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Experimental results on the stimulated Raman scattering threshold
covering a large parameter range are compared with theory and are found
to be in disagreement in most cases. Retaining the group velocity of the

plasma waves yields a theoretical threshold lower than previously obtained.
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I. INTRODUCTION

Though the conditions- for excitation of the stimulated Raman scattering
(SRS). instability havg been given by numerous authors, observations of SRS
have repeatedly been reported to occur when the threshold conditions are not
met., We have confirmed this in our own experiment, reported in the compénion
paper (I). In this paper we first review the experimental evidence for agreement
oxrdisagrbeméﬁi¢g§¢§hggsgs»threshbld with theéory by using a simple model with .-
which all experiments can be compared on the same .basis. . We then propose, in the
second half of the paper, a way in which theoretical thresholds can be lowered
to agree better with experiment.

Because of the sensitivity of the plasma wave dispersion relation to
density variations, it was pointed out long agol that the SRS threshold is
dominated by the plasma inhomogeneity. To calculate the threshold accurately,.
however, requires a knowledge of the density profile and, except for simple
profiles, a numerical calculation for each case. It has therefore been
suggested2 that a sufficiently accurate approximation is that of a homogeneous.
plasma of finite length L, where L is the maximum distance over which the
excitation can occur resonantly in a real plasma because of phase slippage.
Specifically, L can be identified-as the distance between WKB'turningwp@iﬁts
in the inhomogeneous-plasma problem. The finite-length SRS threshold has
also been computed by a number of authorss. This bounded-plasma model is the
one we adopt.

Some non-physical. effects may appear if the interaction region has
sharply defined boundaries. Reflections from the ends can give rise to positive
feedback, causing a convective instability to become absolute. The boundaries
can be effectively softened by changing the profile of the pump wave amplitudé.

Indeed, when this is done, it is found4 that the distinction between convective



and absolute instability is obscured, or at least more difficult to generalize.
We are therefore careful to consider only those effects that have a physical
basis, and not those ariéing solely from the mathematical model. We also
neglect pump depletion in view of the small SRS feflectivities found in

experiment.

I1, THEORY OF SRS IN A FINITE INTERACTION REGION
We review the well known formulation of this problem primarily for
the purpose of establishing the notation. Let the plasma inhomogeneity, if
any, lie in the x direction, and let the pump (0), plasma (1), and reflected (2)

waves have the form

Eo =y Eocos(kox - wot) (1)
n, = nl(x,t)sin(klx - wlt) (2)
E, = ¥ Ej(x,t)cos(kyx - wyt), (3)

where nl(x,t) and Ez(x,t) are slowly varying amplitudes, and Eo is taken to
be constant. Assume that the waves (wo, ko), (wl, kl), and (wz, k2) obey
both their respective linear dispersion relations and the phase matching

conditions W, =Wt and kO = kg +532. Standard anélyéiSS,ﬁ ‘then yields

1 2

these coupled equations for the amplitudes nl»and EZ:

an 3v2k an

1 + el 1 + y.n = a E B (4)
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where Yys Y, are the phenomenological damping rates of n, and Ez,,respectivély,

1

and the coupling coefficients aj,a, are given by

a, = ‘(wgki/nmowlmz)(lio/l&r) ~ (6)

5
2 Te Eo/mwo . (7)

™)
1

For definiteness, we chose Eo to be in the -X direction, so that k, and k
are in the -% and +X directions, respectively, for direct backscatter.

The group velocity magnitudes are then given by

<
i

2
= —SVekl/w1 (8)

o 2 .
\') f c k2/w2 = c ., (9)

The homogeneous growth rate Yo is found by neglecting the Y1 and V1 2
3 2

terms; then

2 2 2 )
o 172 16 \mw Wy 4 *CZ op f ST .

The last equality results from the definition v, = eEo/mwO and the low-no,

. . . . 2 _ 2 22 _ 2
Te approximations kl = 2k0, wy = W, and wy = wp + 3k1Ve wp .

. . . . 2
It is convenient to use Yg as a measure of pump intensity IO, where IO(W/cm )

CEg/Sﬂ X 107. For Ao = 2wc/wo in um, we obtain
I_ = 2905 yz/x ® (I_ in W/cm2 A in um) (11)
o' "o o > "o .

0 p

Steady~state solutions of Egs, (4) and (5) are given by
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—Vln' *ym = a E ‘ (12)

172
VJE', + v,E, an; . (13)
Defining Ky = yl/Vl s @y = al/V1 (14)
Ky = y2/V2 > 3, = az/V2 (15)
2 —— 2
Ky = 23 Yo/VIVZ , (16)
we now have
- 1 - q
.?1 * oKkgny alE2 (17)
E) + kyE, = _52“1 s (18)

where k Kk, are the spatial damping rates of the plasma and backscattered waves.

1’

Since Yy <Y and V2 >> Yl, we generally have Ky >> Ky
1f wp is constant, we can differentiate Eq. (17) and combine with

Eqs. (18) and (16) to obtain
n' - (x, - k,)n! + (Kz - Kk, )n, =0 (19)
1 1 2’71 o 172771 *
E2 obeys the same equation. Fourier components n, = nlexp(Kx) obey the
condition

2 2 -
o= K(KI - Kz) + (KO - Kle) =0 . (20)

The homogeneous:threshold K is defined by setting « = O:



The solutions to Eq. (20) are given by

K=-12-(K1~.<2):[711-(.<1+.<2)2-.<] i (22)

1 2
kg < g (kg v k)7 =k, (23)

which yields the usual expression for the "absolute" thrshold for densities

below quarter-critical:

2
2 1 <Y.1 Y2
Ya T 7 \V TV iV - (24)

Thus, if Yo € Ygo K is real and the space dependence is exponential; if

Yy > vy., k is complex, and the space dependence is sinusoidal., However,
a

o
in the sinusoidal case this steady-state solution, as will be apparent

in Sec. IV, becomes infinite for certain values of L, and therefore the time
dependence cannot be negleeted. For Yo < Yar thg steady-state solution is
the fastest growing mode in space, and hence is important in inhomogeneous

or bounded plasmas. To see this, use the Laplace transform and replace the

time derivatives ‘in Egs. (4) and (5) by yn, and?yEZ,‘respectiVely. Then kl
and K, become Ky = ({y + Yl)/V1 and Ky = (y + Yz)/VZ' Since k « 1/|<1 (see
.below), the largest « is for y = 0.

