Generalized theory of helicon waves. I. Normal modes
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The theory of helicon waves is extended to include finite electron mass. This introduces an
additional branch to the dispersion relation that is essentially an electron cyclotron or Trivelpiece—
Gould (TG) wave with a short radial wavelength. The effect of the TG wave is expected to be
important only for low dc magnetic fields and long parallel wavelengths. The normal modes at low
fields are mixtures of the TG wave and the usual helicon wave and depend on the nature of the
boundaries. Computations show, however, that since the TG waves are damped near the surface of
the plasma, the helicon wave at high fields is almost exactly the same as is found when the electron
mass is neglected. @997 American Institute of Physid$$1070-664X97)01309-§

I. INTRODUCTION —iwmgv=—e(E+VXBy) —mgwv, (4)

Interest in plasma sources employing helicon wave exwhere all dissipation mechanisms have been lumped into one
citation are of current interest because of their promise iphenomenological collision rate. We have omitted from
providing the hlgh density and uniformity needed for the Eq. (4) the magnetic Viscosity termbl V.7 and the pres-
fabrication of next-generation semiconductor circlits. gyre termngt Vp=ng'V[(ng+n)(KTeo+KTe)]. The elec-
Analysis of recent experiments have depended on a simplgon viscosity is important only when the electron Larmor
treatment of helicon waves in which the electron magss  radius is comparable to the radial wavelength of the waves,
taken to be zerd;” so thats=w/w.=0. At low magnetic which is normally>1 cm for helicon waves; thus, for 3 eV
fields, however, the electron cyclotron frequengy can be  glectrons, V-7 can be neglected above 6 G. For TG
the same order of magnitude as the wave frequencfor  (Trivelpiece—Gouldl waves, however, wavelengths shorter
instance, for 27.12 MHz operatiod~0.25 atBo=19G, @  than 1 mm are, in principle, possible. Such short-wavelength
field low enough to permit economies in the design ofwaves are not likely to exist in practice precisely because of
plasma sources. Helicon theory with finiéhas been treated finjte-Larmor-radius(FLR) effects; the present theory is in-
before by Klozenbergt al® in their classic paper, by Bleven adequate for these waves. lonizing electrons of 15 eV energy
etal,’ and by Boswell®* Here we have assembled thesehave 1 cm Larmor radii below 13 G, afBiLR) effects are
various results and extended them in order achieve a singlﬁke|y to be important for them at such low fields. Fortu-
coherent formulation of the theory, which can be readilynately, their population should be so small that wave propa-
used for comparison with ongoing experiments. In this papefation, the subject of this paper, would not be affected. The
(part ), complicating factors such as damping, antenna couzeroth-order pressure terfi(noK Too) is important for dis-
pling, and density profiles have been neglected in order t@harge equilibriund, but not for waves. The first-order part
bring out the physical ideas more clearly. The completecan be separated into four term¥KT,, KT, Vny/ng,
problem with extended computations are treated in a comn VKT, /n,, and KT Vn/ny. Since ExB motions are
panion papefpart I). The analysis of part | is confined to jncompressiblen vanishes in a uniform plasma whenever
the undamped, uniform-density case, and references to| R effects are negligible. The remaining teKiK T, can be
damping are made only to show the limitations of these ideneglected relative to theE term, because fluctuations in
alized conditions. In part Il, specific cases are computed & T, are much less thak T,~3 eV, compared to wave elec-
demonstrate the effects of plasma profiles, collisions, angic potentials of>100 V, typically. In principle, theVp
antenna design. term can be included by using the warm-plasma theory of

Allis, Buchsbaum, and Ber€, but the results are too cum-
bersome to be useful. Furthermore, finitg also engenders
Il. GOVERNING EQUATIONS drift-wave effects in a nonuniform plasma, and treating these
involves evaluating terms of comparable sizesin Vv and
V. .13 Fortunately, drift frequencies are well below helicon
frequencies and should not be important in helicon wave
propagation.
If we neglect ion motions, the plasma current is

In what follows, equilibrium quantities will be denoted
by the subscript 0, while first-order perturbatiofvgith no
subscript will be assumed to vary as exfmé+kz— wt). The
z axis is aligned with the dc magnetic fielBy=B,z. Max-
well’s equations are

V.B=0, (1) j=—enyv. (5)

VXE=iwB, (20  With the definitions

VXB=puo(j— i weE) = —iwepuoe-E. (3) wc=eBy/Me, 6 =wlw., 6=(o+iv)o, (6)
The electron fluid equation of motion is Eqg. (4) can be written as
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E= (7)

Bo .. .

en (i 0] +zxj).
The complex quantityy can conveniently be replaced by its
real parts, until the end, since Eq4) shows thatr appears
only in combination withm,; one only needs to replace
me by mg(1+iv/w) in the final result.

At this point, we neglect the displacement current, s
that Eq.(3) can be written ag= uqV XB. Though displace-
ment current can be included readifyit is almost always
negligible in experiment. Using Eq&3) and(7) to eliminate
j andE, we can write Eq(2) as

Bo

iwB=— _——{isVXVxB+Vx[2X(VXB)]}. (8

Mo

The last term reduces &V xB. We now define
wi=ne’legMe, ks=wy/c (“'skin number”),
k3= wnouoe/Bo=k3, 9

whereupon Eq(8) becomes
6V XV xB—kV xB+k2B=0. (10)

This is the equation we shall analyze. The quantity

=Kkg/ 4 is simply the wave number of low-frequency whistler

waves propagating alorg in free space.

