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Stimulated Raman scattering of light waves by an underdense plasma is affected by the
presence of a density ripple caused by a simultaneously occurring stimulated Brillouin
instability. The problem is treated kinetically for the particularly interesting case where the
ripple has nearly the same wavelength as the plasma wave. The ripple is found to reduce the
growth rate of the usual Raman instability but allows other decay modes to occur. Numerical
results for the frequencies, growth rates, and k spectra of these modes are obtained. A physical
explanation is given for a baffling result of the calculation. The physical picture is also of

interest to particle acceleration by plasma waves.

I. INTRODUCTION

The stimulated Raman scattering (SRS) instability, in
which a light wave decays into a red-shifted light wave and
an electron plasma wave, has been under intense study’ be-
cause of its potential for fuel preheat in laser fusion targets.
Indeed, SRS has been identified in solid-target experiments
with both 1 and 0.5 um light,2 and even with wavelengths as
short as 0.35 um.’ Since the threshold for exciting ion acous-
tic waves via stimulated Brillouin scattering (SBS) is gener-
ally lower than for SRS, the interference between these insta-
bilities can alter their thresholds. The presence of SBS
during SRS experiments has been confirmed by several
groups using underdense plasma targets.*~® In a more recent
application, laser excitation of plasma waves has been pro-
posed as a new way to make particle accelerators.” In experi-
ments testing this concept,® SRS and SBS are both found to
occur.

Since a plasma wave is sensitive to density variations,
which change the plasma frequency w, = (4rnye’/m)'’?,
the existence of a density ripple in the form of an ion wave
excited by SBS could greatly affect the SRS mechanism. One
can foresee two competing effects: (1) The density modula-
tion could generate shorter wavelength harmonics, which
lead to enhanced Landau damping; and (2) the partial or
complete reflection of plasma waves at the density maxima
could lead to decreased convective losses or absolute insta-
bility. We shall find that both of these effects occur and are
linked in a complicated way.

Let the undepleted pump wave (w,, k,) be of the form
E =2E, cos(k, — wyt) and decay into a scattered wave
(w,,k,) and a plasma wave (®,k) that follow the respective
dispersion relations

w, = o) (x) + ki, (D

* =l (x) + 3k 272, (2)
and the w- and k-matching conditions

wy =0, +w, ky=k, +k 3)

where v2 = KT,/m = A ). We neglect pump depletion
and assume w, €@, so that Egs. (1)~(3) imply that k =2k,
for direct backscattering, and that the variation in k, can be
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neglected. Let the density be simusoidally modulated so that
wl(x) = k(1 + €cos k'x). (4)

Consider first the case where the ripple is caused by the

plasma production process; for instance, by gaps in the mag-
netic field coils. Then k' <k and k(x) changes slowly inside
the ripple. If € < 3k, 4 ,, the thermal term in Eq. (2) can
accommodate the change in w} by a variation in &. The plas-
ma wave becomes nonsinusoidal and develops spatial har-
monics that change the Landau damping. If e > 3k24 %, on
the other hand, Eq. (2) requires k to become imaginary at
the density maxima, and the plasma wave will be trapped in
the density troughs. Moreover, the wave is not excited over
the entire trapping distance. In a plasma with a parabolic
profile ngoc 1 + x*/L 2, for instance, the phase mismatch
caused by achange in k in Eq. (3) grows to the order of mina
distance® L, = (18kA L, L 2)"/3, while the wave is trapped in
a length L,=12"2kA,L,. Thus the ratio L,/L, is
=(k?ApL,)~ '3, which is usually small (=10% for L,
= 1-10 cm and unrippled kA, =0.1). The wave is excited
only near the density minima and coasts to its reflection
point. This physical situation could lead to absolute instabil-
ity, but of a different nature from those previously consid-
ered, where the trapping of wave energy comes from partial
reflection at plasma boundaries. '°

This paper, however, emphasizes the special case k ' =k,
since the SBS ion wave and the SRS plasma wave both have
k =2k, in underdense backscattering. Specifically, we may
neglect the difference between k' and 2k, (because the ion
wave is of such low frequency) and calculate & from Egs.
(1)-(3), obtaining

k—2ky= —w,/c= —ko(n/n)""% (5)

The wavenumber difference is small but essential. Since the
plasma wave has nearly the same wavelength as the density
ripple, spatial harmonics are readily excited, and there is
considerable tunneling through the reflection points even if
is large. Similar problems have been treated previously by
several authors. Kaw, Lin, and Dawson!! were the first to
treat the mode-coupling problem in this connection; they
used a fluid formulation and did not consider the effect of a
pump. Nicholson'? also employed a fluid treatment but as-
sumed that the group velocity directions were given, thus
leaving out mode coupling. Rozmus et al.'? treated the prob-
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lem kinetically, but in emphasizing turbulent rather than
coherent fluctuations did not consider the interesting mode-
coupling effects discussed here.

