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Abstract

A magnetically confined plasma subject to a highly sheared electric
field is found to be unstable to flute modes, even in the absence of
collisions. Analysis of the instability is made without recourse to any
assumption regarding the smallness of the ion gyroradius relative to the
electric field shear length. The shape of the unstable mode is found by
integrating over a plane slab. The perturbation tends, surprisingly, to
peak near the “outside” of the plasma, where the density is low.
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I. Introduction

It is well known from the work of Simon [1] and Hoh [2] that a magnetized plasma in a
transverse electric field suffers from a flute instability in the presence of ion-neutral collisions.
The E x B drift of the ions is slowed down by neutral drag more than the electrons are, and
the resulting charge separation when there is a density perturbation causes the perturbation
to grow when the density and potential gradients are oppositely directed. This instability
is normally observed in reflex discharges, and indeed is needed for the flow of the discharge
current across the magnetic field. In a recent experiment by Sakawa [3], a similar instability
was observed in a beam-generated plasma at such low pressures and weak magnetic fields that
the Simon-Hoh mechanism could not have been operative. At the same time, the observed
frequency was an order of magnitude smaller than both the E x B and diamagnetic drift
frequencies, and was furthermore larger than the ion cyclotron frequency, thus eliminating
all drift-wave mechanisms.

When the magnetic field is so weak that the plasma radius is much smaller than the
ions’ Larmor radii, but much larger than the electron Larmor radius, an E x B instability
can occur even in a collisionless plasma because the ion and electron fluids drift around the
cylindrical axis at different speeds. Because of the large ion orbits, small Larmor radius
expansions fail, and the equilibrium is difficult to describe. By using model profiles for the
potential and electric field distributions, we have been able to produce self-consistent profiles
for the plasma density and ion drift velocity in both slab and cylindrical geometries. These
results were given previously [4]; in this paper we present computations of the threshold and
growth rate of the instability for the plane geometry case.

An instability of this type should be operative in the edge layer of an H-mode discharge
in a tokamak, where the electric field is sharply sheared on a scale not much larger than an
ion Larmor radius. The stability that is observed instead is not well understood, but may
be related to the ion and electron drift profiles and their derivatives. The purpose of this
paper is to suggest basic experiments on edge-layer instabilities which can be analyzed with
self-consistently computed shear profiles.



II. Equilibrium profiles

Consider a slab of plasma —L < z < L, as shown in Fig. 1. In the presence of a magnetic
field Bz, a potential ¢(z) which increases monotonically with = will cause electrons to
E x B drift in the +y direction. The ions are assumed to be weakly magnetized, so that
they move primarily in the —z direction, but with a small but important velocity component
in the y direction because of the curvature of their orbits. We assume an electric field of

the form
E = —(N/L)¢osech®*¢éx (1)
which is derived from a potential of the form
¢ = ¢otanh{ , (2)
where
& = Nz/L . (3)

By adjusting the parameter N, the sharpness of the E profile can be changed. The com-
putations given here are for N = 2.
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Figure 1: Diagram of the geometry assumed.

We postulate that ions are created at zero velocity by an unspecified mechanism at a
rate S(z), and that they are lost by ambipolar flow along the magnetic field to the ends of
the plasma. The electrons form a neutralizing background with temperature 7. Once the
source function S(z) and the electric field profile have been chosen, the plasma density is
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uniquely determined. Consider an ion at position z which was born at position o, > x. Its
total energy is given the potential drop between z and zg; thus,

v’(€, &) = (2e¢o/M) (tanh & — tanh¢) . (4)
The Lorentz force causes an acceleration in the y direction, given by
dvy,  dv, _
@ d T T (5)
so that
vy(é, &) = (L/N)Q(&—€) - (6)
The z component of velocity is then given by
vi(€ &) = v*—v) = (2e4/M)(tanh§o — tanh§) — (LQ/N) (-6 . (7)

