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Abstract— Self-consistent computations of electric fields and 

ion orbits inside trenches were done in order to verify 

Hashimoto’s hypothesis of damage induced during plasma 

processing.  In his well accepted theory, Hashimoto proposed a 

mechanism for electron shading damage, whereby the photoresist 

at the tops of trenches and vias collect a negative charge from the 

thermal electrons, creating an electric field (E-field), which 

prevents electrons from reaching the trench bottom, where 

collector is located.  The sheath electric field accelerates the ions 

and drives them straight into the trench where they impinge on 

the collector, and charge it positive if it is isolated. In the 

computations presented in this paper, it is shown that ion orbits 

depend only on the electric fields at the entrance and are sensitive 

to changes in the shape of the photoresist layer there. In addition 

to the electron shading mechanism, there is an “ion shading” 

effect that protects part of the trench walls, and the number of 

ions that strike the wall is too small to cause any deformation of 

the walls.  

 
Index Terms— electron shading damage, ion shading, ion 

trajectories, metal etch, plasma processing. 

I. INTRODUCTION 

lasma etching
1,2,3,4,5

 is currently widely used in the 

fabrication of silicon-based integrated circuits. The 

process is used to produce high-resolution patterns in many of 

the thin layers of the circuits and to selectively remove 

masking layers; it is based on the following sequence of 

microscopic reaction steps.  Electrons are accelerated by DC, 

RF or microwave electric fields and collide inelastically with 

suitable precursor molecules to produce ions, atoms, and 

radicals.  A complex mixture of reactive species is produced.  

Neutral and ionic reactive species strike the surfaces that are 

in contact with them to form products that are volatile. 

In high density plasma processing, consequences of plasma-

surface interactions are to a significant extent controlled by the 

incident ion fluxes and their energies.  An electron-free space-

charge region designated as a "sheath" forms between a 

plasma and a contacting solid surface.  Sheaths
2,6 

are of critical 
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importance for plasma etching, since positive ions are 

accelerated toward the surface when entering a sheath. Most 

of the ion energy is provided by acceleration in the sheath 

electric fields established by self-biasing the wafer chuck.  

The accelerated ions bombard the surface with energies that 

are much greater than thermal energies.  Fabrication of high-

speed semiconductor circuits depends on etching sub-micron 

trenches and holes with straight walls, guided by sheath-

accelerated ions which strike the substrate at a normal angle. 

The phenomenon of electron shading as hypothesized by 

Hashimoto
7,8

 is illustrated in figure 1.  The electron shading 

effect
9,10,11

 is caused by the difference in isotropy of ions and 

electrons. Electrons enter the sheath with an isotropic angular 

distribution, while ions, on the other hand, are accelerated in 

the pre-sheath to the Bohm velocity.  Ion velocity in the 

direction perpendicular to the wafer is larger than the thermal 

velocity of the ions in the parallel direction.  This initial 

directional difference is greatly amplified as the particles 

traverse across the sheath.  Ions are accelerated further 

reaching energies of tens of volts or more. The bombardment 

of the trench bottom loosens the first few monolayers, 

allowing the etchant atoms to combine much more effectively 

than without the ions.  At the same time, the electrons, which 

remain in an isotropic Maxwellian distribution, get decelerated 

in the sheath and most of them are returned to the plasma.  

 
 
Figure 1. Illustration of electron shading. The proximity of the plasma’s 

sheath edge is greatly exaggerated. 

 

Only a small fraction of the electrons crossing the sheath 

edge will make it to the wafer surface where they charge the 

non-conductive photoresist to its floating potential.  This 
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negative charge allows very few electrons to enter the trench; 

thus, the ions deposit a positive charge onto the trench 

bottom
12

. 

If the bottom of the trench is in an insulator, no harm is 

done. In the over-etch period, the trench can break through 

into the conducting silicon layer.  If this layer is connected to 

the gate of a transistor, this positive charge can cause a large 

electric field inside the gate oxide insulator, damaging it.  For 

an oxide thickness of 20A, a 1V potential drop across it 

amounts to an electric field of 5MV/cm.  This is a serious 

problem in computer chip manufacturing, which is well 

known and documented. 

A description of the model, including the assumptions made 

for simplicity is given in section II.  In section III some of the 

results are given and discussed.  The conclusion is given in 

section IV.  The bulk of the computational results are given 

elsewhere
13,14

. 