The customary solution for the Yo € Ya cése is found by neglecting
the term -Vlni in Eq. (12) because the plasma wave group velocity V1 is

comparatively small., This is tantamount to dropping the Kz term in Eq. (20),

and the solution is:
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|<2 K.K K2 Y2
S Sl e B T (25)
1” X2 1 1

This familiar formula assumes that Yo 77 Y 0 K1 27 Ky and V2 = c,

1

Since E2 = (Klfgi)nl in this case, both n; and E2 grow from noise at the
rate exp(kx).  Thus if the interaction region is from x = 0 to x = L and
the noise levels are n? = ni(O) and Eg = 52(0), the backscatter power is

proportional to

2 0,2 2N
EZ(L) = (E2) e

2
, N=«kL = YOL/CY1 . (26)

When y_ % v., no simple solution exists; one must compute the
0

a’
growth of wave packets, as has been done in several papers7-9. In this case,
the sensitivity to the assumed initial conditions is not easily studied.

When y >> y_, dissipation can be neglected, and one has the classi-
o) a

cal convective instabilityl. Eq. (22) becomes

1
- - )
K = Ko = YO/(V1V2) R (27)

and the number of amplitude e-foldings in a length L is

N =y L/(V,O)? (28)

It remains to evaluate L for an inhomogeneous plasma. Following the

previous discussion, we compute L from the equation

L
-+ 1 A
'[ [k0 - k2 - kl(x)] dx = % > s -(29)
where w2 = wz(x) + szkz(x) For a linear profiié wz(x) = QZ (1£x/L.)
1 P e 1Y7" P po- ' n’?



we obtain

2 2 . )
L™ =12 koLn AD . (linear) (30)

For a parabolic profile wg(x) = w;o(lixz/Li), we obtain
LY =18 k L

22, (parabolic) (31)

where AD is the Debye length. Use of Eqs. (30) and (10) in Eq. (28) leads

to the usual convective threshold for a linear density profile

- , (32)

valid for N =1,

I1TI. SRS EXPERIMENTS COMPARED

Stimulated Raman scattering has been observed in three general
types of experiments: 1) high intensity irradiation of solid targets,
2) solid or foam target experiments specifically designed to measure SRS,

and 3) scattering from large underdense plasmas prepared by ionizing a gas.
Examples of Type (1) are the Livermore experiment by Phillion‘et.a1;10~on
Shiva and by Drake et al.11 on Novette, and the Rochester experiments reported

12 13

by Tanaka et al. and Seka et al, In these experiments the local

scalelength and temperature in the interaction region could not be measured.
The density profile is linear or exponential with Ln calculated from
hydrocodes to be of order 50 um. The vaiue of Te is usually time and space
averaged over the corona. Examples of Type (2) experiments are the one at

NRC Ottawa reported by Walsh et a1.14, the UCLA-Rochester-Yale collaboration

15 16

reported by Figueroa et al. and the KMSF work by Shepard et al. In Ref.
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14, the plasma was made by 1.06-um laser light on a solid target, and the
scattering was done at 10,6-uym after a delay. In Ref. 15, the plasma was
made by 1.06-um light on a thin foil, whose thickness controlled the maximum
density, and the scattering was done at 0.35 um. In both cases it was pos-
sible to operate at the density maximum to gain the uniformity of a parabolic
profile, and Ln could be measured independently. In Ref. 16, 0.53 um light
on a gold foil was used, and Ln of a linear profile was measured by inter-
ferometry. Examples of Type (3) experiments are the CO2 experiments at the
University of Alberta, reported by Offenberger et a1.17; at the University

18; and the Amini experiment at UCLA,

of Washington, reported by Watt et al.
described in Part (I)lg. At Alberta, the plasma was made from a neutral
gas by the laser beam itself and was confined by a large magnetic field.
This method did not allow control of the density gradient and temperature
conditions, and indeed SRS was seen only during efter—pulses when the con-
ditions were favorable. In the Washington and UCLA experiments, the plasma
was made by an underdense theta pinch with no possibility of steep ionization
fronts containing densities ebove nc/4. In all three cases, the density
scalelengths were very long and could be measured by interferometry. How-
ever, though the background temperature could be measured, it was still not
possible to determine the local, instantaneous Te at the laser focus.

Typical parameters of these expériments are listed in Table I; a
question mark follows those numbers that could not be measured but had to

be guessed. Where a range of conditions was covered, a single representa-

tive case was chosen for the purposes of these calculations.
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From the data given in Table I, we compute for each case the.homo-
geneous threshold §B from Eqs. "(21) and (11), and the absolute threshold I,
from Eqs. (24) and (11). These are compared with the observed threshold
intensities IObs in Table II. The convective thresholds IC for 1, 3, 5
and 10 e-foldings above noise are also given, as calculated using Eq. (26)
for the strongly damped case (D) or Eq. (28) for the collisionless case (C).
The interaction length L is found from Eq. (30) or (31), depending on the
density profile. If Eq. (26) is used,.I. should be <Ia; if Eq. (28) is used{
Ic should be >>Ia. Only in example IIC is the choice ambiguous.

In calculating the damping, we have taken

- 1 1
Y1 = 7Vei * Yip » Yo = 7 (/v (33)

where the electron-ion collision frequency is the high-frequency value

given by Johnston and Dawson20

_ -6 3/2
Vi T 2,9 x 10 ~ ZIn !LnA/Tev (34)
21 ' B L .3/2 . 2
and Rnd = 23 - an(Z nY/TL0) (T, < 10 29)
(35)
= 24 - zn(n%/T ) (T, > 10 22)
- eV eV :

For high-Z targets a conjectured value of the effective Z was used, but our
conclusions are not changed by the choice of Z. For the Landau damping rate,

we used the asymptotic formula

o e (36)



where

2 22
wpo= W+ 3klve (37)
2 0 2,,22 :
and | z = w1/2k1ve . . (38)

Eq. Q@éﬁ}ﬁné@ieéﬁigaﬁ§sfthggﬁémﬁiﬁgffgﬁggmﬁiijg;;so%that the -calcutated
thresholds are conservative.

Examining Table II, we see that all solid-target experiments of
Type I show the existence of SRS at intensities well below Ic’ which is the
appropriate theoretical threshold if the plasma is finite or inhomogeneous,
even if only one e-folding is assumed. The disagreement is too large to be
explained by self-focusing or uncertainties in Ln' This fact has inspired

theoristszz’23

to consideg the effects of initial density fluctuations of
various types, noise sources such as Thomson scattering or electron streams,
or reflection from the critical layer. Unfortunately, the plasma conditions
in these experiments are too uncertain for detailed comparisons with theory.
Note that the strong-damping approximation is appropriate for the collision-
less cases (IA) and (IB) because of the Landau damping associated with the
high electron temperature.v The values of Ia and Ic’ however, are sensitive
to the exact electron velocity distribution fe(v), which cannot be measured
accurately, Even if fe(v) could be measured well, it may be the result

of the instability rather than the initial condition.