For ion confinement times much longer than their transit times across the slab, the flux
nv, is conserved, and the density can be computed by integrating the source S(£) over all
possible birth positions £, weighting the integral by the relative residence time 1/ | v, |:

2L e S(E0)d
O =Tk TaGar ®)

Here the upper integration limit is .y, Where £nax is the birth position farthest from ¢
for which the ion does not turn around before reaching ¢; that is, for which v% above is
non-negative. We assume that there is a sheath on the wall at z = —L which reflects ions
that would have reached the wall. The factor 2 in Eq. (8) accounts for the population of
ions on the way back to their birth positions, having been turned around either by the sheath
or by their Larmor gyrations. In relating to experimental results, the source S(z) can be
chosen so that the resulting density profile matches the measured one.

The average drift of the ion fluid vo(¢), which is the same whether the ions are moving
to the left or to the right, can be computed by a similar integration, but with the additional
weighting factor v,(¢, &), as given by Eq. (6):

2 [ee . S(&)déo
w(e) = o [ (e ) ; ©)

vz(&a 50) |
The integrations are easily performed, and the resulting profiles of ny and vy are shown in
Ref. 4 for a uniform source, S = 1, and a Gaussian source, S = exp(—¢?). It is important
to compute vy accurately because it is this small ion drift, not the much larger electron
E x B drift, which matches the phase velocity of the unstable mode.



III. Radial wave equation

Since the first-order ion motions are small, the non-circular nature of the ion orbits in
a sheared E-field can be neglected, and the ions can be treated as a cold fluid with the
previously computed zero-order drift vo(z). The linearized ion equations of motion and
continuity are simply

M(g—: +v0-Vv+v-Vv0) = e(E+ v x By) (10)
on
a+n0V-v+v-Vno+nV-vo+vo-Vn =0 . (11)

The electron fluid equations with finite E, and Vng yield the usual modified Boltzmann
relation, which, for our k, =0 case, simplifies to

no_ e wi(z)
no KT, w — wg(z)

(12)

If k is the wavenumber in the y direction, the electron diamagnetic drift frequency w, is
given by —k(KT,/eBy)(ny/no), and the E x B drift frequency wg by —kE;/By. For
perturbations of the form ¢ = ¢(z)exp(ky — wt), we can combine these three equations in
straightforward fashion, keeping all z-derivatives () in both zero- and first-order quantities,
to give the following differential equation for the fluctuating potential é(z):

¢"+ f(z) '+ 9(z)p = 0 . (13)
Here the functions f(z) and g(z) are given by

2w_kvy + Q. vy

o) a4

f@) = 6)+

fj 1(z) +8(@) = (%(fl;:)”"’)

; (15)

—-g9(z) = &k [k-f-
where
w_(z) = w— kv(z), 6(z) = ng(z)/no(z) . (16)

The quantities ng, v, wg, w_, and all their derivatives are functions of z , to be computed
self-consistently as in Sec. IL

IV. Instability threshold
It will be convenient to use dimensionless units in which lengths are normalized to L’ = L/N

and frequencies to 2. = eB/M , and thus velocities to L’Q,. The dimensionless quantities
(*) are then



zt =€ = zf/L, w = w/Q, k* = kL', & = 6L’
vy = vo/L'SY, wi o= W=k, & = KT./M, cs = cs/L'Q,  (17)
wy = —k*6*cs?,  nf = nol'd, S* = SL'3/Q,

As for the electrical quantities, since ed/M is the square of a velocity, we can define a
dimensionless ¢*, which is the square of v*, as follows:

¢ = (e/ML'2Q§)¢, E* = -V'¢" = (e/MLQ?)E . (18)

The equilibrium profiles can then be written

¢* = ¢ptanh¢, E* = Ejsech’¢, E! = -
vy = —(B/B)/L'Q. = —E (19)
w“‘E = k*v% = —k*E;

From now on, we suppress the superscript * and assume that all quanlities are in dimen-
sionless form.