We first give a fluid treatment in order to bring out the
physical effects; then, in Sec. ITI, we give the kinetic formula-
tion on which the computations are based. The final sections
concern the physical interpretation of the results.

. FLUID THEORY

The coupled mode equations describing stimulated Ra-
man scattering in one dimension are'*

2 2
(&5 +wpen — 32 9 L) m=n S ww, (®)
® ox

PR x>
2 2
((%er (x) —c gx—)v = —vwln,/ng, 7

where v, and v, are the quiver velocities v, , = eE, . /mw, in
the pump and scattered waves, respectively; n, is the density
perturbation of the plasma wave; and w;, is the square of the
spatially varying plasma frequency, > (x) = 4re’n,(x)/m.
We consider a density ripple of the form

no(x) = Ny(1 + € cos 2kyx). (8)
Assuming n, x exp( — iwt) and v, <exp i(k,x — w,t) and
neglecting the variation of w, in Eq. (7), we may solve Eq.

(7) for v, and substitute into Eq. (6), keeping only the low-
frequency part of vyv,. The result is Mathieu’s equation

Z“: + (a—2gcos2z)y=0, (9
where
z=kyx, y=n,/N,, (10)
a=(® — &})/(3k{vl + A?), (11)
g=(€w}/2)/(3k v} + A?), (12)
A= (kiviel)/ (@) — o) — kic?), (13)
w}=4re’Ny/m. (14)

The quantity A is a small frequency shift as a result of pon-
deromotive force; except for this, Egs. (9)-(14) are the
same as what Kaw et al.'! previously analyzed. The param-
eter g separates the cases of wave trapping or no wave trap-
ping, as explained in Sec. I, the critical ripple size being given
byg=1when A =0.

In an infinite plasma, the solutions of Eq. (9) must have
the same period as cos 2z, and the conditions for periodicity
determine the eigenvalues a(g), which specify the eigenfre-
quencies w. The standard solutions, or Mathieu functions, 15
have series expressions for either large g or small ¢, and the
behavior for intermediate ¢ has been studied numerically.
The physical situation is simpler than the mathematical one.
When g is small, the spatial harmonics are weakly coupled,
and the series can obviously be truncated. When g is large, an
infinite number of harmonics can be important in principle,
but in practice a natural truncation occurs because of Lan-
dau damping.

The nature of plasma waves in a rippled medium can be
seen by considering the undriven case A =0 in the limit
g<l,ore<6kii}. Let
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yzzykei(xzﬁwl) (15)

and substitute into Eq. (9). Equating the coefficients of
terms with the same periodicity yields the recursion relation

(@ =K =q( Pz +Ves2) (16)
for the Fourier amplitudes y,. Since k =2k, for the SRS-
driven waves, the uncoupled value of k is =2 and of g is =4.
More exactly, let the driven mode have kx = k=2 - §,
where, from Eq. (5),

8=w,/cky<2. (17)

This “red shift” is caused by the frequency difference
between the SRS-driven plasma waves and the SBS-driven
ion waves. Successively setting « equal to ¥ — 2, k, Kk — 4,
K+ 2,andx — 6 (orc=0, + 2, + 4) in Eq. (16), we obtain
a set of five simultaneous equations

(@—8y,=q(y+y_2), (18)
la—(2—=86)’1y,=q(yo+14), (19)
la—Q2+8ly =q(yo+y_4), (20)
la—(4—=8)1pa=q(y,+ ), (21)
[a—(4+8)ly_s=q(y_,+v_¢)- (22)

We truncate by setting y , ¢ = 0, thus closing the system,
and further neglect the underlined terms é, since a=4.The
system becomes

ayo=q(y, +¥y_3), (23)
[a—(2—=8)1y,=q(yo+r0), (24)
la—Q2+8)ly 2=q(yo+y_a), (25)
(a—16)y, = qp,, (26)
(a—16)y_,=qy_,. (27)

