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High-density, radio-frequency plasmas used in semiconductor processing have progressed to
densitiesn=5x 10"*cm 3, where the methods used to interpret Langmuir probe characteristics in
low-density (18-**cm™ %) plasma reactors are no longer valid. Though theory and computations for
arbitrarily dense collisionless plasmas exist, they are difficult to apply in real time. A new
parametrization and iteration scheme is given which permits rapid analysis of Langmuir probe data
using these theories. However, at highmeasured ion saturation curves are shown which do not
agree in shape with the “correct” theory, yielding anomalously high valuas dhe discrepancy

with independent measures of which can exceed a factor of 2, is believed to be caused by
charge-exchange collisions well outside the sheath. Probe designs for avoiding this discrepancy are
suggested. €2001 American Institute of PhysicgDOI: 10.1063/1.1368874

I. BACKGROUND peratureT;, the OML current to a cylindrical probe is given
A majorij[y of th.e critical steps in the f_abrication of a > )

T B e 1= o et

being replqced by so-called high density plagmas, particu- ,

sieamas, which e both ariven by radio-reduency power. Al = VX g

These sources are capable of increasing the plasma dansity

from the 10-*1cm 3 range to the order of 10?cm 3. In  Wherexy=—eV,/KT;, V, is the probe voltagel, the probe
the low density regime, it is common practice in the industryarea, ang, the random thermal ion current. A$—0, theT,;
to use the orbital motion limitedOML) theory of ion col- ~dependences gf andj, cancel, and a finite limiting value of
lection. This theory can be applied successfully well outsiddhe OML current exists:

its intended range, but its error is greatly enhanced at high 2 eV || 12
densities. Although a suitable theory exists, it is normalized | — Apne—( P ) 2
in such a way that the result must be known before the cal-  Ti—0 M

culation is begun. In this paper we present a method fo,rAt the opposite extreme of dense plasmas and thin sheaths,

parametrizing the theoretical curves so that fast, real-timﬁaonS enter the sheath with the so-called Bohm velocity
analysis of probe curves at any density can be made with

modern computers. This paper will treat only cylindrical — vg=(KT¢/M)*?, 3

probes, since spherical ones are impractical. Except at thseO that the saturation ion current is

end, collisions will be neglected because in high density
plasmas the sheaths are much thinner than the mean free |~aneA,vg, (4)

ath. Attention will be focused on saturation ion currents,, . .
\F/Jvhich present the most difficult problems independently o/, since the sheath adds very little to the

The OML theory of ion collection was developed by ELZg?hrSgIUeSRVF\)/i.ﬂ;':DEZ, a1r']h:e néxgcttr:;:;noge;:'tgnzts tgr?
Mott-Smith and Langmuit,who found that the ion current to ge, ' P

a negatively biased probe is independent of the shape of tﬁge conditions in the presheath, which can cause the "satu-

. T ration” current to increase witN,, even for a plane probe.
plasma potential/(r) as long as the current is limited only Since the presheath thickness is generaiRy, , there is no

by the angular momentum of the orbiting ions. This required

. . . ¥ simple way to treat a plane probe theoretically.
either the arbitrary assumption of a “sheath edgebeyond Between 1926 and 1957 many probe papers appeared
which the ion energy distribution was Maxwellian, o¥ér) ’

: " i e but all of them involved the arbitrary assumption of a sheath
varying so slowly that no “absorption radius” inside of o446 since computers did not exist to handle the disparity in
which all ions are drawn in exists between the probe and e jength between the sheath region and the quasineutral
infinity. This condition is never satisfied even at modest de”'plasma region. In 1957 Allen, Boyd, and Reyno(@eBR)z
sities. Fors—o and a Maxwellian ion distribution at tem-  yerived a relatively simple differential equation which could
be solved to give/(r) for all r without division into sheath,

dElectronic mail: fichen@ee.ucla.edu presheath, and plasma regions. However, this theory was
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only for spherical probes and only far,=0, so that ions  ©pm——rrrgryrrr vy Ay AR 4\ U R B
moved radially into the probe, there was no orbital motion, f-g"j(',"‘“zfg / .
and the absorption radius was at infinity. Chédater ex- ) / 1
tended thel;=0 calculations to cylindrical probes. For finite 3 / J ]

T;, ions with small angular momentuthwould strike the OF  gras?

probe and be collected, while those with latheould miss E /
the probe and contribute twice to the ion density at any ra- [ /'«

dius r which they reached. Thus, the density used to solve /% | / }
Poisson’s equation fov(r) depends on the currehtwhich 3 il / / / / / K / ] /
is unknown. This difficult problem was solved by Bernstein | [ 4ok 0 €0
and Rabinowitz(BR)* in 1959, but only for monoenergetic | ‘
ions. The angular momentum forms an effective potential £ ... i ool i
barrier for the ions, and those with sufficient eneffgyto o ! o O o ot
overcome the barrier are collected. Thus, the constants (?:fIG 1c ) ) . i .

. . . . 1. Curves of ion saturation current for increasing plasma de(feiy
motion E, J determine the fate of each velocity class. In Ref. 13. The abscissa is proportional to ion current, and the ordinate to the
addition,V(r) may have a local minimum in which ions can probe potential. The dashed line has the slope of OML thedryV.
be trapped in closed orbits. Fortunately there has never been,
to our knowledge, any indication of the existence of such a

population of collisionally trapped ions. A simpler method,
valid only for highly negative probes, was given by Lam, Il. PARAMETRIZATION OF LAFRAMBOISE CURVES

who took advantage of the disparity in scale lengths at vari- |, 1965 Chel® showed that the apparent linearity of

ous radii. Using boundary layer techniques from aerodynamg,rrent—yoltage V) curves of ion current was fortuitous

ics, he derived a graphical method for computing ion Cur-yng ynrelated to the OML formula of E€R). For instance,

rents. With modern computers, however, this method is ngp;g dependence is found in ABR theory, which has no or-
longer useful. Computations based on the ABR, BR, angiia| motions, and also for spherical probes, for which OML
Lam theories were given by Chéf.Experimental verifica- theory would predict a lineat—V dependence. Figure 1,

