
A Hybrid Systolic-Dataflow Architecture for
Inductive Matrix Algorithms

Jian Weng, Sihao Liu, Zhengrong Wang, Vidushi Dadu, Tony Nowatzki

University of California, Los Angeles

Los Angeles, California, US

{jian.weng, sihao, seanzw, vidushi.dadu, tjn}@cs.ucla.edu

Abstract—Dense linear algebra kernels are critical for wireless,
and the oncoming proliferation of 5G only amplifies their
importance. Due to the inductive nature of many such algorithms,
parallelism is difficult to exploit: parallel regions have fine-
grain producer/consumer interaction with iteratively changing
dependence distance, reuse rate, and memory access patterns.
This causes a high overhead both for multi-threading due to
fine-grain synchronization, and for vectorization due to the non-
rectangular iteration domains. CPUs, DSPs, and GPUs perform
order-of-magnitude below peak.

Our insight is that if the nature of inductive dependences
and memory accesses were explicit in the hardware/software
interface, then a spatial architecture could efficiently execute
parallel code regions. To this end, we first extend the traditional
dataflow model with first class primitives for inductive depen-
dences and memory access patterns (streams). Second, we develop
a hybrid spatial architecture combining systolic and dataflow
execution to attain high utilization at low energy and area cost.
Finally, we create a scalable design through a novel vector-stream
control model which amortizes control overhead both in time and
spatially across architecture lanes.

We evaluate our design, REVEL, with a full stack (compiler,
ISA, simulator, RTL). Across a suite of linear algebra kernels,
REVEL outperforms equally-provisioned DSPs by 4.6×—37×.
Compared to state-of-the-art spatial architectures, REVEL is
mean 3.4× faster. Compared to a set of ASICs, REVEL is only
2× the power and half the area.

Keywords-Spatial Architecture; Reconfigurable Accelerator;
Software/Hardware Codesign; Digital Signal Processor

I. INTRODUCTION

Dense linear algebra kernels, like matrix factorization, mul-

tiplication, decomposition and FFT, have for decades been

the computational workhorses of signal processing across

standards, specifications, and device settings. The oncom-

ing proliferation of 5G wireless is only further pushing the

computational demands, both in performance and energy

efficiency [1], [2]. Driven by needs of higher capacity [3]

and applications like augmented and virtual reality [4], new

standards will require signal processing at more than an order-

of-magnitude higher throughput and lower latency. Relying

on fixed-function ASICs alone has many drawbacks: design

effort, extra on-chip area, and lack of flexibility; these are es-

pecially relevant for wireless, where standards are continually

changing (4G,LTE,5G,etc).

Despite their ubiquity, many important dense matrix oper-

ations are far from trivial to parallelize and compute at high

hardware efficiency on programmable architectures. Figure 1

shows the throughput of a modern CPU, DSP, and GPU

running common DSP algorithms, compared to an ideal ASIC

Fig. 1: Percent ideal performance. CPU: Xeon 4116–Intel MKL,
DSP: TI C6678–TI DSPLIB, GPU: TITAN V–NVIDIA libraries

for (j=0; j<n; ++j)
 b[j] = b[j]/a[j,j]
 for (i=j+1; i<n; ++i)
 b[i] -= b[j]*a[j,i]

i (inner loop)j

(a) Solver Code (b) Solver’s Iteration Space

Forward Dep. Loop Carried

Parallel Work is Inductive:
Work degree depends inductively on j

5 units work

4 units work

3 units work

2 units work
...

Many fine grain dependences
across program regions

Obser-
vations:
Fig. 2: Inductive Workload Example: Triangular Linear Solver

with the same computation resources as the DSP (methodology

in Section VII). An order of magnitude of performance is lost.

The primary challenge comes from the commonly inductive
nature of the parallelism present, coupled with the com-

monly small matrices in this domain. Informally, many DSP

algorithms are inductive in that they build on intermediate

computations iteratively and at a fine-grain. A simple inductive

workload is the triangular solver in Figure 2(a), which updates

a shrinking subset of a vector repeatedly based on a division

in the outer loop. Figure 2(b) shows the dependences between

iterations of the inner and outer loop. This contrasts sharply

with a non-inductive workload like dense matrix multiplica-

tion, where all parallelism is available immediately and there

are no dependences (besides reduction).

Though simple, this workload demonstrates two common

properties: 1. fine-grain producer/consumer relationships be-

tween program regions and 2. many aspects of the program

execution are a function of an outer loop induction variable

– in this case that includes the amount of parallel work, the

rate of data reuse, the dependence distance, and the memory

access pattern. Hence, we refer to any aspect of execution that

varies with an outer-loop induction variable as inductive.

CPUs, GPUs, and DSPs rely heavily on vectorization and

multithreading; both are hindered by inductive behavior. Vec-

torization has a high overhead because the total iterations of

parallel work changes inductively, therefore the iteration count

703

2020 IEEE International Symposium on High Performance Computer Architecture (HPCA)

2378-203X/20/$31.00 ©2020 IEEE
DOI 10.1109/HPCA47549.2020.00063

 X
FE

R

 SPAD

 X
FE

R

 X
FE

R

...
Shared SPAD

Vector Lane 1 Vector Lane 2 Vector Lane N

 SPAD SPAD

In
te

r-l
an

e
De

p.

Local
Control

FIFOs with
Program-
able Reuse

1.Inductive Dataflow Model
reduces control overhead

2.Hybrid Systolic-Dataflow Arch.
for inductive parallelism

3.Vector-Stream Control
for efficient scaling

×

+

×

×

Sw
itc

h

√

/

√ +
Systolic

PE
Dataflow

PE/

×
√

/
√ +

/
config
mem
dep
wait

REVEL Program
expressed as a series
of streams vectorized

across lanes.
Ctrl Program

Vector-Stream
Control Core

×

+

×

1|n-i
1|1

A[0:n]

Inductive
Reuse Dep.

Inductive
Memory
Stream

produce |
consume

rate

Memory
Stream B[0:n-i]

Broadcast
Streams

REVEL Accelerator

×
√

/

√ +

/

 Hybrid
 Systolic-
 Dataflow

 Hybrid
 Systolic-
 Dataflow

 Hybrid
 Systolic-
 Dataflow

Fig. 3: Proposed Architecture and Three Novel Aspects

will frequently not be divisible by the vector length, causing

under-utilization. Frequent dependences between program re-

gions due to inductive updates make thread-synchronization

overhead too high.

Dataflow models and their corresponding architectures [5]–

[7] are promising because they can express dependences with

inductive patterns, enabling parallelism of regions even with

fine-grain dependences. Spatial dataflow architectures [8]–

[12] help make dataflow architectures practical and energy-

efficient. However, we demonstrate quantitatively that these

are still factors under peak performance due to either control

overheads or serialization.

Goal and Approach: Our goal is to create the next-generation

programmable DSP architecture, capable of both inductive and

non-inductive parallelism, by leveraging principles of dataflow,

spatial architectures and specialization. We summarize the

proposed design, REVEL (Reconfigurable Vector Lanes), and

novel aspects of this work (see Figure 3):

First, we create an inductive dataflow execution model,

which extends dataflow execution with first class primitives

for inductive dependences and memory access streams. This

specialization enables effective vectorization through implicit

masking based on the relationship of stream to vector length,

and allows expression of inductive behavior at low control

overhead.

Second, we develop a hybrid systolic/dataflow architecture,

which can use efficient systolic execution for inner-loops

regions that must execute at a high rate, and a more flexible

and tagged dataflow execution for other operations off the

critical path. This enables parallelism across program regions

at high utilization with low hardware overhead.

Third, we scale the design by using lanes, each having the

hybrid architecture and local scratchpad (SPAD). To control

the operation and interaction of all lanes with low overhead,

we develop the vector-stream control model, which enables

a single core to control program regions with fine-grain

dependences mapped across lanes. This is a generalization of

the stream-dataflow ISA [13] to enable amortization of control

through time (streams) and space (vector lanes).

Our contributions are:
• Identification of fine-grain inductive behavior as a primary

challenge for many dense linear algebra kernels.

• Taxonomy of spatial architectures which explains their

tradeoffs for DSP workloads.

• Inductive dataflow execution model which expresses induc-

tive memory and dependences as a first-class primitive to

reduce control overhead and make vectorization profitable.

• A novel hybrid systolic-dataflow architecture to specialize

for the exposed inductive parallelism.

• REVEL accelerator design and its novel vector-stream
control model which amortizes control in time and space.

• Full stack implementation, open-source compiler, simula-

tor1, and comparison against state-of-the art DSPs, CPUs,

GPUs and spatial architectures.

Results: A single 1.25GHz REVEL unit can outperform a

2.1GHz OOO core running highly-optimized MKL code on

DSP workloads by mean 9.6×, with an area normalized

speedup of 1089×. Compared to a DSP, REVEL achieves

between 4.6×-37× lower latency, It is half the area of an

equivalent set of ASICs and within 2× average power.

Paper Organization: We characterize the workloads and

challenges for existing architectures in Section II, and the

promise and challenges for spatial architectures in Section III.

We then develop inductive dataflow and the hybrid architecture

in Section IV. Our accelerator, REVEL, and its vector-stream

control model is described in Section V, and its compiler is

in Section VI. Finally, we cover methodology, evaluation and

additional related work in Sections VII, VIII, and IX.

II. WORKLOAD CHARACTERIZATION

In this section, we explain how the inductive nature of many

linear algebra workloads creates parallelism that is difficult

to exploit. We start with workload background, then discuss

inductive workload characteristics and why they hamper tra-

ditional architectures.

A. Why these particular DSP workloads?

Figure 4 shows typical 4G/5G transmitter/receiver stages:

FFT

SRS
channel Est.

DMRS
channel Est.

Uplink

Downlink

Beam-Forming
Weight Update

MIMO Eq. &
Noise Var. Est.

