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High-density, radio-frequency plasmas used in semiconductor processing have progressed to
densitiesn>531011cm23, where the methods used to interpret Langmuir probe characteristics in
low-density (109 – 11cm23) plasma reactors are no longer valid. Though theory and computations for
arbitrarily dense collisionless plasmas exist, they are difficult to apply in real time. A new
parametrization and iteration scheme is given which permits rapid analysis of Langmuir probe data
using these theories. However, at highn, measured ion saturation curves are shown which do not
agree in shape with the ‘‘correct’’ theory, yielding anomalously high values ofn. The discrepancy
with independent measures ofn, which can exceed a factor of 2, is believed to be caused by
charge-exchange collisions well outside the sheath. Probe designs for avoiding this discrepancy are
suggested. ©2001 American Institute of Physics.@DOI: 10.1063/1.1368874#
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I. BACKGROUND

A majority of the critical steps in the fabrication of
computer chip now involve plasma processing. The stand
capacitive discharges used for these processes are grad
being replaced by so-called high density plasmas, part
larly inductively coupled plasmas~ICPs! and helicon wave
plasmas, which are both driven by radio-frequency pow
These sources are capable of increasing the plasma denn
from the 109 – 11cm23 range to the order of 531012cm23. In
the low density regime, it is common practice in the indus
to use the orbital motion limited~OML! theory of ion col-
lection. This theory can be applied successfully well outs
its intended range, but its error is greatly enhanced at h
densities. Although a suitable theory exists, it is normaliz
in such a way that the result must be known before the
culation is begun. In this paper we present a method
parametrizing the theoretical curves so that fast, real-t
analysis of probe curves at any density can be made
modern computers. This paper will treat only cylindric
probes, since spherical ones are impractical. Except at
end, collisions will be neglected because in high dens
plasmas the sheaths are much thinner than the mean
path. Attention will be focused on saturation ion curren
which present the most difficult problems.

The OML theory of ion collection was developed b
Mott-Smith and Langmuir,1 who found that the ion current to
a negatively biased probe is independent of the shape o
plasma potentialV(r ) as long as the current is limited onl
by the angular momentum of the orbiting ions. This requir
either the arbitrary assumption of a ‘‘sheath edge’’s, beyond
which the ion energy distribution was Maxwellian, or aV(r )
varying so slowly that no ‘‘absorption radius’’ inside o
which all ions are drawn in exists between the probe a
infinity. This condition is never satisfied even at modest d
sities. Fors→` and a Maxwellian ion distribution at tem

a!Electronic mail: ffchen@ee.ucla.edu
3021070-664X/2001/8(6)/3029/13/$18.00
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peratureTi , the OML current to a cylindrical probe is give
by

I 5Apj rF 2

Ap
x1/21ex~12erf~x1/2!!G

→
x@1

Apj r

2

Ap
A11x, ~1!

wherex[2eVp /KTi , Vp is the probe voltage,Ap the probe
area, andj r the random thermal ion current. AsTi→0, theTi

dependences ofx and j r cancel, and a finite limiting value o
the OML current exists:

I →
Ti→0

Apne
A2

p S ueVpu
M D 1/2

. ~2!

At the opposite extreme of dense plasmas and thin shea
ions enter the sheath with the so-called Bohm velocity

nB5~KTe /M !1/2, ~3!

so that the saturation ion current is

I'aneApnB , ~4!

independently ofVp , since the sheath adds very little to th
probe radiusRp . Here, an5ns is the ion density at the
sheath edge, witha'1/2. The exact value ofa depends on
the conditions in the presheath, which can cause the ‘‘s
ration’’ current to increase withVp , even for a plane probe
Since the presheath thickness is generally>Rp , there is no
simple way to treat a plane probe theoretically.

Between 1926 and 1957 many probe papers appea
but all of them involved the arbitrary assumption of a she
edge, since computers did not exist to handle the disparit
scale length between the sheath region and the quasine
plasma region. In 1957 Allen, Boyd, and Reynolds~ABR!2

derived a relatively simple differential equation which cou
be solved to giveV(r ) for all r without division into sheath,
presheath, and plasma regions. However, this theory
9 © 2001 American Institute of Physics
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3030 Phys. Plasmas, Vol. 8, No. 6, June 2001 Francis F. Chen
only for spherical probes and only forTi50, so that ions
moved radially into the probe, there was no orbital motio
and the absorption radius was at infinity. Chen3 later ex-
tended theTi50 calculations to cylindrical probes. For finit
Ti , ions with small angular momentumJ would strike the
probe and be collected, while those with largeJ would miss
the probe and contribute twice to the ion density at any
dius r which they reached. Thus, the density used to so
Poisson’s equation forV(r ) depends on the currentI, which
is unknown. This difficult problem was solved by Bernste
and Rabinowitz~BR!4 in 1959, but only for monoenergeti
ions. The angular momentum forms an effective poten
barrier for the ions, and those with sufficient energyE to
overcome the barrier are collected. Thus, the constant
motion E, J determine the fate of each velocity class.
addition,V(r ) may have a local minimum in which ions ca
be trapped in closed orbits. Fortunately there has never b
to our knowledge, any indication of the existence of suc
population of collisionally trapped ions. A simpler metho
valid only for highly negative probes, was given by Lam5

who took advantage of the disparity in scale lengths at v
ous radii. Using boundary layer techniques from aerodyna
ics, he derived a graphical method for computing ion c
rents. With modern computers, however, this method is
longer useful. Computations based on the ABR, BR, a
Lam theories were given by Chen.3,6 Experimental verifica-
tion of the BR results was done by Chenet al.7

The BR computations were extended to Maxwellian d
tributions in the dissertation of Laframboise.8 Since each ve-
locity class (E,J) had its own idiosyncrasies, and there we
convergence problems in the solution of the integral eq
tions, these calculations were difficult and nontrivial. Unfo
tunately, only the casesb[Ti /Te50, 0.5, and 1 were
treated; ifb had been taken to be 0.1, the results could h
been used forthwith, without the nonuniform convergen
problems in the caseTi50. WhenTi→0, one might expect
the BR–Laframboise~BRL! results to reduce to the ABR
results, but they do so only for spheres, not for cylinde
The reason is that asr→` while Ti→0, the angular momen
tum J takes the indeterminate form̀30, which is zero for
spheres but finite for cylinders. By asymptotic analysis of
governing equations, Laframboise showed that this limit
pends on whetherV(r ) varies faster or slower than 1/r 2. For
cylinders, it varies more slowly, causingJ to be finite even if
Ti50. Consequently, the ABR theory cannot be used
cylindrical probes; we must use the Laframboise curves
the BR results, which are only slightly different from ea
other forb!1.