First, consider the case of a resonant ripple, § = 0. The
determinantal equation that ensures the solubility of this set
of five homogeneous equations yields a fifth-order equation
fora(q):

[(@a—4)(@a—16) —g¢’][a(a —4)(a—16)

—¢*(3a—32)] =0. (28)
By substituting y, = + y_, into Egs. (23)~(27), it is easily
seen that the vanishing of the first and second brackets in Eq.
(28) corresponds to odd (¥, = —y_,, y, =0) and even
(¥2 = _2 yo#0) solutions, respectively. Since ¢° is small,
odd solutions occur for =4 and a=16. The eigenvalue of
importance to us is @ =4:

(se,):a=4—¢/12 (w=w0,). (29)

This is recognized as the value of g, correct to order ¢°, for
the Mathieu function se, =sin2z — (¢/12)sin4z 4 ---
From the second bracket, we see that even solutions occur
fora =0, 4, and 16. The eigenvalue near a = 4 is

(cer):a=4+ 54 (0=0,), (30)
which corresponds to the Mathieu function
(g/12)(cos 4z —3) + ---
The eigenvalue near a = 0 will also be of importance to us:
(0 = w,). 31

ce, = cos 2z —

(cep):a= —ig°
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Thus, we see that the ripple splits the original frequency into
one (w,) which is lower, and another (w,) which is higher;
and in addition introduces a new low frequency (w,), as well
as harmonics with a =16, which are not as important.

We now consider a ripple that is nearly resonant with
the plasma wavelength but not exactly so. Equations (23)-
(27) are to be solved with 0 < |§| 2. Eliminating y , , and
Yo and letting @ =4 in small terms containing ¢°, we obtain
two equations for y, and y_,, whose determinant yields

. 2 2 4
(a-c-o-L)e-e+o-L)=L. @
With the definition

R=¢%/166, (33)
the solutions to Eq. (32) can be written simply as
a, =4+ 8 +¢/6+45(1 +R»)' (34)

These eigenvalues correspond to w = w, and @ = w,; w, has
been neglected in taking a=4. The actual frequencies are
found from Eq. (11):

w5, =) +3k{via, . (35)

The frequency splitting apparently depends on the ratio
R between the effects of ripple size and wavelength mis-
match. To estimate this ratio for A = 0, we find from Egs.
(12) and (17)

q = (e/6)(c*/v2)(n/n,), (36)

R = (¢*/16)(n /n)"2. (37)
For typical gas-target experiments where n/n.=v,/c=€
=1072, we have g=0.17 and R =0.017, so that both ¢*> and
R are small. For solid-target experiments, however, typical
values are n/n, =€=10"", v, /¢=0.03, giving g = 1.85 and
R = 0.68. In this case g and R are so large that numerical
solution is required.

For later use in Sec. IV, we compute the Fourier ampli-

tudes y , , for the eigenmodes w, and w,. Eliminating y , ,
from Egs. (23)—(27) yields

@o=1la—(2-8)+4¢*/12),

=a—2+8)>+¢/12)y_,. (38)
Substituting a from Eq. (34) gives
24y1/2
Y2 14 (1+R") [‘Ul}. (39)
%) R @2

For sufficiently large ripple, Ris >l and y_, = + y,; we
have standing waves as expected. However, if R is small, Eq.
(39) gives
o PRV LI
v, L+2/Rl lw,)”
which shows that the normal modes are primarily traveling
waves. In SRS, y, is the driven component at k =2k, while
Y_, is a backward wave with k= — 2k, excited by mode
coupling through the idler at k=0. For small R, Eq. (40)
shows that the lower-frequency root w; has |y _,| €|y,|, so
that it appears to be the original plasma wave, modified by
the ripple. The higher-frequency root ,, on the other hand,

has |y_,|> |y,|, and so must be a new wave excited only in
the presence of a ripple.

(40)
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That the higher-frequency mode w, should always be
traveling in the — k,direction seems unreasonable, since the
excitation term A has been neglected in the derivation of Eq.
(40), and we could have considered y_, to be the driven
component. Symmetry is restored when we consider that §
was implicitly taken as positive, meaning that the driven
mode has a |k | smaller than |2k,|. If the sign of § is reversed,
we see from Eqs. (23)—(27) that the roles of y, and y_,
would also be reversed. Thus, whether the new mode that
arises from mode coupling has higher or lower frequency
than the driven wave depends on whether the driven wave
has longer or shorter wavelength than the ripple.