II. THE MODEL 

A. Model assumptions and scale invariance 

In plasma processing, a planar sheath separates the plasma 

from the silicon wafer onto which submicron circuits are built 

by deposition and etching.  These features have a minimum 

size (or critical dimension CD) of 60 nm or below.  The sheath 

thickness s is at least 5!D, where !D is the Debye length, and 

can be several times this if a large negative dc bias is applied 

to the wafer.  Taking n = 10
12

 cm
-3

 and KTe = 1 eV as extreme 

values likely to exist at the sheath edge, it is found that s is at 

least 37µm, extending over the 200-300 mm diameter of the 

wafer.  Thus, the sheath is at least 100 times thicker than the 

feature sizes and orders of magnitude wider.  It can therefore 

be assumed that ions emitted from the sheath edge have 

straight trajectories normal to the wafer as they approach its 

surface.  As the trenches are much smaller than both the 

sheath and the Debye lengths, scale invariance justifies the use 

of the simpler Laplace equation, rather than the Poisson 

equation, to compute particle trajectories in the model. 

To show this justification, we write Poisson’s equation as 
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Let w be the scale length of the gradient
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Though ni >> ne in the trench, ni / n0 is still < 1.  Thus, as long 

as w
2
/!D

2
 << 1, only the dimensionless Laplace’s equation  
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needs to be solved, subject to the boundary condition 
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the trench matters, and not its absolute size, if the Debye 

length, !D is >> w.  The space charge deep inside the sheath is 

negligible. 

The ion trajectories are computed from 
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which has the same form as equation 6, regardless of w.  Thus, 

the ion orbits are geometrically the same on any scale; only 

the time scale is changed.  The computations are in these 

scale-independent dimensionless units. Collisions are 

completely negligible, since all mean free paths are longer 

than !D and hence much larger than s.  

B. Computational Method 

The two-dimensional region used for the computation is 

shown in figure 2. A block of dielectric with " # 4 is 

surrounded by a vacuum sheath region bounded by a 

conductor representing the sheath edge, S dimensionless units 

away.  In practice S is much larger than the feature size, and 

for computational purposes its value is not significant.  At the 

bottom of the trench is a conducting “collector”, shown at the 

top in this inverted diagram, representing the substrate being 

etched; the trench grows in the direction of increasing y.  Ions 

are accelerated toward the dielectric block by the sheath 

electric field, and the surface they strike first is normally 

photoresist.  The trench walls are photoresist near the entrance 

and either oxide or polymer-coated silicon further down.  This 

geometry can represent either polysilicon etch with polymer 

deposition or oxide etch at the beginning of over-etch.  The 

photoresist surface is divided into cells xj, while the trench 
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walls are divided into smaller cells yj.  The dielectric has width 

2L = 14 and height H = 10, while the trench has width 2W and 

depth D, with aspect ratio AR = D/2W.  Ions are injected 

vertically from the V $ 0 sheath edge at y = 0 with the Bohm 

velocity cs.  The collector is at an adjustable potential Vc.  

 

Figure 2.  Computational region.  The sheath edge is at the bottom, and the 

trench is shown inverted, with the collector at the top. The outer region is 

vacuum, and the inner region a dielectric material.  Ions are emitted from the 

sheath edge at the bottom. 

Three physically reasonable simplifying assumptions are 

made: 1) the sheath edge is planar, and monoenergetic ions are 

ejected at 90° to it; 2) the ion velocity at the sheath edge has 

the Bohm value cs, corresponding to an energy !KTe; and 3) 

the electrons have a Maxwellian distribution everywhere.  The 

last is true if Vc is negative, as is normal for a biased wafer, so 

that electrons see a repelling potential everywhere.  The 

Boltzmann relation  
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then holds for any shape.  Here ns = ni = ne at the sheath edge 

by definition, and we have taken Vs to be 0.  Thus, the bulk 

plasma has potential V = +!TeV. 

 The potential on a floating surface is found by equating the 

electron and ion fluxes. The electron flux is 
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is the random thermal velocity normal to a surface.  The ion 

flux at y = 0 is simply 

  
!0 " !

i
(0) = n

s
c
s
= n

s
(KT

e
/ M )

1

2 .             (10) 

In the absence of a trench, the substrate surface at yj charges to 

the usual floating potential Vf given by %i(yj) =  %i(0) = %e: 

  
(V f !Vs ) / TeV = ! ln( M / 2"m)

1

2 # !4.68 for argon.      (11) 

Vs = 0, so that the computation is in a grounded box.  Since 

Vs is #&!TeV  relative to the plasma, Vf is # –5.18TeV  relative 

to the plasma or # &15V for KTe = 3 eV in argon.  