Further computations of this type were given later
Virmont and Godard,9 but only for spherical probes. Nume
ous extensions of collisionless probe theory have been m
for instance, to collisional plasmas by Cohen,10 to flowing
plasma by Chunget al.,11 and to magnetized plasmas b
Stangeby.12 However, the collisionless theories worked o
in the 1960s are still state-of-the-art and are appropriate
high density, low pressure plasmas. These results, howe
are normalized to units that depend on the variables to
determined and are therefore difficult to apply to the exp
ment.
Downloaded 13 Jun 2001 to 128.97.88.10. Redistribution subject to AIP
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II. PARAMETRIZATION OF LAFRAMBOISE CURVES

In 1965, Chen13 showed that the apparent linearity o
current–voltage (I 2–V) curves of ion current was fortuitou
and unrelated to the OML formula of Eq.~2!. For instance,
this dependence is found in ABR theory, which has no
bital motions, and also for spherical probes, for which OM
theory would predict a linearI –V dependence. Figure 1
copied from that paper, shows ABR curves of ion curre
over a large range ofjp , wherejp ~or, simply,j! is the ratio
of probe radius to Debye length

jp[j[Rp /lD , lD[~e0KTe /ne2!1/2. ~5!

The slope of the curves at lowjp ~low density! is indeed
consistent with linearI 2–V, but the curves bend at highjp

~high density!, approaching true ion saturation with consta
I. Figure 2 shows theI –V curves of Laframboise8 for Ti

50 and various values ofj. Since they cannot be easil
recalculated, it is these curves that we wish to represen
analytic functions for arbitrary values ofj andVp . Follow-
ing Ref. 8, we use the following normalizations:

FIG. 1. Curves of ion saturation current for increasing plasma density~from
Ref. 13!. The abscissa is proportional to ion current, and the ordinate to
probe potential. The dashed line has the slope of OML theory:I 2}V.

FIG. 2. Laframboise curves of normalized ion current vs normalized pr
potential for Ti50. The curves are labeled by the value ofjp5Rp /lD .
~From Ref. 8, Fig. 40.!
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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h[hp[2
e~Vp2Vs!

KTe
,

~6!

i 5
I i

I 0
5

I i

enAp
S KTe

2pM D 21/2

[
I i

nJr
,

whereVp andVs are the probe and space~plasma! potentials,
I i is the ion current to a cylindrical probe with areaAp

52pRpL, and Jr is a random ion current per unit densi
~evaluated atTe!. Equation~6! is invariant to the system o
units, but it is convenient to expressI i ande in mks, with the
other quantities in cgs. Note thath depends onVs and Te ,
andi on n, all quantities that are not known until the analys
is complete.

Steinbrüchel et al.14,15 and Mausbach16 have param-
etrized these curves with a two-parameter function of
form

i 5AhB, ~7!

but it is clear that the bend in theI –V curves in Fig. 1 for
large j cannot be represented by so simple a function.
stead, we have used the following four-parameter fitt
function:

1

i 4 5
1

~AhB!4 1
1

~ChD!4 , ~8!

where the parametersABCD are functions ofj. The first
term on the right in Eq.~8! is dominant for smallh, giving
an approximatei 2}h dependence, while the second ter
dominates at largeh, where the slope is smaller. The rat
C/A determines where the bend in the curve occurs, and
exponent 4 affects the sharpness of the bend. Fortunatel
same exponent could be used for all curves.

The parametrization proceeds in two stages. In stag
values of ABCD are found which give good fits to th
curves of Fig. 2 for the available values ofj. In stage 2,

FIG. 3. Laframboise curves for ion current at low values ofj ~from Ref. 8,
Fig. 43!. Each curve is for constanth, andj is plotted on the abscissa from
right to left.
Downloaded 13 Jun 2001 to 128.97.88.10. Redistribution subject to AIP
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functions A(j), B(j)... are found so that the parameter
ABCD can be evaluated for arbitraryj. In stage 1, the
curves of Fig. 2 were carefully digitized by direct measu
ment. For low values ofh andj we used the expanded grap
in Ref. 8, shown in Fig. 3. In addition to these graph
Laframboise8 gave the numerical values of the points whi
were actually computed. Since the curves were no doub
terpolated by a draftsman, in collecting the data set we g
extra weight to those points for which exact values we
known. An example of a data set and the functional fit us
Eq. ~8! is shown in Fig. 4 on a log–log plot. The scatter
the points arises from errors in reading Figs. 2 and 3 beca
of the finite width of the lines. With four parameter
(ABCD) to be varied in the least squares fit, a multiplicity
solutions could be obtained depending on the starting val
We first fit the slopesB andD to the left and right portions of
the curve, respectively, and then adjusted the values ofA and
C to get an overall fit. Only then were all four paramete
varied to get the final least squares minimization.

The entire data set and the corresponding least squ
fits are shown in Fig. 5. All available values ofj are listed,
but to avoid clutter some values are not plotted. The cu
for j50 agrees with the OML limit given by Eq.~2!. Close
examination of Fig. 5 will show that the slope changes d

FIG. 4. Example of fitting Laframboise data~points! with a four-parameter
function ~line!. The radius of the points is'2%. Points for which exact
values were available are shown by the large squares. The orbital m
limit is shown by the dashed line.

FIG. 5. The Laframboise data set~points! and analytic fits~lines! for all
available values ofj. The curves are in the same order as in the legend,
for clarity some curves are not drawn.
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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continuously atj53. This value ofj separates the regio
~j,3! in which the OML limit is approximately valid from
the region~j.3! where it is not. The physical meaning
that, forj>3, the formation of an absorption radius begins
limit the probe current. Except for the pointh50, which has
little experimental value, the fitting error over the enti
range ofh and j is less than'3%, and in most cases les
than 1%–2%. The values of the parametersABCD used in
Fig. 5 are shown in Table I; as explained above, this is by
means a unique set of values.

