Use of the two-ion hybrid as an impurity diagnostic
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In a plasma containing more than one ion species, the frequencies of the ion-ion hybrid
resonances can be a sensitive measure of the densities of the minor species, but only if the
frequency shifts caused by electron motions are small, as experimental observations suggest. By
calculating the eigenfrequencies for ion—ion hybrid waves taking into account collisions, Landau
damping, electron inertia, electromagnetic effects, and density gradients, it is found that the
frequency shifts are not negligible unless k|, is extremely small. Treatment of the sheath boundary
conditions at the ends of a plasma column shows that the effective value of k; can indeed be
sufficiently small, and that the uncorrected resonance frequency is surprisingly accurate over a
wide parameter range. Data from an Ar—Xe discharge demonstrate the usefulness of this

technique for measuring impurity concentrations.

1. INTRODUCTION

The Buchsbaum two-ion hybrid resonance frequency’
@, given by

(03=0102[(0102+a201)/(a191+a202)] ’ (1)

where a, , and {2, , are the fractional charge densities and
cyclotron frequencies of species 1 and 2, respectively, can in
principle be used to measure impurity concentrations in a
plasma. For instance, the nonhydrogenic contaminants in a
diverted fusion plasma, the molecular ion (H;" ) fraction in
a hydrogen discharge, or the fraction of doubly charged ions
in an argon or helium discharge are often of interest. When
a, is small compared with a,, Eq. (1) shows that o, is close
to §,, the cyclotron frequency of the “minor” species. For
instance, if M, = M, but Z,#Z,, Eq. (1) can be written

22 -1
wfzng(uﬁ)[(w—zﬁ)] , )
n, Z? n,

and the deviation of @, from , is particularly sensitive to
n,/n, because of the weighting factor Z2/Z?2 .

Equation (1), however, is valid only for waves propa-
gating exactly perpendicular to the dc magnetic field B,; that
is, for k; = 0. This is because w, is determined by the cancel-
lation of the space charge of species / by that of species 2,
without involvement of the electrons. Each ion species
moves in elliptical orbits under the combined influence of the
Lorentz force and the electrostatic E field of the wave; only
atw = w, are the ellipses of equal width in the direction of k.
This balance is upset if k, #0, so that electrons can move
along B, to cancel space charge. If k is sufficiently large—
thatis, if k { /k { is larger than m/M—the wave changes into
the electrostatic ion-cyclotron wave, and the frequency shift
then depends more on k, than on ny/n,.

The shift caused by electron space charge depends criti-
cally on the mechanisms that control electron motion along
By: collisions with ions or neutrals, Landau damping, elec-
tron inertia, and the self-inductance of the parallel electron
currents. Though not all of these mechanisms are effective at
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the same time, we have calculated all of them in Sec. I1 so as
to allow this diagnostic to be used in a variety of circum-
stances. We have also, in the Appendix, calculated the effect
of perpendicular electron drifts created by a density gradi-
ent.

The results of these calculations show that the electron
motions would make this diagnostic useless unless k; is so
small as to be incompatible with any ordinary boundary con-
ditions at the ends of the plasma column. On the other hand,
the experimental data, shown in Sec. III, indicate that the
resonance frequency, surprisingly, follows Eq. (1) almost
exactly. To reconcile the observations with the theory, we
have considered, in Sec. IV, the boundary conditions im-
posed by the sheaths on the endplates bounding the plasma.
We find that, indeed, the sheaths require that & be extreme-
ly small as long as the wave suffers from a small amount of
damping. Equations (1) and (2), therefore, can be used
without correction in a wide range of parameters.

To detect a small percentage of a minor species, one
merely has to excite a wave at a frequency close to {1, and
measure the exact frequency at which the largest plasma
response is seen. Since Eq. (1) is obeyed only when j, van-
ishes, we suggest an extension of the method that can yield
the Jocal impurity concentration. By using a double-sided
probe to measure jj, the frequency at which j; = 0 can be
found as a function of position; and the spatial variation of
n,/n, can, in principle, be obtained.