The potential to which each surface element, 'xj, of the 

photoresist or 'yj of the trench wall charges is computed as 

follows.  Let N be the number of ions (#10
4
) emitted at y = 0 

over a surface area LZ per unit time, where Z is a length in the 

ignorable z direction. The emitted ion flux is 
  
!

0
= N / LZ = 

nscs.  If Nj ions strike a surface cell of width 'xj, the ion flux to 

that cell is %i,j = Nj / 'xjZ.  The ratio of this to the undisturbed 

flux %0 is then 

  
R(x j ) = (N j / N )(L / !x j ) = F(x j )(L / !x j ) ,      (12) 

where F(xj) is the fraction of all ions that end up in cell xj.  The 

electron flux %e,j to a cell is
  
nsvr exp(V j / TeV ) .  Equating this 

to the ion flux %i,j = nscs R(xj), we have 

  
vre

V /T
eV = csF(x j )L / !x j .                 (13) 

Using equation (11), we find the floating potential of that cell 

relative to the sheath edge to be 

  
V (x j ) = TeV ln(Fj L / !x j ) " 4.68#

$%
&
'(

,          (14) 

where F(xj) is found by counting trajectories.   

 
Figure 3.  Computation flow chart. 

 

 The computational loop is shown in figure 3.  For a plasma 

characterized by KTe and ion charge-to-mass ratio, ion orbits 

are computed first with all insulating surfaces at potential Vf 

and the collector at potential Vc.  A Poisson solver
15 

with a 

triangular grid is used to calculate the 2D electric fields.  The 

time-independent trajectory of each ion emitted from the 

sheath edge is then calculated with a C++ program written for 

this purpose.  When the trajectory intersects a surface cell, its 

contribution to Nj is counted.  The potential of each cell V(xj) 

is then calculated from equation 14 and used in the first 

iteration. The ion orbits are then recalculated, giving data for 

the next iteration. This is continued until Nj and V(xj) converge 

to steady values. When no ion falls on a cell, equation 14 
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diverges. In that case, we assume that the cell actually receives 

one ion or a fraction of an ion, resulting in V(xj)#&40V. The 

results are not sensitive to this approximation. In some cases, 

V(xj) does not converge but oscillates between two or three 

patterns after 25 iterations. 

 At each iteration level, a potential mapping of the whole 

space is done and an example is shown in figure 4 for a 

collector bias of -30V. Figure 4 shows only the equipotential 

lines at the entrance and inside the trench. The field rapidly 

becomes more and more negative towards the trench entrance 

and the lines are curved in such a way that ions are drawn into 

the trench and gain the most momentum at the entrance. 

Electron trajectories are perpendicular to the field lines. 

 

 
Figure 4.  Typical equipotential lines inside the trench for a collector bias of -

30V.  

 

 In this model, we neglect all collisions and surface currents. 

Surface conductivity was initially accounted for. The effect 

did not change our result significantly, but rather made our 

iterations take very long to converge. Because of the scale 

invariance of the problem, only two parameters need to be set 

for any given geometry: the aspect ratio AR and the collector 

potential Vc. The density is irrelevant since the space charge is 

negligible.  The size of the dielectric block does not matter as 

long as it is big enough. 

 

 
 

Figure 5. Example of ion orbit intersections with a boundary. The discrete ion 

positions usually straddle the boundary, and must be interpolated to get the 

exact position on the boundary. 

 

 For definiteness, all dielectrics are given a representative 

value of (R = 4.  Figure 5 shows how the ion charges are 

counted.  Since the “time” steps are discrete, an ion trajectory 

does not necessarily intersect the boundary at the end of a 

step; the position has to be interpolated.  The number of such 

stopping points in each cell provides the value of Nj described 

above.  Once the iteration has converged, the orbits are 

universal curves for the given values of AR, Vc, and KTe.  
 

III. THE RESULTS  

A. Ion Shading 

Figure 6 shows typical E-field patterns near the trench 

entrances that are (a) sharp and (b) curved.  Trench boundaries 

are superimposed on the figures. Because of the sharp corners 

in Figure 6a, the field is extremely strong there and causes a 

large deflection of the ions, as shown in Figure 7a. To 

suppress this unphysical effect, the corners were subsequently 

rounded into a circular arc.  The resulting trajectories (Figure 

7b) are more reasonable, but the fact remains that no or very 

few ions can strike the sidewall near the entrance.  This ion 

shadowing effect, which occurs in addition to the well-known 

electron shading effect, is caused by the E-fields outside the 

trench, which curve the orbits inward.  At large negative 

collector potentials, the entire sidewall can be protected from 

ion bombardment as shown in figure 8.  The decrease in 

sidewall ions as the collector potential is increased was found 

to be more or less exponential.  Physically, the ions gain 

enough energy at large |Vc| that the negative sidewalls cannot 

deflect them.  