In stage 2, we attempt to express the parametersABCD
as analytic functions ofj. The values in Table I are plotted i
Fig. 6~a!. We see that all the curves have a discontinuity
j53, except for the OML exponentB. These jumps are rea

TABLE I. Fitting parameters used for the curves of Fig. 5.

j A B C D

0 1.585 0.451 1.218 0.526
1 1.453 0.477 1.233 0.517
2 1.445 0.494 1.224 0.514
2.5 1.412 0.531 1.255 0.486
3 1.142 0.541 2.146 0.316
4 1.433 0.646 1.306 0.378
5 1.513 0.670 1.244 0.351

10 1.473 0.635 1.166 0.257
20 1.384 0.622 1.104 0.181
50 1.203 0.544 1.095 0.091

100 1.181 0.532 1.067 0.055

FIG. 6. The parametersA, B, C, andD for available values ofj and analytic
fits to them for:~a! j.3 and~b! all j.
Downloaded 13 Jun 2001 to 128.97.88.10. Redistribution subject to AIP
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attempts to smooth over them yielded poor results. M
insight into this behavior can be seen from Fig. 3, where i
seen that the curves change discontinuously to a horizo
line nearj53. The reason for this is that for cylinders the B
theory converges poorly for smallj, yielding currents larger
than the OML limit. Laframboise argues that the ion curre
cannot exceed this limit because, when a thin sheath
formed, it shields the plasma from the probe potential, a
ions cannot be drawn in from large distances. For lack o
better procedure, he arbitrarily cuts off the ion current wh
it reached the OML value. This limit is not observed in e
periment. Laframboise8 shows data by Sonin17 which follow
the extrapolation of the curves of Fig. 3 without an OM
cutoff. This is physically reasonable, since any small co
sion far from the probe can change the angular momentum
an incoming ion. The obvious solution is to ignore the OM
limit and use the extrapolation of the curves of Fig. 3. U
fortunately, the parametersABCD(j) then behave even
more erratically than in Fig. 6~a!, and we were unable to fi
them to smooth functions.

The fitting of ABCD(j) to analytic functions was car
ried out in two steps. In step 1, the values forj,3 were
ignored, and the origin of the curves was shifted toj53. The
following functional forms were used:

A,B,D~j!5a1b~j2c!d exp@2 f ~j2c!g#,
~9!

C5a1b exp@2c ln~j2d!#1 f ~12g ln j!.

Thus, each parameterA, B, C, or D, was fitted using six other
parametersabcd f g, which we shall callcoefficientsto avoid
confusion. Possible values for these are given in Table
This is by no means a uniquely optimized set; we sim
show that a set exists which can be used to reproduce
Laframboise curves accurately. Figure 6~a! shows the result-
ing curves ofABCD(j), as analytic fits to the points in tha
figure. With these smoothed parameters, the calculated
points of Fig. 5 can be fitted within 3% down toj53.

In step 2, we sacrifice accuracy in order to fit the para
etersABCD(j j ) for all known values,j j , of j. The param-
etersABCD are chosen not to give the best fit to the data
to give a reasonable fit while varying more smoothly as fu
tions of j. SinceC becomes large forj,3, the second term
in Eq. ~8! is negligible for smallj. We therefore choose a
functionC(j) which fits the pointsj.3 in Fig. 6 and which
diverges rapidly forj,3. The functionD(j) is then imma-
terial for j,3 and needs to be fitted only for largej. Having
chosen C(j) and D(j), we then fix C and D at their
smoothedvalues while optimizingA andB. This results in a
new set of parametersABCD, given in Table III, which are

TABLE II. Coefficients for calculatingABCD(j) for j.3.

a b c d f g

A 1.142 19.027 3.000 1.433 4.164 0.25
B 0.530 0.970 3.000 1.110 2.120 0.350
C 0.000 1.000 3.000 1.950 1.270 0.035
D 0.000 2.650 2.960 0.376 1.940 0.234
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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3033Phys. Plasmas, Vol. 8, No. 6, June 2001 Langmuir probe analysis for high density plasmas
to be fitted with new functionsA(j) andB(j). The new set
of functions, involving new coefficientsabcd f, is as fol-
lows:

A5a1
1

1

bjc2
1

d ln~j/ f !

,

B,D5a1bjc exp~2dj f !, ~10!

C5a1bj2c.

Table IV gives the new coefficients, and Fig. 6~b! shows the
points and fitting curves of step 2, valid for allj. In spite of
the fact that the points in Fig. 6~b! are still erratic and the fits
poor, the smooth curves in this figure yieldI –V curves
agreeing with those in Fig. 2 to within'5% for 0,j,100.
The largest discrepancies occur forj'4–5, where both terms
in Eq. ~8! are significant. Again, we emphasize that the p
rameters of Table III are by no means optimized. By degr
ing the stage 1 fit using other local minima in the lea
squares process, it may be possible to make the po
ABCD(j j ) lie on smoother curves that can be fitted mo
readily.

Comparison of the two parametrizations is shown
two sample values ofj in Figs. 7~a! and 7~b! on log–log
plots. Although it is not easy to see on this scale, the ste
coefficients give closer fits than the step 2 coefficients. T
largest discrepancies are forh,1, where the ion current is
only a small contribution to the total current anyway. No
that the fits of Fig. 5 are better than those of Fig. 7 beca
the parametersABCD in Fig. 5 were not calculated from
analytic functions.

Finally, we consider the effect of finite ion temperatu
Figure 8 shows the Laframboise calculations8 for i versush
at j510 for various ratiosTi /Te . Since in partially ionized

TABLE III. Degraded parameters for fitting the curves of Fig. 5.

j A B C D

0.1 1.141 0.496 1.218 0.526
1 1.199 0.477 1.233 0.517
2 1.194 0.515 1.224 0.514
2.5 1.234 0.537 1.255 0.486
3 1.415 0.522 1.294 0.316
4 1.568 0.446 1.306 0.378
5 1.546 0.422 1.244 0.351

10 1.426 0.583 1.166 0.257
20 1.415 0.654 1.104 0.181
50 1.255 0.583 1.095 0.091

100 1.130 0.486 1.067 0.055

TABLE IV. Coefficients for calculatingABCD(j) for all j.

a b c d f

A 1.12 0.00034 6.87 0.145 110
B 0.50 0.008 1.50 0.180 0.80
C 1.07 0.95 1.01 — —
D 0.05 1.54 0.30 1.135 0.370
Downloaded 13 Jun 2001 to 128.97.88.10. Redistribution subject to AIP
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gas dischargesTi rarely exceeds 0.1 eV, the correction f
finite Ti is entirely negligible except forh,1.