N. THE ELECTROMAGNETIC DISPERSION RELATION

We consider waves in an infinite, uniform plasma with
T, = 0 and B = Bz that propagate in the yz plane, so that
k?=k? +k?, with k2<k? and k, = 0. Neglecting the
displacement current in Maxwell’s equations, we obtain in
standard fashion® a wave equation whose components are

kE, = (4min/c®)j, , (3)
k2E, — k k,E, = (4min/c?)j, , (4)
k2E, — k,k,E, = (4mics/c?)j, . (5)

The perpendicular currents j, and j, are easily found®?
from the cold-ion equations of motion and from the electron
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E X% B drifts, since electron thermal and inertial effects are
negligible in j, . Egs. (3) and (4) can then be written

[ + /(D ]E, +ig(Q)E, =0, (6)
—ig(ME, + [k +fIV]E, —k,k,E, =0, (7)
where, if there are two ion species,
£ ={a/[1- (RQ) 1} + [a,R/(1 =Q7%], (8)
g(Q) =RQ[a,/(R*Q*—1) +a,/(Q* 1) +1]. (9)

Here we have used the dimensionless parameters

QE(O/Qz, R Eﬂz/ﬂp K= kL, ’ (10)
a,=Zn,/n, , O, =ZeB/Mc, (1)
L=(M,*/47Z;n, ) *~c/Q,, , (12)

and it is understood that the major species is 1 and the minor
species is 2. In this notation, the Buchsbaum formula [Eq.
(1)] is simply f(Q2) =0.

To calculate the frequency shift caused by finite &, , we
must evaluate j, in Eq. (5) including the effects of inertia,
collisions, and Landau damping on the electron parallel mo-
tion. To do this, we solve the Vlasov equation with a Krook
collision term to obtain v, for the electrons:

af, af, e af, (n, )
L 4y, L ——E 2=y |2 —fi].
at 9z m "o nofo Sy
for k 2 <k 2, the contribution of ion v, to j, may be neglected.
Using the electron continuity equation for n,, we obtain

(13)

z

. 2
e ;= 2z
c ¢
(0/k, vy, )SE, + (v./20,.)(k,/k,)E, 14
1 — (iv,/2w)Z'(§)
where
E=(w+ iv,)/k, vy, vy, =2kT./m, (15)

Z'(¢) is the derivative of the plasma dispersion function,*
and v, is an approximate collision frequency for electrons
against either ions or neutrals. The term containing v, /@, in
the numerator of Eq. (14) can safely be neglected. Using Eq.
(14) in Eq. (5), one obtains

—«,x,E, + (k, + P)E, =0,

where

(16)

M SRe(0)Z'(¢)
Zm {1 - (i/2)(v./0)Z" (D)}
A solution of Egs. (6), (7), and (16) is possible if the deter-
minant of the coefficients vanishes. This condition yields the
despersion relation for electromagnetic two-ion hybrid
waves:

(17)

Pkl + (fP — )P+ k)
PGP +12) + 2

We next show that this equation reduces to well-known
results in limiting cases. The electromagnetic ion-cyclotron
wave in a single ion species plasma can be obtained by letting
a,=0, a;,=1, R=1, and P—o. The dimensionless pa-
rameter P is proportional to the parallel electron flow, so
that when P is large, the electric field E, is shorted out, as

fQ)=— (18)
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shown by Eq. (16). In this limit, Eq. (18) becomes !
e+ =g —f7— kK2, (19) -
where f = Q2/(0? — 1) and g = Qf. This yields
1 1 Q!
P=(l+—=4—=— ) . 20
(5t )

When Q1 and K*> 1, (4,/27 <c/S,), the last term can be
neglected, and Eq. (20) becomes the Stix dispersion rela-
tion®

Q1 1\]!
2 __ 2 14
oootfieE (Grea)]

The electrostatic limit is obtained by letting c— 0, so
that L,, x, and «, all approach . Keeping only the x* terms
in Eq. (18), we obtain

f(Q) = — P(k2/k?). (22)
This is the dispersion relation for electrostatic two-ion hybrid
waves with finite k,. When k, = O, this becomes f({) =0,
which is identical with Eq. (1).