Ill. RELATION TO COLD-PLASMA THEORY
We have derived Eq10) in the most direct fashion, but

as long aKT, is neglected, it can also be derived from the
standard theory of waves in a cold plasma. This formalism
will permit an extension of the theory to include motions of
an arbitrary number of species of ions, with displacemen

current also included. We follow the notation of Stix,
which is also adopted by Chéh.The total (plasma plus
displacement current in Eq.(3) is given in terms of the
cold-plasma dielectric tensor by

S -iD 0\ /g,
J=—iweg| 1D S 0O (Ey). (11
o o0 P/\E
This can be put in the form
J=—iwe[PE+iDZXE+(P—S)zxzXE], (12

Eq. (12) is most easily inverted by writing out the compo-
nents ofJ and solving directly for the components Bf The
result can be written in the form

—lwegE=a J+ian(zX)+ag[zx(2xJ)], (13
where
1 D 1 S
TP YT TRL YTPRL

Here we have use®’—D?=RL, arising from the defini-
tions S,D=(R=L)/2. In this form, it is clear thaty, repre-
sents the conduction or polarization currest, the Hall cur-
rent or ExB drift, and a4 the displacement current. The
aqy term will be shown to vanish in the absencejgf

3412 Phys. Plasmas, Vol. 4, No. 9, September 1997

To reduce Eq.13) to Eq. (7), we must evaluate the
coefficients. For simplicity, we assume a single ion species,
with characteristic frequencieQ, and (}.. The elements
R, L are defined by

R

L=

2 2 2 2
a)p/w Qp/w

1= 1F wC/w_ 1+Q /o’

(14

Owhere the first term is the contribution of the displacement

current and cancels in the elemedt In the limit Q%< w?
(with arbitrary w2/ w?>1), the result is
2
w

D 1

0 1-wilw®

We

D=-—

(15

Similarly, the ion term is found to be negligible in the evalu-
ation of RL:

RL-1 a)[z)/w2 (wg 2) wg/w4 16
1- wilw? | 0° j4—0 1- wiw? (16

The terms “1” and “2” vanish whenjq is neglected. For
02<w?, the elemenS becomes

2, 2 2
oyl Q )
S=1-1—"5— ——C<1——Z)
l-wilw e )
w2 w? Q — 0l w?
~]1— P Qe C)—> Vo 2 17
1- wilw? w?® 1- wilw?

We see here that the frequency must be above the lower
hybrid frequency in order for the ions to be neglected. In the
limit j4—0, Eqs.(16) and(17) give S'RL= — w?/w}, while

(18)

P=1- wf,/w2—> — w%/wz.
Hence, the coefficient of the last term in Ed3) identically

(/anishes in thg4— 0 limit. Equations(15) and(16) give, in
the jg—0 limit,

D  oww 19
RL™ wf 19
With Egs.(18) and(19), Eq. (13) becomes
We A
E=——> (i5j+2x]), (20
Eowp

which is the same as E7).

IV. SEPARATION INTO HELICON AND CYCLOTRON
WAVES

Equation(7) can be factored info

(B1=VX)(B2—Vx)B=0, (21
where the separation constayts and 3, are the roots of

6B?—kB+k2=0. (22)

Sincek\fv is independent of mass, the only finite rg®in the
m.— 0 limit of this equation is

2 2
_ky @p__ @ NoCko_

w
P T Ko K By @ (23

F. F. Chen and D. Arnush



the usual helicon dispersion relatidiror 5k3<k?, the two 100

roots of Eq.(23) are well separated, with the approximate 0 =02 .
values >/ =5
k 45K2 |12 ° = B
Brr=55 | 17| 1-—7 e B
“ 26 k g k=p T — 500
) ) = 1 . N — ——1200
K = 25k, kil K N T-Gbranch | LU=
%55[1+<1__?7J;¥[W5' 24 - §\§;:://////
.+ Helicon branch
Note that to this order the helicon wave is undamped, while 0 ; 0 100 1000
the TG waves have all the damping. Previously reportec 6 e

damping rates were calculaftby perturbing this solution

with the lowest-order finite-mass effects in the electrons’rig. 1. Thek-g curves forny=2x 101 cm and various values of the

parallel motion. magnetic field, listed in the legend in the same order as they appear. Unless
The general solution of Eq21) is B=B,+B,, where otherwise specified, computations are for 27.12 Mhz, a 2.5 cm tube radius,

and them= +1 azimuthal mode.
VXBlz,BlBl, VXB2:B282. (25)

Taking the curl of these equations and using EQ, we

. : of Bto the left of the minimum i H wave), and the value
obtain a vector Helmholtz equation for each: B $1 ( 9

to the right isB, the (TG wave. Note that for the H wave
V281+ﬁ581=0, V2B,+ ,3552:0- (26) the lowest radial modémallestB) corresponds to the short-
est parallel wavelengttiargestk), while the opposite is true
for the TG wave. FoB, less than 19 G, only the TG wave
can propagate at 27 MHz.

