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Abstract
Langmuir probes used in radiofrequency (rf) discharges usually include
compensation elements that minimize the effect of high frequency
oscillations in plasma potential. The design of these elements requires
knowledge of the capacitance of the sheath on the probe tip, a quantity
which varies nonlinearly during the rf cycle. Sheath capacitance has been
studied previously for capacitively coupled discharges, where the rf is
applied to the electrodes. Here the problem is treated from the standpoint of
a small probe in a fluctuating discharge. This work differs from existing
literature in that (a) no step model is used and the Debye sheath is treated
exactly, (b) the treatment is simple and analytic, (c) the time-variation of the
capacitance is explicitly shown, (d) the results are applied to probe design
and (e) cylindrical geometry is considered. The rf frequency is assumed low
enough that electron transit times can be ignored. We find that when the rf
excursions bring the sheath from the Child–Langmuir region into the Debye
sheath or electron saturation region, its capacitance has a strongly non-linear
behaviour.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In the design of rf-compensated Langmuir probes for
measurements in rf plasmas, it is necessary to know the
capacitive coupling through the sheath of rf fluctuations in
plasma potential. The simple approach normally used is to
consider the sheath to be a vacuum capacitor whose thickness
is roughly estimated. In plane geometry this thickness is not
well defined, even if a sheath edge is well defined, because
the thickness depends on the slope of the potential at the
edge, and this depends on the transition to the presheath. It
is impractical to solve for the presheath, since the solution
depends on collisions and ionization and is specific to each
discharge. More accurate treatments of rf sheaths can be
found in the literature but are not always suitable for the
present task.

Lieberman [1,2] has given analytic solutions for the sheath
on a driven electrode in a capacitively coupled plasma (CCP).
However, he used a model in which the electron density was
approximated by a single step. Godyak and Sternberg [3]
pointed out that high-and low-frequency approximations can
be made depending on whether the rf frequency ω is larger or
smaller than the ion plasma frequency �p, and they solved [4]

the high-frequency case for a CCP driven symmetrically
relative to ground. How the shape of the sheath changes during
the rf cycle was computed numerically by Zhang et al [5], with
the result that large changes occur in the low-frequency case,
the one treated in this paper. However, they did not give the
sheath capacitance explicitly.

Godyak [3] showed that the sheath capacitance Csh

depends only on the surface charge on the probe and
can be calculated without solving for the sheath thickness
numerically. Sudit and Chen [6] used this shortcut to calculate
Csh. In that work, however, they neglected the Debye sheath,
treating only the Child–Langmuir (C–L) sheath, adding, rather
inconsistently, the Bohm velocity at the sheath edge. Here we
solve the plane sheath problem consistently, showing exactly
what approximations were previously made and also obtaining
formulae from which the sheath capacitance can be calculated
even when the probe is not biased far from the space potential.
To establish notation, we start with a brief review of plane
sheath theory before applying it to the calculation of sheath
capacitance as a function of time. Cylindrical sheaths and
the resistive part of the sheath impedance will be treated at
the end.
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Figure 1. Geometry of a plane sheath.

2. Plane sheaths in a nutshell

2.1. Basic equations

We start by defining a sheath edge s (figure 1) with Vs, ns

and vs denoting, respectively, the potential, density and ion
velocity there. Following traditional practice, we set Vs = 0
in the absence of rf and assume quasineutrality up to s so
that ni(s) = ne(s) ≡ ns. The ions enter the sheath with a
unidirectional, monoenergetic velocity vs, whose Bohm value
will be recovered in due course. There is no artificial separation
between the Debye sheath (where ne �= 0) and the Child–
Langmuir sheath (where ne = 0). Defining

V = Ṽ − Vs, (1)

where Ṽ is the actual potential as Vs varies, we write Poisson’s
equation as

ε0
d2V

dx2
= e(ne − ni). (2)

For Maxwellian electrons, we have

ne = nse
eV/KTe . (3)

The ion velocity v is given by energy conservation

1

2
Mv2

s = 1

2
Mv2 + eV (V � 0) (4)

so that

v =
(

v2
s − 2eV

M

)1/2

. (5)

Since ion flux is conserved, we have

nivi = nsvs, ni = nsvs/vi = ns

(
1 − 2eV

Mv2
s

)−1/2

. (6)

The positive, dimensionless potential η is defined as

η ≡ −e(Ṽ − Vs)/KTe = −eV/KTe, (7)

whereupon Poisson’s equation becomes

ε0KTe

nse2

d2η

dx2
=

(
1 +

2KTe

Mv2
s

η

)−1/2

− e−η. (8)

Henceforth we use a Roman ‘e’ for 2.718 and an italic ‘e’ for
charge. Normalizing x to the Debye length (with n = ns),

λD = (ε0KTe/nse
2)1/2, ξ ≡ (x − s)/λD (9)

and defining the ion acoustic speed cs and the Mach number
M as

cs ≡ (KTe/M)1/2, M ≡ vs/cs, (10)

equation (8) becomes simply

η′′ = d2η

dξ 2
= (1 + 2η/M2)−1/2 − e−η. (11)

Multiplying by the integrating factor η′ and integrating from
ξ = 0, we obtain

1
2 (η′)2 = M2[(1 + 2η/M2)1/2 − 1] + [e−η − 1]. (12)

Here we have used the sheath boundary condition η′(0) = 0.