H 7

tion of the BR results was done by Chenal. ~ copied from that paper, shows ABR curves of ion current
' T'he BR computatlon§ were extendeq to_Maxwelllan d's'over a large range af,, whereg, (or, simply, &) is the ratio

tributions in the dissertation of Laframboi®&ince each ve- of probe radius to Debye length

locity class E,J) had its own idiosyncrasies, and there were

convergence problems in the solution of the integral equa- o

tions, these calculations were difficult and nontrivial. Unfor- Ep=E6=Rp/No,
tunately, only the case@=T;/T,=0, 0.5, and 1 were

treated; if 3 had been taken to be 0.1, the results could havd he slope of the curves at log, (low density is indeed
been used forthwith, without the nonuniform convergenceconsistent with lineat?~V, but the curves bend at high,
problems in the cas€ =0. WhenT,— 0, one might expect (high density, approaching true ion saturation with constant
the BR—LaframboiséBRL) results to reduce to the ABR |. Figure 2 shows thé—V curves of Laframboidefor T;
results, but they do so only for spheres, not for cylinders=0 and various values of. Since they cannot be easily
The reason is that as— while T;—0, the angular momen- recalculated, it is these curves that we wish to represent by
tum J takes the indeterminate formx0, which is zero for —analytic functions for arbitrary values @fandV. Follow-
spheres but finite for cylinders. By asymptotic analysis of thdng Ref. 8, we use the following normalizations:
governing equations, Laframboise showed that this limit de-

pends on whethev(r) varies faster or slower thanrf/ For

cylinders, it varies more slowly, causidgo be finite even if : : . X
T;=0. Consequently, the ABR theory cannot be used forer /T =0 .
cylindrical probes; we must use the Laframboise curves or
the BR results, which are only slightly different from each
other for B<1.

Further computations of this type were given later by T
Virmont and Godard,but only for spherical probes. Numer-
ous extensions of collisionless probe theory have been made
for instance, to collisional plasmas by Coh8rtp flowing 2
plasma by Chuncet al.!! and to magnetized plasmas by
Stangeby? However, the collisionless theories worked out
in the 1960s are still state-of-the-art and are appropriate fol
high density, low pressure plasmas. These results, howeves 3 © s 20
are normalized to units that depend on the variables to bEIG 2. Laframboise curves of normalized ion current vs normalized probe
determined and are therefore difficult to apply to the experipoential forT;=0. The curves are labeled by the value =R, /\p .
ment. (From Ref. 8, Fig. 40.

Ap=(€oKTo/ne?)2. (5)

Downloaded 13 Jun 2001 to 128.97.88.10. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/pop/popcr.jsp



Phys. Plasmas, Vol. 8, No. 6, June 2001 Langmuir probe analysis for high density plasmas 3031

I/l
\

0.1 1 n 10 100

FIG. 4. Example of fitting Laframboise dafpoint9 with a four-parameter
function (line). The radius of the points is=2%. Points for which exact
values were available are shown by the large squares. The orbital motion
limit is shown by the dashed line.

) _ functions A(¢), B(¢)... arefound so that the parameters
FIG. 3. Laframboise curves for ion current at low values ¢from Ref. 8,

Fig. 43. Each curve is for constant, and¢ is plotted on the abscissa from ABCD Can. be evaluated for arb!trargc In S_tage 1, the
right to left. curves of Fig. 2 were carefully digitized by direct measure-

ment. For low values ofy and ¢ we used the expanded graph
in Ref. 8, shown in Fig. 3. In addition to these graphs,
Laframboisé gave the numerical values of the points which
_ &V were actually computed. Since the curves were no doubt in-
TEMET T e :
e terpolated by a draftsman, in collecting the data set we gave
I . KT.\ "2 . (6) extra weight to those points for which exact values were
. I I e I . . .
i= = ﬁ(m) =3 known..An example qf a data set and the functional fit using
' Eq. (8) is shown in Fig. 4 on a log—log plot. The scatter in
whereV, andV; are the probe and spag@asma potentials,  the points arises from errors in reading Figs. 2 and 3 because
l; is the ion current to a cylindrical probe with arég ~ of the finite width of the lines. With four parameters
=2mRpL, andJ, is a random ion current per unit density (ABCD) to be varied in the least squares fit, a multiplicity of
(evaluated afl,). Equation(6) is invariant to the system of solutions could be obtained depending on the starting values.
units, but it is convenient to expregsande in mks, with the  We first fit the slope® andD to the left and right portions of
other quantities in cgs. Note thatdepends oV and T, the curve, respectively, and then adjusted the valuésaofd
andi onn, all quantities that are not known until the analysisC to get an overall fit. Only then were all four parameters

is complete. varied to get the final least squares minimization.
Steinbrichel et all*!® and Mausbacli have param- The entire data set and the corresponding least squares

etrized these curves with a two-parameter function of thdits are shown in Fig. 5. All available values éfare listed,

form but to avoid clutter some values are not plotted. The curve
i=AnB, 7) for ¢&=0 agrees with the OML limit given by Ed2). Close

examination of Fig. 5 will show that the slope changes dis-
but it is clear that the bend in tHe-V curves in Fig. 1 for
large &£ cannot be represented by so simple a function. In-
stead, we have used the following four-parameter fitting "

function: 1t 1
JU4n®y Cny
1 1 1

7= + ,

i* (An9)* (Cp)*
where the parametel8BCD are functions ofé The first 24 = == :
term on the right in Eq(8) is dominant for smalky, giving g .5
an approximate ?« 7 dependence, while the second term e
dominates at large;, where the slope is smaller. The ratio |
C/A determines where the bend in the curve occurs, and the
exponent 4 affects the sharpness of the bend. Fortunately th
same exponent could be used for all curves. 0 1 n 10 100

The parametrization proceeds In two stages. In stage JF’IG. 5. The Laframboise data sgiointg and analytic fits(lines) for all

values OfABCD are found _WhiCh give good fits to the available values of. The curves are in the same order as in the legend, but
curves of Fig. 2 for the available values éf In stage 2, for clarity some curves are not drawn.