The situation is considerably better with Type II experiments speci-
fically designed for the stﬁdy of SRS. In the Ottawa experiment, in which
the density profile could be changed, no SRS was observed with the linear
profile up to Io =2 x 1014 W/cmz, in agreement with theory. With the para-
bolic profile, the measured threshold agrees with IC for N = 3; thus, there

would be no discrepancy if the initial noise level were only six intensity

e-foldings below the detection threshold. In the KMS experiment, the threshold
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is lower than eXpected by at least two orders of magnitude; indeed, case
(IIB) has the targef conditions of a Type I experiment and differs only in
that Ln was independently measured. In the Rochester-UCLA experiment, both
Eq. (26) and Eq. (28) gave values of IC near Ia’ and neither approximatiqn
was valid for all values of N, It is clear, however, that IObs is at least
one order of magnitude‘below the calculated value.

Type..III experiments in gas targets are amendable to more detailed
measurements of the plasma conditions, particularly of the scalelength Ln'
In the Alberta experiment the observed threshold is in good agreement with
the absolute threshold, and it does not seem necessary to assume laser
heating to Te = 100 eV to explain the results. By contrast, the first
report of SRS, by the University of Washington groupls, has a threshold at
least three orders of .magnitude below IC and almost as low as Ih. In the
UCLA work reported in the companion paperlg, the observed threshold agrees
with Ic for N = 2. However, the initial noise level was shown to be in-
consistent with such a .small number of e-foldings.

In conclusion, no experiment has shown a threshold higher than ex-
pected, and only cases IIA, iIIA, and ITIC in Table II have IO = I or

bs a

Ic' The initial fluctuation -level was not measured in cases IIA and IIIA,
so that it is not possible to say whether the agreement was fortuitous or

real.

IV. RAMAN EXCITATION OF SPATIALLY DAMPED PLASMA WAVES

The substantial discrepancy between theory and experiment evident
in Table II can be removed by a minor modification of the theory. Instead
of neglecting the plasma waves' group velocity V1 in Eq. (12), we retain it;
Equation (19) and the identical equation for E, now have solutions of the

2

form Aexp(g+x) + Bexp(x_x), where Kk, are the roots given by Eq. (22)., It
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will be convenient to define

2 1
6z 2(k) -, B=(ki-kD?, (39)

1]

_ ) o - i 5
where Ky and Kk, are, as before, Ky = (Kl + Kz)/z and Ky = yo(Vlvz) .

Equation (22) can then be written

kK, = a*B, (40)

]
>
o

+

+
e
10/]

1

nl(X) K4 X K_X (41)

K+X 4 pe€-X (42)

|
(@]
[

E2 (X) -

The behavior of these roots is shown in Fig. 1, For each value of Ko < Ky

there are two possible values of k, given by Eq. (40). These merge at the

top of the parabola, where Ky = Kge For Ky > Kgs 1O steady-state,.spatially

exponential solutions are possible, but for Ky > Ky the collisionless
approximation of Eq. (27) is valid and is shown schematically as IC(C).
When Io = 0, nl(x) and Ez(x) are uncoupled, and Eqs. (39) and (40) give

K= Kyp K_ = =K, In this case, k_ obviously represents the plasma wave, which

2

is damped as it convects to the left, and k_ the reflected wave, which is damped

1’

at its own rate as it convects to the right. When IO > 0, both ny and E, are
mixtures of the K, and «_ exponentials, both of which increase to the right
when Ky exceeds the hdmoééneous threshold Kp» @s can be seen from Eq. (20).
The strong-damping approximation, Eq. (25), corresponds to the left branch of
Fig., 1, shown as the thick line labeled IC(D), and is tantamount to setting

A =C =0 in Eqs. (41) and (42). Retaining the exp(K+x) terms drastically
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changes the nature of the solution, -
Since both K, and «_ are >0 for Ko < Kgo let both nl(x) and E2(x)
start from the noise levels n? = nl(O) and Eg = EZ(Q) at the boundary x = 0.

fully in Sec., VI, Substituting Eqs. (41) and (42) into Eqs. (17) and (18) gives

[ACcq - k) - 3C] &+ + [B(x, - ) - ;D] % =0 (43)

X

[Clk, + k,) - @Al e+ 4 [D(c, + k) - a,B] -* =0, (44)

Each square bracket must be zero for these equations to hold at all x. Using

the identities Ky = Ko =Ky vk =K, + B, Ky = Ky S Kyt K_ =K, = 8,
Eiaé = Ki = Ki - 82, we find that only two independent relations can be

obtained for A, B, C, and D, Thus, there are two undetermined coefficients,

which we choose to be
n, =A+B, E;=C+D . (45)

Eqs. (43), (44), (40), and (45) then yield

280, (0 = [(8 + kdnd - & EY] BN 4w (g k30 + T EY) (BN (4
_ ) o — o (a+B)x ' o — _o0 (a-B)x
ZBEZ(X) = [(B = Ka)E2 +am]e + [(B + Ka)E2 - aznl] e . (47)
In the 1limit Ky = 0, we have B = Ky a+B = Ky o and a-B = K53 and these

reduce to n, = ngexp(le), E2 Egexp(—sz), which are uncoupled, damped
waves as expected. When Ko # 0, the growth of each wave depends on the initial

level not only of itself, but also of the other wave.
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0
1

of turbulence generated in the plasma production process. In either case

The noise amplitude n; is either thermal or larger than thermal because
it can be measured and interpreted as in Part (I). The amplitude Eg, however,
can arise from at least three sources: 1) bremsstrahlung emission, 2) Thom-
son scattering from thermal fluctuations, or 3) scattering from an enhanced
fluctuation level. As -an example we consider the conditions of the experiment
in Part (I). Bremsstrahlung is independent of IO and can be calculated from
the Planck radiation law for a black body. For Te = 20 eV, A = 10 um, and
spot diameter d = 300 um,-wé obtain an emission of 8 x 10_3 W over a 2% wave-
length range around 10 um. Since the plasma is optically thin, this figure
should be reduced by the ratio of absorption length -to plasma length, or >100,
as found in the heating calculation of (I). Thus the bremsstrahlung noise

source is <10"4 W. The level of CO2 Thomson scattering from noise was found

11

in (I) to be Ps = 10" Po' This should be halved because only half the plasma

length of 10 cm can contribute to the noise at x = 0. If Po = 108 W, we

have PS = 5 x 10"4 W, which is somewhat larger than the bremsstrahlung
emission; but this varies with'Po. If the plasma is slightly turbulent, with
an oscillation level nl/nO and correlation length LC, the reflectivity from
the fluctuations can be estimated from the Bragg scattering formula R =

(0.5 roxonch)z, where T, is the classical electron radius. This can be

larger than PS/Po above, depending on the values of n, and LC.