With some care, the electrostatic ion-cyclotron (ESIC)
wave can also be obtained from Eq. (22). In that wave, k ? is
much smaller than k2, but is still large enough to permit
sufficient electron motion along B for the electron Boltz-
mann relation to hold. This physical situation can be de-
scribed formally by taking the limit m—0, so that {—0. Us-
ing the power series expansion of Z'({),

Z() = —2im e ¢ —2 44524 —2, (23)

in Eq. (17) and inserting into Eq. (22), we obtain forv, =0,
k2 2 2

oy —ogr Mo ki 0 (ZMy 2

Zm k2 k2 \Z M, B,

where 8, = 87ny, kT,/B 2. When there are two ion species,
Eq. (24) gives the ESIC wave for each species as modified by
the presence of the other. When there is only one ion species,
Eq. (24) becomes

2 2,2
?=Qr + ki,

(21)

(24)

& =ZkT./M, (25)

which is the usual ESIC relation.’
In the experiment to be described, | | is of order 20; and
it is appropriate to use the asymptotic expansion for Z '({):

Z'(§)=L+ii+...2_l-' (26)

A good approximation for P [Eq. (17)] is then given by

P M,/Zm _ M/Zm
T (4 iv/e)y(l—iv,/20?) T 1+iv,/o

(27)

In this case, Landau damping is completely negligible. For
real k, and complex w, the frequency shift can be calculated
by expanding around the k, = O resonance frequency w,.
Let the frequency shift be ew,, so that

where €«1. Since £, is defined by f(2,) = 0, the left-hand
side of Eq. (18) is given by

) =€eQ, [ (D)]g_q,-
A little algebra yields

(29)
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2 @i [R /a;)]?
Q) = ___2__1_ [R + (a, ;l,z)] .
Qr a; (1 —R )
On the right-hand side of Eq. (18), the term in (f* — g*) can
be shown to be negligible, as is x7 relative to «>. With the use
of Eq. (27), we then have for Eq. (18),

(30)

K2
)~ — z . (31)
s 1+ (Pk¥/ol) (1 + iv,/0,)
The last two equations give the frequency shift
QS 1 —R 242
B =e), = — Al ) .
2a¢ (R + (ay/a,)]
K2
- (32)

X .
1+ (k) (1 + iv,/o,)
On the other hand, if we take @ to be real and &k, com-
plex, Eq. (18) can be rearranged to give

s 2 - 2
f+e P
where again we have neglected «? relative to «7. With P ap-

proximated by Eq. (37), itis independent of «,; and Eq. (33)
becomes

L
K§= y
f+e
Zm iv
1+ Zme )]
X[ +M1 20 @

Eqgs. (32) and (34) will be used in analyzing the data.

(33)

(34)

lil. EXPERIMENT AND INITIAL ANALYSIS

The experiment, whose results were reported earlier,’
was done in a linear discharge produced by volume ioniza-
tion of an argon—xenon mixture. The plasma column was 9
cm in diameter and 150 cm long, in a magnetic field B, of
10.23 kG, uniform to + 0.7%. The major species was argon
at a pressure p of 4 X 10™* Torr, and the minor species was
xenon at a variable pressure p<3 X 10~° Torr. The plasma
density was n = 2.2 10" cm ™3, and the temperatures were
KT,~3eV,KT, =0.2—-04¢V.

The plasma is produced at one end by 10 kW of 100
MHz rf applied to a 10X 10 cm electrode structure consist-
ing of horizontal tantalum strips 1 cm apart, viewed edge-on
along the field lines, with every other strip connected to the
same terminal of the rf source. Primary electrons accelerated
by the rf field travel along B to ionize the background gas.
These primaries do not produce any turbulence in the ion-
cyclotron range of frequencies. The plasma is terminated at
the other end by a metal plate biased at 60 V relative to
ground; this endplate determines the plasma potential,
which is slightly positive with respect to the endplate be-

“ cause of the usual anode sheath formation. To excite the two-

; ion resonances, the endplate is split along a diameter and the
gap closed by overlapping the D-shaped halves. An ac vol-

" tage of variable frequency and 60 V peak-to-peak amplitude

' i8 applied across the halves to excite the waves.