 
 

  

  

Figure 6. Equipotentials near the trench entrance of a sharp and a rounded 2D 

geometry. 

  
 
Figure 7. Ion orbits in the field of Figure 6.  The horizontal scale has been 

expanded to show the effect. 
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 That ion shading increases with AR is a more subtle effect.  

The shaded region along the sidewalls in figure 9 shows where 

the ions fall for three values of AR at constant Vc.  The reason 

that ions are deflected into the sidewalls only for low AR can 

be seen from the self-consistent field patterns in figure 10. It is 

seen that the fields are very strong at the ends of the trench, 

particularly at the corners.  At AR = 7, the interior of the trench 

is essentially field-free.  Ions are deflected into the sidewall 

only in the arc region.  At AR = 3, the fields extend into the 

interior, where Ex is large enough to impart transverse 

momentum to the ions streaking in the y direction. 

 

  
 
Figure 8.  Ion shading effect for AR = 5 and Vc = &26V (left), AR = 7 and Vc = 

&26V (center),  AR = 7 and Vc = &40V (right). The horizontal scale has been 

expanded. 

 

 

Figure 9.  Ion collection regions in trenches with AR = 7, 5, and 3, with Vc = -

26V.  The light regions of the trench wall are not struck by any ions. 

 
 
Figure 10.  Field patterns (equipotentials) for AR = 7 (left) and AR = 3 (right), 

at Vc = -22V. 

 

B. Nature of the ion trajectories 

 

The quantitative results can be better understood if one first 

observes the nature of the ion orbits.  Figure 11 shows three 

views of the trajectories at AR = 5 and Vc = -26V. Figure 11a 

shows the orbits on a normal x&y scale.  The ions enter the 

trench at high velocity, and their deflections are so small that 

they cannot be seen on this scale.  In Figure 11b, the 

horizontal scale has been expanded by a factor 20.  Here it can 

be seen that the ions enter the trench at an angle due to the 

external E-field.  No ions strike the first part of the wall, 

which is shaded.  The negative charges on the wall eventually 

deflect the ions outward, causing them to strike the corner of 

the trench.  In Figure 11c, the horizontal scale has been 

stretched by a factor 80, and intermediate orbits have been 

plotted, shown by the thin lines.  Orbits which pass near the 

corner of the photoresist actually cross and take shapes that 

are sensitive to the strong fields at the entrance corner.  Note 

that the corner is actually circular but looks sharp only on this 

80-to-1 scale.  The pulling of ions into the trench by the 

charge on the photoresist is shown more clearly in figure 12.  

Incident ions (indicated by the solid lines), headed for the 

photoresist surface outside the trench, are drawn into the 

trench by the fields in the arc region. The trajectories show 

that the ions are bent away from the corner of the photoresist 

instead of toward it.  In the first iteration of the computation,  

ions land in the corner. The ions landing there then change the 

surface charge. The self-consistent surface charge then bends 

the trajectories the way they are shown, consistently with the 

equipotential curves in figures 4, 6 and 10.   

 

 
 

Figure 11.  Ion orbits for AR = 5 and |Vc| = 26V with the horizontal scale (a) 

normal, (b) expanded by a factor 20, and (c) expanded by a factor 80 relative 

to the vertical scale.  The orbit spacing has been decreased near the wall for 

clarity. 
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Figure 12.  Ion orbits near the trench edge for AR = 7 and Vc = 22.   
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C.  Effect of photoresist shape 
 

As etching progresses, the photoresist will change its shape 

at the trench entrance, and this will affect the ion orbits.  Since 

the E-fields are strongest there, we expect that the ion orbits 

would be sensitive to these changes.  First, consider the 

change from a mathematically sharp edge to the rounded edge 

used in our calculations.  This was originally done to improve 

the convergence of the iterations, but the change in orbits was 

significant.  Table 1 shows the percentage of ions landing on 

each part of the trench for a sample of about 10
4
 ions emitted 

from the entire sheath area.  On the photoresist surface, 

including the arc region, the potential is solved self-

consistently, as it was on the trench walls. 
 

TABLE I 

ION DISTRIBUTIONS WITH SHARP AND ROUNDED CORNERS 

AR =7, Vc = -18V Case A: 

Sharp corner 

Case B: 

Rounded corner 

Collector 7.9% 9.9% 

Sidewalls 0.5% 0.3% 

Arc N/A 20.7% 

Flat surface 91.6% 69.1% 

AR =7, Vc = -26V   

Collector 8.2% 10.1% 

Sidewalls 0.18% 0.00% 

 

   

Figure 13.  Distribution of ion collection for sharp and rounded trench 

entrances. The ion statistics for these figures are shown in Table 1.  