8
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TABLE |. Fitting parameters used for the curves of Fig. 5. TABLE IlI. Coefficients for calculatingABCD(¢) for £&>3.
13 A B C D a b c d f g
0 1.585 0.451 1.218 0526 A 1.142 19.027 3.000 1.433 4.164 0.252
1 1.453 0.477 1.233 0517 B 0.530 0.970 3.000 1.110 2.120 0.350
2 1.445 0.494 1.224 0514 C 0.000 1.000 3.000 1.950 1.270 0.035
25 1.412 0.531 1.255 048 D 0.000 2.650 2.960 0.376 1.940 0.234
3 1.142 0.541 2.146 0.316
4 1.433 0.646 1.306 0.378
5 1.513 0.670 1.244 0.351
10 1.473 0.635 1.166 0.257
20 1.384 0.622 1.104 0181  attempts to smooth over them yielded poor results. More
50 1.203 0.544 1.095 0091 jnsight into this behavior can be seen from Fig. 3, where it is
100 1.181 0.532 1.067 0.055

seen that the curves change discontinuously to a horizontal
line nearé=3. The reason for this is that for cylinders the BR
theory converges poorly for smaj) yielding currents larger
continuously até=3. This value of¢ separates the region than the OML limit. Laframboise argues that the ion current
(é<3) in which the OML limit is approximately valid from cannot exceed this limit because, when a thin sheath is
the region(£>3) where it is not. The physical meaning is formed, it shields the plasma from the probe potential, and
that, for&=3, the formation of an absorption radius begins toions cannot be drawn in from large distances. For lack of a
limit the probe current. Except for the point=0, which has better procedure, he arbitrarily cuts off the ion current when
little experimental value, the fitting error over the entire it reached the OML value. This limit is not observed in ex-
range 0f77 andf is less than=3%, and in most cases less periment. Laframboi?eshows data by Sonjtﬁwhich follow
than 1%—2%. The values of the paramet@BCD used in  the extrapolation of the curves of Fig. 3 without an OML
Fig. 5 are shown in Table I; as explained above, this is by ngutoff. This is physically reasonable, since any small colli-
means a unique set of values. sion far from the probe can change the angular momentum of

In stage 2, we attempt to express the paraméi&€ D an incoming ion. The obvious solution is to ignore the OML
as analytic functions of. The values in Table | are plotted in limit and use the extrapolation of the curves of Fig. 3. Un-
Fig. 6(a). We see that all the curves have a discontinuity afortunately, the parameterABCD(&) then behave even
£=3, except for the OML exponers. These jumps are real; more erratically than in Fig.(ﬁ), and we were unable to fit
them to smooth functions.

The fitting of ABCD(£) to analytic functions was car-
ried out in two steps. In step 1, the values #%3 were
ignored, and the origin of the curves was shifted+®. The
following functional forms were used:

A,B,D(¢)=a+b(é—c)dexg —f(é—c)9],

9
C=a+tbexg—cIn(é—d)]+f(1—glné). ©

Thus, each parametés B, C, or D, was fitted using six other
parameterabcdfg which we shall caltoefficientdo avoid
confusion. Possible values for these are given in Table II.
This is by no means a uniquely optimized set; we simply
show that a set exists which can be used to reproduce the
Laframboise curves accurately. Figur@geshows the result-

ing curves ofABCD(¢), as analytic fits to the points in that
figure. With these smoothed parameters, the calculated data
points of Fig. 5 can be fitted within 3% down #=3.

In step 2, we sacrifice accuracy in order to fit the param-
etersABCD(¢;) for all known valuesé;, of & The param-
etersABCD are chosen not to give the best fit to the data but
to give a reasonable fit while varying more smoothly as func-
tions of &. SinceC becomes large fog<3, the second term
in Eq. (8) is negligible for smallé. We therefore choose a
function C(&) which fits the pointse>3 in Fig. 6 and which
diverges rapidly foré<3. The functionD () is then imma-
terial for é&<3 and needs to be fitted only for largeHaving

05

0.0

(®) chosenC(¢) and D(¢), we then fix C and D at their
FIG. 6. The parametei, B, C, andD for available values of and analytic ~ Smoothedzalues while opt|m|2|r_19A a_nd B. This resu_lts ina
fits to them for:(a) £>3 and(b) all & new set of paramete’®sBCD, given in Table lll, which are
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TABLE Ill. Degraded parameters for fitting the curves of Fig. 5. 10 F
13
& A B c D 5
0.1 1.141 0.496 1.218 0.526 e =
1 1.199 0.477 1.233 0.517 S
2 1.194 0.515 1.224 0.514 o
25 1.234 0.537 1.255 0.486 -l >
3 1.415 0.522 1.294 0.316
4 1.568 0.446 1.306 0.378
5 1.546 0.422 1.244 0.351
10 1.426 0.583 1.166 0.257
20 1.415 0.654 1.104 0.181
50 1.255 0.583 1.095 0.091 oL .
100 1.130 0.486 1.067 0.055 01 1 n 10 100
(a)
10
. . . 3
to be fitted with new function&\ (&) andB(¢£). The new set T 20
of functions, involving new coefficientabcdf, is as fol- | Fit?
lows: - Fit 2
. ﬂ‘w!ﬂf”
1 < T
gy :
A=a+ ﬁ' — /
be din(élf) 7
B,D=a+b&exp—déh), (10)
C=a+b&c. 0
0.1 1 n 10 100

Table IV gives the new coefficients, and FigbBshows the '
points and fitting curves of step 2, valid for &llIn spite of
the fact that the points in Fig() are still erratic and the fits _';'h(; 765;"?:23;“(; firtasdtizsthsf L;jraﬁﬁgisseo I?;tﬁﬁ?:lﬁzi gvrltsi(?r)‘ e‘ézi?\-le
poor, .the S.mOOth Cl_.ll’ve_s in this .flg.ure yleld-V curves optimFi)zed foré=3; the dashed Iin;ﬁt 2), the curve optimized for alf.
agreeing with those in Fig. 2 to withiir5% for 0<£<<100.
The largest discrepancies occur 45, where both terms
in Eq. (8) are significant. Again, we emphasize that the pagas discharge3; rarely exceeds 0.1 eV, the correction for
rameters of Table Ill are by no means optimized. By degradfinite T, is entirely negligible except fop<1.
ing the stage 1 fit using other local minima in the least-
squares process, it may be possible to make the poin
ABCD(¢)) lie on smoother curves that can be fitted moreﬁ' ANALYSIS PROCEDURE
readily. To obtain accurate values of T, andV, (but notT,)
Comparison of the two parametrizations is shown forfrom thel -V characteristic, the most difficult task is to sepa-
two sample values of in Figs. 7@ and 4b) on log—log rate the ion current; from the electron currerlt,, and vice
plots. Although it is not easy to see on this scale, the step ¥ersa, in the region near the floating potential, where both
coefficients give closer fits than the step 2 coefficients. Theontribute to the total currendt Now that we have accurate
largest discrepancies are fgr<1, where the ion current is ion curves for small values aof, we can subtradt; from I,
only a small contribution to the total current anyway. Note
that the fits of Fig. 5 are better than those of Fig. 7 because
the parameter&\BCD in Fig. 5 were not calculated from
analytic functions.
Finally, we consider the effect of finite ion temperature.
Figure 8 shows the Laframboise calculatidfor i versuszy
at ¢&=10 for various ratiosT; /T.. Since in partially ionized