From these wave equations, we see that fiteeare effec-

tively total wave numbers. The rog@,; corresponds to the
usual helicon wave of Eq23), which we shall call the H
wave. From Eq(24), we see that the new ro@, gives a

wave with the approximate dispersion relation

B=kwe/w= B cosfu.lw, (27) This bogndary condition is rather unrealistic, since in
actual experiments a quartz or glass tube is used so as not to

where ¢ is the angle of propagation relative #,. This  shjeld out the antenna fields, and in any case the region of
wave, with frequencyn=w. cos¥, is evidently an electron high density does not extend all the way to the wall. The
cyclotron wave, first treated with cylindrical boundaries by reason for treating this case is to make contact with early
Trivelpiece and C;OUld,7 we shall call this the TG wave. The theories of helicon WaV€SThe solution of Eq(26) that is
remainder of this paper concerns the coupling of these tW@injte on the axis for either wave in a uniform plasma filling
waves; and for SlmpIICIty, the damplng will be neglected, SOg Conducting Cy"nder of radiusa has been given

V. CONDUCTING BOUNDARY

that 5=, . previously®®
The relation of Eq.(22) betweenk and 8 can also be
written as Brj:Aj[(,Bj+k)Jm—l(Tjr)+(ﬁj_k)‘]m+l(Tjr)]i (32)
s o, By =1Ai[(Bj+K)Im—1(Tjr)—(B;—K)Imr1(TjN)],
k= E (B+Ks). (28 (33

The solution of the wave equatiof6) in cylindrical geom- Bj=—2IATiIn(Tjr), =12, (34)
etry can be expresséih terms of Bessel functiond,(Tr), whereT; is given by Eq.(29), andm is the azimuthal mode

where the transverse wave numfeis defined by number. From Eqs(25) and (3) with the displacement cur-
Tj2=/3]2—k2, =12 (29 rent neglected, we see thais parallel toB:
ji=(B:/ug)B; . 35
Differentiation of Eq.(28) yields a minimum value ok L= (B IuoB, @9
given by Equation(20) then gives
Kiin=2 SKs. 30 lome lome B
min S ( ) Ezjz_ n eZEszz_ n e26_] zj" (36)
If T is real, there is also a maximum value lofoccurring 0 0& Mo
whenT=0, k=g: The other components & can be found from Eq2):
5 \1? ) i m o)
kmax: ré ks- (31) Er:? Bg— E EZ ' E@ZW Ez— F Br . (37)

These two limits are equal whe®= w/w.=3. At magnetic In the zero-mass limitE, vanishes identically for the H
fields so low tha©> 1, only one propagating wave can exist; wave (the only one in that cageand only one other bound-
the helicon branch disappears. An example &f@diagram ary condition needs to be satisfied; namély=0 atr=a.

is shown in Fig. 1. Similar diagrams showing the minimumFrom Eg. (37), this means thaB,=0. For an insulating
in k were first shown by Boswelf'*! For eachk, the value  boundary, the boundary condition would ke=0, which, by
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10 ] [(B1tK)Im-1(T18) +(B1—K) I 12(T1a)]
- B=1200G
n=2813em> :[(B2+k)Jm—1(T2a)+(,32_k)
. ! B1T1Im(T1a)
E 1 \ Elgenv/aluesofk // XInm+1(Toa)] BT, (T,a)" 41
N where the right-hand sidéhs) vanishes in the 1-BC case.
\i-— For values ok neark,,,x, 81T1 is much smaller thaB,T,,

. — and the rhs is so small that the dispersion relation for the
0+ helicon branch is insignificantly affected by the inclusion of
° 1 10 100 1000 finite m, and, hence, of finiteE,. An example of this is

p (e : shown in Fig. 5 below. In Eq(36), note thatE,,/B,, is

proportional toB,, which is much larger thaB, whenBy is
FIG. 2. An example of quantizekl values when the plasma is confined by |arge. This shows that the Trivelpiece—Gould mode is elec-
conducting walls. trostatic in character, as is well known. It is at low magnetic
fields, whenB, and 3, are comparable, that the electromag-
netic part of the TG wave cannot be neglected.

Eq. (35), also means thaB,=0. Thus, in this particularly In Fig. 2 the highest eigenvalue &fcorresponds to the
simple case ofn,=0, there is only one universal boundary lowest radial helicon mode and the highest radial TG mode.
condition, which applies to either type of boundary: In this case there are six radial modas; 1-6, though the

n=5 and 6 modes at the bottom of the parabola cannot be
_ _ seen on this scale. Because of damping, onlyntkel mode
Brl_Al[(Bl+k)Jm‘l(Tla)+('81_k)‘]m+1(Tla)](3%) is normally observed in the experiméfitthough a small
amplitude of then=2 mode has been invoked to explain
o o , spatial beats in the wave pattértFor low values oB,, the
This is the condition used by all previous authors, and Weyecive potential well is shallow, and only one or two radial
shall refer to it as theingle-BG or 1-BG, case. modes can be found. Though the number of eigenvakues
Whe?‘ me.cannot .be neglegtchz exists by virtue of and their magnitudes are mathematically determinate, the
electron |nert|a, even in thg collisionless case. Equaltitin closely spaced eigenvalues for the high radial modes have
then requires thg8;B,; vanish at the boundary, or, rom EQ. |ije physical significance. To show this, we have plotted in
(34), that B;Jny(T;a) =0. Clearly, this condition is not con- 3 the two sides of Eq41) for a largeB, case. It is seen
sistent with Eq.(38), so that a pure H or TG wave cannot in Fig. 3(@) that the lowest radial modes of the helicon wave

saﬁsfy both boundary conditions.by !tself. Since we startedat largek are unaffected by the rhs of EGt1), representing
with a second-order vector equation in Ef0), both waves o finitem_ correction to the boundary conditions. In Figs.