III. ANALYSIS PROCEDURE

To obtain accurate values ofn, Te , andVs ~but notTi!
from theI –V characteristic, the most difficult task is to sep
rate the ion currentI i from the electron currentI e , and vice
versa, in the region near the floating potential, where b
contribute to the total currentI. Now that we have accurat
ion curves for small values ofh, we can subtractI i from I e ,

FIG. 7. Parametric fits to the Laframboise data for:~a! j55 and~b! j520.
The points have a radius of 2%. The solid line~fit 1! shows the curve
optimized forj>3; the dashed line~fit 2!, the curve optimized for allj.

FIG. 8. Laframboise data for the variation of ionI –V curves with ion
temperature, atj510.
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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and thenI e from I i , in an iterative procedure. We shall i
lustrate this technique using data from an inductiv
coupled discharge in 10 mTorr of argon, taken with an
compensated probe of radius 0.075 mm and length 1
~Hiden ESPion®!. A similar iterative scheme is used b
Hopkins and Graham.18

Except in negative-ion plasmas, it is inadvisable to
tempt to obtain the electron densityne from the saturation
electron current, although this has been done successful
quiescent, field-free plasmas of very low density. There
several reasons for this. The space potentialVs , at whichne

is determined, is usually found from the inflection point
the I –V curve or from the ‘‘knee’’ at which the extrapolate
lines of the saturation and transition regions cross. This p
is ill defined, andne depends exponentially on the choice
Vs . Magnetic fields and collisions can move the knee of
curve. Radio-frequency fluctuations can distort this parti
larly nonlinear part of the curve. Drawing large electron c
rents to the probe can also deplete the plasma or damag
probe. Ifni andne were to differ by as much as 0.1%, Poi
son’s equation shows thatd2Vs /dx2 would be on the order
of 200 V/cm2, which is impossible outside of a sheat
Therefore, apart from low density (n,331010cm23), rf-
free plasmas,ne is in principle best determined from the io
saturation current, assuming quasineutrality; and any
agreement betweenni andne

18,19 simply shows the error in
measuringne . In the following procedure, we do not us
electron saturation except for an initial estimate ofn. How-
ever, it will be seen that there are still problems with t
theories of ion collection.

A. Step 1

The current to the end area of the probe is subtracted
by dividing the measured probe currentI by an aspect ratio
factor Ar , defined by

S52pRpL, Ar5~S1pRp
2!/S5~11Rp/2L !. ~11!

Depending on the value ofj, the end of the probe can collec
from a hemispherical sheath or a plane one. Since the
rection is small, we have simply assumed a small increas
the cylindrical area. The entireI –V curve in this example is
shown in Fig. 9.

FIG. 9. SampleI –V curve to be analyzed~I e.0 here!. The data were taken
with an 0.15 mm diam, 1 cm long probe in a 900 W, 2 MHz ICP in
mTorr of argon. The density was of order 431011 cm23, and KTe was
'2 eV.
Downloaded 13 Jun 2001 to 128.97.88.10. Redistribution subject to AIP
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B. Step 2

The data are smoothed to remove digital noise, a
dI/dV is computed; the maximum of this gives a first es
mate of the space potentialVs . This estimate will not affect
the final determination ofVs , which is found from the ion
and electron fits and the condition of quasineutrality. If t
electron distribution is Maxwellian, the ratioI /(dI/dV)
yields a first estimate ofTe :

I e}exp@e~Vp2Vs!/KTe#,
I e

dIe /dVp
5

KTe

e
, ~12!

which is Te in eV. These curves are shown in Fig. 10, wi
Te read directly from the right-hand scale. From the min
mum in thedI/dV curve, the space potential is seen to
'13 V. Since the ion contribution toI e has not yet been
subtracted, the apparentTe varies withVp . Taking a poten-
tial '2Te more negative thanVs , we estimateTe to be
about 2.1 eV in this example.

C. Step 3

A rough estimate of plasma densityn can be found from
I e(Vs):

I ~Vs!'I e~Vs!5neS~KTe/2pm!1/2. ~13!

This yields a density of'1.731011cm23. A second esti-
mate can be found from the Bohm formula of Eq.~4! applied
to the current at the most negative probe potential measu
Since the sheath has expanded at that potential,a should be
given a value@1/2, perhaps 2. This yields a density of'6
31011cm23. These estimates may differ considerably, b
they are needed only to provide an order of magnitude.

D. Step 4

Having working values ofVs , Te , andn, we can now
evaluatelD , j, andJr from Eqs.~5! and~6!. The parameters
ABCD(j) can then be evaluated using Eq.~9! if j@3, or Eq.
~10! if j is less than 3 or close to 3, together with Tables
and IV, respectively. Equation~10! can always be used but i
somewhat less accurate.

FIG. 10. Initial determination ofVs and Te from derivative of theI –V
curve. Ion current is positive here.
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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E. Step 5

The theoretical ion current can now be found as a fu
tion of Vp from Eq. ~6!

I i5nJr i , ~14!

with i given by Eq.~8! as a function ofh. Using the prelimi-
nary values ofVs andTe , we can convertI i(h) into I i(Vp)
using Eq.~6!. The measured and calculated curves ofI i

2 are
shown in Fig. 11. The reason that we plotI i

2–V rather than
I i –V is that measuredI i

2–V curves tend to be linear over
larger range of densities than one would expect from
theory.

F. Step 6

The values ofn and Vs are then adjusted for a lea
squares fit to the data, avoiding the region nearVs . The
value ofn controls the magnitude of the curve, and the va
of Vs its slope. The result is the thin line in Fig. 11. Th
discrepancy between theory and experiment nearVs is ex-
pected, since the contribution of electrons has not yet b
subtracted. In general, the value ofVs given by this fit
([Vs

i ) will differ from that required to fit the electron cur
rent ([Vs

e); this will be discussed later. Note that we do n
vary Te at this step. From Eq.~6!, we see thati 2 andh both
vary asTe

21, so that a fit ofi 2(h) is independent ofTe .
Unfortunately,i depends weakly onTe through the value of
j, and iteration is necessary.