2.2. Recovery of the Bohm sheath criterion

Since equation (12) has to be positive for all η, we can get a
condition on M by expanding the rhs for small η, up to order
η2.
1
2 (η′)2 = M2

[
(1 + η/M2 − 1

2η2/M4) − 1
]

+
[
1 − η + 1

2η2 − 1
] = − 1

2η2/M2 + 1
2η2 � 0. (13)

Hence, M � 1, or vs � cs, which is the Bohm criterion. We
can now define the ‘sheath edge’ to be that position s near the
wall or probe where this condition is barely satisfied: vs = cs.
Setting M = 1 in equation (12) and taking the square root, we
obtain

η′ = ±
√

2[(1 + 2η)1/2 + e−η − 2]1/2. (14)

This equation differs from previous work on Csh in that the
electron density is not neglected or approximated.

2.3. Recovery of the Child–Langmuir law

For space-charge-limited ion emission, the electron terms are
omitted, and η is infinitely large, since temperatures are zero.
Equation (14) then becomes

η′ = 21/2(2η)1/4, η−1/4η′ = 23/4. (15)

Integrating from ξ = 0 to d/λD gives

η3/4 = 3

4
23/4ξd, η3/2 = 9

16
23/2ξ 2

d = 9

8
21/2ξ 2

d . (16)

Converting back to dimensional units, we have

(−eV

KTe

)3/2

= 9

8
21/2d2

(
nse

2

ε0KTe

)
. (17)

It is now convenient to express ns in terms of the ion current
density J :

J = enscs = ens(KTe/M)1/2, ns = J/e(KTe/M)1/2.

(18)
The normalizing factor KTe now cancels out, as it should, and
we have

J = 4

9

(
2e

M

)1/2
ε0(−V )3/2

d2
, (19)

which is exactly the Child–Langmuir law.
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2.4. Relation to the plasma potential

Since the ions have a velocity cs at s, they must have gained an
energy 1

2Mc2
s = 1

2KTe in the presheath, so that the potential
V0 in the main plasma must be higher than Vs by 1

2KTe/e.
The electrons, if Maxwellian, would have a density higher by
a factor e1/2 in the plasma than at the sheath edge. Thus,
ns = e−1/2n0 = 0.61n0. Since λD was defined with n

−1/2
s , its

value would be decreased by e−1/4 = 0.78 if we had chosen to
define it using n0. The derivative η′ would be increased by a
factor e1/4 = 1.28. However, once this is understood, it is not
necessary to make any changes in the formulism.

3. Calculation of sheath capacitance

The charge on a capacitor is given by Q = CV . From this,
the sheath capacitance Csh can be written as

Csh

Ap
= �ρs

�V
, (20)

where Ap is the probe area and ρs is the surface charge density
on the probe. Following [6], we use Gauss’s Law to obtain
ρs = Dn, the normal component of ε0E = −ε0(−∇V ). The
first minus sign comes from the fact that Dn is defined in the
−x direction in figure 1. Equation (20) then becomes

Csh

Ap
= −ε0

�E

�V
= ε0

d

dV

(
dV

dx

)
= ε0

λD

d

dη

(
dη

dξ

)
. (21)

Equation (14) gives dη/dξ . Taking its η-derivative, we obtain

Csh

Ap
= ε0

λD

1√
2

(1 + 2η)
1
2 − e−η

[(1 + 2η)
1
2 + e−η − 2]1/2

, (22)

where we have taken the + sign because the ion density (the
first term in the numerator) has to be larger than the electron
density (the second term) once the Bohm criterion is satisfied.
Here it is understood that η is evaluated at the probe, so that
η = −e(Vp −Vs)/KTe. This equation is valid for all Vp below
the space potential even if η is small.

The error in neglecting the Debye sheath [6] can now be
calculated. If we neglect e−η and its integration constant, the
fraction F in equation (22) becomes

F = (1+2η)−
1
2 [(1+2η)

1
2 −1]−

1
2 = [(1+2η)3/2 −(1+2η)]−

1
2 .