Beam-
Forming

RE
Mapping

IFFT

FFT/IFFT size depends on cell
bandwidth, sub-carrier spacing

General Matrix Mult: Matrix size
depends on # of antennas&beams

Demodulation &
Chan. Decoding

Channel Coding &
Modulation

Bit-level Ops-
not targetted

Resource Element Mapping:
Control dominated, not targeted

Matrix Factorization/Inversion:
QR Decomp/Cholseky/SVD,
And Filtering

Fig. 4: Typical 4G/5G Transmitter/Receiver Pipeline

Kernels we do not target: Channel coding and modulation

involve mostly bit-level arithmetic. RE mapping is a short

resource allocation phase which is not computation intense.

1 Open-source release of simulator, compiler, and workload implementa-
tion: https://github.com/PolyArch/stream-specialization-stack

704

Kernels we target: The Beamforming stage involves mostly

GEMM, coming from spatial signal filtering [14]. Filters and

FFT of several varieties are also common [15]–[17].

Challenging inductive workloads are mostly within MIMO

equalization and channel estimation. These include Singular
Value Decomp., used for noise reduction [18], QR De-
composition, used for signal detection for (MIMO) [19],

and Cholesky Decomposition and Solver used in channel

estimation and equalization [20], [21].

Why are matrices small?: The parameters often depend on

the number of antennas and beams (in the range of 12-32

would be common) [22].

B. Inductive Workload Properties

To explain the characteristics and challenges of inductive

workloads, we use Cholesky decomposition as a representative

example. Figure 5(a) shows the algorithm with inter-region

dependences annotated. Cholesky contains a point, a vector,

and a matrix computation region. We use the term region to

refer to a set of statements at one loop-nest level.

What makes a workload “Inductive”?: The inductive prop-

erty indicates that certain aspects of the execution iteratively

change based on an outer loop induction variable. In this

example, loop trip counts all depend on outer-loop variables,

creating the triangular iteration space in Figure 5(b), which is

also shrinking on each outer k loop iteration. Being inductive

affects all aspects of Cholesky’s execution:

• Inductive Parallelism The amount of parallelism that is

made available by completing various statements itera-

tively changes. For example, the amount of parallel work in

the vector and matrix regions triggered by the production

of inv and invqsrt is iteratively less.

• Inductive Dependences The dependence distance or num-

ber of times a value is reused iteratively changes. For

example, inv is reused n-k times in the vector region.

• Inductive Memory Access The maximum stride of con-

tiguous memory changes iteratively. For example, the

access to array a within the matrix region has contiguous

length n-j (assuming row-major order).

Parallelization Challenges: Both vectorization and multi-

threading are hampered by inductive behaviors.

Vectorization would be useful for parallelizing the work

within each region, but this is hampered by inductive paral-

lelism. To explain, vectorization is accomplished by choosing

sets of iterations (size of the vector length) to combine into

their vector equivalents, where ideally they have contiguous

memory access - this is known as tiling. An inductive iteration

space cannot be tiled perfectly into sets with contiguous

memory access.

In the Cholesky example, the iterations within the inner loop

(rows of the matrix region within the figure), have contiguous

access. Figure 5 shows a possible tiling with vector-length

of four. The common way to execute remaining iterations is

with a scalar loop – scalar iterations quickly dominate due to

i

j

i

jj j

k k+1

Vector Matrix Vector Matrix

for (k=0; k<n; ++k)
 inv = 1/a[k,k]
 invsqr = 1/sqrt(a[k,k])
 for (j=k; j<n; ++j)
 l[j,i] = a[i,j]*invsqr
 for (j=k+1; j<n; ++j)
 for (i=j; i<n; ++i)
 a[j,i] -= a[k,i]*
 a[k,j]*inv

Forward

Loop-Carried

(c) Schedule with inter-
region parallelism

Time
k
k+1

Vectorizable
Iters

Not Profitably
Vectorizable

Ve
ct

or
M

at
rix

Po
in

t

Point Point

(a) Cholesky Code

(b) Iteration Space and Dependences

(only first two
deps. of each
kind shown for
visual clarity)

Both Inner loops are
“inductive”: their trip
counts depend on an

induction variable.
This creates the triangular

pattern below.

Inter-Region
Dependences:

Point Vector
Matrix

Fig. 5: Inductive Workload Example: Cholesky
Amdahl’s law. For the matrix region with n = 24 and vector-

width of 8, only 55% of iterations can be vectorized, for a

maximum speedup of less than 2×. With vector size 16 the

maximum speedup drops to 1.2×.

Multi-threading could be used for parallelizing across re-

gions; Figure 5(c) depicts such a schedule, where all regions

are executed in pipeline-parallel fashion. This schedule would

at least require synchronizing the loop-carried dependence

between subsequent matrix regions.

Fig. 6: Inter-region Dep.
Granularity (n is matrix di-
mension)

The granularity of these de-

pendences is problematic for

the commonly small matrices.

Figure 6 shows the cumula-

tive dependence distance of

inter-region dependences across

workloads. Most dependences

are around a thousand instruc-

tions. Synchronizing multiple

times through shared memory

(for blocking) within this range

is impractical. Empirically, Intel’s optimized MKL library

does not attempt multi-threading until a matrix size of 128

on Cholesky, and even then it hurts performance (details in

Figure 24 on Page 11).

III. SPATIAL DESIGNS AND CHALLENGES

Spatial architectures expose low-level computation and net-

work resources to the hardware/software interface. They are

attractive for inductive workloads, as they rely less on multi-

threading and vectorization, and instead leverage pipeline par-

705

Dedicated PEs Temporally Shared PEs
D

yn
am

ic
 S

ch
ed

.
St

at
ic

 S
ch

ed
.

+

>>

×

+

×
1

2
2

3

Spatial mapping,
all timing pre-determined

2

+

>>

×

+

×

Spatial mapping only,
 flow-control maintains timing

PE1 PE2

PE3 PE4

Spatial + temporal mapping,
all timing pre-determined

Cycle
Num:

+ ×
>> ×

+

PE1
Schedule

PE2
Cyc 1
Cyc 2
Cyc 3

Spatial + temporal mapping
dynamic dataflow ordering

PE1 PE2

PE3 PE4

PE1 PE2
×
+

×+

>>

×
+

×+
>>

Example
Dataflow
Graphs

dy
n

am
ic

 fl
o

w
-c

on
tr

ol

0 0 0

Schedule

1×
Area

2.6×
Area

5.8×
Area

2.1×
Area

“Systolic” “CGRA”

“Ordered Dataflow” “ Dataflow”

Least
Complex

Most
Complex

Fig. 7: Spatial Architecture Taxonomy with Example Program

allelism. We describe here a taxonomy of spatial architectures,

and use this to explain the unique challenges and limitations

that motivate a novel dataflow execution model and spatial

architecture.

A. Spatial Architecture Taxonomy

We categorize spatial architectures in two dimensions:

1. static or dynamic scheduling: is the timing of all instructions

determined statically or dynamically? 2. dedicated or shared

PEs: is each PE dedicated to one instruction or shared among

multiple instructions? Figure 7 depicts this taxonomy, along

with how a simple computation graph is mapped to each.

It also includes a relative PE area estimate2. Table I gives

examples of each category. We explain each quadrant3:

• “Systolic” architectures have dedicated PEs, and the com-

piler schedules events to allow perfect pipelining of com-

putation. Our definition includes systolic designs with a

reconfigurable network. They are the simplest and smallest

because PEs lack flow control.

• “CGRAs” (Coarse Grain Reconfigurable Architectures)

add temporal multiplexing capability, so regions can be

larger. They keep the hardware simplicity of static sched-

ules, but require an instruction memory and register file.

• “Ordered Dataflow” augments systolic with limited

dataflow semantics: instruction firing is triggered by data

arrival; however, it is simpler than tagged dataflow as the

order of firing is predetermined.

• “Tagged Dataflow” architectures allow data-triggered exe-

cution at each PE, with the capability or reordering instruc-

tions. They are the most expensive due to tag matching

of some form, but also the most flexible and tolerant to

variable latencies.

B. Spatial Architecture Challenges

To understand their tradeoffs, we implement and evaluate

the two extremes within the spatial architecture taxonomy:

systolic and tagged dataflow (hence just “dataflow”). The

2Methodology in Section VII; 64-bit PE; shared PEs have 32-instr. slots
and 8 reg-file entries. Area does not include floating point (FP) units, but even
with FP multiply, dataflow is > 4× the systolic.

3We use these nicknames loosely: Our use of “systolic” is broader than in
the literature, while our use of “CGRA” refers only to traditional CGRAs.

Dedicated PE Temporally Shared PE

Static
Sched-
uling

“Systolic”
Warp [23], FPCA [24],
Softbrain [13], Tar-
tan [10], Piperench [25]

“CGRA”
MorphoSys [26], Remarc [27],
MATRIX [28], ADRES [29],
WaveFlow [30]

Dynamic
Sched-
uling

“Ordered Dataflow”
DySER [11], Q100 [31],
Plasticine [12]

“Tagged Dataflow”
TRIPS [9], SGMF [32],
Trig. Insts [33], WaveScalar [8],
dMT-CGRA [34]

TABLE I: Classifying Architectures within Spatial Taxonomy

Fig. 8: Performance relative to ideal for Spatial Architectures

dataflow design most resembles Triggered Instructions [33],

and the systolic most resembles Softbrain [13]. The total

execution resources matches the TI DSP (8 cores, 16 MACs

each, per-core SPAD). We develop and tune each algorithm

for both architectures, and develop a cycle-level simulation

framework and compiler (Section VII). Performance tradeoffs

are in Figure 8, and are explained in the following paragraphs.

Though spatial architectures are much faster than CPUs/G-

PUs/DSPs, they still do not achieve full throughput, and each

type of architecture favors different workloads.

Challenge 1: Inductive Parallelism: Statically scheduled

spatial architectures (systolic and CGRAs) cannot achieve

parallelism across regions in inductive workloads, as inductive

dependences do not have a static distance, which is required by

static scheduling. Also, this limitation helps explain why the

vast majority of CGRA compilers only attempt parallelization
of inner loops [35]–[38]. The systolic architecture in Figure 8

also serializes each program region, which is another reason

why it performs poorly on inductive workloads.