must exist, coupled at the boundary, in order that their am3(b) and 3c), however, it is clear that, for the high radial

plitude ratio can supply the required degree of freeddm. . yes ot smalk, the Ihs=0 and Ihs=rhs conditions are
the inhomogeneous case treated in part Il, this coupling o&

. . “greatly affected by a small changeng. These roots of Eq.
mode conversion occurs everywhere where there is a densi y y geng g

radient) Settingj .+ j,,—0, we obtain from Eqs(36) and 1) are so sensitive t& that they could not be found with
?3 4) the require?jj zzalm ;I?tzu_de,ratio as prepackaged root-finding routines such as in Microsoft Excel

and had to be computed by hand. The reason for this un-
physical result is that we have neglected all damping, so that
A B1T1In(T;a) 39 the TG wave extends all the way to the axis, where its phase
AL BoTodn(Toa) (39 is determined. Ak is varied, the values 0B, andg,, and

hence ofT; andT,, change in opposite directions; and only

With E,=0, Eq. (37) then requiresB, to vanish to satisfy when the values oB, andj, for the two waves cancel at
E.—0 zSett,ingB +B, =0. we obtz!\in from Eq(32) the 2 is there a solution. In practice, at high densities, the TG
arl;plit.ude ratio et P ' mode is damped well before it reaches the axis, so that its

phase atr =0 is arbitrary; then one would expect that any
value ofk can satisfy the boundary condition. In this sense,
Az (Bt K)In-1(T1a) + (B1=K)Im+1(T18)] the conducting boundary condition gives misleading results;
A [(BatK)Im-1(T2a) +(B2=K) I 1(Toa) ]’ the insulating boundary conduction gives a continuéus
(40) spectrum in the undamped limit, more closely resembling the
full solution that includes damping and density falloff at the
where gj(k) is given by Eq.(24) and Tj[k,8(k)] by Eq.  edge.
(29). For given plasma parametarg andB,, Egs.(39) and In Fig. 2 itis clear that the TG wave has very short radial
(40) can be satisfied simultaneously only for certain valuesvavelength when it is coupled to the lowest radial mode of
of k. The possible values of are now quantized, as is the helicon wave. In that case, the TG wave can be expected
shown by the example of Fig. 2. The complete boundaryto be damped within a millimeter or two of the surface and to
condition is affect only the energy deposition, but not the measured wave
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1.5

@) Conducting boundary
13 | a=25cm, 27.12MHz, m=1 n=2E13,B=1200 k=0.468
B = 1200 G LHS 2.0
10 n=2€E13 < o ot A AR AR AR A
| Il IRIRTilvavasa Ml
1 \
; (NINRRRRARLAR M)
[1:) =
03 RHS v 0.5 A U A
0.0 v 4 0.0 ad ’ —Total Bz
\ l ——Helicon branch only
-0.3 0.5 o Simple theory
L 1]
0 A 2 3 4 5 8 7 8 :
K (em™) (@) 0.0 0.2 04 06 0.8 1.0
0.4 b) Conducting boundary
0.3 ( a=26cm 27.12MHz, m=1 n=2E13,B=1200 k=0136
LHS 40 Y
0.2 30 I
0.1 A £ 20 T /
. 10 .
oo N e , ° V™ N D S
| > S | @ ol [T T
0.1 RHS It / /
02 1-B=1200G L :30 | / v —— Total Bz ~
n=2.000E13 \ / —— Helicon branch only
-0.3 | ':g \ / o Simple theory
04 60 |1 N I
.130 135 .140 .1451 .150 .155 .160 0.0 02 04 06 08 10
k{em™) (b) rla
04 © FIG. 4. The radial profile 0B, for a high-field case fofa) the lowest and
(b) the highest (=6) radial H mode. The heavy line is for the H wave
0.2 X ] /LHS alone, without the TG component, and the points are calculated from simple
0.0 k . / . m.=0 theory.
02 T . . .
v ; the effect of neglecting the right-hand side of E4l), thus
04 {—B= 12006 RASL L effectively ignoring the boundary condition dy . It is seen
06 n= 1925813 L that the shape of each wave individually is not sensitive to
e the E, boundary condition, though the ratio of amplitudes is.
0.8
130 135 140 .145 .150 155 .160
Kk (cm™) Conducting boundary
10 a=25cm, 27.12MHz, m= 1 n=2E13, B=1200 k=0.136
I
FIG. 3. An example of the determination of the eigenvalueg& &r con- o8 Yl |1-BC — Bzt
ducting boundaries. Irta), the right- and left-hand sides of E¢1) are 5 g / \ """ Bz2
plotted betweelk,;, andk,ax, Showing that the zero crossings of the Ihs are § 4 / A N 7 -
not greatly affected by the rhs for the short-axial-wavelength mdthes % / /] \ / k\\
lowest helicon radial modgsin (b), the abscissa has been expanded to show £ 2 p \ / \ \\
the high radial modes. The sensitivity of the rhs to a small change in density ¢ 0 ’ \ // \\ / \\ /
is shown in(c). &-2 e
2, \\// \/ 7
N o NS
5 .
. . . . . A L. 0.0 0.2 0.4 0.6 0.8 1.0
profiles in the interior. This is shown in Fig(a}, where it is (@ rfa
seen that the simplm,=0 theory used previously correctly Conducting boundary

predicts the behavior of the H wave if the TG component is a=25cm, 27.12MHz, m=1  n=2E13,B=1200  k=0.137