(23)
This can be expanded in the small quantity ε ≡ 1/(2η) to
obtain

F = ε3/4

(
1 − ε1/2 +

3

2
ε − · · ·

)−1/2

≈ ε3/4

(
1 +

1

2
ε1/2 − 3

4
ε + · · ·

)
. (24)

Thus the capacitance is approximately

Csh

Ap
= ε0

λD

(2η)−3/4

2
1
2

(
1 +

1

2

1

(2η)
1
2

)
. (25)
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Figure 2. Sheath capacitance versus normalized probe bias
according to the exact formula (——), its Taylor expansion (•) and
the Child–Langmuir formula (◦).
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Figure 3. Variation of dc Csh with density.

Apart from notation, this is the same as equation (17) of [6]
if one approximates ns with 1

2n0 (section 2.4). The correction
term in equation (25), which modifies the Child–Langmuir
sheath for the incident ion velocity, is not small. At the floating
potential, η is about 5, so that term is ≈0.16. For smaller η (Vp

closer to space potential) the expansion fails, and one should
use the exact equation (22), which includes the Debye sheath.
Physically, equation (25) tells us that the sheath capacitance
increases as η decreases—that is, as the sheath gets thinner—
more or less as predicted by the Child–Langmuir law. There
is, in addition, a dependence on Te and n0 through λD.

Figure 2 shows computations of Csh versus η comparing
the exact formula of equation (22) with the approximate
formulae of equations (25) and (28). At large η, all the curves
show a decrease in Csh with η as the C–L sheath thickness
increases. The exact curve shows a peak at small η as the
probe enters the Debye sheath, and it falls at smaller η as the
thickness of the Debye sheath increases to ∞ as Vp reaches
the space potential. Approximations that do not include the
Debye sheath do not have this feature. The approximation (25)
that includes the ion velocity at the sheath edge is somewhat
better than the C–L approximation (28), which does not. The
improvement is not great, since the series in equation (24)
converges very slowly with η

1
2 . At the floating potential either

approximation is reasonably good, but they fail when the Vp

moves closer to Vs. Figure 3 shows the expected variation of
Csh with density.
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4. Effect of RF

4.1. Range of validity

In rf discharges, an electric field is applied to the plasma either
by an electrode or by an external antenna. This E-field can
drive electrons towards a wall. The sheath drop there must
then increase to repel enough electrons to maintain a neutral
plasma, and the plasma potential V0 must rise. As the rf
changes sign, V0 will rise and fall unsymmetrically, since the
current through a Coulomb barrier varies exponentially with
voltage. The harmonic content of V0 oscillations will vary
in different devices. Godyak and Piejak [7] showed that the
2nd harmonic will dominate in a CCP with electrodes driven
symmetrically relative to ground [4]. In a normal CCP with
one electrode near ground, the fundamental rf frequency ω will
dominate. In a cylindrical inductively coupled plasma (ICP),
the E-field is ideally everywhere parallel to the walls so that no
oscillating wall sheaths develop, but asymmetries in antenna
construction, ports on the walls and capacitive coupling can
cause V0 oscillations at the fundamental frequency ω. In
helicon discharges, an E-field at ω is an intrinsic property
of the helicon wave. To simplify the problem, we will treat
one frequency at a time and assume that Vs, the sheath-edge
potential, follows the oscillations in V0.

The dc sheath theory given above is applicable only if the
sheath comes into equilibrium at each phase of the rf. This
requires, first, that the rf frequency frf be low enough that the
electrons respond instantaneously; this is a good assumption.
Second, the frequency must be low enough that the ions
traverse the sheath before it changes, and their rf motion need
not be taken into account [3,5]. If the sheath thickness is about
5λD, the ion transit time t through the sheath is

t ≈ 5λD/cs ≈ 5

(
ε0KTe

n0e2

)1/2 (
M

KTe

)1/2

= 5

�p
, (26)

�p being the ion plasma frequency. The rf period τ = 1/frf =
must then be 	2t , yielding

frf 
 �p/10. (27)

At n0 = 1012 cm−3, �p is ≈2 × 108 s−1, so that frf must
be 
20 MHz. This is marginally acceptable at 13.56 MHz,
and the condition is not met at lower densities even at that
frequency. Fortunately, the value of Csh need not be known
exactly in practical applications.

This being the case, we may use equation (25) without the
correction term; the error entailed was discussed in section 3.
In dimensional units, this is

Csh = Ap

25/4

ε0

λD

[
e(Vs − Vp)

KTe

]−3/4

. (28)

In the absence of rf, the capacitance is [6]

C0 = Ap

25/4

ε0

λD

[
e(V̄s − V̄p)

KTe

]−3/4

, (29)

where the overbar denotes the dc values.

