Motivation:

- EE213A: link between digital signal processing and ASIC implementation
- is a vertical refinement

 - Specification: MATLAB, SPW, Cossap
 - Floating point
 - Fixed point
 - Algorithm transformations
 - Architecture mapping:
 - Bit parallel - bit serial
 - Link to floorplanning, power optimization, etc.
Motivation:

- EE298-2: exploration of implementation platforms
- is a horizontal exploration

<table>
<thead>
<tr>
<th>ASIC</th>
<th>Application Specific</th>
<th>Domain Specific</th>
<th>General DSP</th>
<th>General Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Performance / Power:

<table>
<thead>
<tr>
<th></th>
<th>high</th>
<th></th>
<th></th>
<th>low</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Programmability:

<table>
<thead>
<tr>
<th></th>
<th>none</th>
<th>parameters</th>
<th></th>
<th>very high</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Motivation:

- This class: one application over different implementation platforms
- horizontal and vertical exploration

- Specification: MATLAB, SPW, Cossap, C/C++
- Floating point
- Fixed point
- Algorithm transformations

Architecture alternatives:

- ASIC
 - Bit parallel
 - Bit serial
 - Special Purpose (DSP Canvas, Art Designer)
- Retargetable coprocessor (Target compiler technologies, Easics)
- DSP processors (TI TMS320C54x)
- DSP extensions to RISC (Tensilica)
Motivation:

- Back-end: Verilog/VHDL, synthesis, place & route

- ASIC
 - Bit parallel
 - Bit serial (DSP Canvas)

- Special Purpose
 - (Art Designer)

- Retargetable coprocessor
 - (Target compiler technologies, Easics)

- DSP processors
 - (TI TMS320C54x)

- RISC with DSP extensions
 - (Tensilica)

- Hardware
 - Synopsys synthesis
 - Cadence Place & Route

- Software
 - C-compilation
 - Assembly optimization

System-on-a-chip

Embedded systems = “systems-on-a-chip.”
Applications:

- This class (spring 2000): FIR filter over these implementation platforms
- (next class: Viterbi algorithm or network processor)

\[
\begin{align*}
\text{FIR design in Matlab} \\
\text{C, C++ conversion, gradual refinement} \\
\text{Optimizations:} \\
\quad & \text{algorithm transformations} \\
\quad & \text{fixed point optimization} \\
\quad & \text{coefficient optimization} \\
\text{Architecture design and optimization} \\
\quad & \text{(several alternatives)} \\
\text{Comparison based on:} \\
\quad & \text{throughput} \\
\quad & \text{area} \\
\quad & \text{power} \\
\quad & \text{design time} \\
\quad & \text{design reuse (flexibility)}
\end{align*}
\]

Throughput driven computations

- Real-time systems: sample rate, frame rate, symbol rate, etc.
 \textit{Worst case} operation determined by \textit{external} events

- Different from “average” running time
 \(=\) measure on programmable processors
 E.g. average time to display powerpoint file

\[
\begin{align*}
\text{Sample frequency} \quad \frac{\text{Clock frequency}}{=\text{number of clock cycles available for the job}}
\end{align*}
\]