We next add the ponderomotive drive A? to calculate
the growth rates. Equation (32) is correct whether or not the
quantity a is defined with a term A% In adding A?, however,
we must not add it to all members of the set of Egs. (23)-
(27), but only to the equation for the mode that is resonant
with the drive. If we assume that SRS is set up to drive only
the mode k= + 2k, then A? should appear in the definition
of a and g only in Eq. (24). Equation (32) is then modified
to read

2 3
oo -t -850

16
41
where (41)
. o’ — o) .= €w;
2,2 2,27
3kv; 6k Sv2 (42)
=)
= 1 + .
q, q 3k 2v?
Using Eq. (13), we can write a, and g, as
a,=a/(14+d), q,=q/(1+4d), (43)
where, ford <1,
2 2
g=l® @ )
30 0 -0l — ki
Since this term will make @ complex, let
0, =0, +iy, . (45)

SRS can now drive either of these modes, giving two scat-
tered frequencies w,:

(46)

Assuming that the real part of w, is frequency matched, we
obtain

W, =Wy — O, =Wy— Wy, — Iy, .

. 2 2
d=LY%_ % (47)
6 v§ woyi

Since w, , are the roots of Eq. (32), that equation can be
written

(3k20?) "X (@? — 0}) (0 — @}) = 0. (48)

Equation (41) is the same equation with an added term in d,
s0 it can be written

3kiv?) " Ho* — 0? ) (0 —wi) —d(2 —6)°
X[a—(2+8)*—¢*/6] =0. (49)

Replacing a by the expression in Eq. (34) and combining
with Eq. (47) for d, we obtain
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(0 — 07) (0% — o)) =24i(k3v2) (k3v3) (@28/wpy . )
' X[ =1+ (1 +R)]. (50)

For the root w =w,, we take the + signs, and the left-hand
side becomes = — 2iw,y, (w3 — @? ). Equations (34) and
(35) give

@3 — ) =3kiv2-86(1 + R?)"/2 (51)
Inserting into Eq. (50), we obtain

(@): ¥, =451 — (1+ R, (52)
where

Vo= (vo/¢) (0, )'"* (53)

is the SRS homogeneous growth rate in the absence of rip-
ple." Similarly, for the » =, mode we obtain

(@): Y. =31+ (1 +R?H]V2 (54)

Thus, as the ripple size g, and hence R, is reduced, the origi-
nal mode w, grows at the usual rate y,, while the ripple-
generated mode w, approaches zero growth rate. When R is
sufficiently large, both modes grow at the same rate

Y =Yo/\2.

To solve for the growth rate of the mode w,(a=0), we
must go back to Eqs. (18)—-(22), which do not assume a =4.
For this mode, we may neglect y ,_, and also & relative to 2.
Equations (18)-(20) then give

(@—8Vpo=q(y,+y_5), (55)

(@, =y, =4q,p0, (@a—4)y_;=qp, (56)

where 2, and a are given by Eq. (42) if the pump is still &
matched to the k=2k, mode. These give

a=28 +4qlg,/(a, —4) +q/(a—4)). (57)
When there is no pump, we may set @, = a =0 and obtain
(58)

in agreement with Eq. (31) for § = 0. The frequency is
therefore given by

w3 = 0} + 3kjv2 (8 —

0262_5q2

19°). (59)
In the presence of excitation, we assume that a scattered
frequency o, = @, — w, is produced, whereupon Egs. (43)
and (47) for d are still valid. Using this in Eq. (57) and
proceeding as before, we obtain

V3= (g/4)y,. (60)

This mode has a smaller intrinsic growth rate than w, or w,
but may be important when damping is included because of
the lack of Landau damping on such a long-wavelength
mode.

lll. KINETIC CALCULATIONS

To treat the natural truncation of the system of harmon-
ics, we now reformulate the problem kinetically to include
Landau damping. The electrons are described by Vlasov’s
equation

f af ( 1 d(x, t)) ar
+ v E(x,t =0, (61

at ox (%8) + dx dv (6h)
where [ = f(x,v,t) is the one-dxmensxonal electron distribu-
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tion function and ¥ (x,?) is the ponderomotive potential. The
equilibrium distribution is taken to be