[+
o

neglected. On the other hand, for high radial modes near the S a0 . 2_8(’35

bottom of the parabola of Fig. 2, the H and TG waves have 3 \ P\
comparable radial wavelengths, and the TG component can- g 2 ’/_ \ / N
not easily be dismissed. Figurgbd shows that previous § 0 / \—\ Y , \ |/
theory closely approximates the H component but that the §2° \ [/ -4 I

TG component is dominant in this case. Furthermore, as 5 \ - ity

shown in Fig. 4b) neglecting theE,=0 boundary condition TS \

would affect the calculated wave profiles for these high ra- 80 +——= ‘

dial modes, if they are at all observable. (b) °° 02 04 e Of 08 0

T,hOUQh both the H and TG waves are ne_e,ded Ina maﬁhe. 5. The radial profile oB, for a high-field case when th&,= 0 bound-
ematical sense to .s.atls'fy the bou'ndary condltlpnﬁpand ary condition is(a) neglected andb) included. The totalB, is shown,
E,, the latter condition is not a stringent one. Figure 5 showsogether with the HB,,) and TG B,,) contributions.
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Conducting boundary Since k?>k2, T2 is negative in the exterior region. The
a=25cm, 27.12MHz, m=1 n=1E12,8=30 k=1.241 change in sign causes the Bessel functions to have imaginary
—tomiBr arguments. Rejecting the solution that diverges-ase, we
Helicon branch only | find that the functiond,(Tr) in Egs.(32)—(34) are replaced
? Simefe theon by K,(Tsr), whereT; is positive. The normal component
B, is continuous at =a. The tangential componenig, and
B, must also be continuous, since a real plasma cannot carry
" an infinitesimally thin surface current. Continuity of the tan-

0 | gential components d& require thate, be continuousk, is

then automatically continuous from E). No condition is

-1 imposed orE, or B, since a surface charge can, in general,
0.0 02 04 a0 08 10 exist. The matching of the interior and exterior solutions is

most easily done with the circularly polarized components

BR andB‘, where

LT

FIG. 6. The radial profile oB, for a low-field case ¢/w.=0.32) when

only one radial mode is possible. The heavy line is for the H wave alone, R_np _: L .
without the TG component, and the points are calculated from simple V2B"= B, —1By, V2B-= B, +iBy. (44)
=0 theory. The interior solution of Eqs(32)—(34) can be written as
BR=v2(B+K)AIm_1(Tjr), (45)
In this sense, the dispersion relation is factorable, and the H
g B =v2(B—K)A Iy 1(Ty1), (46)

and TG waves are approximately uncoupled, a conclusion
reached earlier by Shamrai and Taraffofor conducting Bj,= —2iT;Ajdm(Tir). 47
boundaries. On the other hand, at low magnetic fields such ) o

that only one eigenvalue df is possible, with3,~3,, one  1he exterior solution is

would expect the H and TG waves to be strongly coupled.  BR=v2C,K,,_(Tar), (48)
That case is explored in detail in part 1l. An example is
shown in Fig. 6, where the coupled waves have a different  B5=v2CyK . 1(Tar), (49

profile than either wave alone, though simple theory cor- .
rectly predicts the behavior of the H component. B3z = ~1(Ts/k)(CatCo)Km(Tar), (50)
Note that the relative amplitudes of the H and TG waveswhere T3=k?>—kZ. The coefficients of thé8, components
as they would be measured with probes, do not convey theere found from Eq(1). We now normalize to the ampli-
importance of the TG wave to maintaining the dischargetude of the H wave, setting; = 1. Matching the inside and
The absorption of rf energy depends jok, and from Egs. outside components d@ at r=a gives the amplitudes,,
(35—(37) we see that this quantity contains a factordr  C,, andC, relative toA;. The result is
B?. Because of its larger value @ the TG wave can have

a large role in heating, even if its amplitude is relatively Ci=fitiahz, Co=01102A,, (51)

small. Ax=—(f1+g1—hy)/(f2+0g2—hy), (52
f. Jmz1(T;a) 2k In(Tia)

VI. INSULATING BOUNDARY ‘} =(Bixk) o hi=— | T .
[gi (Bj=k) Kimz1(T3a) P T | Ky(T3a)

We consider here an infinitely long, uniform plasma col- (53

umn confined by an insulating tube of inner radausFor g, any given value ok, Eq. (52) gives the ratio of ampli-
simplicity, the dielectric constant of the insulator is taken t0;,qes of the TG and H waves in the plasma, and &a)
be unity; the small phase shift introduced by a real glass Ofives the amplitude and phase of the wave outside.
quartz tube does not affect our results. Surrounding the tube \ye now apply the condition off,. From Egs.(20)
at some radiud is a conducting cylinder, wherg, and (35 and(47), we find thatE, in the interior region(with
E, must vanish. The waves in the vacuum region are h'ghbﬂisplacement neglectedan be written as

evanescent, since theof the helicon waves is larger than

ko=w/c by typically two orders of magnitude. Therefore, in_ 2 ké A BT (T AuBoT-I(T
the waves in the plasma are insensitivebt@s long asd z— Tk_g[ 181 T1Im(Tal) + A2 T2dm(Tor) ]
=b—a is larger than some fraction of the plasma radius. We (54)

can therefore takdb—o. This approximation will be re-
moved in part Il.