Re/Ap =10

TABLE V. Coefficients for calculatintABCD(¢) for all .

a b c d f
A 1.12 0.00034 6.87 0.145 110 01 - et .
B 0.50 0.008 1.50 0.180 0.80 0.1 1 n 10 100
C 1.07 0.95 1.01 — —
D 0.05 1.54 0.30 1.135 0.370 FIG. 8. Laframboise data for the variation of idr-V curves with ion

temperature, at=10.
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FIG. 9. Sampld -V curve to be analyzed .>0 herg. The data were taken 0 5 \Y; 10 15 20
with an 0.15 mm diam, 1 cm long probe in a 900 W, 2 MHz ICP in 20

mTorr of argon. The density was of ordex40cm 3, and KT, was FIG. 10. Initial determination ol¢ and T, from derivative of thel -V

~2 eV. curve. lon current is positive here.

and thenl, from I;, in an iterative procedure. We shall il-

lustrate this technique using data from an inductively

coupled discharge in 10 mTorr of argon, taken with an rf-  The data are smoothed to remove digital noise, and

compensated probe of radius 0.075 mm and length 1 crdl/dV is computed; the maximum of this gives a first esti-

(Hiden ESPion® A similar iterative scheme is used by mate of the space potentidl. This estimate will not affect

Hopkins and Grahartf. the final determination o¥/s, which is found from the ion
Except in negative-ion plasmas, it is inadvisable to at-and electron fits and the condition of quasineutrality. If the

tempt to obtain the electron density from the saturation electron distribution is Maxwellian, the ratid/(dI/dV)

electron current, although this has been done successfully iields a first estimate of .

quiescent, field-free plasmas of very low density. There are

several reasons for this. The space poteial at whichng lecexde(V,—Vg)/KTe], mz Te’

is determined, is usually found from the inflection point of e’”p

thel -V curve or from the “knee” at which the extrapolated which is T, in eV. These curves are shown in Fig. 10, with

lines of the saturation and transition regions cross. This poinT, read directly from the right-hand scale. From the mini-

is ill defined, andnh, depends exponentially on the choice of mum in thedl/dV curve, the space potential is seen to be

V. Magnetic fields and collisions can move the knee of the=<13 V. Since the ion contribution tb, has not yet been

curve. Radio-frequency fluctuations can distort this particusubtracted, the appareft varies withV,,. Taking a poten-

larly nonlinear part of the curve. Drawing large electron cur-tial ~2T., more negative thaVg, we estimateT, to be

rents to the probe can also deplete the plasma or damage thbout 2.1 eV in this example.

probe. Ifn; andn, were to differ by as much as 0.1%, Pois-

son’s equation shows thafV,/dx? would be on the order

of 200 Vicnf, which is impossible outside of a sheath. C. Step 3

Therefore, apart from low densityn¢3x10"%cm™?), rf- A rough estimate of plasma densitycan be found from

free plasmasn, is in principle best determined from the ion (Vo)

saturation current, assuming quasineutrality; and any dis->" >

agreement betweem and n,'®° simply shows the error in 1(Vy)=~1e(Vs)=neSKTg/2mm)"2 (13

measuringne. In the following procedure, we do not use Tpig yields a density of=1.7x 10" cm™3. A second esti-

electr(_)n s_aturatlon except for an |n|t|al_ estlmatenoHo_W- mate can be found from the Bohm formula of E4). applied

ever, it will be seen that there are still problems with theyg the current at the most negative probe potential measured.

theories of ion collection. Since the sheath has expanded at that potemtighould be

given a value>1/2, perhaps 2. This yields a density =6
A. Step 1 X 10'cm™3. These estimates may differ considerably, but
ey are needed only to provide an order of magnitude.

B. Step 2

(12

The current to the end area of the probe is subtracted ol
by dividing the measured probe currdnlby an aspect ratio
factor A, , defined by

S=2mR,L, A=(S+wR2/S=(1+Ry2L). (11

D. Step 4

Having working values oW, T., andn, we can now
Depending on the value &f the end of the probe can collect evaluater, £ andJ, from Egs.(5) and(6). The parameters
from a hemispherical sheath or a plane one. Since the coABCD(¢) can then be evaluated using E§) if &3, or Eq.
rection is small, we have simply assumed a small increase iflL0) if ¢ is less than 3 or close to 3, together with Tables Il
the cylindrical area. The entile-V curve in this example is and IV, respectively. Equatiofi0) can always be used but is
shown in Fig. 9. somewhat less accurate.
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- Data o.““w’
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FIG. 11. Square of saturation ion current vs probe voltage as measureflG. 12. Semilog plot of electron current as originally measudtamond$
(doty and as computed after optimizatigemooth ling. and after subtraction of ion compondugtrcles. The line is a fit to a Max-
wellian distribution.

E. Step 5 H. Step 8

The theoretical ion current can now be found as a func- A least squares fit of the, data is made by varying,
tion of V, from Eq. (6) and V¢, yielding the line shown in Fig. 12. The resulting

I =ndi (14) value of V¢ is the space potential required by quasineutrality,

! r regardless of where the “knee” of tHe-V curve is located.
with i given by Eq.(8) as a function ofy. Using the prelimi-  For each trial value of ¢ or V¢, & and » will change, and the
nary values oV andT,, we can convert;(») into I;(V,) ion curve has to be recalculated. Thedata are then also
using Eq.(6). The measured and calculated curvesfoare recalculated because the ion subtraction has changed. De-
shown in Fig. 11. The reason that we plt-V rather than  spite the complexity, these least square fits of a 500-point
[;—V is that measurediz—v curves tend to be linear over a data set require less than 15 s on a 400 MHz computer using
larger range of densities than one would expect from thisan uncompiled spreadsheet program. Sifigdhas changed,

theory. the ion curve in Fig. 11 will no longer fit the data.
I. Step 9
F. Step 6 Steps 4—8 are repeated until consistent values, af,,

The values ofn and V, are then adjusted for a least Vs, and V¢ are obtained. In this example, the resultnis
squares fit to the data, avoiding the region n¥ar The  =5.15x10"em™°, T,=2.09eV, Vi=14.9eV, and V,
value ofn controls the magnitude of the curve, and the value=17.1€V.
of Vs its slope. The result is the thin line in Fig. 11. The
discrepancy between theory and experiment néars ex-  J. Step 10

pegted, s:jnc:e the contlnbtj]tmn Tf elsctro_ns h‘?)s nﬁ_t y:ft been The electron current can now be subtracted from the ion
subtracted. In general, the value § given by this fit data to give the true ion current. This can be done in two

(_Vs)_W'e” _d':,er fr.ﬁrg tt'ft reqw:jeld to fit the ehlectron dcur ways. If the ion-corrected electron current is subtracted, the
rent (=V); this will be discussed later. Note that we do not o1t is shown in Fig. 13. If théheoreticalelectron current

- .2
vary Te at_t[ns step. From Eo[g), we see that” and 7 both 551 1ming a Maxwellian distributioiis subtracted, the result
vary asT, -, so that a fit ofi“(#») is independent off.