The plasma resonances are detected with a radial energy

;analyzer’ (REA), which consists of a flat 0.018 cm?® collec-

H
-

tor recessed in a tube and oriented so that its normal and the
tube axis are perpendicular to B,,. The setback is adjusted so
that electrons, with r, ~10~2 cm, cannot reach the collec-
tor, while ions, with 7, >0.05 cm, can. The collector can be
biased positively for energy discrimination.

The presence of a cyclotron-type wave in the plasma is
detected by the REA current, which consists of ions acceler-
ated by the E, of the wave to an energy high enough to
overcome the collector bias. Examples of resonance curves
are shown in Fig. 1 for various relative xenon concentrations
a,/a,. A peak in REA current is found at an excitation fre-
quency, which varies from the '*'Xe gyrofrequency of 119
kHz toward the *°Ar gyrofrequency of 390 kHz as a,/a, is
increased, as predicted by Eq. (1). These resonances have
widths of order 6% caused by collisional broadening, so that
the individual isotopes of Xe with mass differences of order
49 are not resolvable. Figure 2 shows the variation of REA
current with collector bias for various a,/a,. The straight-
line behavior on the semilog plot indicates a Maxwellian ion
distribution in each case. The ion temperature decreases as
a,/a, increases, in agreement with the physical picture that
the minority ions then need smaller v, to cancel the space
charge of the majority species.

The absolute Xe density can also be obtained from Fig. 2
by using the formula for random ion current density at the
plasma potential,

J(VP)=}‘ne5=ne(KT,-/21rM)”2, (35)

using the measured 7, and extrapolating to V,, = 92 V. The
accuracy of this method was checked in an *°Ar plasma con-
taining an *°Ar minority. The *“°Ar density was essentially
the same as n,, and the latter was measured with a Langmuir
probe calibrated with microwave interferometry, as well as
by the characteristics of resonance cones.® Using an REA
and Eq. (35), we found the density ratio of **Ar to *°Ar was
within 30% of the natural abundance of 0.3%.

Figure 3 shows the frequency shift Q —1 [ie,
[(@— x.)/Qx. ] versus relative resonance frequency

COLLECTOR CURRENT (ARB UNITS)

712
23

% )
a
0.56
U T T B e e 4
100 120 140 160

f(kHz)

FIG. . Current to the radial energy analyzer at fixed bias versus drive fre-
quency for various concentrations of the minority species, as determined by
the partial pressure of xenon in a Xe—Ar mixture.
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FIG. 2. Radial energy analyzer current at the resonance peak versus retard-
ing potential for various relative xenon concentrations and corresponding
frequency shifts. The plasma potential is 92 V.

computed from Eq. (1). It is seen that this simple formula,
surprisingly, fits the data within the experimental error.

Since the experiment was done in a finite-length plasma,
one would expect agreement with the finite- k, formula equa-
tion (18) or the approximation to it, Eq. (32). The numeri-
cal parameters of the experiment are as follows:

k, =m/r~0.44 cm™',
x, =135,

Q, = 7.49% 10° sec™",
v, = 1.9X10° sec™’,
L, =306.8 cm,

v,/2, =125,

a=4.5 cm,

L =150 cm,

Q, =2.45%10° sec™’,
vy = 1.03X10® cm/sec,
0, =9.77X107 sec™!,
R =0.305,

(36)

[ O I S T R AT T
0 0.1 0.2 03

g/ oy

FIG. 3. Frequency shift relative to the xenon gyrofrequency versus the xe-
non/argon density ratio. The solid curve is the two-ion hybrid frequency
shift for k; = 0. The other curves are theoretical predictions for finite k,

(see text).
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Here L is the length of the plasma, and L, the ion skin depth.
The value of k,, is computed for an m = 2 azimuthal mode,
as the exciter geometry suggests. The electron collision fre-
quency v, is taken to be the sum of the electron-argon colli-
sion rate v, = 4.2 X 10° sec™ ' at 3 eV and the electron—ion
collision rate v,, = 1.5 10° sec™' at 3 eV and 2.2 10"
cm 3 density.