So(x,0) = no(x)Fy (v), (62)

where F, (v)is a Maxwellian, and n,(x) is given by Eq. (8).
The small electric field of the ion wave is small and static and
can be ignored. Linearization of Eq. (61) yields

Lol (Lp+ L i) (69
Fourier analyzing in time and space, we obtain
Silky,w) = [ileNy/m(w — kv) 1F} () [a(k,w)
+ lea(k + 2kgpw) + lea(k — 2ko,w)], (64)
where
a(kw)=(e/m)E(kw) + (tk /m)y(kw). (65)

Integration over v yields
ny(kw) = (ik /4me)y (kw)[a(kw) + lea(k + 2kow)

+ lea(k — 2kgw)], (66)
where y (k,w) is the usual electron susceptibility
o} Fi ) 1
kw)= ——2 |do—M— = Z'($). (67)
x (o) PEN R wr 2¢

Here Z(4) is the Fried—Conte function'® and ¢ is w/kv, 2.
Combining Eq. (66) with Poisson’s equation, we obtain
(1 + Vylkw)E(kw) + (ik /o)y (ko)

= (e/2) [E(k + 2%ko0) + E(k — 2kp0)

+ (k + 2ky) (i/e) ¥k + 2kp0)

+ (k — 2kg) (i/e)(k — 2kpo) ]. (68)

The ponderomotive potential ¥(k,w) at the plasma
wave frequency arises from the beat between E, and E, We
assume that these waves are not affected the ripple, since a)
is asmall term in their dispersion relation, Eq. (1), as long as
n<n,. Thescattered wave is described by Eq. (7), which can
be written as

D(k,,0)E(k,w,) = — (0} /Ny)n,(k,o)E,, (69)
where

k., =k—k, o, =0-o0,
and

D(k,0,) = ki — ol + o] (70)

With an incident field E, = 2E% cos(kox — w,t), the pon-
deromotive potential can be written

Y(kw) = (/mw})EE(k,,»,)
= ieV3kE(kw)/D(k,w,).
Using this in Eq. (68), we finally obtain

k v} )
— E(kw)
D(k,,w,)

(71)

1
1+
( X (k)
= —%[E(k+2k0,w)(l -

(k + 2ky)%0? )
D(k + kpw — w,)

(k — 2ky) W2 )]
D(k — 3kpw — wy) /1

H. C.Barrand F. F. Chen
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FIG. 1. (a) Frequencies w and (b)
growth rates y of the original mode
@, and ripple-generated modes w,
and w,, as functions of ripple ampli-
tude g.
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This is the analog of the fluid equation (16) and is the
primary result of this paper. It represents an infinite set of
homogeneous difference equations whose solution yields an
infinite set of eigenfrequencies. In practice, only a few
members of this set are important. If € is small, we can trun-
cate as in Sec. II to obtain solutions correct to any specified
power of ¢. If ¢ > 1, mode coupling is strong, but a natural
truncation occurs because large-k modes have kAp > 1 and
are heavily damped. The pump-dependent terms on the
right-hand side of Eq. (72) represent the beat of ¢ (k,w) with
the ripple at (0, 2k,). They are significant only when the
denominators are resonant, and they are small enough to be
neglected even then, just as we neglected A% in Eq. (12) forg.
As it stands, Eq. (72) describes both Raman backscattering
(k=2k,) and forward scattering (k=w,/c). The fluid
equations of Sec. II can easily be recovered by expanding the
Z function for | > 1.

The system of Egs. (72) has been solved numerically for
parameters typical of a gas—target experiment: v,/c = 0.003
(Ao = 10.6 um, I, = 4.8 10" W/cm?), v,/c = 0.01 (T,
=52eV),and n/n,. = 0.01 (rn, = 10”7 cm™?). Then 2k A
=0.2 and ¢ = 17¢. The maximum homogeneous growth
rate is y,/w, = 107>, Figure 1 shows the frequencies and
growth rates of the three fastest growing modes v, @,, @5, as
described in Sec. II, as functions of ¢. Figure 1(a) shows a
weaker frequency dependence than anticipated from fluid
theory. This is easily explained by the fact that damping
reduces the coupling into neighboring modes, and hence
larger q is required for a given frequency shift.