Unfortunately,i depends weakly oit, through the value of
¢, and iteration is necessary.

G. Step 7

Next, thecalculatedion current is subtracted from the
probe current to obtain the electron current. We do not sub-
tract themeasuredon current, since that contains an electron
component. Figure 12 shows a semilogarithmic pladt.gfas
compared with the raw data. In this case, subtracting the ion 00 e : o :
current has greatly improved the linearity of this curve. The -100 -80 60 y -40 20 0 20
solid line is a graph of the equation

FIG. 13. Linear plot of saturation ion current after subtraction of corrected

lo= neSKTE/ZWm)llzeXﬂ:e(Vp—Vg)/KTe] (15 electron current. The line is the theoretical fit. The points at the right are
) ) ) ) electron currents which appear because of the mismatch between the space
using the value oh determined by the ion fit. potentials assumed for the ion and electron fits.
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TABLE V. Parameters for fitting the ABR curves. TABLE VI. Coefficients for calculatingABCD(¢) for ABR theory.
A B C D a b c d

0.5 0.314 0.493 0.314 0493 A 0.864 1.500 0.269 2.050

1 0.846 0.488 1.033 0.360 B 0.479 -0.030 -0.010 —

1.5 1.511 0.468 2.152 0283 C 1.008 1.700 0.336 2.050

25 3.637 0.409 4.329 0298 D 0.384 -0.150 0.013 —

4 6.677 0.423 10.63 0.200

6 14.79 0.367 21.67 0.140

10 21.75 0.430 55.68 0.158

30 291.5 0.205 417.1 0.039 Ref. 13, including Fig. 1 of the present paper. The param-
50 796.2 0.167 1113 0.008  etersABCD(¢&) for the best fit to the ABR data are shown in
70 1691 0.122 2110 —0030  Taple V. These parameters are fitted with the following func-

tions of &
A,C=aé’+cgd,
(not shown has a discontinuity near because of the dis- (18)
crepancy betweeve and V. Non-Maxwellian electrons B,D=a+blIné+c(Iné)?.
would cause these curves to differ even more. The fitting coefficientsabcd are shown in Table VI.
Some disagreement betwe¥f andVs can be expected - the OML, BRL, and ABR theories predict different

because(a) the ion current forp~0 cannot be calculated magnitudes and shapes for the ion saturation curves. This
accurately, being sensitive to small perturbations and poog;n pe seen in Fig. 14, which compares the three theories
convergence(b) it is fit least well by our analytic functions; \yith the same data used for the example of Figs. 9-13. It is
and(c) it is furthermore sensitive to ion temperatdoé. Fig.  seen that the OML curve fits the linet—V dependence of

8). However, it is surprising that the discrepancy is so larg&ne data alimost exactly. The deviation of the data from this
and is not always of the same sign. This problem has nofne at the highest voltages is in the “wrong” direction and
been encountered before, because no attempts had begnpropaply caused by secondary electron emission. The
made to evaluatk near»=0 accurately. Another possibility - ABR curve fits the data well at low voltages but shows some
is that ion trapping in closed orbits is occurring at low po- sa1ration at high voltages. The BRL curve shows more satu-
tentials. However, Laframboi8epoints out that with cylin- ration and does not follow ai?—V dependence at all. As
drical probes trapped ions can escape by moving parallel tghown in the figure, each theory requires a different value of
the axis. _A_s is _e\_/ldent from the erratic behavior of Fig. 13density in order to fit the data. In general, the BRL and OML
nearVs, it is difficult to separatd; and |, near the space theories agree at small values &f as they should, since
potential, and this may affect the apparent electron distribup 5framboisé@ forced them to do so as explained in Sec. II.

tion function at low energies. For large ¢, the data follow the OML curve much more
closely than the BRL curve, even though the OML theory is
IV. ANALYSIS WITH OTHER PROBE THEORIES not expected to be accurate f6r3. Indeed, the BRL fit is

so poor at large that there is considerable latitude in choos-

It is apparent from our sample (_:a$|é|g. 1D_that the ing the combination oh and Vy that gives the best fit. In
BRL theory diverges from the experimental points at large . S .
: . . S practice, we chose a combination that also straightens the
negative voltages. As will be seen in Sec. VI, this discrep-

ancy vanishes at low densities but becomes large at hi W |-V curve as much as possible. The ABR theory in gen-
Y 9 geraI fits theshapeof the data curves better than does the

densities. For this reason, we need to test the accuracy of t i .
other available theories. lon currents predicted by the OMI[EQL theory; but, as we shall see, the resulting valuesare

theory are simply given by Eq2). The curves of the ABR
theory, however, require parametrization. The procedure is 4

essentially the same as that in Sec. I, and the details will be B

omitted. Since the bend in the ABR curves is opposite to that —_OML, n=345E11

in the BRL curveqFig. 5), the fitting function of Eq(8) has 21 ~ ABR,n=176E11
- BRL,n=5.15E11

been modified, and the normalized ion curreid replaced

by J¢,, which is independent af &g 2
Jép=1iR,(6/KT¢)2(2MKT,) 2 i
=[(An®)*+(Cn°)* 1M, (16) Y
Herel; is the ion flux, not current, per cm length, and cgs
units are used. In practical units, E4.6) can be written 0
-100 -80 -60 -40 -20 0 20
1i(MA)=0.3213¢&,) TNy /A) LI &, (17 v

; ; ; 1~m—3 ; ; FIG. 14. Comparison of ion saturation data with the shapes of curves pre-
Wherenll is nin units of 1G*cm  Alis the atomic number dicted by three probe theories. The densities required for the fits are shown

of the _gas, and the probe length i.n _Cm- The computed da-tfain the legend. The value @ffor this example is 5.0 for the BRL density and
to be fitted were taken from the original curves reproduced int.1 for the OML density.
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12 4 04 4 4