G. Step 7

Next, thecalculated ion current is subtracted from th
probe current to obtain the electron current. We do not s
tract themeasuredion current, since that contains an electr
component. Figure 12 shows a semilogarithmic plot ofI e , as
compared with the raw data. In this case, subtracting the
current has greatly improved the linearity of this curve. T
solid line is a graph of the equation

I e5neS~KTe/2pm!1/2exp@e~Vp2Vs
e!/KTe# ~15!

using the value ofn determined by the ion fit.

FIG. 11. Square of saturation ion current vs probe voltage as meas
~dots! and as computed after optimization~smooth line!.
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H. Step 8

A least squares fit of theI e data is made by varyingTe

and Vs
e , yielding the line shown in Fig. 12. The resultin

value ofVs
e is the space potential required by quasineutral

regardless of where the ‘‘knee’’ of theI –V curve is located.
For each trial value ofTe or Vs

e , j andh will change, and the
ion curve has to be recalculated. TheI e data are then also
recalculated because the ion subtraction has changed.
spite the complexity, these least square fits of a 500-p
data set require less than 15 s on a 400 MHz computer u
an uncompiled spreadsheet program. SinceTe has changed,
the ion curve in Fig. 11 will no longer fit the data.

I. Step 9

Steps 4–8 are repeated until consistent values ofn, Te ,
Vs

i , and Vs
e are obtained. In this example, the result isn

55.1531011cm23, Te52.09 eV, Vs
e514.9 eV, and Vs

i

517.1 eV.

J. Step 10

The electron current can now be subtracted from the
data to give the true ion current. This can be done in t
ways. If the ion-corrected electron current is subtracted,
result is shown in Fig. 13. If thetheoreticalelectron current
~assuming a Maxwellian distribution! is subtracted, the resul

edFIG. 12. Semilog plot of electron current as originally measured~diamonds!
and after subtraction of ion component~circles!. The line is a fit to a Max-
wellian distribution.

FIG. 13. Linear plot of saturation ion current after subtraction of correc
electron current. The line is the theoretical fit. The points at the right
electron currents which appear because of the mismatch between the
potentials assumed for the ion and electron fits.
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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~not shown! has a discontinuity nearVs because of the dis
crepancy betweenVs

e and Vs
i . Non-Maxwellian electrons

would cause these curves to differ even more.
Some disagreement betweenVs

e andVs
i can be expected

because:~a! the ion current forh'0 cannot be calculated
accurately, being sensitive to small perturbations and p
convergence;~b! it is fit least well by our analytic functions
and~c! it is furthermore sensitive to ion temperature~cf. Fig.
8!. However, it is surprising that the discrepancy is so la
and is not always of the same sign. This problem has
been encountered before, because no attempts had
made to evaluateI i nearh50 accurately. Another possibility
is that ion trapping in closed orbits is occurring at low p
tentials. However, Laframboise8 points out that with cylin-
drical probes trapped ions can escape by moving paralle
the axis. As is evident from the erratic behavior of Fig.
nearVs , it is difficult to separateI i and I e near the space
potential, and this may affect the apparent electron distri
tion function at low energies.

IV. ANALYSIS WITH OTHER PROBE THEORIES

It is apparent from our sample case~Fig. 11! that the
BRL theory diverges from the experimental points at lar
negative voltages. As will be seen in Sec. VI, this discre
ancy vanishes at low densities but becomes large at
densities. For this reason, we need to test the accuracy o
other available theories. Ion currents predicted by the O
theory are simply given by Eq.~2!. The curves of the ABR
theory, however, require parametrization. The procedur
essentially the same as that in Sec. II, and the details wil
omitted. Since the bend in the ABR curves is opposite to t
in the BRL curves~Fig. 5!, the fitting function of Eq.~8! has
been modified, and the normalized ion currenti is replaced
by Jjp , which is independent ofn

Jjp5I iRp~e/KTe!
2~2MKTe!

1/2

5@~AhB!41~ChD!4#1/4. ~16!

Here I i is the ion flux, not current, per cm length, and c
units are used. In practical units, Eq.~16! can be written

I i~mA!50.327~Jjp!TeV~n11/A!1/2L/jp , ~17!

wheren11 is n in units of 1011cm23, A is the atomic number
of the gas, andL the probe length in cm. The computed da
to be fitted were taken from the original curves reproduced

TABLE V. Parameters for fitting the ABR curves.

A B C D

0.5 0.314 0.493 0.314 0.493
1 0.846 0.488 1.033 0.360
1.5 1.511 0.468 2.152 0.283
2.5 3.637 0.409 4.329 0.298
4 6.677 0.423 10.63 0.200
6 14.79 0.367 21.67 0.140

10 21.75 0.430 55.68 0.158
30 291.5 0.205 417.1 0.039
50 796.2 0.167 1113 0.008
70 1691 0.122 2110 20.030
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Ref. 13, including Fig. 1 of the present paper. The para
etersABCD(j) for the best fit to the ABR data are shown
Table V. These parameters are fitted with the following fun
tions of j:

A,C5ajb1cjd,
~18!

B,D5a1b ln j1c~ ln j!2.

The fitting coefficientsabcd are shown in Table VI.
The OML, BRL, and ABR theories predict differen

magnitudes and shapes for the ion saturation curves.
can be seen in Fig. 14, which compares the three theo
with the same data used for the example of Figs. 9–13.
seen that the OML curve fits the linearI 2–V dependence of
the data almost exactly. The deviation of the data from t
line at the highest voltages is in the ‘‘wrong’’ direction an
is probably caused by secondary electron emission.
ABR curve fits the data well at low voltages but shows so
saturation at high voltages. The BRL curve shows more s
ration and does not follow anI 2–V dependence at all. As
shown in the figure, each theory requires a different value
density in order to fit the data. In general, the BRL and OM
theories agree at small values ofj, as they should, since
Laframboise8 forced them to do so as explained in Sec.
For large j, the data follow the OML curve much mor
closely than the BRL curve, even though the OML theory
not expected to be accurate forj.3. Indeed, the BRL fit is
so poor at largej that there is considerable latitude in choo
ing the combination ofn and Vs

i that gives the best fit. In
practice, we chose a combination that also straightens
ln Ie–V curve as much as possible. The ABR theory in ge
eral fits theshapeof the data curves better than does t
BRL theory; but, as we shall see, the resulting values ofn are

TABLE VI. Coefficients for calculatingABCD(j) for ABR theory.

a b c d

A 0.864 1.500 0.269 2.050
B 0.479 20.030 20.010 —
C 1.008 1.700 0.336 2.050
D 0.384 20.150 0.013 —

FIG. 14. Comparison of ion saturation data with the shapes of curves
dicted by three probe theories. The densities required for the fits are sh
in the legend. The value ofj for this example is 5.0 for the BRL density an
4.1 for the OML density.
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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too low to be realistic. When the OML theory is applicab
the values ofVs

e and Vs
i agree well, but for largej these

values diverge because of the inaccuracy of the theories
the plasma potential. Usually the OML fit requires too lar
a value ofVs

i , while the BRL and ABR theories require to
small a value ofVs

i .