What is not certain is the value of k, . If one assumes that
the wave has a quarter-wavelength between the conducting
endplates, then k, = 7/2L, and we have

k, =105X10"2 em™', kl/k; = 5.55x107*,
[Re £ {~0.7, |Im{|~1.76,

With these values, solution of Eq. (18) yields the dotted line
on Fig. (3), which is very close to the vertical axis. With
such a large value of k,, electron conduction along B com-
pletely destroys the two-ion hybrid effect, and Eq. (1) is not
even approximately correct.

We have pointed out previously,” however, that ion
sheaths can absorb most of the potential drop at the end-
plates, allowing the wave to have a finite amplitude at the
sheath edge. Normal modes satisfying the sheath boundary
conditions can then have effective wavelengths much longer
than L. A more recent calculation'® exhibited several nor-
mal modes of different symmetry appropriate to single-end-
ed drive. All of these modes have an effective value of k,
given by

(aveL )1/2 4 mo, 1 (KT,)VZ
kz = —_—, a= y Vg =— ’
- L KT 2 \'M,

(38)

in the collision-dominated case. For our experiment, this
yields an order of magnitude reduction in &, :

k, =9.05x10™* cm~}, |Ref|~8, |Im{|~20. (39)

For such large |{ |, Eq. (27) is valid; and using this in Eq.
(18) or using Eq. (32) yields the dashed curve in Fig. 3.
Though that curve is much closer to the data, it is still out-
side the experimental error. More important, it lies far
enough from the k, = 0 curve so that the use of this method
as an impurity diagnostic would entail the difficult evalua-
tion of a finite — k correction.

The dot-dash curve on Fig. 3 is the result of making the
electrostatic assumption, Eq. (22). The apparent agreement
with the electromagnetic solution is fortuitous, as we show in
Fig. 4. Here we have studied the effect of varying v,; and k,
independently, assuming that they are not related by Eq.
(38). It is seen that the electrostatic and electromagnetic
solutions agree only near the actual value of v,, indicated by
the circle. This graph shows the sensitivity of ! — 1 to k,
and that, for k, ~107? cm ™!, agreement with experiment is
achieved only if v, is anomalously large by a factor greater
than 5.

(37)

IV. IMPROVED SHEATH BOUNDARY CONDITIONS

Different types of endplate boundary conditions are
shown in Fig. 5. In (A), the wave has nodes at the endplates
if there is no sheath or a highly conducting (electron-rich)
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FIG. 4. Relative frequency shift at a,/a; = 0.25 versus electron collision
frequency v, for three values of k,. The solid lines are the electromagnetic
dispersion relation, and the dashed lines the electrostatic approximation.

sheath. In (B), a symmetric mode with A, > L can exist if the
sheaths are good enough insulators to absorb the potential
drop; this diagram assumes small or zero Im(k,). In (C),
we show the case Im(k, )>Re(k, ), with the wave excited at
the right and damped as it propagates to the left. Case (B)
was treated previously,”'® and we now adapt the theory to
case (C).

The conditions near an endplate are sketched in Fig. 6.
Let the sheath be ion-rich, so that the potential ¢(2) has the
slope shown and the electrons are repelled by the Coulomb
barrier while the ions are accelerated into the endplate. The
inward particle fluxes are then given by

T, = nv, exp( — ed/kT,) ,

I =nvg,

(40)
(41)

where v, is the random velocity and vy the Bohm (pre-
sheath) velocity given by

v, = (KT,/20m)"/?, (42)
vy ~0.5(KT,/M)"*. (43)

In equilibrium, the plasma potential 4, is fixed by the condi-
tion I'; = I, so that e¢o/KT, =In(v,/vz). We now as-
sume that a wave perturbs the density and potential at the

B—.