1
Since it is not possible to determine Eg with any degree of certainty;

0
2

hemogenous threshold Kg = Ki =K1Ky the pump intensity is just sufficient

for given n®. At the

we propose the following procedure for prescribing E 1°
to sustain a constant level of waves against their damping mechanisms and is
insufficient to excite these waves above their initial level. Under these

conditions, the finite interaction region should blend in with the rest of the

plasma, and there should be no gradients anywhere. Hence, we evaluate Eqs. (46)



and (47) for Ky = Kp» whereupon o = B, B-k_ = ~Kqs and B+Ka =Ky

a

_ 0 = .0, 20X -0 0
Zanl(x) = (Klnl - alEz)e + (alE2 - Kznl) (48)

(o} — 0

2ax
+ (KlE2 - aznl) . (49)

n

— _0 o}
2aE2(x) (aznl - K2E2)e

20.x

For these to be independent of x, the coefficients of e must vanish; thus

0, 0 _ — _
Ez/n1 = Kl/a1h = aZh/K2 s (50)

where Eﬁh and Eéh are to be evaluated at k_ = k. As a check, we may substitute

Eq. (50) into Eqs. (48) and (49) to obtain

Zanl(x) = (Kl - Kz) ng ' (51)

20E,(x) = (k] - k) E, (52)

The definition of a, Eq. (39), then gives nl(x) = ni, Ez(x) = Eg . To evaluate
a and Eéh in terms of Ei and aé, we note that Zi and Eé are proportional

1h

- — — — 0 .
to EO, so that a, = (KO/Kh)alh , = (KO/Kh)aZh , and the term 1E2 in

4y

Eq. (46) can be written (KO/Kh)Klni , using Eq. (50). Similarly, the term Eéno

1
. 0 . ‘ .
in Eq. (47) becomes (Ko/Kh)biz . Finally, Kl/Kh and KZ/Kh can be written

in terms of the small quantity

e = (kylkp)” (53)
to give
26n,(x) = nJ[(8+ k, - € /)X 4 (g n s c /e)e @ BIX  (say
28E,(x) = ES[(B - &, + ec )X w @ a - e e @B L (s5)

These equations describe separately the spatial growth of n, and E, under

=716 -~



the prescription that n? and Eg are related by the condition of homogeneity

at Ky = Kpe The solution for Ky <K cannot be trusted, but we shall see

h

that for Ko >> Ky the solution is insensitive to the exact prescription that
we have chosen,
The inaccuracy of the finite interaction length model for Ky <. ¥p

is illustrated in Fig. 2. When Ky = 0, initial levels n®

1 2

to exist outside the region 0 < x < L, but these levels are zero inside the

0
and E. are assumed

region. Fig. 2A represents the case where the plasma wave-convection
velocity V1 is neglected ab initio; both n and E2 then decay from the left
at the rate given by Eq. (25): K = —Kle/(Kl - KZ). ‘Fig. 2B schematically

shows the present case, where V1 is kept; E2 then decays with k = - ., as

2
it propagates from the left, and n; decays with k = kK, as it propagates from

the right. In both pictures, nl(x) and Ez(x) become flat across the region

by the time Io has been increased to the homogeneous thréshold. However, in

case (A) n? and Eg are arbitrary, while in (B) they are related by Eq. (50).

In practice, thermal or hyperthermal noise generation occurs within the region as
well as outside it, and a small pump intensity 0 < I0 < Ih is not necessary to
overcome the damping. In fact, the instability can start at many places at

once, and the interference of these waves depends on- the initial hot spots. Once‘a

dominant mode takes hold, however, the growth for IO >> Ih does not depend on ex-

actly how it emerged from the noise; all theories are limited to this regime anyway.

Equations (54) and (55) lead to quite a different picture for the

wave amplitude profiles from the usual one given by Eq. (26). Both nl(x)

(a+B) x

and Ez(x) grow at the fast spatial rate e instead of the slow rate

e(a-B)x corresponding to Eq. (26). Secondly, nl(x) and Ez(x) grow at different
rates, with n, e-folding=- more times than E2 in a given length L. To see

this, consider the growth at the limit of validity of Eqs. (54) and (55);

namely, at Ko = Kg» the absolute threshold. We then have 8 = 0, and the
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Bx

+
exponentials e "~ can be expanded to obtain the values

n (x) =nJ **[1 + € x(1 - e 1)1 (56)
E,(x) = E‘z’ X1 - kx(1 - e)] . (57)

Thus, (nl/ncl))2 is generally larger than (EZ/ECZ))2 because of the factor e_l.

The behavior of the solution of Eqs. (54) and (55) is illustrated in
Figs. 3-5 for the conditions. of the experiment of Part (I), where the scale-~
length Ln = 15 cm gives a turning-point distance L = 0.15 cm. In Fig. 3, .
the normalized amplitudeé nl/n$ and E2/Eg » Starting at 1 at x=0, are
shown vs. x for various intensities I0 between 0 and Ia‘ Both nl/n$ and
EZ/ES are >1 for IO < Ih and eventually reach an exponentiation rate dominated

by the e(a+B)x

term. At Io = Ih’ there is a concellation within the parentheses
multiplying the exponential factors, and both nl/ng and EZ/ES are unity
both

everywhere., This cancellation is extremely sharp for n When I0 > I

1° h’
amplitudes decrease to 0 and then become negative, indicating a phase change
relative to the noise fluctuation; this occurs very clo;e to x = 0 for the
plasma wave. The phase change has no physical significance, being a consequence
of the adhoc condition relating n? to Eg; and the results are not expected

to be accurate;in,the neighborhood of this phase change. Wh.en'I0 >> Ih, both
nl(x) and E,(x) grow at essentially the rate e(a+6)x = 1% | Thus the ‘
exponentiation length is scaled to the plasma wave damping length, which is
generally much shorter than the growth length of Eq. (26), which corresponds

to the e(a—B)x

term. Note that the value of L in the experiment, corresponding
to Ln (parabolic) = 15 cm, is =0.15 cm. It is clear from Fig. 3 that nl(x)
should have saturated by x = 0.15 cm at IO = 10,11 W/;mz; we treat thé saturation

in Sec. V.