V. COMPARISON OF THEORIES WITH EXPERIMENT

We have analyzed some 15 probe curves taken by Ev
and Zawalsky20 with various probe radii and plasma cond
tions in an ICP, using a Hiden ESPion® probe system.
perimental details are outside the scope of this paper and
be given in a separate paper. The values ofKTe are insensi-
tive to the method of analysis used, but the densitiesn can
vary by a factor of 3 or more from theory to theory, leadi
to a large uncertainty in the interpretation of the data. T
discrepancy, however, follows a trend that can be discer
in the four cases chosen for illustration in Fig. 15. The b
marked ‘‘Hiden’’ is the density given by the ESPion® sof
ware package and differs from the OML result only beca
the value ofKTe involved a slightly different fit to the data
The values ofKTe , shown by the connected points, are
most the same for all methods, but the values ofn differ by
an amount which increases withj5Rp /lD . The BRL for-
malism consistently yields density values larger than
OML theory, while the ABR densities are always lower th
the OML density.

The ABR theory, which neglects angular momentum a
ion orbiting, overestimates the ion current to the probe, t

FIG. 15. Comparison of density and temperature values obtained from
ferent methods of probe analysis for sample cases withj5~a! 1.1, ~b! 3.1,
~c! 4.6, and~d! 9.1.
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underestimating the density. Since it accounts for an abs
tion radius, which the OML theory does not, it could ha
predicted a lower ion current and higher density than d
the OML theory; but apparently the effect of angular m
mentum is larger, and the ABR density is always lower th
the OML density. Although the BRL and OML theories bo
incorporate angular momentum, the OML formula negle
the formation of an absorption radius and allows the pro
potential to attract ions from large distances, thus overe
mating the current and underestimating the density. Ho
ever, the BRL theory does not necessarily give the right
swer, because it does not fit the shape of the ionI –V
characteristic as well as the OML theory does.

A comparison of the three theories for our test case
shown in Fig. 16, which plots the BRL/OML and ABR/OML
density ratios as functions ofj. The BRL/OML ratio ap-
proaches unity asj→0, as expected, and increases monoto
cally with j. As j increases and the sheath becomes thin,
probe potential is shielded from distant points in the plasm
an effect neglected in OML theory. Hence, OML predicts t
large a current and too small a density, the error increas
with j. To test the sensitivity toj, we analyzed twoI –V
curves assuming an incorrect value ofRp , and hence ofj.
These cases are shown by the two points marked with a
~* ! and lie well off the trend line of the other points. Th
ABR/OML ratio is usually below unity, for reasons state
above.

We believe that BRL theory is also inaccurate becaus
applies to strictly collisionless plasmas. In the presence
charge-exchange collisions in a gas like argon, the ang
momentum of an incoming ion far from the probe can eas
be destroyed by a collision, after which the ion will be a
celerated radially by the probe’s electric field. Enough an
lar momentum remains, however, for the current to be low
than that predicted by ABR theory. Our previous experime
tal check of BRL theory7 was done in a thermionic
Q-machine, which was fully ionized and gave large values
j because of the low temperature. There, the ion current
well saturated and fitted the shape of the BRL curves. I
partially ionized plasma, however, collisions well outside t
sheath can change the angular momentum distribution so

if-

FIG. 16. Ratios of densities obtained with the BRL, OML, and ABR the
ries for test cases with varying values ofj ~computed with the BRL density!.
The starred points lying off the line were calculated assuming an incor
probe radius.
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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the ion curves more closely follow theI 2–V dependence
predicted by the OML theory and, to a lesser extent,
ABR theory.

Well saturated ion curves can also be obtained in a p
tially ionized plasma by using a large probe at high dens
Figure 17 shows data from a helicon plasma in then
51013cm23 range21 attaining a value ofj556. Although not
shown, the BRL/OML and ABR/OML density ratios fall o
an extrapolation of the trend line in Fig. 16. The straig
I 2–V line corresponding to the OML theory is clearly ina
propriate, since it crosses the axis at 154 V, and an un
sonably low density has to be assumed to achieve the s
slope of the curve. The ABR theory, however, fits the d
quite well with a reasonable density, while the BRL cur
has a lower slope than the data. In these fits,Vs

i has been
adjusted so that the electron current is Maxwellian after
ion current has been subtracted. Near the floating poten
the data points in Fig. 17 fall below the theory because t
have not yet been corrected for the electron contribution

To compare the probe results with independent meas
ments of density, we have obtained preliminary data
Evans and Zawalsky20 using microwave interferometry. Fig
ure 18 shows these density measurements as a function
power Prf in a commercial ICP, compared with prob

FIG. 17. Data from a high-density helicon plasma compared with th
theoretical curves. The inset shows the values ofn and Te obtained from
these fits. The 2 kW discharge was in 8 mTorr of argon with a 600
magnetic field, and the probe was 0.3 mm in diameter.

FIG. 18. Values of density vsj as obtained from the BRL and ABR theo
ries, as compared with microwave measurements~l!. The stars~* ! are the
geometric mean between the BRL and ABR densities.
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determined densities analyzed with the BRL and ABR th
ries. It is seen that there is reasonable agreement amon
three methods at lowPrf ~smallj!, but that at highPrf ~large
j! the BRL density is too high, and the ABR density too lo
compared with the microwave determination. However,
geometric mean of the BRL and ABR densities~shown by
the dotted line and starred points! agrees well with the mi-
crowave measurement and has the proper slope.