4.2. Uncompensated probe

4.2.1. Small rf fluctuations. In the presence of rf, consider
first a probe or small electrode connected directly to a dc power
supply, giving Vp = V̄p. Let Vs oscillate at frequency ω:

Vs = V̄s + Vrf sin ωt. (30)

The capacitance is then given by

Csh = C0

(
1 +

Vrf sin ωt

V̄s − V̄p

)−3/4

. (31)

In addition to Csh changing with probe voltage, it also changes
during an rf cycle. If Vrf is small, equation (31) can be
expanded and averaged over an rf cycle. We then find that
〈Csh〉 differs from C0 only in second order in Vrf/(V̄s − V̄p).

4.2.2. Large rf fluctuations. A more likely situation,
however, is that Vrf is larger than V̄s − V̄p, which can be as
small as 2KTe/e as the probe I–V curve is swept, while Vrf

can exceed 100 V. In that case, equation (31) shows that Csh

has a pole and becomes complex when the bracketed quantity
goes negative. This cannot happen physically, however. When
Vs comes close to Vp, the probe draws a large electron current,
raising the mean plasma potential V̄s. Thus, V̄s has to increase,
keeping the bracket positive. Since V̄s is no longer constant
and the approximation η 	 1 is not always valid, we must use
the exact equation (22):

Csh

Ap
= ε0

λD

1√
2

(1 + 2η)−
1
2 − e−η[

(1 + 2η)
1
2 + e−η − 2

]1/2 . (32)

Under normal circumstances, η is always positive if the probe
is biased below Vs. The denominator is positive if the Bohm
criterion is satisfied (section 2.2), and the numerator is always
positive since its leading term in a Taylor expansion is η2.
Recall that η is defined as

η = e

KTe

[
Vrf sin ωt + (V̄s − V̄p)

]
. (33)

If sin ωt is positive or only slightly negative so that η

remains positive, electron saturation is never reached, and
equation (32) is still correct. For more negative values of
sin ωt , η would become negative unless V̄s increases. The
amount of this increase depends on the geometry. To keep the
plasma neutral, the electron flux to the probe cannot exceed
the ion flux to the walls. For simplicity, we neglect the ion flux
to the probe and the electron flux to the walls. The electron
flux to the probe is

Je = Apn0vre
−η (η � 0), vr = (KTe/2πm)

1
2 , (34)

where vr is the electrons’ random thermal velocity. The ion
flux to the walls of area Aw is

Ji = Awnscs = Awe− 1
2 n0(KTe/M)

1
2 . (35)
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The minimum value of η is thus given by equating these two
fluxes:

eηmin = Apn0vr

Awnscs
= Ap

Aw

(
e

2π

KTe

m

M

KTe

)1/2

, (36)

ηmin = 1

2

[
1 + ln

(
M

2πm

A2
p

A2
w

)]
. (37)

Note that ‘e’ here is not the unit charge ‘e’. From equation (33),
V̄s must rise to the value

V̄s = V̄p − Vrf sin ωt − (KTe/e)ηmin. (38)

For rf phases such that sin ωt is negative and large enough
that η < ηmin in equation (33), the sheath capacitance is
given by equation (32) with η replaced by ηmin. Thus, for
large Vrf , Csh obeys equation (32) for only part of the rf cycle.
When sin ωt swings sufficiently negative, V̄s rises to keep the
plasma neutral, and Csh remains constant during that part of the
rf cycle.

Note, however, that equation (34) is valid only for η � 0.
Electron saturation is reached at η = 0, and Je remains at
the value Apn0vr. That means that ηmin must be non-negative
and the argument of the logarithm in equation (37) must be
>1/e. If the probe area is so small that it can draw saturation
electron current without raising Vs, then the sheath vanishes,
having infinite thickness. Indeed, if we replace η by ηmin = 0
in equation (32), we find that Csh has the indeterminate form
0/0, which can be seen to approach 0 by taking the derivatives
of the numerator and denominator.

In summary, we see that Csh varies in a very complicated
way in the presence of Vrf . There are four cases. (i) If Vrf is so
small that Vs never oscillates below V̄p, Csh is affected only in
higher order. (ii) For larger Vrf , Csh will vary nonsinusoidally
with the phase of the rf. (iii) If Vrf is very large, V̄s will be
changed by the probe current so as to keep η positive, and
Csh will reach a limiting value during part of the rf cycle.
(iv) If the probe is very small, ηmin itself will saturate at the
value 0. These cases are illustrated in figures 4–6. Figure 4
compares Csh computed using equation (32) with that using
equation (31). At Vrf = 6 V, the excursions are small enough
that η does not enter the region to the left of the peak in figure 2
and is near the limit of case (i) . At Vrf = 8 V, that region is
entered when sin ωt ≈ −1, and the exact solution shows a dip

in Csh. This dip reaches 0 at Vrf = 9 V, since e(Vs − Vp) starts
at 3 KTe = 9 V, and Vrf is just sufficient to bring Vs down to
Vp at its extremum. This is case (ii).

