te or kz’ which

will not greatly affect the eigenmodes, can appreciably increase the damping.

In our previous example, taking n_ = 1012 em™> , we have vei/w = 6.5 x 107°.

o
Evaluating Eq. (103) for Te = 3eV and Xz = 25 cm, we have vLD/m = 0.59,
though at AZ = 50 cm it would be only 5.4 x 10"5. A jump in Te or kZ can

explain a discontinuous change in absorption.
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VI. PHYSICAL MECHANISMS

Although there can be no Landau damping when EZ = 0, a finite value
of E, arises when there is a dissipative mechanism of any sort, and -this
leads to the Landau acceleration of electrons, which, in turn increases the
value of Ez. From Ea. (49), we see that a jz must exist in the wave even in
the absence of damping in order to keep the components of E and B in proper
balance. When a dissipative mechanism impedes the flow of electrons that
provides this current, an electrostatic field Ez must arise to push the
electrons along §o’ and it is this EZ which causes Landau damping.

To see this quantitatively, consider the value of jz given by Egs.

(49) and (48), leading to the expression (82) for Ez = njz
i, = -Z (T*/uy?) cJ_(Tr) (105)
z o} 1"m ‘

Here we have approximated k by yz/T Eq.(77) . The energy dissipated per

3.
m- is

dw 2

2
.2 3 2 2.2
gt = N, = -an(T /qu ) C, 9 -

(106)
2

The wave energy is lBI“/ZuO + eolElz/Z, the kinetic energy of the drifting

electrons being negligible. From Eqs. (46)-(48), we see that eolEI2 is

smaller than |B|2/u0 by a factor w’/c’k?, and that B, is the dominant part

of |B| because of the large factor T/k. Thus the wave energy is approximately

) |
W [B,|%2u, = 20100, /0% 2 = ¥ A (107)

The wave energy decays as W = exp[- 2Im(k)z] , so that

daw
i = -2Im(w, (108)
and the group velocity Vg is = w/k, from Eq.(78). Thus, the wave decays in

time as

dw aw

I = 2 %- Im(K)W . (109)



Using Eq.(81) for Im(k) and Eq.(107) for W, we obtain

2

2.2 _ 3, .2 2.2
= - 2n(T/uy) C a0 (110)

aW _ _zwk m? L
kw My ¥,

RIS S
(@]
(]

in agreement with Eq. (106).
We next investigate the structure of the wave, particularly for the
lowest possible mode, m=1, n=1. Fig.1l shows the Bessel functions Jo’ Jl’

and J2 representing the radial variation of BR(or ER), B_, and BL (or EL),

A

1
respectively, showing that P11 = 1.84. Eqs.(46)-(49) give for this mode:

Ep = iJ, . E” = iJ B® = J , B” = -J (111)

Bz =—1J1 , joo=-iJ . _ (112)

We have assumed Eo and k to be in the +% direction. Eq. (35) then gives

E
T

12

i(Jo + J2) s Ee = -(Jo - J2) ' . (113)

Br =Jdy - I3 ’

By = i(J, *+ J)) (114)

2
We see that !Erl falls slightly from 1 at r=0 to =0.6 at r=a, while |E6|

falls from-1 to O at the edge; the opposite is true for Br and |Be|.
Furthermore, E. and Ee are 90° out of phase, as expected for a rotating
‘pattern, and E and B are also 90° out of phase, as expected for an electro-
magnetic wave. The current jz is in phase with Bz' These phase relations
show thét the mode has the structure shown in Fig.Za on two planes 90° apart.
The solid lines represent E and are seen to be purely radial at the conducting
boundary. The dashed lines represent Eﬂ\?nd are perpendicular to the E lines.
Since j is parallel to B , these are also lines of ji\ These lines are

purely azimuthal at the boundary, showing the reason that‘insulating and
conducting boundaries have the same boundary condition. The dashed lines

seem to be not divergence-free, but that is because the z-component has not
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been drawn. The direction of Eﬂ\is easily found, since it is thé same as
the direction of j/ , which is -ExB .  The entire pattern is translated
in the +Z direction, so that an observer at a given z will see a clockwise
rotation when looking along Eo . It is clear that E is purely cirocularly
polarized in the R direction at the center and is purely plane polarized
at the edge, consistent with Eqs. (111) and (113).

The continuity of the B and j lines is shown in Fig.2b, where the
middle, elliptical Eﬁ\surface is drawn for one whole wavelength in z. We
see that the B and j lines are more or less helical, flowing primarily in
ghe z-direction. What we see in the cross-sectional planes of Fig.2a is
only the perpendicular component necessary for the lines to follow the
twisting ellipse. In ?ig.Zb, two real lines of B or j are shown dashed;
the solid ellipses are only the projections of the helical lines onto the
cross-sections. The reference arrow is the diréction of E.

From Fig.2, one can see that an antenna with segments parallel to
2 and 6 can couple to the wave in two ways. The z-legs can induce a plasma
current jz opposing the jz in the antenna, and this can couple to the
jz of the wave. In addition, electrons responding to the induced Ez will
move along Eo until they pile up and form space-charge clouds of opposite
charge 180° apart in 8. These charges will give an electrostatic field
E like the one passing through the center of Fig.Z;i thus exciting the radial
E-field of the wave. We suspect that the latter mechanism is the more
efficient.

The way a plasma responds to the requirements of the wave is illus-
trated in Fig;S. The frequency and magnetic field are usually fixed; let
them be f=7 MHz and B = 1kG. Let‘P;n =‘f£1 = 1.84, and let a = 2.5 or 10 cm.