Figure 1(b) shows the same qualitative behavior as ex-
pected from fluid theory, with the ¥ of the mode w, decreas-
ing and that of the modes », and @, increasing with increas-
ing ripple amplitude. At large g, modes », and w, were

predicted to saturate at ¥ = y,/y2=0.67w,; in fact they sat-

1047/ 0,

Wa

.06

FIG. 2. Frequency “spectra” of the w,
and w, modes for various ripple ampli-
tudes €.

12 4
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FIG. 3. The k spectra of the v, w,,
and w, modes, computed for two val-
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N
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urate at a lower level as a result of the inclusion of damping.
The mode w, is potentially the most dangerous. Not only
does its fluid growth rate increase with g, but also its large
phase velocity guarantees a very small level of Landau
damping. We shall return to this mode later. Note that the
phenomena shown here depend on ¢, and not on v,/c. In-
creasing v,/c would only change the scale of Fig. 1(b) by
increasing y,. Though the range of ¢ shown in Fig. 1 is unre-
alistically large for experiments where € < 10%, this range
was computed to bring out the asymptotic behavior and
could actually be approached in experiments where nearly
100% Brillouin backscattering is seen.

Figure 2 is a more detailed plot of growth rate versus
frequency for the w, and v, modes, showing how the w, peak
increases at the expense of the w, peak as the ripple € in-
creases. Figure 3 shows the k spectrum of the w,, @,, and w,
modes for two ripple sizes. In fluid theory, one would substi-
tute each eigenvalue of a into Eqs. (18)-(22) and solve for
the Fourier components y,, y , ,, and y , 4. The kinetic cal-
culation of Fig. 3 did not require artificial truncation of the
system; and the higher-k modes are naturally suppressed by
Landau damping.

In Fig. 3, one sees that the original mode w, has as its
largest component the one usually associated with back-
scattering: x = 2 or k = 2k,. The w, mode, however, is domi-
nated by the X = — 2 component, which has to be generated
by mode coupling through the idler at k =0, which has lower
amplitude. This strange behavior is explained in Sec. IV. The
main component of the w; mode is seen to be k =0, as expect-
ed. From Eq. (59) we see that, for small g, the effective value
of |k | is k,6, which, from Eq. (17),is |k | =w, /c. This means
that the phase velocity is =c, as in forward Raman scatter-
ing; and electrons trapped and accelerated in this wave can
give rise to a “superhot” distribution. The growth rate for
forward Raman is y = (@, /w,) /*¥,/2. For the parameters
of our calculation, ¥, exceeds y for ¢ > 0.67, € > 0.04, which
is easily achieved. The only difference is that the superhot
electrons produced by the ; mode, as it turns out, are in the

— k, direction, back toward the laser.
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@

H ues of the ripple amplitude €.
8

IV. WAVEFORMS AND PARTICLE ACCELERATION

In Sec. III, we found the amazing result that the new
frequency w,, generated by mode coupling from the driven
mode at (@, 2k,), has a k spectrum that is dominated not by
the driven component at k = 2k, nor by the idler at k=0
through which the energy must flow, but by a backward
component at k = — 2k,. To understand why this is so, we
first consider the nature of the normal Mathieu functions.

Figure 4(a) shows a plot of the function which, accord-
ing to Eq. (30), describes the density perturbation of a plas-
ma wave satisfying the rippled-plasma equation, Eq. (9):

(73)

& RS

”

y' = — (a — 2gcos 2z)y.

1.0

051

0.0

q=15

-10F (a)

1.0
sey (b)

05 )
sin

0.0 + } ¢ + } +
180° 270 360

-0.5}

-1.0

FIG. 4. Waveform of a resonant plasma wave in a rippled density n,(z) for
(a) the even mode and (b) the odd mode, as compared with cosine and sine
waves. The ripple follows the cosine curve.
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In this case, the plasma wave has the same periodicity as the
density ripple, which is also shown on Fig. 4(a). If g were 0,
the curvature y” would be — ap, as in a sine wave. The ¢
term causes the curvature to be larger than usual where
cos 2z is negative and smaller where cos 2z is positive. This
causes the waveform to be flattened at the top and sharpened
at the bottom. The result is that the amplitude is large over a
large region near the peaks of n,(z), and is large over only a
small part of the region near the troughs of n,(z). Conse-
quently, the average w, “seen” by the perturbation is larger
than in a uniform plasma. This gives the mode a frequency
[Eq. (30)] higher than the Bohm~Gross frequency for zero
ripple. Similarly, Fig. 4(b) shows the odd mode se,, which
has its curvature modified by Eq. (73) in such a way that the
skewed sine wave has large amplitude near the minima of
no(2). Thus the frequency of this mode [ (Eq. 29)] is lower
than for ¢ = 0. These waveforms can be decomposed into
spatial harmonics which are phase locked to each other and
to the ripple.