Figure 4 shows the intensity e-folding of nl(L) and EZ(L) at L =
0.07 cm as Io is increased. Note that the plasma wave e-folds =15 times
more than the reflected wave, and that the number of e-foldings is sufficent
to reach saturation even when Io is much less than Ia' The behavior near
Ih’ as previously explained; has no particular significance. Note also
that the largest growth occurs for I0 somewhat less than Ia' Fig. 5 shows
more graphically the wave shapes at IO = 1011 W/cmz. After the initial
phase reversal, both nl(x) and Ez(x) grow with an exponentiation length

3

=1/(a*+B) = 1/k, = 4.4 x 10°° cm. By comparison, the old solution of

1
Eq. (26) has an exponentiation length 25 times longer. The damping length

of the light wave E, is 238 cm.

2
In the limit V1 - 0, one might expect the solution of Eq. (54) and

(55) to reduce to that of Eq. (26), but it does not. To show this, we
rewrite Eqs. (54) and (55) in terms of quantities which remain finite as

2 = .
€ = ‘Y2V1/Y1V2 - 0:

n-l i gof/e -1 -e!%*_x L1 L. gof/&: -1 KX
S = S T W S 20T T 224
nd S - g £ (1 - g€97
E, o 1 - egof ¢ x 1 1 - egof K_X
- = 7|1 san |67 Yzt 2.2k | ’
E, (1 - g7 (1 -g,f)
where
f(e) =z 2¢/(1 + 82) (60)
_ L
8 = Yo/ Yy = Y,/ (v Y)) (61)
2.2.%.
K, = otf = (K2/€f)[li(1-g6f )6] - k3 . {62)

(58)

(59)



The square root is proportional to B and is positive for Io < Ia' As

e > 0, f(e) = 2e + O(ez) and we have

n
1 KX K-X
—~ T (A -g) e’ +ge (63)
n
1
E2 2 KX K-X
— > g (1-g)e" e +e ' (64)
o) 0 )
E
2
K > K /52 - K, = K, - K, = K /52 (65)
+ 2 2 1 2 2
2 2 2
ko > rylgg -1 = vy = vd/vqV, - (66)
We see that n, = n? and E2 = Eg at the homogeneous threshold g, = 1, as required;

and that, for g, > 1, nl/ng grows as zexp(le). Applying L'Hospital's rule, we
see that Ez/Eg is also dominated by th¢ exp(le) terms as € + 0 and does not con-
verge to the usual solution exp (k_x). Only a change in boundary condition will

give this, as will be seen later.

Figure 6 shows the spatial behavior of (nl/ng)z'and (EZ/E(Z))2 for fixed
Ky and g, and various values of e, The horizontal axis is scaled to the ny
damping length. As seen from Eq.-(63), n, is not sensitive to the value

of €., but Eziis. -The main effect of-e on E, is to move the phase~reversal

2
point to larger x as € is decreased. Both n, and E2 eventually grow as
exp(le), and therefore rise steeply as V1 -+ 0.

This is our primary result, and it can explain the observations of SRS

well below .the absolute threshold in short scalelength plasmas,: This conclusion

is not sensitive to the choice of prescription for Eg/ng .

V. EFFECTS OF SATURATICN ON REFLECTIVITY

Because of the rapid spatial growth of nl(x), the plasma wave is

- 20 -



likely to saturate within the region of relative homogeneity., In our pre-
vious studies of stimulated Brillouin scattering24, we found that the most
likely saturation mechanism was the nonlinear frequency shift, which

causes the electrostatic wave to get out of phase with the ponderomotive
drive. The waves then propagate without growing, forming a plateau in the
amplitude profile. The reflectivity then increases slowly with the length
of this plateau. The -same mechanism can be operative in Raman scattering,
but no detailed space-time measurements of the amplitude profile have yet
been made. Analysis of the nonlinear behavior is outside the scope of this
paper, but we can calculate the absolute value of the SRS reflectivity assuming
different saturation levels nl/no. Figure 7 gives an example of such a cal-
culation applying Eqs. (54) and (55) to parameters pertinent to Part I. The
reflectivity R is defined as R = Eg(x)/Eg, where x is determined by the con-
dition that nl(x)/nO be at the given saturation value. - In all cases the
value of x was between 0.03 and 0.05 cm, well within the interaction length
L of 0.15 cm calculated for a parabolic profile with Ln = 15-cm. The value
of R depends on the noise lgvel n(;/no assumed; we have taken the rough value
3.6 x 10_7 estimated in Part I.- Figure 7 shows that the observed vlaues of
R in the range 10'4—10—3 correspond to saturation levels of order 20+10%.
The slope of the curves in the range Io = (1-3) x 1011 W/cm2 is smaller than
observed, but we have not accounted for Bragg reflection from the plateau
region of the wave profile. This effect can also lower the saturation level

nl/nO required to give the observed value of R,

VI. EFFECT OF BOUNDARY CONDITIONS
In Eq. (45) we chose to express the unknown coefficients A, B, C, and
D in terms of the noise levels ng and Eg at x = 0. This seems reasonable,

since both the exponential factors exp~(K+x) and exp (k_x) increase to the

- 21 -



right. However, it can be argued that the plasma wave n, should start from
noise at x = L, since its group velocity is to the left, and that therefore
the appropriate noise levels are Eg and n% = nl(L). To investigate this we
replace Eq. (45) with

n, = Ae E. =C+ D (67)

and eliminate A, B, C and D as before, obtaining

n (x) = ATH(Ber k)™ 0l o 7 e TPPlED) X
: (68)
-l L~ _oy KIX .
MRICERL S ot 3k, }
-1 -2BL — -k¢L L
Ey(x) = 87 L[(B - k,)e B E je k) e
(69)
+ [(B + Ka)Eg ;'Eze-K+L'ni] eK=X7}
where
' -2BL
A=B+Ka+(B-Ka)eB . _(70)

To relate the values of nL and E2, we can again use the device of specifying

1 2’7
that nl(x) and Ez(x) be uniform at the homogeneous threshold Ky = Kpe We
find that the previous relations
- 0 _ L. — L _ o
alE2 = (Ko/e)n1 , an, = KO€E2 (71)

used in Eqs. (54) and (55) still obtain. Eqs. (68) and (69) then become
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n, (x)