Figure 5 shows case (iii), when η is limited by ηmin, but
ηmin is still above the dc value of η = 3. The ‘exact’ solution
of equation (32) is compared with that when the ηmin cutoff is
imposed by the fact that Vs is dragged upwards by the probe
current. This rare case happens only when the plasma chamber
is small, so that the ratio Aw/Ap in equation (37) is not very
large. However, we have observed experimentally that the shift
in V̄s is larger than expected from the calculation above, so that
case (iii) may occur for larger values of Aw/Ap.

Figure 6 shows case (iv) when Aw/Ap has a more normal
value of 2800/0.047 (an 0.015 × 1 cm diam probe in a 30 cm
diam × 30 cm high chamber). In this case, the large Vs

oscillations quickly bring Vs down to Vp whenever sin ωt is
negative, and ηmin → 0 for a large portion of the rf period. Csh

also goes to 0, corresponding to the left edge of the exact curve
in figure 2. The only difference between the curves is that the
‘exact’ equation (32) has no solution for η < 0, while ‘cutoff’
solution replaces η with ηmin = 0.

The sudden jumps in Csh would give rise to high harmonics
in the probe current. These jumps are an artefact of the plane-
geometry idealization. In cylindrical geometry the electron
current does not saturate abruptly but slowly grows as the
electron sheath expands. The curves in figure 6 should be
smoothed out, but we shall see in section 5 that the situation
is not simple. In the next two sections, we examine methods
devised to avoid the complicated behaviour of Csh by limiting
the effective Vrf to small values.

4.3. Partially compensated probe

The most common way to deal with rf fluctuations in V0 is to
use tuned inductors and auxiliary floating electrodes, a method
tried by Gagne and Cantin [8, 9] and further developed by
Godyak et al [10], Sudit and Chen [6] and Mahony et al [11].
A partially compensated probe is shown in figure 7. The probe
tip is located at P. The sheath capacitance Csh connects it to
the space potential Vs. A choke chain with impedance Zck

consisting of inductors and their stray capacitances filters out
the rf fluctuations Ṽs from the resistor Rm across which the
probe current is measured. The value of Rm is small and can
be neglected in this discussion. Ideally, the probe tip then
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Figure 6. Behaviour of Csh for small probes and large Vrf . The ‘exact’ solution (◦) does not exist where the ‘cutoff’ solution (——) gives
Csh = 0.

fluctuates with Ṽs so that the applied dc voltage Vp is the only
voltage between the probe and the plasma. Ignoring the stray
capacitance Cs for the moment, we see that Csh and Zck form
a voltage divider, and the rf signal at P is

Ṽp = Ṽs
Zck

Zck + Zsh
, (39)

where Zsh is −j/ωCsh. To suppress rf pickup, therefore, |Zck|
must be much larger than |Zsh| so that Ṽp follows Ṽs closely.
To get probe I–V characteristics unaffected by Ṽs requires

ηrf = (e/KTe)(Ṽs − Ṽp) 
 1, (40)

where

η = ηdc + ηrf = (e/KTe)(V̄s + Ṽs − V̄p − Ṽp). (41)

From equation (39) with Ṽs ≈ Ṽrf , the requirement is [7]

eṼrf

KTe

∣∣∣∣ Zsh

Zck + Zsh

∣∣∣∣ ≈ eṼrf

KTe

∣∣∣∣Zsh

Zck

∣∣∣∣ 
 1. (42)

To get an order of magnitude, we can use equation (29)
to estimate Csh. For typical parameters Ap = 0.047 cm2

(0.15 mm diam × 1 cm long), KTe = 3 eV, n = 1012 cm−3,
this gives C0 = 42 pF and |Zsh| = 280� at 13.56 MHz.
Here we have assumed V̄p near floating potential, so that
V̄p−V̄s ≈ 5. If Ṽrf = 100 V, we would require |Zck| 	 10 k�,
or |Zck| � 100 k�. At lower densities, this value increases as
n− 1

2 . To get an impedance this high usually requires using
tuned chokes whose self-resonance is at the rf frequency.
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Csh

Cs

Zck
Vs

Vp

P

Rm

Figure 7. Isolation of a probe with a choke.

Figure 8. (from [1]).