Ordered dataflow could parallelize across loops, as instruc-

tion firing is dynamic. However, as ordered dataflow only

maps one instruction per PE, infrequently executed outer-loop

program regions achieve quite low utilization.

Tagged dataflow architectures avoid the above challenges

but suffer energy costs. They also do not fare well on non-

inductive workloads with regular parallelism, as its difficult

for the compiler to create a perfectly pipelined datapath; even

a single PE with contention from two instructions in the inner

loop will halve the throughput.

Challenge 2: Inductive Control: A common issue is control

overhead from inductive memory accesses and dependences.

We demonstrate with a simple reuse and inductive reuse

pattern shown in Figure 9, along with the dataflow program

representation. Traditional spatial architectures require these

extra instructions to maintain effectively a finite state machine

(FSM) to track the data-reuse for a given number of iterations,

706

for (j=0; j<nj; ++j)
 a[j] = …
for (j=0; j<nj; ++j)
 for (i=0; i<ni;++i)
 … = a[j]

(a) Reuse Dependence Inductive
Dataflow

Traditional Dataflow

use

def

1|ni++

cmp

0

ni

def

use

(b) Inductive Dependence Inductive
Dataflow

Traditional Dataflow

use

def

1|ni-j++

cmp

0

ni

def

use++

cmp

0

reuse ni

times

for (j=0; j<nj; ++j)
 a[j] = …
for (j=0; j<nj; ++j)
 for (i=j; i<ni;++i)
 … = a[j]

for (j=0; j<nj; ++j)
 a[j] = …
for (j=0; j<nj; ++j)
 for (i=j; i<ni;++i)
 … = a[j]

Update
use count

Update
use count

Update maximum
use count

j
0
nj
0
n

Produce|Consume
Rate

Rate
depends

on j

Fig. 9: Control overhead of Dependences in Dataflow Models

which is especially problematic for inductive dependences.

These extra instructions can show up differently depending

on the architecture; for systolic these execute on a control

core (which can easily get overwhelmed); for dataflow these

can be executed on the spatial fabric. The overhead from these

instructions is the primary reason why in Figure 8, dataflow

does not reach maximum throughput.

Summary: Existing spatial architectures are promising but

have a combination of problems: control overhead, cannot

achieve inductive parallelism, and/or high energy overhead.

IV. SPECIALIZING SPATIAL ARCHITECTURES FOR

INDUCTIVE BEHAVIOR

Based on our analysis, spatial architectures would be

promising if they could keep their benefits of flexible par-

allelism without being burdened by control overhead and

hardware complexity. Our solution, discussed in this section,

is to specialize the dataflow model for inductive behavior and

introduce codesigned hardware.

A. Inductive Dataflow Model

We develop here an execution model called inductive
dataflow, which extends a traditional dataflow model with:

1. capability of expressing inductive dependence patterns (as

dependence streams), 2. capability to express inductive mem-

ory patterns (as memory streams), and 3. semantics for stream

interaction with vectorized computation.

Preliminaries: We begin with a simple dataflow model where

nodes either represent: 1. a computation performed over inputs

in the order received, or 2. a memory stream, which we define

as a memory location and access pattern. We refer to the subset

of the program region which are computation nodes as the

computation graph.

Inspired by synchronous dataflow processes [39], an edge

may be labeled by a production—consumption rate. Consump-

tion > 1 indicates reuse of a value. (e.g. data is reused multiple

times within a subsequent loop). Production > 1 means that

several iterations occur before producing a value (e.g. only the

first array item has a dependent computation).

We refer to these patterns of dependences as a dependence
streams. For example a dependence stream may describe

dependences between outer and inner loops, as shown by

the example in Figure 9(a). Having dependence streams as

first class primitives avoids the overhead of expressing the

corresponding FSM in traditional dataflow instructions.

Inductive Memory and Dependence Primitives: In order to

express inductive dependence streams, we add the capability

to specify the relationship between the outer-loop induction

variable and the production to consumption rate. An abstract

example is in Figure 9(b), under “inductive dataflow”, where

the notation jn
0 means j varies from 0 to n.

Similarly, it is useful to express inductive memory access

patterns (e.g. triangular). Therefore we extend the definition

of memory streams to include the relationship to the outer-

loop induction variable. Examples of a non-inductive (rectan-

gular) stream and inductive (triangular) stream are below in

Figure 10, along with a simple notation that uses [0:n] to

define the range of the stream.

f o r j =0 t o n j
f o r i =0 t o ni

. . . = a [j] [i]

Notation: a[0:n j,0:ni]

(a) Non-inductive Stream

f o r j =0 t o n j
f o r i =0 t o ni − j ∗ s

. . . = a [j] [i]

Notation: j
n j
0 a[j, 0:ni-j×s]

(b) Inductive Stream
Fig. 10: Memory Address Stream Type Comparison

Note that the purpose of including these in the execution

model is not to increase expressiveness, rather it is to open
an opportunity for specialization.

Solver Example: Figure 11 (below) shows the solver kernel

expressed in inductive dataflow. Circular nodes are compute

instructions, and rectangular nodes are memory streams; in-

ductive patterns are shown in blue. Memory accesses within

the inner loop depend on j, so are inductive. The dependence

between the inner and outer loop are also inductive.

Inductive Dataflow Vectorization: Often it is useful to apply

vectorization to the program region which requires the most

work, usually the inner loop. To vectorize, a load stream

may connect to multiple compute nodes, and the subsequent

for (j=0; j<n; ++j)
 b[j] /= a[j,j]
 for (i=j+1; i<n; ++i)
 b[i] -= b[j]*a[j,i]

a[j,j+1:n] a[j,j]

1|(n-j-1)

b[0:n]

(n-j-1)|1
-
×/

b[j+1:n]

multi-reuse
multi-

discard

b[j+1:n]

(a) Solver Code (b) Inductive Dataflow Representation
(inductive access/

dependences are blue)
j0
nj0
n j0

nj0
n

j0
nj0
n

j0
nj0
n

j0
nj0
n

j0
nj0
n

Fig. 11: Solver’s Dataflows and Ordered Dependences

a[j,j+1:n]a[j,j]

b[j]

/

b[j+1:n]

-
×

-
×

-
×

-
×

(a) Inner-loop Region Vectorized

1|(n-j-1)4

|1(n-j-1)
4

(b) Stream Predication (n=8)

0 07
1 47
2 6 0

43 6
4 5 0

Cycle ni i Pipe Predicates

45 5

j0
n

j0
n

j0
n

j0
n

j0
n

j0
n

(n-j-1)

Fig. 12: Implicit Vector Masking with Solver Kernel

707

FuncUnit

From Neighbor Switches

To Neighbor Switches

From Neighbor Switches

Accum

 FuncUnit
Config

reg To Neighbor
Switchselect

Dataflow PE (dPE)
Systolic PE (sPE)

Inst.
Sched

 Inst
Buffer

+
√

-

√ ×

/

acc

×

1|n-j

A[0:n]

j
0
n

C[0:n]

×

acc

×

A[0:n]

B[0:n-j]j0
n

C[0:n]

×

P2 P3

P4 P5 P6

n-jj
0
nP1

B[0:n-j]j0
n

+
√ ×

-

√
/

 X
FE

R
M

ov
e

P6
:P

2

sPE dPE

Input Port Input Port

Output Port Output Port Output Port

Input Port

 X
FE

R

 Scratchpad Stream Control

St
re

am
 C

tr
l

sPE

sPE sPE dPE

(a) Hybrid Systolic-Dataflow Architecture

Circuit
Switched Mesh

(b) Inductive Dataflow
 Mapping ExampleData

busesProgrammable Ports

RegFile Sw
itc

h

Outer-Loop
Region

Inner-Loop
Region

Fig. 13: Hybrid Systolic Dataflow Tiles, Overall Architecture, and Inductive Dataflow Mapping Example

values of the stream are distributed round-robin to each

(a write stream consumes from connected nodes similarly).

Figure 12(a) shows solver with the inner loop vectorized.

However, as with vector architectures, the iteration count of

a loop (especially an inductive one) may not align with the

vector width. The advantage of expressing inductive streams

as a primitive is that we can assign meaning to the completion

of the outer-loop (here the j loop). Specifically, we add

the semantics that nodes which have not received data are

implicitly predicated off. This predication is carried to the

output through dependent instructions; at the output, streams

which write memory ignore instances with invalid predicates.

Figure 12(b) shows the state of the stream over several

cycles (with n=8). This approach enables stall-free pipelined

execution of the vectorized region.

B. Hybrid Systolic-Dataflow

With the execution model defined, we now develop an

architecture which can leverage the additional semantics of

inductive dataflow for highly-efficient execution.

Hybrid Rationale: As discussed in Section III, one of the

main tradeoffs between systolic and dataflow architectures is

the efficiency of simplified control in systolic versus the ability

to exploit more general parallelism in dataflow.

Our rationale begins with the observation that in any kernel,

some of the concurrent program regions correspond to more

total work than others, hence they would execute more fre-

quently. These regions are generally in the inner-most loops

(e.g. matrix region in Cholesky). Our insight is that it is only

these inner loop regions that make up the bulk of the work,

and executing these on the efficient systolic array would yield

the majority of the benefits. If we can provide a much smaller

dataflow fabric for non-inner loop regions, and a way for all

regions to communicate, this would be low cost and high

efficiency. Tagged dataflow is specifically attractive because

it can both temporally multiplex instructions and be resilient

to the timing variation caused by inductive behavior.

Hybrid Architecture Design: Our overall approach is that

we embed the dataflow architecture within the systolic ar-

chitecture’s network, so that functional units (FUs) within

the dataflow component may be used for systolic execution.

To enable communication between the regions, we use pro-

grammable ports which realize the inductive dependence se-

mantics. Figure 13(a) shows the systolic and dataflow PEs, and

how they are embedded into the overall design; Figure 13(b)

shows an example program mapping.