For the vacuum regiofsubscript 3, settingj=0 in Eqg.
(3) changes Eq(26) to

In the exterior region, since there is no conduction current,
E, exists by virtue of the displacement current only. From
Egs.(3), (48), and(49), we find

2
Cc
V2B;+k3B3=0, (42) Eg“t:; T3(C1—Co)K(Tar). (55
and Eqg.(29) to in

Comparing this toE", we see that the small factdg/k?
T?=ki—k?=—Tj~—Kk? (43) i i i
0 3 ‘ makesC,— C, essentially zero, meaning that the displace-
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Relative amplitude of TG wave vs. k tions in Eq.(58) cannot vanish simultaneously, nor can both

2.0 denominators; hence, antiresonances cannot occur in the ab-
1.5 : sence of damping. The general formulation in part 1l will
1.0 make this point self-evident.
0.5 M IL, Thus, for largeB,, an almost continuous spectrum of
0.0 | u ol k’s betweenrk,,, andk,. is possible in the case of an insu-

‘ﬂ i i . i lating boundary. As explained earlier, the discreteness of the
05 '
1.0 spectrum is caused by the theoretical behavior of the TG
15 wave atr=0. Since in practice TG waves of short radial
20 wavelength are rapidly damped, the spectrum of H waves in

0.0 0.2 0.4 06 0.8 the interior will be essentially continuous betwelep,, and

(a) k kmax- This point can be shown rigorously by replacing the

Bessel functions of argumerii,a in Eq. (58) with their
asymptotic expansions and givifig a small imaginary part;
we omit the details here. If we ignore the TG component, we
shall see that the H component itself is well behaved at high
fields, and its radial profile is insensitive to the nature of the
| ﬂ boundary. This situation is changedsj is low that3; and
0 % W BB, are of comparable magnitude. Then the H and TG waves
are strongly coupled at all radii, and there will be only one or
two discrete values df.
Figure 8 shows an example of the wave fields, for a high
-10 radial mode at larg8,, in which both the H and TG waves
(b)°~° 01 02 03 °|-(4 05 06 07 08  gre important. Figure(®) shows the totaB, field, and Figs.
8(b)—8(d) give the components dB for each wave sepa-
FIG. 7. For an insulating boundargg) the relative amplitudé\, /A, of the _ra_tEIy' The external field happens to be small in this case, but
TG and H waves versus, and(b) the condition determining the eigenval- It IS NOt always so.
ues ofk, which occur at each zero crossing. Figures 9 and 10 compare the wave fields for conducting
and insulating boundary conditions for nearly equal values of
k, values that are eigenvalues in each case. Figuag 9

N ti liqibl inth teri ion. Sol shows theB, field for an intermediate value &. The TG
ment current 1S neglgible, even In the exterior region. SolV=, 4ve is dominant here because of the large fa€toin Eq.
ing for C;—C, from continuity of E, at r =a and making

. (47). The boundary condition affects the relative magnitudes
use of £q.(53), we find of the H and TG waves but not their radial profiles, since that
k2 is determined by the value & This is demonstrated in Fig.
C,—Cyo=— P (B1h1+A85h,), (56)  9(b), which shows the profile of the H branch alone. Figure
Ks 10 shows an example for a magnetic field so low that only
where A; has been normalized to unity. Equati¢sil) re- one value ofk is allowed under either boundary condition,

Eigenvalue condition for k
10

]
[é )

quires, however, that and the H and TG branches contribute comparably to the
total field. Since the eigenvalueslofn the two cases are not
C1—Co=f1—g1+Axf2—02). (57)  the same, a slight difference can be seen in the profiles of

These conditions are not compatible with each other excegtoth the totaB, and that of the H branch alone.
for certain values ok. From Egs.(52), (56), and(57), the
eigenvalue equation fdt can be written as

fi+g,—h;  fi—gi+NBih; VIIl. THE k- AND n-B DIAGRAMS
27F,40,-hy  f,— gt ABohy 8 i ;

Up to now we have considered the possible valuek of
where)\zkglkkg. For largeB,, one sees from Fig. 1 that the for given plasma parameteng andB, and given frequency
lowest radial modes of the helicon wave are coupled to TGw. If w is varied for a given plasmé& can be found by
modes of largeB. In that case, the argumefiba of the  solving Eqg.(41) for a conducting boundary to obtain the
Bessel functions irf,, g,, andh, is very large, and these usual form of a dispersion relatiom (k) or k(w). For an
functions oscillate rapidly wittk. The first equality in Eq. insulating boundary, the entire range lobetweenk,,, and
(58) then shows wild fluctuations @,(k), as shown in Fig. knax EQgs.(30) and (31), is densely sampled B, is large.
7(a). When A,=0, the H wave exists alone; and when Plots of the range ok versus frequency and the eigenval-
A,—», the TG wave exists alone. Shamrai and Tardhov ues ofk for the first two radial modes in the conducting-
has called these poingstiresonancesHowever, the allowed boundary case are shown in Fig.(&1for a high magnetic
values ofk must also satisfy the second equality in E88).  field. The sensitivity to density is illustrated by comparing
This condition is shown in Fig. (B), which also fluctuates Figs. 11a) and 11b). Figure 11c) shows a low-field case in
rapidly with k. However, both numerators of the two frac- which there is only one radial mode with either boundary
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Insulating boundary