4.4. Fully compensated probe

A choke chain alone, however, is insufficient because of the
stray capacitance Cs of the short wire between the probe tip and
the choke chain [6,7]. If Cs connects P to ground, it effectively
decreases the value of |Zsh|. If Cs connects P to the plasma
through a ceramic probe insulator, it has little effect, since it
simply adds a small amount to Csh. If Ṽs varies in space, there
may be a small difference between the Ṽs sampled by Cs and
that seen by the probe tip, but this cannot be a large effect.

However, in a real situation, it was found [6] that |Zc| ≈
200 k� gave insufficient rf isolation even if a metal probe
shaft was not used. In this case, an auxiliary electrode or
‘compensation electrode’ of large area Ax (and hence large
Cx) is required to detect the rf changes in V0. Figure 8 shows
the probe circuit with both sheaths included [6]. Here Csh is
on the probe tip and Cx is on the auxiliary electrode. The latter
is coupled to the probe through the relatively large capacitor
Ccp. Cx is given by equations (32) and (33) but with a larger
area Ax, large enough to satisfy equation (42) even if Zck is
bypassed by the stray capacitance Cs1.

As far as the probe is concerned, Ṽp is driven by the
compensation electrode and is given by equation (39) with
Zx in place of Zsh:

Ṽp = Ṽs

∣∣∣∣ Zck

Zck + Zx

∣∣∣∣ . (43)

The requirement of equation (42) is then relaxed to

eṼrf

KTe

∣∣∣∣ Zx

Zck + Zx

∣∣∣∣ ≈ eṼrf

KTe

∣∣∣∣ Zx

Zck

∣∣∣∣ 
 1, (44)

and |Zck| can be smaller by the ratio Ax/Ap. If Ax is large
enough, it may not be necessary to use resonant chokes. For
instance, if Ap ≈ .05 cm2, and Ax ≈ 5 cm2 (0.5 cm diam
× 3 cm long), |Zck| can be reduced a factor 100 below the
100 k� calculated in the previous example. However, note
that Csh depends on 1/λD ∝ √

n. If n ≈ 109 cm−3 instead of
1012 cm−3, |Zsh| is increased by a factor of 32, and |Zck| of
order 30 k� is still required.
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Figure 9. A Fourier fit to the exact curve of figure 4 for Vrf = 8 V.
The harmonic amplitudes relative to the fundamental are shown.

4.5. Generation of harmonics

Since Csh varies with Vs, the rf probe current will be non-
sinusoidal, and harmonics of the rf frequency will be generated.
To estimate this, we use the approximate formula (31):

Csh = C0

(
1 +

Vrf sin ωt

V̄s − V̄p

)
. (45)

The ac electron current to the probe is given by

Ĩe = Csh(dVs/dt). (46)

From equations (30) and (45), we obtain

Ĩe = C0

(
1 +

Vrf sin ωt

V̄s − V̄p

)−3/4

(Vrfω cos ωt) . (47)

For sufficiently small Vrf , Taylor expansion gives

Ĩe = C0

(
1 − 3

4

Vrf sin ωt

V̄s − V̄p

)
(Vrfω cos ωt)

= ωC0Vrf

(
cos ωt − 3

8

Vrf sin 2ωt

V̄s − V̄p

)
. (48)

When the expansion is valid, the 2nd harmonic is smaller than
the fundamental by a factor [6]

3

8

Vrf

V̄s − V̄p
. (49)

This is, of course, valid only for very small values of Vrf . To
see the effect of a more exact calculation, we have Fourier
analysed the fairly smooth curve of figure 4(b), representing a
Vrf of only 8 V. The Fourier fit up to the 8th harmonic is shown
in figure 9. The non-zero coefficients an of sin(nωt) and bn

of cos(nωt) are given relative to that of the fundamental, a1.
The largest harmonic, the 2nd, has 13% amplitude in this case.
The leading term in Ĩe is still given by equation (48).

4.6. The sheath resistance

The real part of Zsh , corresponding to the particle current to
the probe, is also nonlinear. We consider only the electron
current, since the ion current is comparatively constant and is
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not greatly changed by fluctuations in Vs. For a Maxwellian
distribution the electron current is given by equation (34):

Ie = −eApn0vre
e(Vs−Vp)/KTe . (50)

The sheath resistance is defined by

Rsh = dV/dI, (51)

so that, in the absence of rf, the dc resistance is given by

R−1
sh = dIe/d(Vp) = (e/KTe)|Ie|, (52)

with Vs = V̄s = constant. At the floating potential, |Ie| is
equal to Ii, and Rsh there is given by

Rsh(Vf ) = KTe

e

1

eIi

= KTe

e2

1

nscsAp

= KTe

e2

1

e− 1
2 n0csAp

= (eMKTe)
1
2

Apn0e2
. (53)

Note that the ‘e’ not in italics is not the unit charge. As the
probe bias V̄p increases, |Ie| increases, and Rsh decreases from
this value exponentially.