P, '

(B) + :

I~ SHEATH EDGE !

2
1 N
: N
© N N
' '
EXCITER

FIG. 5. Schematic of axial wave amplitude variation with different sheath
Jboundary conditions and wave damping.

FIG. 6. Schematic of the potential and particle fluxes near the sheath edge
(dashed line) of a grounded endplate.

sheath edge so that n = ny + n,, ¢ = ¢, + ¢,. These fluctu-
ations will be too fast to affect T";, which is established in the
large presheath region; but I', will fluctuate, causing a net
current through the sheath. Linearizing Eq. (40) about
I',, = nyvy, we obtain

[, =ns(v—x), (44)
where
v=n,/n,, y=e¢ /KT, . (45)

If v, is the perturbation in electron fluid velocity, then T,
corresponds to a velocity v, = + I',;/n,, the top (bottom)
sign referring to the right (left) endplate. Thus, if n,, ¢, at
the sheath edge are given, sheath balance fixes the value of
v,. By identifying this value of v, with the v, of the wave at
that point, we can obtain the effective value of k,.

The electron equation of motion for v, in the absence of
Landau damping is

mn, a;: = en, % — KT, %nz—‘ — mnyv,v, , (46)

ov, KT, ,

o = - (x —v) —v.u, . 47)
From Eq. (44), we have

v, = +vg(v—yx). (48)
Defining

Yy=v—y, (49)

a=mvy /KT, , (50)
we can write Egs. (47) and (48) as

Y oY

gz—iay:ta"e'ﬁ=0- (51)

This is the sheath matching condition for the right and left
endplates, respectively.

Let the sheath edges be atz = Oand L, and let the exciter
be on the left, as in Fig. 5(c). If the driven endplate has
potential @, then the sheath drop is ¢ — ¢, and Eq. (48)
should be replaced by v,= —vs(v—Yx+Y%,)
= —vg (¥ +x,). Using this value in Eq. (47) forz=0
and setting y, = O for the undriven endplate at z = L, we
obtain the boundary conditions

¥ 3

5 95 W) —av.(¥+y,) =0, atz=0,
(52)

W e favy=0, atz=L. (53)

oz ot

The wave variables v and y have the usual exp[i(k,y



+ k,z — wt) ] dependence, but they must satisfy Eqs. (52)
and (53) atz = 0,L. The method of excitation calls for real @
and k, and complex k, of the form

k,=B+ia. (54)
Since the driver is at z = 0, we look for solutions of the form

Y=A(1) + B(t)e  “cosBz. (55)
Let the exciter voltage have the form
Xp—_'Xm COS¢, ¢Ewt_k1y' (56)

The functions 4 (¢) and B(¢), which allow for different time-
varying sheath drops at the two ends, will also vary sinusoi-
dally with ¢, and hence will have the form
A(ty=a,cos ¢ +a,sing,
(57
B(t) =b,cos¢ + b,sing.
Substituting Eqgs. (55) and (57) into (52) and (53) and
equating the coefficients of sin ¢ and cos ¢, we obtain four
simultaneous equations for the constants a,, a,, b,, and b,:

a,+b,+Db +C(a,+b,+%,)=0,
C(az+b2)+Db2"(a1+b1+Xm)=0)

(58)
a,+b,F—Gb,+C(a,+b,F)=0,
C(a, + b,F) — Gby — (a, + b,F) =0.
Here we have introduced the abbreviations
C=v.,/w, D=a/aw,
F=e°LcosBL, (59)

G=(acosfL + BsinBLYe “t/aw .
After some algebra, we obtain the following solution:
a,=D""y,, [CF(D +2G) — G(C+D+G)

+F(1-F)(1+CH],
a,= —D7'y,.(G+DF),
b = —D’_'xm[(C(D-FG) +(1-=F)(1+CH], (60)
b,=D"'y,.(D+G),
D= (D + G)?
+2C1—-FD+G)+ (1 -F*(1+C?Y,

Let the detector be located at z = d, and let F, be defined as
F, = e~ ¥ cos fd The wave amplitude 1 at the detector is
then

¥(d) = (a, + b,F;)cos ¢ + (a, + b,F,)sing, (61)
with the coefficients given by Eq. (60) as functions of w, «,
and .