A-l{[(B +;v<a)e_|<+L - (Ko/s)e—zsL] <+

nL :
. (72)
+ [(B -»Ka)e-K+L + Ko/e] e“~%3
E,(x) .
2 - A'l{[em e—K+L + B -« )e—ZBL] KX
£© 0 a
2 ' : (73)
+ [-enoe'K+L * B+ ] %}
The reflection amplitude is
E, (L) -
g = A I[ZBeK’L + EKO(l - e-ZBL)] . (74)
E2 '

’Fig. 8 shows the behavior of Eqs. (72) and (73) for an intensity
well below the absolute threshold. One sees that both ﬁl and E2 grow

at the slower rate exp (x_x), as previously believed. However, the boundary
condition makes no physical sense as it stands. At the left boundary, n; is

e4 times noise at x = € and drbps discontinuously to the noise level at x = -e.
Since waves are convecting to the left, it is unreasonable for ny to decay
discontinuously going from right to left. [Note added in proof: The referee
has suggested that a two-region model in which the pump vanishes for -6 = xi< 0

but undriven plasma waves are allowed to exist in that range.can explain the

level n, = e4n% at x = 0, However, such a model would show that n; falls to
noise level within a few damping lengths 1/K+. Thus, starting a x = -4/K+,

the plasma wave would have grown to e4 times noise level by x=0. This is
essentially the behavior predicted by the one-region model with n, set equal
to noise at x = —4/K+. The one-region model and the two-region model are

equally inexact representations of the real situation, in which the pump

- 2% .



;ntensity fades graduaiiy; and it is gratifying that both models predict
instability occurring for L > l/K+, rather than L > 1/x_.]

At the right boundary, we see that n; grows from n% to its maximum .
value in the interval .09 < x < ,10 cm. In the interval .08 < x < .09, E2
has abproximately the same value, but n; does not grow at all. Solutions of
this type have been computed previously in another connection25 and can be
explained as folléws. Upon entering the interaction region at x = L, plasma
waves are rapidly driven up from noise by the large ponderomotive force due to
EoEZ' At x = 0,09, n; has reached such a large level that .its damping is
equal to the excitation. This balance is maintained from x = 9.09 down to x =
which is the reason n, and E2 have the same spatial behavior. Thus, the
sealelength 1/k_ represents not the growth length of ny (which is 1/k,) but
the variation of its saturation value when saturation is due to the balance

between damping and excitation. Since there are other saturation mechanisms

that can be more restrictive--such as harmonic generation, wavebreaking, or

electron trapping--we have chosen to set n, equal to noise level at some

point on the left and simply study the effect of various assumed saturation

values.

A second reason for rejecting the n% boundary condition is that it
leads to inconclusive results; namely, to a growth length that depends

sensitively on the ratio of nL to Eg . By contrast, the n; boundary condition

1

)
1
gives the same spatial growth rate regardless of whether n? is negligibly
small, Eg is negligibly small, or neither is negligible. Details of these

calculations are given in Appendix B.
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VII. DISCUSSION
We have followed a well worn path in the treatment of SRS. The
governiﬁg equations, Eqs. (4) and (5), are the same as those used by the

1,3,5-7,26-29

original workers on the subject as well as in subsequent

papers?s8:9,18, 30-32

However, in‘ﬁreviouS’work on. laser-plasma intéractions,
either the damping Y, OT the group velocity V1 of the plasma wave was neglected
in order to simplify the problem sufficiently to treat such effects as pump
depletion or nonlinear saturation. We find that even .the linear theory, which
governs the behavior near threshold, cannot be made to agree with experiment
unless both damping and convection are included. This is particularly true

of high-intensity experiments where KTe is in the kilovolt range and both
Landau damping and the plasma wave group velocity are appreciable.

When Y1 and V1 are both taken into account, and a reasonable boundary
condition is used, SRS below the absolute threshold -can occur over short
distances on the scale of the damping length Vf/yl' The physical reason is
apparently that any energy going into the plasma wave decays with this spatial
scalelength as it propagates in the k. direction, and therefore it is unnatural

for the amplitude to be more:constant . in space than this., The reflected wave

CO2 has an almost infinite damping length in an underdense plasma, but since it
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is excited by nl(x), it also must have a steep spatial profile. There is no
a priori reason why the pump cannot deposit its energy in a thin layer of plasma

once a localized plasma wave has been driven up from noise.

The behavior of the instability near the homogeneous threshold ig
not easily predictable. It is possible, for instance, for plasma waves to
start simultaneously at two nearby points in space and for these waves to
interfere constructively or destrucfively at later times; The initial noise
conditions depend on the way the plasma was created; even when the plasma is
nearly thermal,it is the small deviations from equilibrium thét govern the

initiation of the instability. To achieve a tangible result, we have given a

0
1

or may not be realistic, but the initial noise problem has not been treated

particular prescription for the relation between n. and Eg. This formula may

successfully by any author. Fortunately, the behavior of the instability well -

above the homogeneous threshold is not greatly affected by the initial or

boundary conditions, as long as reasonable ones are used, as discussed in

Sec. VI.

To explain the low SRS threshold observed in inhomogeneous plasmas,
Simon and Short23 have proposed an interesting mechanism related to fast
electrons generated at the quarter-critical layer. However, this mechanism
does not explain tﬁe anomalies observed in experiments without a quarter-
critical layer. By'design}ng an apparatus that cannot have densities as high
as nc/4 (Part I), we have been able to remove ambiguities caused by the‘possible
existence of fast electrons. kIndeed, recent experimentg at Rochester ™ have

shown that the so-called '"Raman gap' fills in when the nc/4 layer is removed,

_ - 26 -



indicating a negative correlation between the nc/4 layer and SRS. Though
this paper does not address the problem of the Raman gap, we noté in conclu-
sion that -our results can also explain the absence of SRS'in high-density
regions of a blow-off plasma. Both Landau and collisional damping are

weak in those regions, and the damping length 1/|<1 becomes comparable to.L.
Only in the very underdense regions is Landau damping strong enough to make

k,L >> 1, thus allowing the phenomena described in this paper to occur.