In the presence of rf, Vs will oscillate and be given by
Vs = V̄s + Vrf sin ωt . If the probe is uncompensated, Vp will
remain at Vp. The I–V curve will oscillate horizontally, and its
slope will change, causing Rsh to change nonlinearly during the
rf cycle. Its value is still given by equations (52) and (50) if Vs

is given its unsteady value. If the probe is rf compensated,
as subsection 4.4, Vp will follow Vs, and the slope of the
I–V curve will not change as much. Rsh is still given by
equations (52) and (50) if Vs − Vp is given its compensated
value. From equation (43) we obtain

Ṽs − Ṽp = Vrf sin ωt

∣∣∣∣ Zx

Zch + Zx

∣∣∣∣ . (54)

The instantaneous sheath resistance from equations (52), (50)
and (54) can now be written as

Rsh = KTe

e

e
−

[
V̄s−V̄p+ e

KTe

∣∣∣ Zx
Zch+Zx

∣∣∣Vrf sin ωt
]

eApn0vr
. (55)

The same proviso on negative values of sin ωt that makes the
exponent positive applies here, but with good compensation
this should not happen. The dynamic impedance of a plane
sheath in a strong rf environment is then given by

Zsh = Rch − j/ωCsh, (56)

in which the resistive and reactive elements have been treated
in detail above.

5. Cylindrical geometry

A compensation electrode is usually large enough compared
with λD that the sheath on it can be treated as planar. A
wire probe tip, however, is likely to be made with radius
Rp smaller than or comparable to λD in order for the orbital-
motion-limited (OML) probe theory to be applicable. In that
case, the probe sheath has to be treated in cylindrical geometry.
In the electron retardation region, Poisson’s equation (11) is

replaced by the cylindrical version [12] of the Allen–Boyd–
Reynolds [13] (ABR) equation

1

ρ

d

dρ

(
ρ

dη

dρ

)
= J

ρ
η− 1

2 − e−η, J ≡ 1

2π
√

2

Ii

en0

1

λDcs
,

(57)
where ρ = r/λD. This equation is not amenable to an analytic
solution suitable for probe design. It has to be integrated from
infinity, and it does not make sense [14] to define a sheath
edge where vi = cs. Furthermore, the ion current Ii has to be
assumed at the outset.

Although we cannot easily extend the plane results for
the retardation region to cylinders, we can treat the region of
electron saturation. When Vp > Vs so that η < 0, electrons are
accelerated towards the probe. Their thermal velocities will
cause those with high angular momentum to orbit the probe
and miss it; they cannot be treated as a cold fluid, as we did
with the ions. The equations have been solved numerically by
Laframboise [15], but these specific results cannot be applied
to the general case. However, if Rp/λD is small enough, it
is possible to use the convenient OML theory of Mott-Smith
and Langmuir [16], as summarized by Chen [17]. The orbits of
particles spiralling in to an attractive probe are calculated using
energy and momentum conservation as in subsection 2.1, but
in the case of electrons one cannot neglect their energy spread
at the sheath edge. For a Maxwellian distribution at r = s, the
OML result for saturation electron current is

Ie,sat = Apen0vrF, (58)

where vr is given by equation (34) and F is the function

F ≡ 1

ε
erf(�

1
2 ) + e−η[1 − erf(� − η)

1
2 ], (59)

in which

ε ≡ Rp/s < 1 , � ≡ η/(1 − ε−2),

� − η = η/(ε2 − 1). (60)

Here η is still defined by equation (7) and is negative for Vp >
Vs, so that the arguments of the error functions

erf(x) ≡
∫ x

0
e−t2

dt → [x → 0]
2x√
π

(61)

are real. The sheath radius s has to be arbitrarily assumed,
since there is no Bohm criterion for electrons when Te > Ti.
However, it turns out that F is extremely insensitive to ε for
all ε > 10, a fact that Langmuir could not point out because he
did not have personal computers. We may therefore take the
s → ∞ limit of equation (59), obtaining

F(η) = 2√
π

(−η)
1
2 + e−η[1 − erf(−η)

1
2 ]. (62)

Note that at the space potential η = 0, F → 1 and F ′(η) →
−1, so that Ie,sat joins smoothly onto the transition region
(equation (34)). An ideal OML probe curve is shown in
figure 10. At Vs = 0, the junction at Vs is smooth for a
cylindrical probe but abrupt for a plane probe. As Vrf oscillates
with amplitude 6 V, the probe bias Vp effectively oscillates
relative to this curve between the limits shown. In this case,
Vrf is large enough that the probe enters the electron saturation
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Figure 10. An ideal OML curve for a cylindrical probe with
Rp = 0.0075 and L = 1 cm. The argon plasma has KTe = 3 eV and
n = 1011 cm−3. The dashed line is the saturation electron current for
a plane probe. The effective excursion of Vp is shown for Vrf = 6 V
and η0 = 1.

region during part of the rf cycle, but Ie does not change
discontinuously, as it does in the plane case.