-e— BRL/OML
10 s s | o |3 _= ABRIOML
08 3 | | x Wrong Rp

x Wrong Rp
06 {2 02 12
0.4 £,

11 o041 11 g2
02
0.0 0 00 0 . =
Hiden | OML | BRL | ABR Hiden | OML | BRL | ABR 1t
n11| 089 | 087 | 0.99 | 0.36 n11| 034 | 0.37 | 0.37 | 0.06 T
Te | 289 | 367 | 363 | 343 Te | 250 | 2.89 | 2.92 | 3.04 g =
(@) (b) 0 5 10 15 20
P
35 3 10 3 FIG. 16. Ratios of densities obtained with the BRL, OML, and ABR theo-
30 + ries for test cases with varying valueséfcomputed with the BRL density
25 | 8 — The starred points lying off the line were calculated assuming an incorrect
’ 12 12 robe radius.
20 ¢ ¢ 6 P
15 | 4
11 1 . . . . .
10 & 5 underestimating the density. Since it accounts for an absorp-
05 tion radius, which the OML theory does not, it could have
00 0 0 0 i i i i
Hiden | OML | BRL | ABR Hden | OML | BRL | ABR predicted a lower ion current and higher density than does

1 0% 092 | 320 [ 100 il 480 | 613 | 81 | 296 the OML_ theory; but apparently the_effect of angular mo-
= PP TS FFYET | ou7 | 245 | 2% |z mentum is larger, and the ABR density is always lower than
© @ the OML density. Although the BRL and OML theories both

incorporate angular momentum, the OML formula neglects
FIG. 15. Comparison of density and temperature values obtained from difthe formation of an absorption radius and allows the probe
ferent methods of probe analysis for sample cases #itf) 1.1, (b) 3.1, potential to attract ions from large distances, thus overesti-
(c) 4.6, and(d) 9.1. mating the current and underestimating the density. How-
ever, the BRL theory does not necessarily give the right an-

too low to be realistic. When the OML theory is applicable, SWe'» because it does not fit the shape of the lietv

the values ofV¢ and Vis agree well, but for large these characteristic _as well as the OML thgory does. _
values diverge because of the inaccuracy of the theories near A comparison of the three theories for our test cases is
the plasma potential. Usually the OML fit requires too largeShoWn in Fig. 16, which plots the BRL/OML and ABR/OML

a value ofV., while the BRL and ABR theories require too density ratios as functions of. The BRL/OML ratio ap-
small a value ONiS_ proaches unity a§—0, as expected, and increases monotoni-

cally with & As ¢ increases and the sheath becomes thin, the
probe potential is shielded from distant points in the plasma,
an effect neglected in OML theory. Hence, OML predicts too
We have analyzed some 15 probe curves taken by Evarlarge a current and too small a density, the error increasing
and Zawalsk§® with various probe radii and plasma condi- with & To test the sensitivity t& we analyzed twd -V
tions in an ICP, using a Hiden ESPion® probe system. Exeurves assuming an incorrect valueRyf, and hence ot.
perimental details are outside the scope of this paper and willhese cases are shown by the two points marked with a star
be given in a separate paper. The value&®f are insensi- (*) and lie well off the trend line of the other points. The
tive to the method of analysis used, but the densitiean  ABR/OML ratio is usually below unity, for reasons stated
vary by a factor of 3 or more from theory to theory, leading above.
to a large uncertainty in the interpretation of the data. The  We believe that BRL theory is also inaccurate because it
discrepancy, however, follows a trend that can be discernedpplies to strictly collisionless plasmas. In the presence of
in the four cases chosen for illustration in Fig. 15. The barcharge-exchange collisions in a gas like argon, the angular
marked “Hiden” is the density given by the ESPion® soft- momentum of an incoming ion far from the probe can easily
ware package and differs from the OML result only becausde destroyed by a collision, after which the ion will be ac-
the value ofKT, involved a slightly different fit to the data. celerated radially by the probe’s electric field. Enough angu-
The values oKT,, shown by the connected points, are al-lar momentum remains, however, for the current to be lower
most the same for all methods, but the values diiffer by  than that predicted by ABR theory. Our previous experimen-
an amount which increases with=R,/\p. The BRL for-  tal check of BRL theory was done in a thermionic
malism consistently yields density values larger than the&Q-machine, which was fully ionized and gave large values of
OML theory, while the ABR densities are always lower than ¢ because of the low temperature. There, the ion current was
the OML density. well saturated and fitted the shape of the BRL curves. In a
The ABR theory, which neglects angular momentum andpartially ionized plasma, however, collisions well outside the
ion orbiting, overestimates the ion current to the probe, thusheath can change the angular momentum distribution so that