PEs and Integration: Dataflow PEs are based on Triggered

Instructions [33], [40]. An instruction scheduler monitors the

state of architecture predicates and input channels (with tags)

to decide when to fire an instruction. A triggered instruc-

tion will read operands (registers or inputs from neighboring

switches) to the FU for processing. Systolic PEs are much

simpler; they fire their dedicated instruction whenever any

input arrives, are configured with a single register, and only

have a single accumulator register (rather than a register file).

The compiler is responsible for ensuring all systolic PE’s

inputs arrive at exactly the same cycle.

All PEs are embedded into a circuit-switch mesh network

with no flow control. To map program regions onto the systolic

PEs, the compiler configures the switches to implement the

dependences. Only 1|1 production|consumption edges may

be mapped to the circuit switched mesh. If a program region

is mapped to the dataflow PEs, routers between the PEs will

be statically configured to route to each other, so that there is

a communication path between the PEs. Dataflow PEs time-

multiplex these links to communicate.

Execution of Concurrent Program Regions: The input and
output ports buffer data until it is ready to be consumed by

the PEs or written to scratchpad. Ports are implemented as

programmable FIFOs that have fixed connections to locations

within the mesh. They may be associated with systolic pro-

gram regions or dataflow regions.

Systolic regions have the execution semantics that one

instance of the computation begins when all of its inputs are

available. To support multiple systolic program regions which

fire independently, the readiness of each region’s ports are

tracked separately. On the other hand, ports associated with

dataflow regions may immediately send data. In the example

in Figure 13, the inner-loop region uses three systolic PEs and

the outer-loop region uses both dataflow PEs.

Maintaining Dependences: The XFER unit works with

the ports to implement inter-region dependences. It arbitrates

access to data buses on the output ports and input ports. If

a dependence is non-inductive, the stream controller within

the XFER unit is simply configured with a stream to send

data from an output to an input port (multiple dependence

streams will contend for the bus). For a dependence with reuse

708

(consumption>1), a hardware-specialized FSM is configured

within the input port to track the number of times the data

should be reused before popping the data. If a dependence

discards some outputs (production>1), then the output port is

configured to implement an FSM to track the number of times

an output should be discarded. In the example, the inductive

reuse dependence is routed from P6 to P2 by the XFER unit,

then reused according to the FSM in P2.

Stream Predication for Vectorization: Ports also implement

stream predication. The FSM at the port compares the remain-

ing iterations with the port’s vector length. If the iterations left

is non-zero and less than the vector length, the stream control

unit sends the data padded with zeroes for the unused vector-

lanes, along with additional meta-information which indicates

that the those vector-lanes should be predicated off.

Memory Access: Finally, a stream control unit in the scratch-

pad will arbitrate streams’ access into (or out of) the mesh,

by writing (or reading) its own set of data buses. Inductive

memory access is supported in the same way as dependences:

the FSM in the input or output port is configured to reuse

or discard according to the inductive pattern. Another benefit

of the reuse support in the port is that it reduces scratchpad

bandwidth for those accesses.

Overall, the systolic-dataflow architecture achieves both

high efficiency execution for the vast majority of the com-

putation, and flexible parallelism where it is needed.

C. Applicability to Other Architectures

The inductive dataflow model opens an opportunity for

specializing common control patterns and also enables efficient

vectorization of these patterns. It can be independently applied

to any spatial architecture by introducing dependence stream

and memory stream primitives. For example, if a traditional

CGRA (static-scheduled/shared-PE) is extended with hardware

and a software interface to specify an inductive memory stream

primitive (and if it supports stream predication), vectorization

of an inductive region can be achieved.

The principle behind the hybrid-systolic dataflow design

– to combine temporally-shared and dedicated-PEs in one

spatial architecture – is also broadly applicable. For example,

Plasticine [12], a dynamic dedicated-PE spatial architecture,

could be augmented with tagged dataflow PEs for low-rate

computations, enabling higher overall hardware utilization.

V. REVEL ACCELERATOR

Thus far we have described a spatial architecture to execute

inductive-dataflow programs and a microarchitecture which

can take advantage of this specialized program representation.

What remains is to develop an approach for scaling the design,

as well as a specific ISA. We address these aspects with the

REVEL accelerator proposed in this section. We first discuss

flexible scaling with multiple lanes, then cover the vector-

stream ISA which lets a single simple control core coordinate

all lanes.

Vector Lane 1

+

×

×

×

×

× × × ×

+ + + +
+ + +

+ + S
+ + S

×

S

+

Input
ports

Output
ports

+

×

×

×

×

× × × ×

+ + + +
+ + +

+ + S
+ + S

×

S

+

Input
ports

Output
ports

Vector Lane 2

 X
FE

R

Shared SPAD

 X
FE

R ...
Ve

ct
or

 La
ne

s 3
-8

...

To Stream ControlsCmd Queue

SPAD
Data Bus

Lane Ctrl

Co
m

m
an

d
Q

ue
ueVector-Stream

Control Core

Cmd QueueCmd Sync C

Hybrid
Systolic

Data-
flow

 Private SPAD Private SPADStream Control Stream Control

Hybrid
Systolic

Data-
flow

St
re

am
 C

on
tr

ol

St
re

am
 C

on
tr

ol

To Stream Controls

Syst-
olic PE
Data-
flow PE

Syst-
olic PE

Data-
flow PE

Fig. 14: REVEL Accelerator Architecture
A. REVEL Architecture
Multi-lane Rationale: Scaling up the design requires consid-

eration on how to coordinate parallel units with low overhead,

while maintaining the ability to exploit inductive parallelism.

A possible approach is a monolithic architecture with large

spatial array and very-wide scratchpad. However, the mono-

lithic design has several drawbacks:

• Average routing distance increases, increasing average

latency of communication.

• Necessity of reconfiguring the entire array at one time,

which reduces flexibility.

• Long compilation times for the spatial architecture as

routing/scheduling complexity increases.

We take the alternative approach of using multiple lanes,

where each lane is comprised of the hybrid systolic-dataflow

architecture and some control. Lanes can independently ex-

ecute their own program regions, while also communicating

using dependence streams or through shared scratchpad mem-

ory. Also, since each lane can be programmed separately, they

can either work together or on independent tasks.

We first explain the high-level accelerator operation, then

describe the ISA and vector-stream approach.

REVEL Overview: The accelerator (Figure 14) is composed

of a number of lanes, a low power VonNeumann control

core, and a shared scratchpad (serves as the external memory

interface). The control core constructs “stream commands” and

ships these asynchronously to the lanes. Stream commands are

buffered in local command queues until the hardware is ready,

and ensures they execute in program order. Streams are issued

to the XFER unit and scratchpad controller. At this point, exe-

cution of the spatial fabric lane is as described in the previous

section. The XFER unit is extended to support communication

between program regions mapped to consecutive lanes. Since

dataflow PEs are larger, they are grouped on the right side of

the spatial fabric to enable simpler physical design.

B. Vector-stream ISA and Control Model

An ideal control-model would both rely on simple-to-

reason-about sequential programming, and amortize control

709

Pattern Params Source Params Dest. Params

StoreStream ci, c j n j , ni, s ji
out port local addr

La
ne

B
itm

as
k

(a
ll)

LoadStream local addr

Const n1, n2, s val1, val2
in port,
nc, sc

XFER np, sp out port

Configure local addr
Barrier Ld/St&Wait

TABLE II: REVEL’s Vector-Stream Control Commands

over parallel units and through time to prevent the control code

from becoming the bottleneck. For this we leverage stream-

dataflow [13], which is a decoupled access-execute ISA that

describes execution as the interaction of a VonNeumann con-

trol program and a computation graph, decoupled by streams.

Our approach is to develop a version of this ISA which is

vectorized across lanes, and can support inductive access. We

first describe the extensions for controlling a single lane of

inductive dataflow, then discuss the vector-stream approach to

extend to multiple lanes.

Control Model: Stream dataflow [13] is an ISA for decou-

pled access execute, where a VonNeumann control program

constructs memory and dependence streams and synchro-

nizes stream access and execution of computation graphs.

“Ports” are named identifiers representing the interface be-

tween streams and computation nodes; they are the software

identifiers for FIFOs discussed earlier. A typical program

phase begins with the control program requesting configu-

ration of the spatial architecture for one or more program

regions. The control program defines and issues streams

through stream commands, which perform memory access and

communication. Finally the program waits until the offloaded

region is complete.

Figure 15(a) shows solver’s streams represented in the

encoding we develop below, and Figure 15(b) shows the

corresponding control program (single lane). Numbers indicate

ports, chosen by the programmer or compiler.

a(cj=n+1,ci=1,sij=-1)a(ci=n+1)

n=n-1,
sc=-1

b(ci=1)

b

sp=-1,
n=n-1

-
×/

b(cj=1,sij=-1)

(a) Using 2D Inductive Streams

(note we always use “i" as the inner iterator)

(b) Encoded Inductive Streams
Config SolverDataflow
LoadStream a→ , ci=n+1
Const b[0]→
LoadStream b+1→ , cj=1, nj=n,
 s=-1, ni=n
LoadStream a→ , nj=n-1, cj=n+1,
 s=-1, ni=n-1
Xfer → , n=n, r=n-1, rc=-1
StoreStream →b, cj=1, nj=n
Xfer → , n=n-1
StoreStream →b+1, cj=1, nj=n-1,
 s=-1

3 421

6
7 8

5

Fig. 15: Example of REVEL Control Program Encoding
We explain REVEL’s stream commands here (summary

in Table II). LoadStream/StoreStream define memory

streams to move data between memory and the computation

graph (through input/output ports). Their pattern parameters

are a starting address, stride (ci, c j) and length (ni, n j) in

two dimensions. To support inductive behavior, a stretch (s ji)

parameter encodes the change of iterator j in the trip count

Xfer , repeat 1:ni , LANEs: 1,3…
for(j=0; j<nj; j+=NDFGs)
 LoadStream a[j][0] , LANEs: 1,3…
 LoadStream a[j][0:ni] , LANEs: 2,4…
Wait() //accumulate t below

Vector-Stream Program LANE 2

+
×√

/

LANE 1 LANE NLANE N-1
...

for(j=0; j<nj; ++j)
 div = 1.0/sqrt(a[j][0]);
 for (i=0; i<ni; ++i)
 t += a[j][i] * div

Computation GraphsOriginal Program

Control code run on the
conventional VN core.