a=25cm, 27.12MHz, m=1

n=2E13, B= 1200

Insulating boundary

a=25cm, 2712 MHz, m=1

n=2E13, B= 1200
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\
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Insulating boundary Insulating boundary
0 a=25cm, 27.12 MHz, m= 1 n=2€13, B=1200 o a=25cm,27.12MHz, m= 1 n=2E13, B = 1200
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FIG. 8. The components of the wave field inside and outside a plasma confined by an insulating boundary for a typieatlasetalB, field; (b)—(d) the
B,, B,, andB, fields of the H(heavy ling and TG(light line) contributions shown separately.

condition. Thek values are very similar. Note that, with an Experimentally, for fixed» andB,, a preferred range of

assumed tube radius of 2.5 cm, operation at 27.12 MHz i& may be determined by the excitation mechanism, such as
more likely to be in the linear region of the w diagram the length of the antenna or a phase velocity resonance. In
than operation at 13.56 MHz. that case, the plasma density will adjust itself to a value that

Conducting vs insulating boundary
a=25em, 27.12 MHz, m= 1 n=2E13, B = 1200

fits the dispersion relation. For a conducting boundary, Eg.

80 T
k = .468
60 Conducting vs insulating boundary
—Insul a=25cm,27.12 MHz, m= 1 n=1E12,B=30G
40 — 4
A —Cond Y
& 20 A » L k=1.241
g o u “ H \ “ [ NN AN 3 —Insul. ||
JUV\ YV VYUV VVyvove —Cond.
3 2
-20 V 4] —
U 3 - ~.
-40 4 normalized to helicon amplitude 2y . P
-60 | L l i ‘ normalized to helicon amplitude \\
@) 0.0 0.2 04 . 06 0.8 1.0 0
Conducting vs insulating boundary -1
a=25cm,27.12MHz, m=1 n=2E13, B = 1200 ( 0.0 0.2 0.4 0.6 0.8 1.0
1.4 § § a) rfa
k=.468 A o
1.2 = ~ Conducting vs insulating boundary
/ i ™ a=25cm, 27.12 MHz, m= 1 n=1E12,B=30G
1.0 v Helicon branch only < 12 :
08 /] | | k=1.241
d / o Insul. 1.0 =]
06 ——Cond. ]
08 Helicon branch only — 7]
0.4 v ; ;
0.2 @ 08 o Insul.
) ——Cond.
0.0 0.4
X . 1.0
(b) 0.0 0.2 0.4 fa 0.6 0.8 02
. ) . . 0.0
FIG. 9. A comparison of th8, profiles computed for conducting and insu-
N . z X 0.0 0.2 0.4 0.6 0.8 1.0
lating boundary conditions. Ita) the coupled waves are shown, the vertical (b) r'a

scale indicating the amplitude of the total field relative to the helicon branch.

In (b) the H component alone is shown. FIG. 10. The same as Fig. 9 for a case of a low magnetic field.
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FIG. 11. Examples ok-w diagrams. The lines with points show the two
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FIG. 12. Examples of-B diagrams(a) The line with points shows eigen-
values ofn for the lowest radial mode in a 2.5 cm conducting tube; the
heavy lines show the range afthat is possible in an insulating tubg)
The k variation of the maximumnisolid) and minimum(dashed values of

Ny in an insulating tube.

which employ a spiral coil separated from the plasma by a
flat quartz plate. If the dc magnetic field of a high-field heli-
con discharge is reduced to zero, the transition to an ICP

highest eigenvalues dfin a 2.5 cm conducting tube; the heavy lines show OCCUrs in a complicated way. As we have seenBif is

the range ok that is possible in an insulating tub@) and(b) A high-field
case for two different densitiegc) A low-field case withw/w.=0.32, in
which k is quantized even for an insulating boundary.

(41) gives the eigenvalue ofiy, while, for an insulating
boundary, Eqs(30) and(31) give the possible range of;.
This is best obtained by fixing, (or k) and solving for the
range of By (or &) from Kpin=20ks<k<kJ &/(1— 812
= Kpmax- An example is shown in Fig. 18 for an interme-
diate value ok. We see thah,,, varies asBS, as predicted
by Eg. (30), while n,,, varies asB,, as predicted by Eq.
(31). The conducting boundary solution shows thgtB, is
constant, as given byn,=0 theory® but only for fields ex-
ceeding 100 G. Figure 18) showsn,,, and np,, vs By for
various values ok.

VIII. TRANSITION TO ZERO-FIELD DISCHARGES

In  semiconductor processing,
Plasma dischargedCPsg without a dc magnetic field are

Inductively Coupled

reduced so thab= w/w. increases from a small value to the
order of but still less thas, a strongly coupled H-TG mode
can propagate in the plasma at a discrete value &s dis
increased beyond, an intermediate situation occurs, where,
for k<kg, a propagating TG wave is coupled to an evanes-

Insulating boundary, evanescent H wave
a=25cm, 27.12MHz, m=1 n=1E11,B=15G

k=1.147

“ -0.5 //_——f
40 %5_/

g

0.0 0.5 1.0

rla

2.0

commonly used. These ind.Ude. plasma sources W.ith helicglig 13. Example of a TG waveB,) coupled to an evanescent H wave
antennas_, surrounding a cylindrical tube, usually with a Farg_,) at low fields such that/w,> 1. There was only one eigenvalue of
aday shield, and Transformer Coupled Plasnfa€Ps, k in this case, and the ratiodks was 1.93.