In general, none of these coefficients vanishes, so that
the simplest mode that satisfies the matching conditions at
both sheaths is, from Eq. (55), a combination of the lowest
k, mode and the k, = 0 mode. The relative amplitudes and
phases of these modes is fixed by the boundary conditions.
Furthermore, for the finite-k, part, both a and S are given as
functions of @ by the dispersion relation of Eq. (34).

V. RESULTS AND DISCUSSION

Our computational procedure is as follows. The experi-
mental conditions specify the parameters given in Eq. (36).
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For each value of a,/a,, a value of Q( = w/Q,) is guessed.
The functions fand g can then by evaluated, and «, is found
from Eq. (34), yielding a and 5. The quantities C, D, F, and
G are then specified by Eq. (59), and then a,, and b, , are
given by Eq. (60) in terms of y,,. Inserting the probe posi-
tion (typically, d =L /2), we can then compute |¢/y,,]|
=N/D as a function of {} and a,/a,.

Figure 7 shows the results for a,/a, = 0.25. The Buchs-
baum resonance frequency 2, for this case is 1.299956. It is
seen that the plasma response |Q2/y,, | peaks immeasurably
close to {1 = §},, in agreement with observations. We now
give a possible physical reason for this. The values of
a =Imk, and B = Re k, are shown for this case as func-
tions of () — 1in Fig. 8. It is seen that the dispersion relation
requires a to be two orders of magnitude larger than £ for
the value of v, that we used. From this it is clear that the
current into the sheath is controlled by the damping length
rather than the wavelength. Because of the relatively large
value of |k, |, this current would be more than the sheath can
conduct unless the oscillation is one that causes very little
parallel current; such an oscillation is precisely the classical
two-ion hybrid at 1 = ,.

The value of v, /w in this experiment was ~2.5. Figure 8
shows that the damping length can be increased two orders
of magnitude before Re (k,) becomes comparable to
Im(k, ), in which case the shift from Q = Q, can become
appreciable, as can be seen from the dashed curve of Fig. 3.
Thus, it is possible to neglect the finite-k, frequency shift
over a large range of collisionalities, and this diagnostic tech-
nique has wide applicability. If v, /w should be much larger
than 1, it would be possible to neglect the time-derivative
terms in Egs. (52) and (53), thus reducing the algebraic
complexity. However, the result would be the same: = Q,
is a good approximation. We have tried other forms for
¥(z,t) in place of Eq. (55), but no simpler form is capable of
satisfying the dispersion relation and both sheath conditions.

In deriving the sheath conditions, Egs. (52) and (53),
we neglected Landau damping and the effect of B, on the

10'3 1 1 1 1 |
0.300 0.301 0.302 0.303 0.304 0.305 0.306

-1

FIG. 7. Normalized wave amplitude |¢/y,, | versus frequency shift @ — 1,
computed for the parameters of the experiment and a,/a, = 0.25.
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FIG. 8. Real and imaginary parts of k, vs 1 — 1 for a,/a, = 0.25.

electron motion. The latter omission is justified, since B,
enters only in Lorentz force, which is perpendicular to v,.
However, in cases where Landau damping is stronger than
collisional damping, the sheath conditions would have to be
recalculated.
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APPENDIX: THE TWO-ION HYBRID WAVE IN AN
INHOMOGENEOUS PLASMA

We make the electrostatic approximation at the outset
and consider an equilibrium with 7; = 0 and a density gradi-
ent that is the same for all species:

O=ngy;/ny; ,

where the prime indicates d /dx. Here Vn, is in the x direc-
tion, By is in the z direction, and K is in the yz plane. Follow-
ing the usual treatment of resistive drift waves,'' we consider
the electrons to be a warm, isothermal, massless fluid with
parallel resistivity 77, described by the equation of motion

en,(—Vé +v,XBy) + KT, Vn, + nie*nv,2=0, (Al)
where
(A2)

In the 7 term, we have neglected the effect of 7, onv,, and of
V. on the parallel electron drag. Linearizing about an equi-
librium with

Ny =mv,/ne’ .