 

Table 1 also shows that fewer ions reach the collector if the 

corner is sharp rather than rounded.  This is because the sharp 

corner more effectively shields ions approaching the trench at 

an angle.  In either case, the fraction of ions hitting the 

sidewall is extremely small and cannot cause the trench profile 

defects that have been observed.  As expected, the collector 

current increases and sidewall current decreases at the higher 

|Vc| of 26V.  The difference between cases A and B is even 

more noticeable in the distribution of ions shown in Figure 13.  

In case A, ions are collected over a large part of the sidewall, 

while in case B ions are shielded from all but the last bin. 

To see the effect of small changes to the entrance shape, 

small bumps were added onto the arc region in two locations.  

The statistics are shown in table 2 for a sample of 50,000 ions.  

In case III, the bump is farther from the trench than in case II 

as shown in figure 14.  The sidewall ion distributions are 

shown in the histograms in figure 15.  It is clear that even a 

small deformation of the photoresist will change the ion orbits 

drastically.  The self-consistent equipotential lines for these 

three cases are shown in figure 16.  In case I, the E-field is 

very strong near the entrance.  The ions are given a kick there 

and then coast to the trench bottom (at the top in the figure) 

through the nearly field-free trench.  The collector is given 

only a small bias in this example, so that ions are not strongly 

drawn into it; some of them hit the sidewall near the bottom, 

giving rise to E-fields near the bottom corner.  In case II, the 

bump shadows part of the arc region, and the negative surface 

charge in the shadow gives the ions an extra kick, causing 

them all to land on the collector and thus no sidewall ions.  In 

case III, the bump is far enough back that the ions are 

deflected into the arc region, lowering the field there.  Having 

undergone less acceleration, the ions are drawn by transverse 

fields into the sidewall.  Nonetheless, the top part of the 

sidewall is still shadowed.  This sensitivity to the exact shape 

of the photoresist means that the ion orbits change during the 

etch and cannot be predicted.  Fortunately, the ion flux to the 

sidewalls is in every case so small compared with that on the 

collector that it cannot significantly affect the quality of the 

etch. 

 

 
 

Figure 14.  Profiles of trench entrances without and with bumps. 

 
TABLE II 

ION DISTRIBUTIONS WITH SMALL BUMPS 

 

 

 
 

Figure 15. Sidewall ions location for cases I and III. No ions were collected on 

the sidewalls for II. 

AR =7,  

Vc = -18V 

Case I:  

No bump 

Case II:  

Close bump 

Case III:  

Far bump 

Collector 9.9% 8.6% 9.0% 

Sidewalls 0.3% 0.0% 1.8% 

Arc 20.7% 17.7% 17.4% 

Flat surface 69.1% 73.7% 71.8% 
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Figure 16. Field patterns for the profiles shown in Figure 14. 

 

IV. SUMMARY AND CONCLUSIONS 

      By reducing the problem to a simple dimensionless form, 

universal curves were obtained for ion trajectories in etched 

trenches, self-consistently with the sidewall potentials.  

Reflection of ions from the walls was ignored.  Results depend 

on only two parameters: the aspect ratio AR, and the potential 

Vc at the trench bottom.  Principal findings are as follows: 

1.  Electric fields external to the trench cause the ions to enter 

the trench at an angle.  This causes an ion shading effect, 

which protects the top part of the trench, and sometimes all of 

it, from ion bombardment. 

2.  Ion orbits are determined mainly by the strong fields at the 

corners of the entrance; they then coast through the trench 

with little additional deflection. 

3.  In spite of the strong fields at the entrance, ion orbits are 

nearly straight and vertical.  So few ions strike the sidewall 

that they cannot cause deformations of the trench profile. 

4.  The small ion flux to the walls is very sensitive to the exact 

shape of the photoresist at the top.  This will change in an 

unpredictable way during the etching process. 

5.  Contrary to intuition, a deep trench with large AR will have 

an insignificant number of ions striking the wall. 

 These observations differ from commonly held conceptions 

of how the ion flux behaves in reactive ion etching.  By 

examining the variation with AR, one can get an idea of the 

changes in ion behavior as the etch progresses.  By varying Vc, 

one can gauge the changes during an RF cycle. However, we 

must note that findings of this work do not take into 

consideration the effect of specific plasma chemistry, but are 

rather generalized to any ions present in the plasma. 
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