Single instruction
commands multiple lanes.

1 2 3

4 5
+
×√

/

1 2 3

4 5

Fig. 16: A Vector Stream Control Example

for dimension i. XFER defines dependence streams (within

and across regions), encoded with a source and destination

port, production and consumption rate (np and nc), and two

“stretch” parameters (sp and sc) for encoding the inductive

change to these parameters. Const sends a constant into a

port, and can stream an inductive pattern of two constants, e.g.

0,0,0,1,0,0,1,0,1. Barrier_Ld/St are fences on scratchpad

loads and stores, useful for double buffering. Wait blocks

until stream completion.

Vector-stream Control: To scale to multiple lanes, we vector-
ize the stream-dataflow ISA. Figure 16 shows the conceptual

approach with a simple high-level example, where two differ-

ent regions are mapped to odd and even lanes, and streams are

broadcast to them separately. Streams may either be broadcast

to all lanes identically (e.g. all lanes read the same location

in local memory), or they can be modified locally by adding

an offset to the starting address and/or length parameters (a

multiple of the lane id). This allows a single command to direct

each lane to read a separate slice of an array. For flexibility,

commands are only received by relevant lanes, which are

specified by a bitmask.

Implementing vector-stream control with inter-region de-

pendences extending between lanes requires some coordina-

tion in hardware – specifically to ensure that all streams

which use the same port execute in program order. Normally,

command queues only ensure that streams assigned to that
lane execute in program order, but we need to establish order

across lanes. This is accomplished by sending the destination

lane a placeholder stream. The destination’s command queue

informs the source’s when the placeholder is issued for the

destination port, and the source’s command queue informs the

destination’s when the placeholder can be removed (using cmd
sync bus in Figure 14).

Overall, vector-streams offer more control amortization than

either vectorization or streaming alone, as it amortizes both in

space across lanes, and in time through streams.

End-to-end Example: Figure 17 demonstrates REVEL’s ab-

stractions by showing how Cholesky may be expressed as a

combination of vector-stream control code (c) and dataflow

configuration for each lane (d). The parallelization strategy

for the optimized code is:

1) Vectorize the inner loop (leveraging stream predication)

2) Designate outer-loop regions for dataflow execution to

amortize execution resources, and map scalar, vector, ma-

trix regions to one lane.

710

a[k,k]

×a[k,k+1:n]

a[j+1:n,j+1:n]

-

a[k,j+1:n]

×

×

a[j+1:n,j+1:n]

(a) Original Source Code

/ √ /

Config CholeskyDataflow
for (int k=0; k<n-1; k+=Nlanes) {
 Const a[0,0]
 Xfer Local, , Rep: n-k’
 Xfer Local, , Rep: (n-k’)²/2
 WriteStream a[k+k’,k+k’:n]
 WriteBar
 LoadStream a[k+k’,k+k’:n]
 WriteStream l[k+k’:n,k+k’]
 LoadStream a[k+k’,k+k’:n] ,
 r=n-j-1,sr=-1
 LoadStream a[k+k’,j+1:n]
 LoadStream a[j+1:n,j+1:n], Lane: 0
 Xfer Right , 1
 Lanes: 0,1,…,(Nlanes-2)
 Xfer Right , (n-k-k’)/2
 WriteStream a[j+1:n,j+1:n],
 sc:-1, Lane: (Nlanes-1)
 Wait lanes done
}

×

× -

(c) Vector-Stream Code

1

(b) Computations & Streams
#pragma config
#pragma parallel loop-carry
for (k=0; k<n; ++k)
 #pragma dataflow in(a[k,k])
{ ia = 1.0/a[k,k]
 is = 1/sqrt(a[k,k]) }
 #pragma stream
 #pragma dataflow in(is,a[k,k+1:n])
 for (j=k; j<n; ++j)
 l[j,i] = a[i,j]*is
 #pragma stream
 for (j=k+1; j<n; ++j)
 #pragma systolic in(ia,a[k,k+1:n])\
 inout(a[k+1:n,k+1:n]) unroll(2)
 for (i=j; i<n; ++i)
 a[j,i] -= a[k,i]*a[k,j]*ia

#pragma config
#pragma parallel loop-carry
for (k=0; k<n; ++k)
 #pragma dataflow in(a[k,k])
{ ia = 1.0/a[k,k]
 is = 1/sqrt(a[k,k]) }
 #pragma stream
 #pragma dataflow in(is,a[k,k+1:n])
 for (j=k; j<n; ++j)
 l[j,i] = a[i,j]*is
 #pragma stream
 for (j=k+1; j<n; ++j)
 #pragma systolic in(ia,a[k,k+1:n])\
 inout(a[k+1:n,k+1:n]) unroll(2)
 for (i=j; i<n; ++i)
 a[j,i] -= a[k,i]*a[k,j]*ia

#pragma dataflow#pragma dataflow in(a[k,k])in(a[k,k])
{{ ia = 1.0/a[k,k]ia = 1.0/a[k,k]
is = 1/sqrt(a[k,k])is = 1/sqrt(a[k,k]) }}
#pragma stream#pragma stream

k+1:n])k+1:n])#pragma dataflow in(is,a[k,k#pragma dataflow in(is,a[k,k
for (j=k; j<n; ++j)for (j=k; j<n; ++j)
l[j,i] = a[i,j]*isl[j,i] = a[i,j]*is

L[k:n,k]

Compiler Steps:

Stream
 A

nalysis+O
ptim

izations+Backend Code G
en.

This code runs on a
centralized host

REVEL Binaries: Dataflow Config + Vector-Stream Code

If not specified, all
the lanes are active

k’ is the lane number

The dependences mapped to
host control, the number is
the same as #port in (d).

Sh
ar

ed

SP
A

D a[n:n]

(d) Spatial Arch. Config. &
 SPAD mapping

a[0,1:n]Lo
ca

l
SP

A
D

s

L[0:n,0]

Lane 1

Spatial A
rch. Com

pilation (See Sec. 7)The dependences mapped to
fabric swithes.

SPAD load/store streams

kj
n
kj
n

kj
n
kj
n

kjnkjn

L[n:n]

a[1,2:n]

Co
m

pu
te

 F
ab

ric
O

ut
Po

rt
s

×√ ×
×/

/

×

- -
×

1 6 7 8

5 92 3

√

/

/

×

1 2 4

2 3
Lane
2..8

...

k+k’jnk+k’jn

a[k,k+1:n] (Unroll by 2)

2
4 5

3
6 7

8

9

2 4 3

kj
n
kj
n

k+k’jnk+k’jn

Fig. 17: Mapping Cholesky to REVEL with pragma support

3) Parallelize the outer k loop across lanes.

VI. PROGRAMMING AND COMPILATION

Programming REVEL involves five basic responsibilities:

1) Dividing the work onto lanes and partitioning data.

2) Deciding which program regions execute concurrently.

3) Extracting memory/dependence streams; inserting barriers.

4) Decoupling the computation graph and vectorizing it.

5) Mapping computation onto spatial PEs and network.

We developed an LLVM/Clang-based compiler which relies

on pragma-hints for 1-2 and automates 3-5. Figure 18 shows

the pipeline of compilation, and Figure 17 shows Cholesky

undergoing transformation from C with pragmas to REVEL

abstractions. We next explain the compiler stack.

Pragma-based Compilation: The pragmas are inspired by

OpenMP’s tasks [41]. Each offloaded code region is similar

to a light-weight thread: it has an independent flow and

potentially input/output dependences. Figure 17 (a) shows how

Cholesky is annotated with the following pragmas:

#pragma dataflow/systolic specifies whether a

program region is offloaded to the systolic or dataflow ar-

chitecture. It has two optional clauses: The unroll clause

specifies the number of iterations to offload in one computa-

tion instance, determining resource use; the in/out/inout
clause specifies data dependence distance patterns.

C annotated
w/ Pragma

Modified
Clang

LLVM IR w/
Metadata

Extract DFG
Inject Vec.

Stream

Computation
Graphs

Spatial
Compiler

LLVM
RISCV

Backend

REVEL
Binary

LLVM IR w/
Vec. Stream

Spatial
Cfg

Spatial
Cfg

Fig. 18: REVEL’s Software Stack

#pragma stream indicates that the memory operations

under this loop level can be hoisted outside and encoded with

vector-stream instructions. It guarantees alias freedom, except

for those specified explicitly.

#pragma config indicates that regions within the fol-

lowing scope will execute concurrently on spatial fabric.

#pragma parallel indicates the portion of the program

to be parallelized across lanes. The clause loop-carry
is a hint to detect and enforce loop-carried dependences by

analyzing the inputs/outputs specified by in/out/inout
clauses between adjacent iterations4.

Computation Graph and Vector-Stream Extraction: The

first step is to extract the computation graph (using slic-

ing [42]) and streams from offloaded program regions.

A configuration instruction is inserted at the site of

#pragma config, and is pointed to spatial configuration

bits after they are generated. Streams are extracted by deter-

mining the access pattern, for which we use LLVM scalar

evolution [43] analysis. The encoded streams are injected at

the site of #pragma stream. Dependence pattern metadata

is used to see if some memory streams can be converted to

dependence streams to save memory traffic. Scratch barriers

are inserted to keep data consistent. Finally, empty loops (due

to being completely offloaded) are removed.

Spatial Architecture Compiler: The spatial architecture com-

piler maps computation graphs of all concurrent program re-

gions to systolic and dataflow PE resources, and generates the

configuration (similar role as [35], [37], [44]–[46]). The graph

is first “unrolled” (i.e. vectorized) by a degree determined by

pragma meta-data if specified, otherwise the most critical loop

(estimated based on expected instruction count) is unrolled to

fill the spatial fabric.