Now when the plasma wave has a slightly different
wavelength than the ripple, it would appear that the wave
cannot be phase locked to the ripple, and that therefore the
wave must, on the average, feel the average density. To show
that this is not necessarily so, consider the harmonics Yo
Y., andy  , as given by the truncated set, Egs. (23) and
(24). Defining

B, =y /y2=[1x(1+R?'I/R, (74)
we see that 3, corresponds to the higher frequency wave w,
and B_ to the lower frequency wave w,. In terms of 3, Egs.
(23), (26), and (27) give

Yoa _

Yo _ 4 Y4 q q
_ 1 , -1 = ——2_fB. (75
=2 (I1+5) 12[3 (75)

V2 V2 12 V2
The p, component has « = 2 — 8, and therefore it varies as
exp i{(2 — 8)z — wt ]. The other components have argu-
ments differing by exactly + 2z. We normalize toy, = 1 and

define
6 = wt + 6z. (76)

Adding the components together according to Egs. (74) and
(75) and taking the real part, we obtain

y=rcos(8 —2z) + fcos(8 + 2z) + (g/4)(1 + B)cos &
— (g/12)cos{8 — 4z) — (q/12)B cos(6 + 4z). (77)

For our purposes here it will be sufficient to keep only the
first three terms. From Eq. (74), we see that, when R is
small, B, is > 1 while S_ is < 1. Separating out the standing
wave component in Eq. (77) according to the size of 3, we
obtain for the two modes

(@)): y=(1 —_)cos(6 — 2z)

(n
+ [2B_cos 2z + (g/4) (1 + B_)]cos 6,
(2) (3) (78)
(03): y= (B, — Dcos(8 + 2z)
(1)
+[2cos2z+ (g/4)(1 + B, )]cos 0. (79)
(2) (3)
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FIG. 5. Waveform of n,(z) and the low-frequency plasma wave o, in the
nearly resonant case. The value of ¢ has been exaggerated (see the text).

We see that each wave has (1) a traveling wave component,
(2) a standing wave component, and (3) a time-varying
base line shift which changes only slowly with z as a result of
the term 6z in 6.

Equation (77) for the w, and w, modes is plotted in
Figs. 5 and 6, respectively, together with the ripple n,(z),
over two cycles in the phase 2z and one cycle in the phase

E \/R%[

- =R

180 I‘////////////‘

225 Wm
N

315

~\_/
AN/

B=187 _\ /.
/

360

FIG. 6. Same as Fig. 5, but for the high-frequency wave w,.
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6 =wt. For clarity, the large value ¢ = 2 was chosen; but the
formulas are based on small ¢, and the actual waveforms for
g = 2 will be somewhat different. In Fig. 5, we see a traveling
wave moving to the right, as predicted by the term (1) in Eq.
(78). The y _, components cause the waveform to be dis-
torted and the peaks to move nonuniformily to the right.
Since the ripple is nonresonant, the wave peaks must pass
regions where n, is large as well as where it is small. How-
ever, the standing wave component of term (2) in Eq. (78)
causes the total wave amplitude to be small whenever the
wave maximum or minimum passes the peaks in n,. Thus,
the average density seen by the wave is lower than usual, and
w7 is less than w2, + 3k *vZ. The base line shift, term (3) in
Eq. (78), canbe seen in Fig. 5 but does not play a large role in
the frequency reduction.

For the w, mode, the average density seen by the wave
must be higher than normal. The way this is accomplished is
shown in Fig. 6. There is a backward traveling wave, corre-
sponding to term (1) in Eq. (79), and a standing wave, term
(2), causing the entire wave to have a small amplitude at
6=90° and 270°. However, the dominant effect here is the
base line shift, term (3), which ensures that the wave ampli-
tude is large whenever the maximum or minimum of n,/n,
passes the peaks in #1,. This causes a larger than normal effec-
tivew,.