In these units, Eqgs. (13) to (15) become

"+ ()" +9(6)p = 0 (20)
2w_kvl + v
fle) = &+ E:-—(io—-{——z% (21)
aE) = —k[k+i+5 gi_jﬂ))} . (22)
w_ W — Wwge

The scaling of the eigenvalues of w can be seen by making the local approximation
¢’ =¢" =0 and furthermore neglecting v}, and v?. Eq. (20) then reduces to g =0, or

w? + (k/6) (wf -—wdw_) —wg =0 (23)

where
wg = k(vg —wv) , (24)

wg being the difference between the electron and ion E-field drifts in the y direction. The
cubic equation (23) has the standard form

v+pyl®teytr =0 (25)

where y = w —kvy, p=k/§, ¢= —pws, and r = —wy. A complex conjugate pair of
roots, one of which has Im(w) > 0 and is therefore unstable, exists only if

D = (b/2)* + (a/3)*>0 (26)



where

1 1
a = 3@¢-p), b= o (2p°—9pg+27r) . (27)

The instability threshold, therefore, is given by D = 0. When D > 0, the unstable root is
given by

Re(w-) = —%(A-*—B)— El))—p, Im(w-) = é—\/g |A—-B| |, (28)

where
1 1/3 1 1/3
A (oo me (Cheom” L e

When the magnetic field is sufficiently weak, the last term in Eq. (23) can be neglected,
since it contains only one power of 2. in the denominator (when reconverted to dimensional
units). In that case, the resulting quadratic equation yields the very approximate solution

1 .
w = kvt z |k/6|Qe + i (| k/6|waQ)? . (30)

The second term in Re(w) is small whenever . is much smaller than w. Then w is
approximately equal to kvg, as observed (3], and is much smaller than wg, which it would
be in the usual E x B instability.

We have computed the solution of Eq. (28) for ¢¢ = 5V, E = —10V/cm, and k = 4
cm™!, which are the plane-geometry equivalents of the experimental parameters [3]. Using
the equilibrium calculations of Sec. II for a Gaussian source, we find that vy = 8 x 10*
cm/sec and § = —1.6 cm™! near the midplane. These values lead to p= —2.5, ¢ = 1610,
and r = —644 for the dimensionless parameters of Eq. (25). Fig. 2 shows the real and
imaginary parts of w — kvo for the unstable root as functions of the normalized E x B drift
frequency wg. It is seen that the frequency deviation from kv, remains nearly constant
while the growth rate increases parabolically. There is a threshold around wg = 10; at the

experimental value of = 600, the instability is well above threshold.

The instability boundary is plotted in Fig. 3 on the k/|é| vs. normalized wy plane.
The plasma is unstable except for large |k| or small |§|, and there is a small region of
stability for small wy which cannot be seen on this scale.
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Figure 2: Frequency and growth rate vs. E x B drift frequency in the local approximation. Both are

normalized to the ion cyclotron frequency. The frequency is given in the ion frame (w- =w—kuvp),
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V. Local dispersion relation

Having demonstrated that a strong instability is possible, we now investigate the detailed
behavior of the instability. Since all of the quantities in Egs. (20)-(22) except w and k
depend on ¢, the local value of ¢ will vary with position. There are two ways to compute
the “local” dispersion relation: one is to neglect the derivatives of ¢ in Eq. (20), and the
other is to first transform the equation to the WKB form W”+Q(z) W = 0, and then to
neglect W". The difficulties we encountered were not sensitive to this choice, and we shall
simply neglect ¢’ and ¢” in Eq. (20).