The responsibilities of the dataflow compiler are to map

instructions to PEs, dependences to the network, and to

make timing decisions. For the systolic regions, all operand

timing paths must be equalized, and no resources may be

shared between instructions. For the dataflow computation

graphs, the goal is to minimize resource contention. Usually

instructions belonging to systolic/dataflow regions map to the

corresponding PEs (systolic-PEs or dataflow-PEs); However,

dataflow instructions may map to the systolic fabric if it

has low utilization, and systolic instructions to the dataflow

fabric to reduce latency or network congestion, provided that

there are enough resources. To balance these objectives, we

adapt a prior heuristic [47] to use simulated annealing, similar

4Support for this pragma is ongoing, some kernels require intervention.

711

R
ev

el
L

an
e

(×
8
)

Spatial
Fabric

PEs 14 add, and 3 sqrt/div, 9 mult
Div/Sqrter Lat.: 12 Cyc., Thr.: 1/5 Cyc.
SubwrdSIMD 4-way Fixed-point, 2-way FP
Dataflow PE 1x1 (32 Instruction Slots)

Vector
Ports

Width 2×512, 2×256, 1× 128, 1× 64 bit
Depth 4-entry FIFO

Stream
Ctrl

Stream Table 8 Entries for 8 concurrent streams
Cmd Queue 8-Entry Cmd Queue

SPAD
Structure 8Kb, Single-bank
Bandwidth 512 Bits (1R/1W Port)

Net.
Data Bus 2×512 Bit (SPAD+XFER)
Spatial Mesh 64-bit Circuit-switched Mesh

C
tr

l
C

o
re RISCV ISA [51], 5-stage, single-issue, 16kb d$, insts. added

for stream-commands

S
h
r.

S
P

D Structure: 128Kb, Single-bank
Bandwidth: 512 Bits (1R/1W Port)

N
et

. Inter-lane: 512 Bit Data Bus (8-bit Cmd Sync)
Shared scratchpad Bus: 512 Bit Shared Bus

TABLE III: REVEL Parameters

to Pathfinder [48]. All concurrent computation graphs are

mapped simultaneously to find the best overall schedule.

VII. EVALUATION METHODOLOGY

REVEL Modeling: Table III shows REVEL hardware pa-

rameters. All blocks are modeled at a cycle level in a custom

simulator, which is integrated with a gem5 model of a RISCV

inorder core [49], [50], extended for vector-stream control. To

compare against state-of-the-art spatial architectures, we create

a custom simulator for each. We synthesized REVEL’s proto-

type using Synopsys DC, 28nm tech library. The design meets

timing at 1.25GHz. An open source triggered instructions

implementation was our reference for the temporal fabric [40].

Results from synthesis are used to create an event-based power

model and area model.

ASIC Analytical Models: These optimistic models (Table IV)

are based on the optimized algorithms, and are only limited by

the algorithmic critical path and throughput constraints, with

equivalent FUs to REVEL. ASIC area and power models only

count FUs and scratchpad.

SVD QR MM

4dm+2QR(n)+ � n3

8vec
� 7dn+2

n
∑

i=1
(i+ � i

2vec
�n) � n

8vec
�mp

Solver FFT Cholesky Centro-FIR

2
n−1

∑
0

max(� i
4vec

�,d +2) n
8vec

logn
n−1

∑
i=1

max(� i2
2vec

�,4d) � n−m+1
4vec

�m

TABLE IV: Ideal ASIC Models. m, n, p are the matrix dims. (except
SVD, where m is the number of iterations and Centro-FIR, where m
is the filter size), xvec indicates x-vectorized, and d is the latency of
div/sqrt.

Workload Data Size Lanes

SVD 12,16,24,32 1
QR 12,16,24,32 8
Cholesky 12,16,24,32 8
Solver 12,16,24,32 1
FFT 64,128,5121024 1
GEMM 12,48x16x64 8
FIR 37,199x1024 8

TABLE V: Workload Parame-
ters. “small”,“large” sizes bolded

Workload Versions: We

evaluate batch size 1 and 8,

requiring different optimiza-

tions: For batch 1, REVEL

spreads work across lanes

(if possible), and for batch 8

each lane operates over one

input. Table V shows data-

sizes and # lanes in batch 1.

Fig. 19: Performance Tradeoffs (batch size=1)

Comparison Methodology: For fairness we compare designs

with similar ideal max. FLOPs (except GPU, which has more):

• TI 6678 DSP (@1.25GHz) 8-core DSP, each core has

16-FP adders/multipliers, using DSPLIB C66x 3.4.0.0.

• OOO Core: Intel Xeon 4116 (@2.1GHz) Conventional

OOO processor using highly-optimized Intel MKL library.

(8 cores used)

• GPU: NVIDIA TITAN V (@1.2GHz) GV100 graphics

processor using cuSOLVER, cuFFT, and cuBLAS NVIDIA

CUDA library as our gpu benchmark. GPU’s peak FLOPs

is >10× higher than REVEL.

• Spatial: The systolic design is similar to Softbrain [13],

and dataflow is similar to Triggered Insts. [33]. FUs and

#lanes are the same.

VIII. EVALUATION

Our evaluation has four main goals. First to quantify the

speedups over state-of-the-art CPUs, DSPs, Spatial, and GPUs.

Second, to characterize the sources of benefits behind the spe-

cialization of inductive parallelism, as well as the remaining

bottlenecks. Third, to understand the sensitivity to architecture

features. Finally, to compare the area/power/performance with

ASICs. Overall, we find that REVEL is consistently better than

all state-of-the-art designs, often by an order of magnitude.

A. Performance

Overall Speedup: Speedups over DSP for batch 1 are shown

in Figure 19. The DSP and CPU have similar mean perfor-

mance. REVEL attains up to 37× speedup, with geomean of

11× and 17× for small and large data sizes. REVEL is 3.5×
and 3.3× faster than dataflow and systolic.

Performance for batch 8 is in Figure 20. For small and

large sizes, REVEL gets a speedup of 6.2× and 8.1× over

the DSP and CPU. REVEL’s dataflow/vector-stream model

provides 4.0× speedup over dataflow, and 2.9× over systolic.

REVEL provides factors speedup over state-of-the-art.

REVEL vs CPU Parallelism: Figure 21 shows the scaling

of REVEL’s performance against the MKL’s library’s CPU

version for different sizes of Cholesky and thread counts.

Observe that when multi-threading is first enabled in MKL

(>= matrix size 128), it actually hurts performance. This is

because of the inherent fine-grain dependences, which REVEL

supports natively.

712

Fig. 20: Performance Tradeoffs (batch size=8)

Fig. 21: CPU vs REVEL Scaling

Inductive dataflow can parallelize much finer-grain depen-
dences than with CPU threading.

Benefits from Hardware/Software Mechanisms: To under-

stand the sources of improvement, we evaluate four versions of

REVEL with increasingly advanced features. We start with the

systolic, then add inductive streams, hybrid systolic-dataflow,

and finally stream predication to enable efficient vectorization.

Figure 22 shows the results.

Inductive memory and dependence streams improve all

workloads by reducing control and increasing parallelism.

Even FFT benefits by using inductive reuse to reduce scratch-

pad bandwidth. QR and SVD have complex outer-loop regions,

so do not benefit as much until after adding hybrid systolic-

dataflow, which enables more resource allocation for inner-

loop regions. Solver was also accelerated by the heterogeneous

fabric because it is latency sensitive, and collapsing less critical

instructions can reduce latency. The vectorized workloads also

receive large gains from stream predication by reducing the

overheads of vectorization.

The vector-stream ISA and hybrid systolic-dataflow archi-
tecture together enable high performance.

Cycle-Level Bottlenecks: Figure 23 overviews REVEL’s

cycle-level behavior, normalized to systolic. To explain the

categories, issue and multi-issue means that one or multiple

systolic regions fired, and temporal means only a temporal

dataflow fired during that cycle. All other categories represent

overhead, including the drain of the dedicated fabric, scr-b/w
and scr-barrier for bandwidth and synchronization, stream-
dpd for waiting on dependences, and ctrl-ovhd for waiting on

the control core.

The clearest trend is that our design reduces the control

overhead dramatically. For some kernels, REVEL is able to

Fig. 22: Performance Impact of Each Mechanism.

Fig. 23: REVEL’s Cycle-level bottlenecks

execute multiple regions in the same cycle, especially for

larger matrices. One outlier is FFT with small data; it requires

multiple reconfigurations, each requiring the pipeline to drain.

Exploiting inductive parallelism increases parallel work and
reduces control, enabling better performance.

Fig. 24: Temporal region
sensitivity

Dataflow PE Allocation: Tagged

dataflow PEs are helpful on in-

ductive workloads, but expensive.

A tagged-dataflow PE costs >
5× more area than a systolic PE

(2822μm2 versus 16581μm2).

Figure 24 shows REVEL’s per-

formance and area sensitivity.

SVD has the largest demand on

dataflow PEs, so are affected

the most. The effects on other

workloads are neglectable, so we

choose 1 dataflow PE to minimize the area penalty.

B. Area and Power Comparison

Breakdown: Table VI shows the power/area breakdown;

the largest source (especially power) comes from FP units.

REVEL is 1.93mm2, and 1.63 Watts.

Comparing against CPU and DSP: Figure 25 shows

the relative performance/area normalized to the CPU af-

ter adjusting the technology. The DSP achieves a high

performance/mm2, and REVEL is able to achieve even higher

performance with a moderate area overhead. REVEL has

1089× performance/mm2 advantage over the OoO core, and

7.3× over the DSP.

Comparing against ASIC: Table VII shows performance-

normalized area overhead over ASIC analytical models.