The base line shift actually changes in space as a result of
the 6z term in 6. To see this, we need only to repeat the
patterns of Fig. 6 over distances z of order 1/8, advancing the
value of 8 with wt constant. Such a waveform is shown in
Fig. 7. The envelope of potential oscillations is seen to have
deep minima, which could be called “‘superwells.” Particle
acceleration can be seen from the potential wells shown
shaded in Figs. 5 and 6. The low-frequency mode w, traps
electrons and accelerates them forward, in the direction k,,.
The high-frequency mode, on the other hand, accelerates
electrons backward, in the direction of — k,. Electrons
trapped in this mode, however, can be detrapped by the slow
change in the wave envelope, as shown in Fig. 7. Those that

wt=0
2k, —
—
TS wt = 45° 1T

FIG. 7. Waveform of the mode w, over a k-mismatch distance.
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are spilled out can still be trapped in the superwell formed by
the envelope. The superwell travels with a velocity o, /k=c
in the backward direction and can give rise to superhot elec-
trons traveling opposite to k,. The injection of electrons of
sufficient energy to be trapped by the fast-moving superwell
can be accomplished by preliminary acceleration in the
slow-moving individual potential wells.

The relation among the Fourier components y, y , 5,
and y _ , is therefore rigorously determined by the need to
generate traveling waves, standing waves, and baseline shifts
in the right proportion to allow the wave to “‘see” smaller or
larger than average density, thus causing the frequency split-
ting to @, and w,. In particular, the mode w, must have a
large component k= — 2k, in order to achieve its high fre-
quency. It does not matter which k component of w, is excit-
ed; the k spectrum for the eigenmode is determined by the &
mismatch.

From Fig. 7 it is clear that the wave has two periodici-
ties, one with |k | = (2 — 8)k, and the other with |k | =6k,
The beat between these satisfies the Floquet condition that a
solution of Eq. (9) must be of the form y = ¢"*P(z), where
P(z) has period 7. Specifically, we can rewrite Eq. (77) as

y = Y(z2)e"*® cos{wt — (2 — 8)z], (80)
where
Y(z) = D sec ¢, (81)
tan ¢ = N /D, (82)

N:(—Z- (148) +%)smzz+ﬁsm4z—%ﬁsm 62,
(83)
D=1 +(—Z—(l + ) —~—Iq-2—>c0522+/3’cos4z

q
— —— [ cos 6z. 84
2 B (84)
It is clear that P(z) = Y(z)e*'® has period 7.
Finally, the nature of the mode w, can be seen from Egs.
(55) and (56), which give

Yo/v.= —4/q, y /y,=1 (85)

Thus, the mode consists of a standing wave and a large base-
line shift, which combine to cause the wave amplitude to be
large where n, is small. Thus w; falls below o ,,. The baseline
shift is actually a long wavelength mode with
k= — 8ky= — w,/c, and as such can accelerate superhot
electrons in the backward direction. Since all three modes
discussed here can occur simultaneously, we emphasize
again that preacceleration in one of the slow waves can cause
electrons to be more easily trapped in a fast-moving potential
well.

V. SUMMARY

We have examined the excitation of plasma waves in a
rippled density profile, paying special attention to the case
arising in simultaneous Brillouin and Raman scattering
where the ripple has a slightly shorter wavelength than the
plasma waves. The problem is treated kinetically so that the
infinite series of harmonics that arises from mode coupling is
naturally truncated by Landau damping. The physical pro-
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cesses are made clear by a detailed fluid treatment, which
shows that the usual SRS growth rate is reduced by the rip-
ple, but that energy now goes into exciting two new modes.
Kinetic calculations give the frequencies, growth rates, and
k spectra of the three dominant modes for different ripple
sizes. The new modes are found to propagate primarily in the
opposite direction to the originally excited plasma wave. A
study of the waveforms clarifies the physical reasons for this.
Electrons trapped in these waves can be accelerated, either
undesirably, as in laser fusion, or purposefully, as in plasma
accelerators. The ripple causes electron acceleration to oc-
cur in both forward and backward directions, and in addi-
tion can produce electrons in the backward direction of the
same ultrahigh energy as is associated with forward Raman
scattering.
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