V. COMPARISON OF THEORIES WITH EXPERIMENT
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determined densities analyzed with the BRL and ABR theo-
ries. It is seen that there is reasonable agreement among all
three methods at low; (small §), but that at highP ¢ (large
¢) the BRL density is too high, and the ABR density too low
compared with the microwave determination. However, the
geometric mean of the BRL and ABR densitishown by
the dotted line and starred poiptsgrees well with the mi-
crowave measurement and has the proper slope.
An exact treatment of the problem for partially ionized
plasmas would require adding a collision term to the
‘ ‘ ‘ Bernstein—Rabinowitz formalism, but even then the results
-100 80 60 i 20 ° 2 would depend on the pressure and species of the gas and
would not be expressible in terms of universal curves. We
Fh'G- 1t7- P?:?Vgsn} r?e '::]gsf;td;‘;tvys *t‘sgc\?;ul;'gsgnz Tcon;sgizd""fisgr;hfe%ave attempted to devise a hybrid technique, using the ABR
Ehzgcreefli(t:: The 2 .kW discharge was in 8 mTorr of aergon with a 600 Gtheory. for radii abo.ve a cnngal rad"RC’ to accoupt.for the
magnetic field, and the probe was 0.3 mm in diameter. shielding of potentials by thin sheaths and the finite-sheath-
thickness OML theory for <R, to account for ion orbits in
the collisionless region. For instance, one could chds®
the ion curves more closely follow th€—V dependence be the mean free path, but this is usually well outside the
predicted by the OML theory and, to a lesser extent, thesheath. Alternatively, one could chooRgto be several De-
ABR theory. bye lengths larger thaR,,, or to be the radius at whicly
Well saturated ion curves can also be obtained in a par=7n.=1. The ABR current would be calculated for a probe
tially ionized plasma by using a large probe at high densitywith R,=R. and n,=1, thus neglecting the ions’ angular
Figure 17 shows data from a helicon plasma in the momenta in the exterior region. The OML current can then
=10%cm 2 rangé attaining a value o£=56. Although not  be calculated for a sheath edgeratR; and a Maxwellian
shown, the BRL/OML and ABR/OML density ratios fall on ion distribution there withl;<T,. Setting the two currents
an extrapolation of the trend line in Fig. 16. The straightequal to each other should yield the value R{f or 7,
12—V line corresponding to the OML theory is clearly inap- whichever is the unknown. The process is repeated for each
propriate, since it crosses the axis at 154 V, and an unregrobe potentiaV,. The density assumed initially would be
sonably low density has to be assumed to achieve the smadldjusted and the process repeated until the curve agrees with
slope of the curve. The ABR theory, however, fits the datahe data. Unfortunately, our attempts to carry out this proce-
quite well with a reasonable density, while the BRL curvedure failed.
has a lower slope than the data. In these fitshas been
adjusted so that the electron current is Maxwellian after the
ion current has been subtracted. Near the floating potentiaj;; s yMMARY AND CONCLUSIONS
the data points in Fig. 17 fall below the theory because they
have not yet been corrected for the electron contribution. The proper use of probe theory for high density, partially
To compare the probe results with independent measureand fully ionized plasmas is treated in this paper, which in-
ments of density, we have obtained preliminary data bycorporates several distinct research results:
Evans and ZawalsK§ using microwave interferometry. Fig- (1) A double parametrization technique has been devel-
ure 18 shows these density measurements as a function of gped to facilitate the use of the Laframboise and ABR com-
power Py in a commercial ICP, compared with probe- putational results. This algorithm permits rapid generation of
theoreticall -V curves for arbitrary values of, /R, , lead-
ing to real-time analysis of probe data with fast portable
computers.

30

10 +

BRL . . . . .
5 | f:mWa\,e (2) An iteration scheme is described which uses the pa-
% BRL*ABR rametrized curves to separate the ion and electron currents
4 | |=C=ABR

collected by the probe. Although this separation fails be-
tween the floating and space potentials because of inaccura-
cies in the theory, this method yields more accurate determi-
nations of density and electron temperature than previously
possible.

(3) Comparison with experiment reveals a dilemma:
‘ ‘ ‘ The OML (or ABR) theory fits the shape of the ion satura-
260 400 400 o 1000 tion curves better than the BRL theory in regimes where the

Prr (W) OML (or ABR) theory should be inapplicable. The correct

FIG. 18. Values of density v§ as obtained from the BRL and ABR theo- density, as determined by microwave interferometry, lies be-

fies, as compared with microwave measuremémts The starg*) are the ~ [WEEN thqse given by the BRL and O_Mbr ABR) thec_'ri_es-
geometric mean between the BRL and ABR densities. We surmise that the cause of the failure of the collisionless

Density (10" cm®)
w
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1000 ] up to densities of~10"cm 2. Forn>10%cm 3, a 2-mm-
Protediamiom - diam probe can access the regigy®>100, and it should be
long enough to resemble an infinite cylinder. One should not
attempt to draw saturation electron current with such a
probe! In the density range 10'%cm™3, it is difficult to
choose a probe size for which an existing theory gives the
correct result in a weakly collisional plasma. However, the
|-V curve of a thick probe can sometimes be successfully
analyzed using a modified Bohm formulappendix B.
e In regimes where the theory is good, determination of
01 F ‘ ‘ ' ' the probe area is a limiting factor in the accuracy of Lang-
1E+08 1E+09 1E+10 1E+11 1E+12 1E+13 1E+14 . .
n (cmi®) muir probe measurements. The probe radius can change from
ion sputtering, either during measurement or during dis-
100 5, 1 0t T 24 0 vt ot chrge leaning of h surace Sfor probes v e coec
size WhicH, however, gives an irﬁterrﬁediate’valueftﬂ high density plas- t|on.w.h|ch is difficult to account for. IT the_ mSl_Jlatmg Ce__
mas. ramic is too large, plasma may creep into into it, extending
the probe length; and if it is too narrow, the probe tip may
make electrical contact with conducting films deposited on
BRL and OML formalisms is neutral charge exchange,the ceramic. To minimize the interference of the probe with
which destroys ion angular momentum far from the probe. the plasma, the mounting hardware near the probe tip should
(4) In partially ionized plasmas, collisionless probe pe no larger than 2 mm in diameter.
theories are inadequate for3; <100, and density determi- In reactive ion etchers, ICPs, and helicon sources used in
nations can be in error by a factor of 2 or more. The correckemiconductor processing, there are large ﬂuctuatior\gsin
density is bracketed by the predictions of the BRL and OMLat the rf frequency. It is well knowfi that this can greatly
(or ABR) theories. Foig,<3, the OML theory can be used, distort thel -V characteristics. Many methods of rf compen-
since it agrees with the BRL theory in that range. Egr  sation have been published, but the most successful seem to
>100, the ABR theory should be Sufficiently accurate, SinCEbe the use of tuned inductors close to the probe t|p, in con-
the sheath is so thin that ion orbiting would not be a problemijunction with a nearby floating electrode which is ac coupled
The ABR differential equation would have to be solved,to the probe to driveV, in synchronism with the rf
however, since the parametrization in this paper was donfuctuations'®?® The area of the floating electrode should be
only up to §,=70. More simply, the Bohm formula can be |arge enough to drive the probe tip but small enough to give
used for larget, . For intermediate values @, itis found  spatial resolution; a criterion is given below. In plasma
phenomenologically that the geometric mean of the BRL andources with insulating walls, insertion of a large grounded
ABR densities agrees with independent measurements, aectrode is necessary to serve as a referencé foA float-
though there is no theoretical justification for this. ing double probe cannot be used in this situation because the
(5 In view of these results, the design of Langmuir entire assembly does not float at the rf frequency unless ex-
probes for use in rf plasmas is discussed in Appendix A. traordinary means are used to drive its stray capacitance.
(6) For dense, fully ionized plasmas, straight-line ex- Furthermore, the rf compensation of each tip would have to
trapolation of the ion saturation curve is commonly usedbe jdentical. Since rf oscillations tend to decrease the floating
The accuracy of this approach compared with the exact BRIpotentialV;, one can compare rf compensation schemes by
curves is assessed in Appendix B. It is also shown there th@bserving how positive a value df; is obtained. However,