An exact treatment of the problem for partially ionize
plasmas would require adding a collision term to t
Bernstein–Rabinowitz formalism, but even then the resu
would depend on the pressure and species of the gas
would not be expressible in terms of universal curves. W
have attempted to devise a hybrid technique, using the A
theory for radii above a critical radiusRc , to account for the
shielding of potentials by thin sheaths and the finite-shea
thickness OML theory forr ,Rc to account for ion orbits in
the collisionless region. For instance, one could chooseRc to
be the mean free path, but this is usually well outside
sheath. Alternatively, one could chooseRc to be several De-
bye lengths larger thanRp , or to be the radius at whichh
5hc51. The ABR current would be calculated for a prob
with Rp5Rc and hp51, thus neglecting the ions’ angula
momenta in the exterior region. The OML current can th
be calculated for a sheath edge atr 5Rc and a Maxwellian
ion distribution there withTi<Te . Setting the two currents
equal to each other should yield the value ofRc or hc ,
whichever is the unknown. The process is repeated for e
probe potentialVp . The density assumed initially would b
adjusted and the process repeated until the curve agrees
the data. Unfortunately, our attempts to carry out this pro
dure failed.

VI. SUMMARY AND CONCLUSIONS

The proper use of probe theory for high density, partia
and fully ionized plasmas is treated in this paper, which
corporates several distinct research results:

~1! A double parametrization technique has been dev
oped to facilitate the use of the Laframboise and ABR co
putational results. This algorithm permits rapid generation
theoreticalI –V curves for arbitrary values oflD /Rp , lead-
ing to real-time analysis of probe data with fast portab
computers.

~2! An iteration scheme is described which uses the
rametrized curves to separate the ion and electron curr
collected by the probe. Although this separation fails b
tween the floating and space potentials because of inacc
cies in the theory, this method yields more accurate deter
nations of density and electron temperature than previou
possible.

~3! Comparison with experiment reveals a dilemm
The OML ~or ABR! theory fits the shape of the ion satur
tion curves better than the BRL theory in regimes where
OML ~or ABR! theory should be inapplicable. The corre
density, as determined by microwave interferometry, lies
tween those given by the BRL and OML~or ABR! theories.
We surmise that the cause of the failure of the collisionl

e
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BRL and OML formalisms is neutral charge exchang
which destroys ion angular momentum far from the prob

~4! In partially ionized plasmas, collisionless prob
theories are inadequate for 3,jp,100, and density determi
nations can be in error by a factor of 2 or more. The corr
density is bracketed by the predictions of the BRL and OM
~or ABR! theories. Forjp,3, the OML theory can be used
since it agrees with the BRL theory in that range. Forjp

.100, the ABR theory should be sufficiently accurate, sin
the sheath is so thin that ion orbiting would not be a proble
The ABR differential equation would have to be solve
however, since the parametrization in this paper was d
only up to jp570. More simply, the Bohm formula can b
used for largejp . For intermediate values ofjp , it is found
phenomenologically that the geometric mean of the BRL a
ABR densities agrees with independent measurements
though there is no theoretical justification for this.

~5! In view of these results, the design of Langmu
probes for use in rf plasmas is discussed in Appendix A.

~6! For dense, fully ionized plasmas, straight-line e
trapolation of the ion saturation curve is commonly us
The accuracy of this approach compared with the exact B
curves is assessed in Appendix B. It is also shown there
the slope of theI i –V curve is approximately 3/4.
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APPENDIX A: PROBE DESIGN

Because of the effect of collisions for intermediate v
ues ofj, probes should have either very small or very lar
diameters to operate in regimes where collisionless theo
can be trusted. Figure 19 shows values ofjp5Rp /lD as a
function of n for various probe diameters. One sees tha
diameter of 0.2 mm or less can be used with the OML the

FIG. 19. Dependence ofj on density, forTe53 eV and various probe
diameters. The thick line is forRp50.15 mm, a common and convenien
size which, however, gives an intermediate value ofj in high density plas-
mas.
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up to densities of'1011cm23. For n.1012cm23, a 2-mm-
diam probe can access the regionjp.100, and it should be
long enough to resemble an infinite cylinder. One should
attempt to draw saturation electron current with such
probe! In the density range 1011– 12cm23, it is difficult to
choose a probe size for which an existing theory gives
correct result in a weakly collisional plasma. However, t
I –V curve of a thick probe can sometimes be successf
analyzed using a modified Bohm formula~Appendix B!.

In regimes where the theory is good, determination
the probe area is a limiting factor in the accuracy of Lan
muir probe measurements. The probe radius can change
ion sputtering, either during measurement or during d
charge cleaning of the surface. Short probes have end co
tion which is difficult to account for. If the insulating ce
ramic is too large, plasma may creep into into it, extend
the probe length; and if it is too narrow, the probe tip m
make electrical contact with conducting films deposited
the ceramic. To minimize the interference of the probe w
the plasma, the mounting hardware near the probe tip sh
be no larger than 2 mm in diameter.

In reactive ion etchers, ICPs, and helicon sources use
semiconductor processing, there are large fluctuations inVs

at the rf frequency. It is well known22 that this can greatly
distort theI –V characteristics. Many methods of rf compe
sation have been published, but the most successful see
be the use of tuned inductors close to the probe tip, in c
junction with a nearby floating electrode which is ac coup
to the probe to driveVp in synchronism with the rf
fluctuations.19,23 The area of the floating electrode should
large enough to drive the probe tip but small enough to g
spatial resolution; a criterion is given below. In plasm
sources with insulating walls, insertion of a large ground
electrode is necessary to serve as a reference forVp . A float-
ing double probe cannot be used in this situation because
entire assembly does not float at the rf frequency unless
traordinary means are used to drive its stray capacita
Furthermore, the rf compensation of each tip would have
be identical. Since rf oscillations tend to decrease the floa
potentialVf , one can compare rf compensation schemes
observing how positive a value ofVf is obtained. However,
because of stray capacitances, one can never be sure of
suringVf correctly by terminating the probe in a high resi
tance. The safest way to measureVf is to terminate in a low
resistance and detect the zero crossing of the probe cur

A criterion for designing the auxiliary floating electrod
was given by Sudit and Chen.23 The probe tipP is coupled to
the oscillating space potentialṼrf through a sheath capac
tanceCs , given approximately by

Cs,x5
1

27/4

e0As,x

lD
Fe~Vs2Vp!