We first choose a Gaussian source function S (&) =~ exp(—£2), with N = 2. Eqgs.
(8) and (9) then yield the ng and v profiles shown in Fig. 4. Using a power-series fit to
these profiles, and choosing a sech? (¢) profile for wg, we can then solve for w(k) by setting
g(¢€) =0 in Eq. (22). This fifth-degree equation for complex w was solved by iteration. Of
the five roots, the unstable one that had w = kv, was picked out by starting the iteration
from the desired root of the cubic equation (23), obtained by neglecting vy and vg. The
resulting values of Re(w) and Im(w) as functions of ¢ are shown in Fig. 5. It is seen that
w goes to infinity at £ =~ —1.6. In this region, the solutions of the cubic and fifth-degree
approximations also diverge from each other. Upon examination of the profiles of Fig. 4, we
see that the density profile has a maximum at this position, so that the density gradient goes
through zero there. The dip in density near the left boundary is to be expected, since many
ions turn around before reaching the far left. When 6(¢) = 0 in Eq. (22), the fifth-degree
equation becomes cubic, and two of the roots are lost. Apparently, these roots are lost by
going to + oco. The local value of w, therefore, has no meaning in the neighborhood of a
density extremum.
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Figure 4: Equilibrium profiles of density no and ion fluid y-velocity vy for a Gaussian
source distribution Sy .



120

100 7\
80 / \
60 /K - \k *—**—’Rea||

h
40 ‘//// '“\l~-\\.\\'¥<i\ Imag.

I e
20 B S
{ \ .
0 ¢ + * < * + + * * $——%  ~—
-20
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

2x/L

Figure 5: Local frequency and growth rate in the cubic approximation for a Gaussian
source profile.

To remove this difficulty, we modified no(¢) by adding more particles near (= -2,
Fig. 6 shows the no and v, profiles produced by a bi-Gaussian source function S (&) =
exp (—£3/2.5) for £ < 0 and S(&) = exp(—£2/1.3) for € > 0. The density profile
has been tailored to be nearly linear and monotonic, and the vy profile is still monotonic.
The resulting local dispersion relation now appears reasonable, as shown in Fig. 7. The
growth rate peaks in the region of largest E x B velocity, as one would expect. Furthermore,
the cubic approximation (points) is in good agreement with the solution of the fifth-degree
equation (line), showing that the shear terms v} and v in the ion fluid velocity are not
important. Fig. 7 shows that the real part of w — kvy remains small, but the growth
rate varies a factor of three over the width of the slab. To make a guess at the actual,
global growth rate, we weighted the local growth rate by the local magnitudes of E, ng,
Mg, or ng/ng. The weighted growth rates obtained this way ranged from 30 to 36 (except
for the last case, which gave 20.5), as compared with a peak around 45 in Fig. 7. Such
approximations, however, cannot be expected to be accurate in view of the unexpected
shape of the perturbation found in the global solution of the next section.
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Figure 6: Equilibrium profiles of density no and ion fluid y-velocity vy for a split Gaussian source
distribution Sg (also shown). The source has been chosen to yield a nearly linear density profile.
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Figure T: Local values of frequency and growth rate for the split Gaussian source profile. The
points show the cubic approximation, and the lines are from the full fifth-degree equation, which
includes the derivatives of vq.
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VL Global eigenmodes

To find the dispersion relation accurately, we have integrated Eq. (20) numerically for the
parameters listed above, using the local approximation as an initial guess for the complex
value of w. Since the value of §(£) becomes infinitely large at the right boundary, where
the density vanishes, we shot from the left boundary, with the initial values ¢ = 0 , ¢ =
lat{=-2 (z=0L, N=2), and complex ¢ is computed at each step using the local
complex values of f(£¢) and 9(€). The real and imaginary parts of w are adjusted until
both the real and imaginary parts of ¢ have their first zeroes at the right boundary, ¢ = 2.
The two-dimensional search for Re(w) and Im (w) is aided by the fact that Re(w — ko)
is small for the root in question. These computations are simple enough to do on a personal
computer. We have done them independently on a MacIntosh Ilci using Fortran and a grid
of 2000 points, and on a 486-50 PC using Excel 4.0 and a grid of 40 points. The results are
in full agreement.