713

area(mm2) power(mw)

Compute
Fabric

Dedi. Net. (24) 0.06 71.40
Temp. Net. (1) 0.02 14.81
Func. Units 0.07 74.04

Total Fabric 0.13 160.25

Control (ports/XFER/str. ctrl) 0.03 62.92
SPAD-8KB 0.06 4.64

1 Vector Lane 0.22 207.90
Control Core 0.04 19.91
REVEL 1.93 1663.3

TABLE VI: Area and Power Breakdown (28nm)

Fig. 25: Relative performance/mm2 normalized to CPU.

REVEL is mean 2.0× power. This is mostly due to the control

logic (ports, bus, etc.) and reconfigurable networks. It is 0.55×
the area of the combined ASIC. This is optimistic for ASICs

in that it assumes perfect pipelining and no control power.

REVEL is on par with ASICs-level efficiency.

Workloads SVD QR Cho. Sol. FIR MM FFT Mean

Power Ovhd. 2.8 2.0 1.9 1.6 2.0 1.9 1.9 2.0

Area Ovhd. 3.3 2.4 2.3 2.2 2.3 2.3 2.8 2.5/0.55

TABLE VII: Power/Area overheads to ideal ASIC (iso-perf)

IX. ADDITIONAL RELATED WORK

In this section, we discuss work other than that previously

covered by the spatial architecture taxonomy in Section III-A.

Synchronous Dataflow Variants: The inductive production

to consumption rates in our dataflow model is inspired by

the static rates in synchronous dataflow [39] (SDF). SDF

was developed as a specialization of existing dataflow models

which could be statically scheduled. Cycle-static dataflow [52]

extends SDF with periodically changing rates, and hete-

rochronous dataflow [53] extends SDF to enable an FSM to

step through predefined rates. None of the above were applied

to spatial architectures or handle inductive dependences.

StreamIt [54] is a language and runtime with somewhat sim-

ilar semantics to vanilla SDF, and was evaluated on RAW [55],

a (mostly) static/shared-PE spatial architecture.

Outer-loop Parallelism: Prabhakar et al. develops “nested-

parallelism,” which enables coupling of datapaths with nested

parallel patterns [56]. Inductive parallelism is a generalization

of nested-parallelism, and we can achieve a higher utilization

due to hybrid systolic-dataflow execution.

Some CGRA compilers target nested loops [57], [58], but

only parallelize the epilogue and prologue of subsequent loop

nests. Recent work has made progress in pipelining imperfect

nests [59], but does not parallelize across multiple region

instances. CGRA Express [60] allows a CGRA to use the first

row of its PEs in VLIW mode during outer loops. Concurrent

execution across inner and outer regions is not attained. None

of the above handle inductive dependences.

Flexible Vectorization: Vector-threading techniques also mar-

shal independent execution lanes for vectorized execution

when useful [61]–[64]. The RISC-V vector extension supports

configurable vector-length and implicit vector masking [65].

Vector-length is limited by physical registers (REVEL’s

streams are arbitrary length), and inductive access is not

supported, so the vector length would have to be reset on each

iteration. These architectures are also not spatial, so cannot

exploit pipelined instruction parallelism.
Some spatial dataflow models use predicates for control [6],

[66]. These do not use streams for vector predication. dMT-

CGRA [34] adds inter-thread communication for a spatial-

dataflow GPU [32], [67].

DSP Accelerators: Many application/domain-specific recon-

figurable designs have targeted DSP algorithms. Fasthuber

et. al [68] outline the basic approaches. One representative

example includes LAC [69], targeted at matrix factorization.

Our architecture allows more general programmability.

Stream-based ISAs and Reuse: Many prior architectures

have used memory-access stream primitives [13], [24], [31],

[70]–[74]. To our knowledge, no prior work has incorporated

inductive patterns into such streams.

X. CONCLUSION

This work identified that existing techniques, vector, multi-

threading, and spatial, all experience challenges in achieving

high-performance on dense linear algebra workloads, largely

due to inductive program behavior.
We found that it is possible to specialize for this behavior

by encoding inductive properties into the hardware/software

interface. This was the approach behind inductive dataflow, a

model that allows the expression of parallelism within induc-

tive program regions and across them. Our taxonomy of spatial

architectures also makes it clear why a hybrid architecture –

one that combines systolic fabrics for efficiency and dataflow

fabrics for flexible parallelism – can achieve the best of both.

Finally, this work develops a scalable design: REVEL, by

leveraging a vector-stream ISA that amortizes control in space

and time. With a full stack implementation, our evaluation

against four state-of-the-art designs demonstrates many factors

of speedup and energy efficiency.
On one hand, our contribution is what we believe to be

a superior digital signal processor. What is perhaps more

important is the principle of hardware/software specialization

of complex but general control and memory patterns, useful

for developing next generation programmable accelerators.

XI. ACKNOWLEDGMENTS

We sincerely thank Naxin Zhang, Zhiguo Ge, Jing Tao, and

Mian Lu for their thoughtful discussions and domain expertise.

714

This work was supported by an NSF CAREER award CCF-

1751400 and gift funding from HiSilicon.

REFERENCES

[1] I. T. Union, “Minimum requirements related to technical performance
for IMT-2020 radio interface(s),” 2017.

[2] S. Chen and J. Zhao, “The requirements, challenges, and technologies
for 5g of terrestrial mobile telecommunication,” IEEE communications
magazine, vol. 52, no. 5, pp. 36–43, 2014.

[3] H. Tullberg, P. Popovski, Z. Li, M. A. Uusitalo, A. Hoglund, O. Bulakci,
M. Fallgren, and J. F. Monserrat, “The metis 5g system concept: Meeting
the 5g requirements,” IEEE Communications magazine, vol. 54, no. 12,
pp. 132–139, 2016.

[4] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge
computing—a key technology towards 5g,” ETSI white paper, vol. 11,
no. 11, pp. 1–16, 2015.

[5] M. Budiu, P. V. Artigas, and S. C. Goldstein, “Dataflow: A complement
to superscalar,” in ISPASS, 2005.

[6] M. Budiu, G. Venkataramani, T. Chelcea, and S. C. Goldstein, “Spatial
Computation,” in ASPLOS XI.

[7] Arvind and R. S. Nikhil, “Executing a program on the MIT Tagged-
Token Dataflow Architecture,” IEEE Transactions on Computers,
vol. 39, no. 3, pp. 300–318, 1990.

[8] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin, “Wavescalar,”
in Proceedings of the 36th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO 36, (Washington, DC, USA), pp. 291–,
IEEE Computer Society, 2003.

[9] D. Burger, S. W. Keckler, K. S. McKinley, M. Dahlin, L. K. John,
C. Lin, C. R. Moore, J. Burrill, R. G. McDonald, W. Yoder, and t. T.
Team, “Scaling to the end of silicon with edge architectures,” Computer,
vol. 37, pp. 44–55, July 2004.

[10] M. Mishra, T. J. Callahan, T. Chelcea, G. Venkataramani, S. C. Gold-
stein, and M. Budiu, “Tartan: Evaluating spatial computation for whole
program execution,” in Proceedings of the 12th International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS XII, (New York, NY, USA), pp. 163–174, ACM,
2006.

[11] V. Govindaraju, C.-H. Ho, T. Nowatzki, J. Chhugani, N. Satish,
K. Sankaralingam, and C. Kim, “Dyser: Unifying functionality and
parallelism specialization for energy-efficient computing,” IEEE Micro,
vol. 32, pp. 38–51, Sept. 2012.

[12] R. Prabhakar, Y. Zhang, D. Koeplinger, M. Feldman, T. Zhao, S. Hadjis,
A. Pedram, C. Kozyrakis, and K. Olukotun, “Plasticine: A reconfigurable
architecture for parallel paterns,” in Proceedings of the 44th Annual
International Symposium on Computer Architecture, ISCA ’17, (New
York, NY, USA), pp. 389–402, ACM, 2017.

[13] T. Nowatzki, V. Gangadhar, N. Ardalani, and K. Sankaralingam,
“Stream-dataflow acceleration,” in Proceedings of the 44th Annual
International Symposium on Computer Architecture, ISCA ’17, (New
York, NY, USA), pp. 416–429, ACM, 2017.

[14] R. Mudumbai, G. Barriac, and U. Madhow, “On the feasibility of
distributed beamforming in wireless networks,” IEEE Transactions on
Wireless communications, vol. 6, no. 5, 2007.

[15] H. Johansson et al., “Polyphase decomposition of digital fractional-delay
filters,” IEEE signal processing letters, vol. 22, no. 8, pp. 1021–1025,
2015.

[16] R. Zhao, “Wls design of centro-symmetric 2-d fir filters using matrix
iterative algorithm,” in 2015 IEEE International Conference on Digital
Signal Processing (DSP), pp. 34–38, July 2015.

[17] F. Mintzer, “On half-band, third-band, and nth-band fir filters and
their design,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 30, pp. 734–738, Oct 1982.

[18] M. Dendrinos, S. Bakamidis, and G. Carayannis, “Speech enhancement
from noise: A regenerative approach,” Speech Communication, vol. 10,
no. 1, pp. 45–57, 1991.

[19] D. Patel, M. Shabany, and P. G. Gulak, “A low-complexity high-speed
qr decomposition implementation for mimo receivers,” in 2009 IEEE
International Symposium on Circuits and Systems, pp. 33–36, May 2009.

[20] P. Salmela, A. Happonen, T. Jarvinen, A. Burian, and J. Takala, “Dsp
implementation of cholesky decomposition,” in Joint IST Workshop on
Mobile Future, 2006 and the Symposium on Trends in Communications.
SympoTIC ’06., pp. 6–9, June 2006.

[21] P. Darwood, P. Alexander, and I. Oppermann, “Lmmse chip equalisation
for 3gpp wcdma downlink receivers with channel coding,” in ICC 2001.
IEEE International Conference on Communications. Conference Record
(Cat. No.01CH37240), vol. 5, pp. 1421–1425 vol.5, 2001.

[22] D. Tse and P. Viswanath in Fundamentals of Wireless Communication,
New York, NY, USA: Cambridge University Press, 2005.