KTe
G23/4

, ~A1!

whereAs is the sheath~or probe! area. The capacitanceCx of
an auxiliary electrode of areaAx coupled to the probe tip a
point P is given by the same formula. The correspondi
impedancesuZs,xu are 1/vCs,x . For the probe tip to follow
Ṽrf , the effective impedanceZL eff of the isolating inductors,
ZL , must be large compared with the larger ofuZs,xu. ZL eff is
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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the parallel combination ofZL and the stray impedance t
ground of the short wire betweenP and the chokes. Fo
instance, a 1 cmlong wire has a capacitance to ground
'0.25 pF, and the stray impedance at 2 MHz is'330 kV.
For maximum effectiveness,ZL should be of this order. rf
compensation is effective against fluctuations of orderṼrf if

ZL eff@Zs,xS euṼrfu
KTe

21D . ~A2!

Figure 20 shows a sample calculation of this criterion for
electrode withAx52 cm2 and inductors withZL5250 kV at
2 MHz. We have takenuṼrfu/Te530 and uVs2Vpu/Te55.
This is the region near the floating potential where the n
linearity of theI –V curve is most severe. It is seen that
unaided probe cannot satisfy Eq.~A2!, and a 2 cm2 electrode
is required to measure densities down to the mid-1010cm23

range.
Although in principle the electron energy distributio

function ~EEDF! can be found from the second derivative
the I –V curve of a cylindrical probe, in practice a high d
gree of data smoothing is required to obtain this derivati
Furthermore, we see from Fig. 12 that the shape of theI e–V
curve depends on the quality of the ion subtraction. No
theless, several authors24–26 have succeeded in obtaining in
teresting EEDF data with Langmuir probes. We regard th
as exceptionaltours-de-forceby extraordinary experimental
ists, rather than results that can be reproduced outside a
cated laboratory. To measure the EEDF, one has to com
the second derivative of theI –V curve, which can be done
with adequate smoothing of the data. Another method is
use a dithered probe, whose voltage is modulated arounVp

at a frequency low enough to pass the rf chokes, and with
amplitude small enough that the ion current does not cha
Synchronous detection of the second harmonic should
yield d2I /dV2.

APPENDIX B: USE OF THE BOHM FORMULA FOR
THIN SHEATHS

At high densities where the ion current is well saturat
it is common practice to use the Bohm formula of Eq.~4! to

FIG. 20. Example of design of auxiliary electrode for rf compensation.Zaux

~—! should be well belowZL eff ~3! for the density measured.Zsheath

~ ! is the sheath impedance without an auxiliary electrode. The c
ditions assumed were:KTe53 eV, Rp50.075 mm,L51 cm, f 52 MHz,
Ax52 cm2, andZL5250 kV.
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estimate the ion density, neglecting the expansion of
sheath. There is always a question of what probe volt
should be used for this reading, and what value ofa should
be used in the formula. In Fig. 21 we have generated ar
cial probe curves for a 3 eV argon plasma using the BRL
theory with Maxwellian electrons, adjusting the density
give ~a! j520 and~b! j540. Straight line extrapolations ar
drawn through the low- and high-voltage parts of the curv
The dashed line is the current predicted by Eq.~4!, with the
value ofa adjusted to match the current extrapolated to
floating potentialVf . At j520, it makes a difference which
extrapolation is used, but the error is small with the mo
linear curve forj540. The value ofa, therefore, depends o
j. This variation is shown in Fig. 22 for two practical case
~a! when the ion current is measured at a constant offse
25KTe from Vf , and~b! when the ion curve is extrapolate
to Vf . Note that this simple method of analysis works on
when the BRL theory is applicable. If theI –V characteristic
has been distorted by collisions, it will not be linear enou
for this method to give accurate results.

The reason that ion curves do not reach a saturated v
until j is on the order of 100 is that the sheath thickness aVf

is actually about 5lD , and to this must be added the thic
ness of the Child–Langmuir~CL! sheath, which increase
with V0

3/45uVp2Vsu3/4 and greatly increases the collectio
area. When the plane CL sheath thickness is evaluated

-

FIG. 21. BRL curves for a 3 eVargon plasma at densities corresponding
~a! j520 and~b! j540. The straight lines are fitted to two regions of the io
saturation curve, and the dashed line is the current predicted by the B
formula with the stated value of the coefficienta.
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the ion current set equal to the Bohm value, the total she
thickness is given by27

d5F2

3 S 2eV0

KTe
D 3/4

15GlD , ~B1!

wherelD is evaluated with the plasma density, not the de
sity at the sheath edge. Since the collection area incre
with d in cylindrical geometry,I i increases asV0

3/4, as is
often observed. Figure 23 is a plot of Eq.~B1! with and
without the last term representing the Debye sheath
simple fit toI i –V curves behaving asV0

3/4 can be obtained by
dividing the sheath into layers. Let the probe radius bea, the
radius of the CL sheath beb, and let the normal Debye
sheath edge be atr 5s. Suppose we letb be the radius at
which V5Vf . Then

FIG. 22. Variation of the coefficienta with j for the use of the Bohm
formula applied to the ion current:~a! measured atVf225KTe ~squares!, or
~b! extrapolated toVf ~diamonds!.

FIG. 23. Child–Langmuir sheath thickness vs probe potential, normalize
lD . The point include the Debye sheath thickness, whereas the line
not.
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eVb5KTe ln@~2M /pm!1/2#'25.4KTe ~B2!

for argon. At the sheath edges, the potential is20.5KTe

relative to the body of the plasma. Thus, in Eq.~B1! we
should setV05Vp26KTe /e. The ion current is then

I i5~d/a!I B , ~B3!

where I B is the Bohm current given by Eq.~4!. The ABR
theory, of course, gives the exact solution without dividi
the sheath into layers, but this approach is simpler and
subject to deviations from the aymptotic behavior of the e
act solution. A variation of this approximation was given b
Hutchinson.28 Godyaket al.29 have pointed out that Eq.~21!
should be modified for cylindrical geometry, but using t
Langmuir–Blodgett corrections as quoted, for instance,
Chen6 would defeat the simplicity of this method.
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