Egs.(53) and (54) then give 2-c
'éE 2 2 ¢ 3
n = 1.13 x 10~ k(T” + k) cm © , (115)

where k and T are in cm'l, and n is plotted in Fig.3 vs.\A = 2n/k.
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2
- Im(k) _ 12,2  -13 -¢
d = Re(k) - 10°°T n, Ce (116)
where [ = O.118ATev (117)

| g
The damping rate d is also shown in Fig.3, cempered with the value of n,
given by Eq.(115). The roll-off of d at small A is not real; it is due

to the breakdown of the expansion, Eqg.(97).

When the rf is first turned on, non-resonant heating causes a low-
density plasma. The wavelength is roughly set by twice the antenna length -
say A= 50 cm and a = 10 cm. The resonant density is = 3 x 1012 cm_s. When
the density reaches this, é resonant helicon wave can be excited, but it is
not efficiently absorbed, d being only 5 x 10-5 at 3 eV. However, the
plasma can jump to a state of higher entropy increase by either a temperature
change or a density change. Suppose the temperature jumps to 10 eV. Then d
suddenly jumps to = 10_1, and the plasma becomes highly absorbing. The
temperature, however, can be damped by some inelastic process in the gas.

In that case, the plasma can jump to a higher n, by ionizing the neutral gas
until it is all ionized. To match the jump in n,, the wavelength must
decreasqgQEBr the wave to stay in tune. If A jumps from 50 cm to 25 cm, for
instance, the damping d increases from = 5 x 107 to = 2 x 1072, 1In
practice, the heating and ionization will be localized near walls, where

Ez and jz are maximum, and so is the energy deposition. This should lead

to relatively flat n, and Te profiles, thus making a solution of the inhomo-
geneous-plasma problem unnecessary. However, the energy confinement, which
is determined by the end plate sheaths and the radial electric field, may be
better on axis, leading to the appearance of a hot, dense‘core. The energy

balance problem in a helicon-excited plasma is a complicated one which is

outside the scope of this paper.
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VII. DESIGN OF HELICON SOURCES

We neglect collisions and assume T2 >> kz; Eqgs. (53), (54), and (104)
then give
B L B
R T 0 R VY - (118)
0 weu weu
0 )
2.2 2
Im(k) _ ¢ T 3 -¢
Re (k) - % — " e (119)
P

where (= w/kvth. We now change to cgs units, assume the lowest mode so

that T = 1.84/a, and use the following notation:

B = Bo in kG
f = w/2m in MHz
A = 2m/k = 2m/Re(k) in cm
n = n_ in units of 104 cm™3
14 o}
L = 1/Im(k) in cm
Te = kBTe in eV
Our equations become
N, = 7.90 BTk/f (120)
1 2.2 3 -g?
o - 10 (T /n14) " e . (121)
2
To design a source with large Landau damping, let us set gse-C at its
1L
maximum value 0.41, which occurs for ¢ = (3/2)7°. (This value is not

particularly significant, since it comes from the asymptotic expansion for

2
] .-
Z (¢), but what matters is that cse G and ¢ are both of order unity.) We
now have
N, = 91.3 B/Aaf (122)
L/A = 11.5n, a° (123)
. 14 .

The condition z = 1.22 gives the further relation

1
£ 72.4 T ? (124)
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Eliminating f from Eqs.(122) and (123) yields

L
n,, 1.26 B/a Te (125)

L/X

5
14.5 Ba/T_* . (126)

To get a reasonable number of wavelengths in a damping length, the ratio

L/)A should be set at some number like 5. To be specific, let us set

L/A = 7.2 @127

Then Ea. (126) becomes

1
2

Ba = 0.5 T, (128)

Using this in Eq.(125) yields
2

Ny, = 0.63/a (129)
This shows that the achievable density scales as the reciprocal of the
cross-sectional area of the plasma column.

The required field is then found from Ea. (125):
1

B = Te2/2a . (130)
A coil of length A/2 and diameter 23 has aspect ratio

A = Ada . (131)

The frequency f is constrained only by the choice of A (say, A=5) which
will satisfy T2 >> k2 and geometrical considerations in the construction

of the coil. Egs.(124), (128), and (131) yield
1
f = 18.1 Tez/aA = 36.2 B/A . (132)

Finally, the absorption length L, which is approximately the length of the
plasma, is given by Eqgs.(127) and (131):
L = 28.8 aA . (133)
As examples, we give in Table I some parameters for different
densities ns assuming A=5, L/A = 7, and Te = 4 eV, which is within a

factor 2 of the Te in most laboratory plasmas.
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TABLE I
Eﬁcm_s) a(cm) B(kG) f(MHz) X (cm) L(cm)
1011 25.1 .04 .288 500 3500
1012 7.9 .13 .912 159 1100
1013 2.5 .40 2.88 50 350
1044 .79 1.26 9.12 15.9 111
15
10 .25 4.0 28.8 5.0 35
1016 08 12.6 91.2 1.6 11

These values will be slightly modified by other choices of Te’
L/A , and A. More accurate calculations will require, in order:
(a) retaining k2 relative to T2, (b) using the exact Z'(Z) function
instead of the asymptotic expansion, and (c¢) iterating the solution
of the differential equation to include the complex value of K in the
n term.

The power required can be estimated from the experimental results
of Boswell et al., where 2 x 10-14 W per argon ion was absorbed. If
this rate remains the same, 44 W of 90-MHz power would be required to

generate a 1016 cm°3 plasma 1.6 mm in diameter and 11 cm long.
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