100 -

10 ¢

Rp/}\,D

the slope of the;—V curve is approximately 3/4. because of stray capacitances, one can never be sure of mea-
suringV; correctly by terminating the probe in a high resis-
ACKNOWLEDGMENTS tance. The safest way to measigis to terminate in a low

\v.resistance and detect the zero crossing of the probe current.
Light for sharing their data. " Acriterion for designing the auxiliary floating electrode
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APPENDIX A: PROBE DESIGN

Because of the effect of collisions for intermediate val-whereA; is the sheatlior probe area. The capacitan€g, of
ues of&, probes should have either very small or very largean auxiliary electrode of ared, coupled to the probe tip at
diameters to operate in regimes where collisionless theoriggoint P is given by the same formula. The corresponding
can be trusted. Figure 19 shows valuesépfR,/\p as a  impedances$Z,| are 1Cs,. For the probe tip to follow
function of n for various probe diameters. One sees that &/, the effective impedancg, . of the isolating inductors,
diameter of 0.2 mm or less can be used with the OML theoryZ, , must be large compared with the largetdf ,|. Z e is
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FIG. 20. Example of design of auxiliary electrode for rf compensatfqp, (@)
(—) should be well belowZ, . (X) for the density measuregyeam
(— — —) is the sheath impedance without an auxiliary electrode. The con-  %1°
ditions assumed wer&KT.=3 eV, R,=0.075 mm,L=1 cm, f=2 MHz, . BRL theory 40
i P
A=2cn?, andZ, =250 k). Linear fit Tom3ev.ne16x10™ o
- - - - Bohm current

. . . Vi Vs
the parallel combination o, and the stray impedance to = g |
ground of the short wire betweeR and the chokes. For g 0
instance a 1 cmlong wire has a capacitance to ground of
~0.25 pF, and the stray impedance at 2 MHz<830 K.
For maximum effectivenesg, should be of this order. rf «=06 .
compensation is effective against fluctuations of ondgiif

Y 0.10 . : - : : .

e|Vrf| 160 140 120 100 -80
. = = - v 60 -40 -20 0 20
Zy o> Zs,x< KT, (A2) (b)

Figure 20 shows a sample calculation of this criterion for arFIG. 21. BRL curves foa 3 eVargon plasma at densities corresponding to:

: _ ; ; _ (a) £&=20 and(b) ¢&=40. The straight lines are fitted to two regions of the ion
electrode WIthAX 2 e and inductors WltmL 250 K2 at saturation curve, and the dashed line is the current predicted by the Bohm

2 MHz. We have takenV|/T.=30 and |Vs_Vp|/Te: 5. formula with the stated value of the coefficient
This is the region near the floating potential where the non-
linearity of thel -V curve is most severe. It is seen that an
unaided pdrobe cannot szmsfy E(@ZJ, and a2hcrﬁ§Leoctrq%e estimate the ion density, neglecting the expansion of the
Is required to measure densities down to the mia=a@ sheath. There is always a question of what probe voltage
range. i o .. should be used for this reading, and what valuexathould
Although in principle the electron energy distribution be used in the formula. In Fig. 21 we have generated artifi-
function (EEDF) can be found from the second derivative of cial probe curves fioa 3 eV argon plasma using the BRL
the |-V curve of a cylindrical probe, in practice a high de- w01 ith Maxwellian electrons, adjusting the density to
gree of data smoothing is re_quwed to obtain this derlvat|vegive (@) £=20 and(b) £=40. Straight line extrapolations are
Furthermore, we see from F_'g' 12 that_ the shape (_)i g drawn through the low- and high-voltage parts of the curves.
curve depends on the _qzléa“ty of the ion su_btractlc_)n_. NFmeThe dashed line is the current predicted by B, with the
theless, several authdfs*®have succeeded in obtaining in- - 16 of o adjusted to match the current extrapolated to the
teresting EEDF data with Langmuir prqbes. We re.gard thesﬂoating potential; . At £=20, it makes a difference which
as exceptionalours-de-forceby extraordinary experimental- oy o olation is used, but the error is small with the more
ists, rather than results that can be reproduced outside a deﬁhear curve foré=40. The value ofy, therefore, depends on
cated laboratory. To measure the EEDF, one has to COMpUIe s yariation is shown in Fig. 22 for two practical cases:
the second derivative of the-V curve, which can be done ) \yhen the ion current is measured at a constant offset of
with ad_equate smoothing of the data_. Another method is t%SKTe from V;, and (b) when the ion curve is extrapolated
use a dithered probe, whose voltage is modulated ang_nd to V. Note that this simple method of analysis works only
at a frequency low enough to pass the rf chokes, and with Ahen the BRL theory is applicable. If tHe-V characteristic

amplitude small enough that the ion current does not changg,s peen distorted by collisions, it will not be linear enough
Synchronous detection of the second harmonic should thefﬂ)r this method to give accurate results

i 2 2
yield d%1/dV=. The reason that ion curves do not reach a saturated value
. until ¢is on the order of 100 is that the sheath thickne3g;at
APPENDIX B: USE OF THE BOHM FORMULA FOR is actually about &, and to this must be added the thick-

THIN SHEATHS ness of the Child—LangmuifCL) sheath, which increases
At high densities where the ion current is well saturatedwith v3’4=|vp—vs|3’4 and greatly increases the collection
it is common practice to use the Bohm formula of E4).to  area. When the plane CL sheath thickness is evaluated with
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FIG. 22. Variation of the coefficientr with ¢ for the use of the Bohm
formula applied to the ion currenta) measured a¥/;— 25K T, (squarey or
(b) extrapolated td/; (diamonds.
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eV, =KT.In[(2M/7m)Y2]~ - 5.4KT, (B2)

for argon. At the sheath edge the potential is—0.5KT,
relative to the body of the plasma. Thus, in E&§l) we
should seV,=V,—6KT./e. The ion current is then

Ii:(d/a)IB, (BB)

wherelg is the Bohm current given by Ed4). The ABR
theory, of course, gives the exact solution without dividing
the sheath into layers, but this approach is simpler and not
subject to deviations from the aymptotic behavior of the ex-
act solution. A variation of this approximation was given by
Hutchinsor?® Godyaket al?® have pointed out that E¢21)
should be modified for cylindrical geometry, but using the
Langmuir—Blodgett corrections as quoted, for instance, by
Cher? would defeat the simplicity of this method.
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