F. F. Chen and D. Arnush
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cent H wave. For very largé, both waves are evanescent k2

with a skin depth ¥;, as in the ICP and TCP. C1—Co=~— k_lfsz (A1B1hi+ B2hy), (66)
To explore the intermediate regime, we first square Eg.

(24) for the collisionless case and insert into H&9) to Ci—Co=A(f1—gp+fr—0s. (67)

obtain

These equations can be satisfied simultaneously only for cer-
k? tain values ok. Figure 13 shows an example of a TG wave

1/2
2 L2 12 1\ 2kkg
To=—ks—k 1— 222 1+ (59 coupled to an evanescent H wave fofw > 3.
S

282) 775

where the top sign is for the H branch and the bottom sigqx_ SUMMARY AND DISCUSSION

for the TG branch. Fois—o, both waves are evanescent

with a skin number that is jusks when k=k,=0. If |K| We have investigated the behavior of undamped normal
<2 kg, T? is complex, and both waves are “overstable;” modes of helicon waves in a uniform plasma filling an infi-
that is, they propagate with decreasing amplitude. Howevemitely long conducting or insulating cylinder. When finite

if |k|>26ks and 5>1, then|k|>ks andT? is real. Defining  electron mass is taken into account, a second branch of the

szz/kfmn=(k/25ks)2, we can write Eq(60) as dispersion relation appears. This is an electron cyclotron
wave (Trivelpiece—Gould modewith short radial wave-
T 1\ v length, propagating primarily inward from the radial bound-
—=k—1F2k[1-=| . (60) gth, propagating p y e radi
kg ary. Strictly speaking, the boundary conditions in the ab-

sence of collisions cannot be satisfied with either wave
alone; hence, both waves are excited simultaneously and are
linearly coupled at the boundary. At high magnetic fields
such thaté=w/w.<1, the possible values of the parallel
wave numberk are quantized by a conducting boundary,

and solve Eq(26) for this case. The solution that is finite at With a typical normal mode consisting of a helicon wave of

For k>1, this function is negative for the H wave and posi-
tive for the TG wave. We thus redefifig for the H wave as

Ti=k?- B3>0, (61)

r=0 is low radial wave number coupled to a TG wave of high radial
wave number. However, since the TG wave is expected to be
BR=v2A;(k+ B1) m_1(T1r), highly damped, its rapid radial variations may not be detect-
able; and measurements of the wave fields away from the
BF‘QAl(k—ﬁl)'mﬂ(Tlf)l surface are expected to reveal the helicon branch alone.
Computations show that the radial profile of the helicon
B1,=2iA; Tl (Tyr), (62) branch is not affected by the presence of the TG branch, in

agreement with observatioh$Thus, earlier theoriésfortu-
wherel, is the Bessel function of an imaginary argument.itously gave very nearly the correct result, but without ad-
The relative coefficients oBR, B, andB, were obtained equate justification.
from the components of the parent equation, Etf). For In this section, the physical interpretation of our present
the TG wave, Eqs(45)—(47) are valid, and the exterior so- regylts, as well as the geometries chosen for study, is based
lution is given by Eqs(48)—(50). Continuity ofBY, B", and  on damping and excitation calculations appearing not in this
B, atr=a then yields the same condition as &§2), paper but in the work of Shamrai and Tarafici#and in our

own work (part Il). For instance, for the case of larBg, the

A,=—A, % (63)  quantization of the values &f is not physically meaningful,
279272 since the damping of the TG component is too strong for its
but with the new definitions behavior atr=0 to play an important role. On the other
hand, the case of small; may be quite different. At low
[ l]=(k+ﬂ) Imz1(T1@) magnetic fields such thas>3 only evanescent helicon
01 TPV Ks1(Taa) modes can exist. Fof<3, the helicon and TG branches
have similar radial wave numbers and should be strongly
hoe — 2k Im(T18) (64  coupled. Though the helicon wave field still has the radial
! Ts | 1Ky(Tsa))’ behavior predicted by simple thectythe coupled helicon

and TG mode has a different radial profile, which should be
measurable in future experiments. Furthermore, the coupling
profoundly affects the energy absorption.

When the boundary is an insulating cylinder, the exis-

while f,, g,, andh, are still correctly given by E¢53). As
for the continuity ofE,, the exterior solution is given by Eq.
(55), while the new interior expression is

. 2¢2 kg tence of an external field permits the boundary conditions to
EIZHZT 2 [A1B1 T (T1a) —AB8,T2Jn(Tra)]. be satisfied with many values &f as long as they lie within
S

65) a range that depends oy and 8. The eigenvalues df for

the conducting boundary case lie within this range. However,
The boundary conditions have the same form as 8. for an insulating cylinder the dominant values lofare not
and (57), except that now it makes sense to normalize todetermined so much by the boundary conditions as by the
A,=1, and the definitions of Eq64) are to be used: efficiencies of excitation and damping at various values of
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