The eigenfunction #(¢) is shown in Fig. 8 for the nearly linear density profile of Fig.
6 and a sech?(¢) electric field profile. The values of Re (w) and Im(w) are reasonable,
but somewhat larger than the local approximation would suggest. When a Gaussian source
function is used, the eigenfunction, shown in Fig. 9, is almost the same in shape, but the
value of w is somewhat different. The reversal in slope of nj does not. greatly affect the
global mode, though it played havoc with the local solution. Note that Imé¢ is always
small. An z-variation of this quantity, corresponding to a radial variation in the cylindrical
case, would have indicated an azimuthal phase that changes with radius; that is, a spiral
perturbation. The eigenmode tends to be straight.

8
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Figure 8: Real and imaginary parts of the lowest global eigenfunction ¢ for the bi-Gaussian
source. The corresponding complex value of w is also given.
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Figure 9: Same as Figure 8, but for a Gaussian source.

It was not expected that the perturbation would peak near the “outside” of the slab. The
maximum in Re(¢) occurs at a place where there is no peak in Ey, ng, v, or any of their
derivatives. To check that this effect is not a numerical error caused by the infinity in nf/n,
near the right boundary, we repeated the shooting calculation, forcing the perturbation to
vanish at € = 1.9, where the density is still finite. The result, shown in Fig. 10, yields a
slightly different value of w, but the shape of the eigenfunction is the same. We also tried
shooting from the right, requiring ¢ to be zero at both boundaries. We could not let ¢’ be
finite at ¢ = 2, since §(¢) and hence f(£) are infinite there, and thus ¢”, computed from
Eq. (20), would also be infinite. In this case, we took ¢p=¢'=0, ¢" =060 at { =2, giving
a function ¢(£) with about the same peak height as for the other cases. This is shown in
Fig. 11. Now the value of w is changed significantly, but the perturbation still peaks near
the outside.
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Figure 10: Same as Fig. 8, but the boundary where ¢ = 0 has been taken at £§=19.
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Figure 11: Same as Fig. 8, except that the integration was started from the right. The bound-
ary condition there was taken to be ¢ = ¢’ =0, ¢ =60.
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Mathematically, the reason for this behavior is clear. Eq. (20) shows that ¢" is large
wherever 6(£), and hence f(¢) and g(¢), are large. Since 6(¢) has a sharp peak near the
right boundary, #(¢) must have very large curvature there, even though it must go to 0 at
§ = 2. This can happen only if ¢ peaks just before boundary. The physical reason for this
peaking is probably connected with the difference in ion and electron motions near the right
boundary. As the wave field E; passes by, the electrons move in the y direction in response
to the component E,. The ions, however, cannot follow them, since they have just been
born and can be accelerated in the y direction only by the component F, = —ik¢, which
is small there. A positive space charge then builds up, causing ¢" to be large. The resulting
E drives the ions away from the region of excess ion space charge to preserve neutrality.

VII. Summary

We have given an example of a procedure by which the stability of a plasma against flute
modes can be studied even when the zero-order electric field is highly sheared on the scale
of the ion Larmor radius. Specifically, we have not assumed that the ion Larmor radius is
smaller than the shear length. Kelvin-Helmholtz effects connected with the velocity shear
of both the ions and electrons are included, and the density gradient is calculated self-
consistently with these drifts. No drift wave effects appear because of the assumptions
ky =0 and w > Q.. Using this formulation, experiments can be designed to investigate
the stability of electric shear layers at the edge of a plasma, and the measurements analyzed
theoretically in a fairly simple way which does not require extensive computations. For
instance, the shear profile can be varied until stability is achieved, and the effects of the
various derivatives of the electron and ion E x B profiles can be traced in the calculations.

This work was partially supported by NSF Grant No. ECS 89-01249 and by the University
of Wisconsin Engineering Research Center. We are grateful to Dr. Y. Sakawa for access to
his data.
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