1
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APPENDIX A

Steady-State Solutions Above the Absolute Threshold

For completeness we have also investigated the nature of time-
independent solutions of Eqs. (4) and (4) at intensities above Ia‘ In that

case B, as defined by Eq. (39), becomes imaginary , and the functions nl(x)
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and E,(x) have the form e** (A sin Bx + B cos Bx), where

= 2 2.5 L
Bz (xg - Ka)é . (75)

In terms of the bound&ry values ni at x = 0 and n? at x = L, Eq. (19) now

has the solution

% el _ n? cos BL)(sin Bx/sin BL)] . (76)

n (x) = eax>[n§ cos Bx + (n
A similar equation obtaiﬁs for Ez(x). It is clear from this that if BL E_n,
one can choose an interaction region of length L' < L such that sin BL' = 0
and nl(x) is not well definéd. Since B increases rapidly with K S contrasted
with B, which changes slowly for Ki << Ki , these convective solutions are
valid only over a limited range of intensities IO >I ..
We first consider solutions which start from noise at x = 0 and increase
o)

with x. Thus we choose the two unspecified boundary values: to be ng and E2 .

Egs. (17) and (18) now give

_ 00Xy O - ==1 0 =0, . =
nl(x) = e [n1 cos BX + B (Kan1 - alEz) sin Bx] (77)
_ O0XfpO = =-1 - o0 0 .= o
Ez(x) = e [E2 cos BX .+ ﬁ (a2n1 - KaEZ) sin Bx] , (78)
valid for Ky > Kge To match smoothly onto the Ko < Ky solution of Eqs. (54)

o
1

0 -
= Kerz , giving

and (55), we find that n.; and Eg must again be related By Eq. (50), viz.,

o

— 0 _ fo) —
2By = (K /8)ny 5 apny
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o _oaX

n,(x) =nj e [cos Bx + (k, - x/€) singx/g] (79)
Ey(x) = Eg e**[cos Bx - (kg - ex) sin§k7§j” . (80)

At the absolute threshold Ko = Kgo both 8 and B vanish, and both Eqs. (54-55)

and (79-80) reduce to

n (x) = nd e*[1 - (€™ - De,x] 81y
E,(x) = By e®¥[1 - (1 - edex] . (82)

As Ky increases well beyond Ky, one might expect the damping of both
waves to become negligible, . so that each wave grows in the direction of its
propagation, as shown in Fig. 9. In that case we must choose Eg and n% to be

the boundary values specified by the initial noise. Eqs. (17) and (18) are

then satisfied by the functions

1 — 5L — e s OX | — - — 0= OX s =
n,(x) = ﬁ'[(Bnie aF + alE251n§L)ea COSBX + (Kan%e ok - alﬁjéosBL)ea singx] (83)
_ 00X — 1l — E -oL - . = Frap0q OX_ . = : 84
Ez(x) = Eze COSBXx + B—[aznle‘ St (BsinBL - KacosBL)Ez] e “sinfx (84)
where
D = KasinEL + BcosBL . (85)

These obviously break down at intensities such that D = 0. If the noise sources

L

n

and Eg are related by Eq. (50), we have
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nl(x)/ni = D_leax[gé—aL + e—lKosiﬁEL)cosgk + (Kaé-aL:--Elcosél)sinﬁk] (86)
Ez(x)/Eg = eax[cosﬁi'+_D—1(Koee_aL + BsinfL - Kaéosﬁl)sinﬁk] (87)
The total amplification is then
n (0)/n} = p @ + &l sinfL) (88)
o] -1 = oL . = :
EZ(L)/E2 = D “(Be + K0851nBL) . (89) .
In the zero-damping limit, we have a = Ky = 0 and B = Ko Eqs. (83)
and (84) then reduce to
n (x)/nL = cosk_x/cosk L + e—l(tanK L cosk X - sink x) (90)
1 1 o o o] o o
0 . .
Ez(x)/E2 = COSK _X + tanKoL sink x + 851nKox/c05KoL . (91)
The total amplification is
n (O)/nL - seck L + e} tanc L (92)
1 1 7o 0 ‘
o _ ,
E2(L)/E2 = SeCKoL + € tanKoL , (93)

these results again depending on Eq. (50). It is clear that these solutions
fail and absolute instabilities must be considered when KOL =~ 7/2,
For completeness we have investigated the transition between large-

damping solutions growing from the left and zero-damping solutions growing in



opposite directions, as in Fig. 9, when Ko is increased beyond Ko» Figure 10

shows the behavior of Eqs. (79) and (80) for Ki varying from Ki to =2K§ .

At I0 = 2,5 % 1011 W/cmz, nl(L) rapidly changes sign, passing through the
value nl(L) = n? . Furthef increase in Io’ however, does not generate an

n, profile resembling that in Fig. 9 even for BL > 2w, Figure 11 is a plot of
Eqs® (86) and (87) and illustrates what happens when‘nl(x) is forced to 'be at
the noise level‘ni at x = L. The solution at Io = 1,64 x 1011 W/cmz,‘just

above Ia’ does not have the behavior shown in Fig. 95 As IO passes through

2.3 x 101l

W/cmz, D goes through zero and n, goes ﬁhrough infinity; the steady-
state assumption is no longer valid. Figure 12 is a plot of Eqs. (90) and (91).
with Yy =Y, S 0. Even with zero damping, the convective behavior depicted

in Fig. 9'is never realized. This fact was of course known to those who

7,8,9

have solved the time-dependent problem but is not generally recognized.

APPENDIX B

Consequences of Reverse Boundary Condition

We give here further details on the solutions obtained when the

L
1

and Eg are related by Eq. (71), which is the same as Eq. (50), the solution is

plasma wave noise level is fixed at x = L rather than at x = 0. When n

given by Eqs. (72) and (73), and the behavior is shown in Fig. 8. When
either noise source vanishes, the behavior is quite different.

If Eg_= 0, the solution is

~2Bx
L -k (L-X) Ka® B-(Ka—B) €
BL

n, (x) n, e
1 1 -2
Kt B—(Ka—B) e

(94)

E,(x) = Eéni e_K+(L_x)(1 - e-ZBX)ZA s (95)
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where A is the same denominator as in Eq. (94).

Using Eqs. (7) and (15) for Eé, we can write E,(L) as

% 61/2 —ZBL)

E2(L) = n weKolD (1 -¢ /A ' (96)

The spatial behavior of nl‘and E2 is shown in Fig. 13a. It is seen that

n, is below the noise level inside the interaction region, as is clear

from Eq. (94).

If n% = 0, the solution is

n (0 = GE) X - PNy (9
-2 L-

E,(x) = By e“"¥[k_+ 8- (x,- Ble BL-X) /s (98)

The amplification of E2 is

E,(L)

- = &L 28/ . (99)
2

The spatial behavior is shown in Fig. 13b. In-this case both waves
grow at the slow rate exp (x_x).