Voo = — Dgby=u,p, (A3)
where Dy, is the Bohm diffusion coefficient

Dy =cKT,/eB,, (A4)
we Fourier analyze and solve Eq. (A1) to obtain

e, =k,Dg(xy —v),

Ve =Dg(y —v)', (A5)

v, =ik,Dyo 1,y —v),
where 77 ' = v,; = v, . Here the density and potential are
normalized as follows:

v=n,/ne. (x), y=e¢,/KT, . (A6)

Substituting into the linearized equation of continuity,

—i(w —k,vp)In, +v,n,

+ ne. (02 + ik,v,, + ik,v,) =0, (A7)
and defining
w,=k,v,, a;=KT,/MQ}
(A8B)

b=klal, o=(k,/k,) 01,9,
we obtain a modified Boltzmann relation between v and y:
v/x = (o, +iboy)/ (@ + iboy) . (A9)
This is the collisional limit of the more general expression
v _ 1+ [+, —0,)/kv,]Z(E)
Y 1+ (iv,/k, vy )Z(£)
which can be found by solving the drift-kinetic equation’?
a 4 E, 3 a
=v, [(ny/ne)fo =11l . (A11)

For each cold-ion species j, the velocity components cor-
responding to Eq. (A5) are

i, =Dglk,x — (0/Q)x'1(1 —?/Q}) ",
vy =D ¥ — (0/Q)k,x] (1 - &*/Q})".

The ion parallel motion v;, can be neglected because of the
small values of k 2/k 2 here. The equation of continuity is

—ion; + v, ng + ny (v, +ik,v,) =0. (A13)

Substituting Eqgs. (AS5), (A7), (Al2), and (A13) into the
quasineutrality condition n, = 2, Z;n; then yields

, (A10)

(A12)

2

a; w -1
v=D i ] — —
”;nf( n})

X{x" +6y — [k2+k,6(Q/0)]x} =0, (Al4)
where the definitions of Eqs. (11) and (A6) have been used.
Equating this value of v to that of Eq. (A10) for electron
motions and defining the acoustic velocities

c3=ZKT,/M,, (A15)

we obtain the following dispersion equation for multispecies
ion hybrid or electrostatic ion-cyclotron waves in a density

gradient ny/ng:

a;ck "ong oy Q ng

E 21 s/ ; X_.+._°X__ky (ky +_.-’__°)]

Jo' = Ly he X w0 Ny
1+ [(@+iv, —0,)/kv,]1Z(§)

1 + (iv,/k,v,)Z()
To make further progress, it is customary to make the “lo-
cal” approximation and set y” = y’ = 0. If we do this and

specialize to the case of two-ion species and collision-domi-
nated electron parallel motion, we obtain

0. (Ale6)

alﬂl (ki + ky591)+ a202 (ki-‘l— ky‘sﬂZ)
o — 0 o o® - 02
_ eB w, +ib0|| (A17)
KT, o+ibo,

When the density gradient is small, the frequency shift
Aw created by the inhomogeneity can be approximated by



expanding Eq. (A17) about the homogeneous-plasma solu-
tion. For the two-ion hybrid root where k 2/k 1 <1, a,<1,
and |AQ| <,, we obtain

Re(Aw)~ — ay(w, /o) (AQ/Q,) (AQ — a,Q2,) ,
(A18)
Im(Aw)~ — 2a,(k 2/k2) [(AQ) /D)o 7, (A19)

where AQ=Q, — Q, and wy = k 3Dy is the frequency for
Bohm diffusion across a perpendicular wavelength. We see
that Aw is extremely small for the experiment in question
because it depends not only on the density gradient but also
on the fractional concentration of the minor species and on
the mass difference between the ion species.
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