Equations (58) and (62) give Ie without the need for
solution of Poisson’s equation to get V (r). Whether a
collisionless electron coming from infinity hits the probe or
not depends only on its initial energy and angular momentum
regardless of the shape of V (r). The requirement Rp 
 λD

stems from the fact that n has to be small enough that there is no
absorption radius Ra inside of which all electrons are collected,
thus increasing the effective probe radius from Rp to Ra. To
calculate Csh, however, equation (21) requires a knowledge
of η(ρ), which is not available from the OML theory. Note,
however, that the solution given by equations (58) and (62) is
self-similar; the only scalelength is given by Rp. The ratio Ie /
Rp depends only on η. Thus, as Rp changes, the picture is the
same, and only the scale changes. All the particle trajectories
have the same shape, and therefore the surface charge density
ρs is proportional to Ie/Rp, and hence to F(η). Let

ρs = τ1(Ie/Ap), (63)

where τ1 is a constant with the dimensions of time.
Equations (20), (58) and (63) then give

Csh

Ap
= dρs

dV
= − e

KTe

d

dη
(τ1n0evrF) . (64)

With equations (9) and (34), this can be written as

Csh

Ap
= − 1√

2π

ε0

λD
ωpτ1F

′(η). (65)

Differentiating equation (62) gives

F ′(η) = −e−η{1 − erf[(−η)
1
2 ]}, (66)

where η is negative. The sheath capacitance in electron
saturation is therefore

Csh

Ap
= 1√

2π

ε0

λD
ωpτ1e−η{1 − erf[(−η)

1
2 ]}. (67)

One might think that the unknown constant τ1 can be evaluated
by matching smoothly to the solution for η > 0, but this is not
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Figure 11. Behaviour of Csh of a cylindrical electron sheath (——);
the magnitude is approximate. Also shown for comparison is Csh for
a plane ion sheath (- - - -) from figure 2. Both curves dip to 0 at the
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the case. In the limit η → 0,

Csh

Ap
= 1√

2π

ε0

λD
ωpτ1 �= 0, (68)

whereas Csh at the space potential has to vanish because there
is no sheath. Actually, Csh has to drop to zero even from the
electron saturation side. If Ti is finite, though very small, it
begins to be collected when −η is small, and equation (67)
is no longer valid. Csh will fall to zero as in figure 2 but
much more steeply, in a voltage range scaled to Ti rather then
Te. Although the absolute magnitude of Csh is not known,
we can show its behaviour according to equation (67) in
figure 11. There is still a discontinuity at η = 0, but it is
so spiky that it will not be seen, and Csh will vary much more
smoothly than in figure 5 when Vrf brings η into the electron
saturation region.

The statement that the sheath vanishes at Vp = Vs does not
hold when there is a dc magnetic field. The probe then casts
a shadow, and particles are depleted from the tube of force
intercepted by the probe. The space potential inside the tube is
different from that outside, and it varies in a way that depends
on the diffusion, classical or anomalous, of electrons across
the B-field into the tube. Since Vp cannot be Vs everywhere,
there is always going to be a sheath, and Csh cannot vanish as
it does for an infinitesimal probe in a B-field-free plasma.

A solution for Csh in the Child–Langmuir approximation
for cylinders (η 	 1) is also available [18], but the series
solution is quite cumbersome. For emission from a thin wire
out to a sheath edge, Langmuir [18] showed that the solution
is insensitive to s/r for s/r > 10. This may not be true for ion
emission from the outer cylinder rather than the inner one. In
any case this C–L solution cannot be connected to the electron
retardation region without numerical integration.

6. Conclusion

Both the real and imaginary parts of the sheath impedance
of a Langmuir probe vary nonlinearly with rf fluctuations in
space potential. An equation for the time-dependent sheath
capacitance in plane geometry is derived including both the
Child–Langmuir and Debye sheaths. Inclusion of the Debye
sheath leads to violent oscillations of the sheath capacitance
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which may lead to generation of many harmonics of the rf
frequency. For a cylindrical probe the sheath capacitance
is given for the electron saturation region, but the transition
region requires numerical integration. The effect of rf on
probe characteristics can be minimized with an appropriate
compensation circuit, whose parameters are specified.
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