We now compare these results with those for n, being fixed at
the noise level ng at x=0, as assumed in the bddy of this paper. It is
seen from Eqs. (46) and (47) that setting n? = 0 or E, = 0 does not
éhange the spatialrgrowth from the fast rate exp(K+x). Fig. 14 shows the
similarity of the spatial behavior of E2 in these extreme cases.

We can also test the sensitivity of the scattered amplitude EZ(L)
to the assumed boundary conditions. For noise sources n® and E° , the

1 2
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growth is exponential, so that Fig. 14 also shows EZ(L) vs. L. For
noise sources n% and Eg, Eqs. (96) and (99) give EZ(L) for Eg =0

and n% = 0, respectively. These are shown in Fig, 15. It is seen that
EZ(L) has an entirely different behavior depending on which noise source-
is dominant. We conclude that the n% noise source does not give a

physically reasonable result.
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II.

TABLE CAPTIONS

.. Typical plasma conditions for nine experiments in which SRS was

reported.

Calculated (Ih, I Ic) and observed (Iobs) threshold intensities,

2’
in W/cm2, for SRS in the experiments of Table I, (5E14 means 5 x 1014).
Ih and Ia are the homogeneous and absolute thresholds, respectively.
Ic,is the convective threshold calculated for Vvarious numbers N of
e-foldings of amplitude above inital noise. D and C indicate whether

the strong-damping (D) or collisionless (C) approximation was used

for I .
c



Experiment
IA. Shiva10
IB. Novette11
IC. Rochesterlz’13
IIA, Ottawa14
IIB. KMS Fusion'®
1IC., Rochester—UCLA1
IIIA. Albertal’
I11B. Washington18
rrrc.  uctal®

5

TABLE I

“1.06

0.53

0.35

10,6

0.53

0.35

10.6

10.6

9.6

.'7x1019~

3x1020

1x10%1

3x10%7

ax10%?

;7;7x1020

2.7x10%7

2x1010

8x 1016

‘ ~;%ozum)rﬁtn(§m73) n/ng

.07. .

.076

W11

.03

.01

.085

.02

. 002

.066

4,300(?) 170

1,000 50
100 300
550

2,000 80
750 50
45+ 40

15 20

19 15

Te (eV) Ly
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8.9E13
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2. 3E10
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7.5E17 1.SEI8
1.6E18 3.2E18
5.7E17 2.3E18
3.3E15 ' 1.3El6
8.5E13  3.4El4
9.0E17 1.8E18
3.3E16 6.7E16
2.7E16  1.1El7
5.6E10 9.7Ell
4.8E11 9.7Ell
3.8E11 7.7Ell



FIGURE CAPTIONS

Fig. 1. The spatial damping rate k, normalized to the plasma wave's
spatial damping rate Ky» @S 2 function of pump intensity Io’
expressed as Kg/Ki , for K2/K1 = 0.1, an unrealistically

large value chosen for emphasis. The labels I Ia, and IC

h’
refer to the threshold intensities of Table IT. The collision-

less convective threshold IC(C) is schematic only.

Fig. 2. Schematic of the‘wave amplitude behavior 'at I@ = 0 in the old

(A) and new (B) models of SRS in a finite region.

Fig. 3. Spatial growth of plasma wave amplitude nl/n? (—) and re-
flected wave amplitude Ez/Eg (---) for various pump inten-
16 -3

sities Io. Plasma parameters are: n = 8 x 107" cm 7, Te =

20 ev, Ao = 9,58 um, Z = 2, homogeneous threshold Ih = 4,57

11

x 107 W/cmz, absolute threshold Ia = 6,20 x 10 W/cmz. The

vertical scale changes from linear to logarithmic at #1.

Fig. 4. Growth of plasma and reflected wave intensities with pump

intensity Io’ for the conditions of Fig. 3 at x = 0.07 cm.

Fig. 5. Envelopes'of the spatially varying amplitudes nl/ni and EZ/Eg
for the conditions of Fig. 3, with Io = 1011 W/cmz. The dashed
lines form the envelope for both nl/ni‘and E2/Eg for the V1 = 0..
result of Eq. (26), with an exponentiation length 0.11 cm. The
dot-dash line (-<-) e-folds with a scalelength equal to Vl/yl.

The vertical scale changes from linear to logarithmic at %1.
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)2

Fig., 6. Wave intensities (nl/ncl))2 and (Ez/Eg as functions of KX =

1
ylx/Vl for various values of ¢ = (Kz/Kl)i. The values of

3

K., = yz/v2 and g, = yo/yh are held fixed at K, = 2 x 107,

2
g = 30,

o

Fig. 7. Calculated SRS power reflectivity vs. IO for various assumed
saturation levels of the plasma wave., Plasma conditions are
as in Fig. 3. A noise level of ncl)/nO = 3,6 % 10_7 was assumed,

Fig, 8. Spatial behavior of nl(x) and Ez(x) when the noise levels are

1

n=28x10%cn>, T =20ev, Z=2 (He), L= 0.1 cm, A, = 9.58 um,

given as nL = nl(L) and Eg ;_EZ(O). The plasma conditions are:

and I = 2 x 101 w/en? = 1_/3.

Fig. 9, Classical picture of wave amplitude profiles in a convective

instability.

Fig,10.- Steady-state spatial profiles of nl(x) and Ez(x) for IO > Ia'

Plasma parameters are as in Fig. 3 except that Z = 1 and Ia =
1.63 x 1011 W/cmz. The scale changes from linear to logarithmic

at #1,

Fig., 1l. Same as Fig. 9, but with nl(x) starting from noise at x = L =

.07 cm. Dashed lines are for Ez(x)/Eg.

Fig. 32. Same as Fig. 10, but with damping neglected.
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Fig. 13.

Fig. 14,

Fig. 15.

Spatial behavior of nl(x) and Ez(x) when the boundary conditions

L

are (a) nl(L) =1y, EZ(O) = 0; and (b) nl(L) = 0, EZ(O) = g°

2 3

Plasma conditions are as in Fig. 8.

Spatial behavior of Ez(x) or EZ(L) when the boundary conditions

o . 0
are nl(O) = 0, EZ(O) = E2 {solid curve), and nl(O) =1y ; EZ(O) =
Eg (dashed curve). Plasma conditions are as in Fig. 8.
Dependence of scattered amplitude E2(L) on interaction length L
when the boundary conditions are nl(L) =0, EZ(O) = Eg (solid
curve), and nl(L) = n% s EZ(O) = 0 (dashed curve). Plasma

conditions are as in Fig. 8.
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