[23] M. Annaratone, E. A. Arnould, T. Gross, H. T. Kung, M. S. Lam,
O. Menzilcioglu, and J. A. Webb, “The Warp Computer: Architecture,
Implementation, and Performance,” IEEE Transactions on Computers,
vol. 36, pp. 1523–1538, December 1987.

[24] J. Cong, H. Huang, C. Ma, B. Xiao, and P. Zhou, “A fully pipelined and
dynamically composable architecture of cgra,” in Field-Programmable
Custom Computing Machines (FCCM), 2014 IEEE 22nd Annual Inter-
national Symposium on, pp. 9–16, IEEE, 2014.

[25] S. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R. Taylor,
and R. Laufer, “Piperench: a coprocessor for streaming multimedia
acceleration,” in Computer Architecture, 1999. Proceedings of the 26th
International Symposium on, 1999.

[26] H. Singh, M.-H. Lee, G. Lu, N. Bagherzadeh, F. J. Kurdahi, and E. M. C.
Filho, “Morphosys: An integrated reconfigurable system for data-parallel
and computation-intensive applications,” IEEE Trans. Comput., vol. 49,
pp. 465–481, May 2000.

[27] T. Miyamori and K. Olukotun, “Remarc: Reconfigurable multimedia
array coprocessor,” IEICE Transactions on information and systems,
vol. 82, no. 2, pp. 389–397, 1999.

[28] E. Mirsky, A. DeHon, et al., “Matrix: a reconfigurable computing
architecture with configurable instruction distribution and deployable
resources.,” in FCCM, vol. 96, pp. 17–19, 1996.

[29] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins,
“Adres: An architecture with tightly coupled vliw processor and coarse-
grained reconfigurable matrix,” in International Conference on Field
Programmable Logic and Applications, pp. 61–70, Springer, 2003.

[30] C. Nicol, “A coarse grain reconfigurable array (CGRA) for statically
scheduled data flow computing,” WaveComputing WhitePaper, 2017.

[31] L. Wu, A. Lottarini, T. K. Paine, M. A. Kim, and K. A. Ross,
“Q100: The architecture and design of a database processing unit,”
in Proceedings of the 19th International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
’14, (New York, NY, USA), pp. 255–268, ACM, 2014.

[32] D. Voitsechov and Y. Etsion, “Single-graph multiple flows: Energy
efficient design alternative for gpgpus,” in Proceeding of the 41st
Annual International Symposium on Computer Architecuture, ISCA ’14,
(Piscataway, NJ, USA), pp. 205–216, IEEE Press, 2014.

[33] A. Parashar, M. Pellauer, M. Adler, B. Ahsan, N. Crago, D. Lustig,
V. Pavlov, A. Zhai, M. Gambhir, A. Jaleel, R. Allmon, R. Rayess,
S. Maresh, and J. Emer, “Triggered instructions: A control paradigm for
spatially-programmed architectures,” in Proceedings of the 40th Annual
International Symposium on Computer Architecture, ISCA ’13, (New
York, NY, USA), pp. 142–153, ACM, 2013.

[34] D. Voitsechov and Y. Etsion, “Inter-thread communication in
multithreaded, reconfigurable coarse-grain arrays,” arXiv preprint
arXiv:1801.05178, 2018.

[35] B. Mei, S. Vernalde, D. Verkest, H. D. Man, and R. Lauwereins,
“Exploiting loop-level parallelism on coarse-grained reconfigurable ar-
chitectures using modulo scheduling,” IEE Proceedings - Computers and
Digital Techniques, vol. 150, pp. 255–61–, Sept 2003.

[36] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins,
“Exploiting loop-level parallelism on coarse-grained reconfigurable ar-
chitectures using modulo scheduling,” IEE Proceedings - Computers and
Digital Techniques, vol. 150, pp. 255–, Sep. 2003.

[37] H. Park, K. Fan, S. A. Mahlke, T. Oh, H. Kim, and H.-s. Kim, “Edge-
centric modulo scheduling for coarse-grained reconfigurable architec-
tures,” in Proceedings of the 17th international conference on Parallel
architectures and compilation techniques, PACT ’08, pp. 166–176, 2008.

[38] M. Hamzeh, A. Shrivastava, and S. Vrudhula, “Regimap: Register-
aware application mapping on coarse-grained reconfigurable architec-
tures (cgras),” in 2013 50th ACM/EDAC/IEEE Design Automation
Conference (DAC), pp. 1–10, May 2013.

[39] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proceed-
ings of the IEEE, vol. 7, pp. 1235–1245, September 1987.

[40] T. J. Repetti, J. a. P. Cerqueira, M. A. Kim, and M. Seok, “Pipelining
a triggered processing element,” in Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO-50
’17, (New York, NY, USA), pp. 96–108, ACM, 2017.

715

[41] TheOpenMPTeam, “Openmp.” https://openmp.org, 1997-2019.
[42] V. Govindaraju, T. Nowatzki, and K. Sankaralingam, “Breaking simd

shackles with an exposed flexible microarchitecture and the access
execute pdg,” in PACT, pp. 341–351, 2013.

[43] R. A. Van Engelen, “Efficient symbolic analysis for optimizing compil-
ers,” in International Conference on Compiler Construction, pp. 118–
132, Springer, 2001.

[44] M. Mercaldi, S. Swanson, A. Petersen, A. Putnam, A. Schwerin,
M. Oskin, and S. J. Eggers, “Instruction scheduling for a tiled dataflow
architecture,” in Proceedings of the 12th international conference on Ar-
chitectural support for programming languages and operating systems,
ASPLOS XII, pp. 141–150, 2006.

[45] W. Lee, R. Barua, M. Frank, D. Srikrishna, J. Babb, V. Sarkar, and
S. Amarasinghe, “Space-time scheduling of instruction-level parallelism
on a raw machine,” in Proceedings of the Eighth International Con-
ference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS VIII, (New York, NY, USA), pp. 46–57,
ACM, 1998.

[46] T. Nowatzki, M. Sartin-Tarm, L. De Carli, K. Sankaralingam, C. Estan,
and B. Robatmili, “A general constraint-centric scheduling framework
for spatial architectures,” in Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’13, (New York, NY, USA), pp. 495–506, ACM, 2013.

[47] T. Nowatzki, N. Ardalani, K. Sankaralingam, and J. Weng, “Hybrid
optimization/heuristic instruction scheduling for programmable acceler-
ator codesign,” in Proceedings of the 27th International Conference on
Parallel Architectures and Compilation Techniques, PACT ’18, (New
York, NY, USA), pp. 36:1–36:15, ACM, 2018.

[48] L. McMurchie and C. Ebeling, “Pathfinder: A negotiation-based
performance-driven router for fpgas,” in Third International ACM Sym-
posium on Field-Programmable Gate Arrays, pp. 111–117, Feb 1995.

[49] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH Comput. Archit. News, 2011.

[50] A. Roelke and M. R. Stan, “RISC5: Implementing the RISC-V ISA in
gem5,” in Workshop on Computer Architecture Research with RISC-V
(CARRV), 2017.

[51] K. Asanović and D. A. Patterson, “Instruction sets should be free: The
case for risc-v,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2014-146, 2014.

[52] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete, “Cyclo-
static data flow,” in 1995 International Conference on Acoustics, Speech,
and Signal Processing, vol. 5, pp. 3255–3258 vol.5, May 1995.

[53] A. Girault, B. Lee, and E. A. Lee, “Hierarchical finite state machines
with multiple concurrency models,” IEEE Transactions on computer-
aided design of integrated circuits and systems, vol. 18, no. 6, pp. 742–
760, 1999.

[54] W. Thies, M. Karczmarek, and S. Amarasinghe, “Streamit: A language
for streaming applications,” in International Conference on Compiler
Construction, pp. 179–196, Springer, 2002.

[55] M. Gordon, W. Thies, M. Karczmarek, J. Lin, A. S. Meli, C. Leger,
A. A. Lamb, J. Wong, H. Hoffman, D. Z. Maze, and S. Amarasinghe,
“A Stream Compiler for Communication-Exposed Architectures,” in
Proceedings of the 10th International Conference on Architectural
Support for Programming Languages and Operating Systems, pp. 291–
303, October 2002.

[56] R. Prabhakar, D. Koeplinger, K. J. Brown, H. Lee, C. De Sa,
C. Kozyrakis, and K. Olukotun, “Generating configurable hardware
from parallel patterns,” in Proceedings of the Twenty-First International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’16, (New York, NY, USA), pp. 651–665,
ACM, 2016.

[57] S. Yin, D. Liu, Y. Peng, L. Liu, and S. Wei, “Improving nested
loop pipelining on coarse-grained reconfigurable architectures,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24,
no. 2, pp. 507–520, 2016.

[59] S. Yin, X. Lin, L. Liu, and S. Wei, “Exploiting parallelism of imper-
fect nested loops on coarse-grained reconfigurable architectures,” IEEE

[58] J. Lee, S. Seo, H. Lee, and H. U. Sim, “Flattening-based mapping
of imperfect loop nests for cgras?,” in 2014 International Conference
on Hardware/Software Codesign and System Synthesis (CODES+ISSS),
pp. 1–10, Oct 2014.
Transactions on Parallel and Distributed Systems, vol. 27, pp. 3199–
3213, Nov 2016.

[60] Y. Park, H. Park, and S. Mahlke, “Cgra express: Accelerating exe-
cution using dynamic operation fusion,” in Proceedings of the 2009
International Conference on Compilers, Architecture, and Synthesis for
Embedded Systems, CASES ’09, (New York, NY, USA), pp. 271–280,
ACM, 2009.

[61] Y. Lee, R. Avizienis, A. Bishara, R. Xia, D. Lockhart, C. Batten,
and K. Asanović, “Exploring the tradeoffs between programmability
and efficiency in data-parallel accelerators,” in Proceedings of the 38th
Annual International Symposium on Computer Architecture, ISCA ’11,
(New York, NY, USA), pp. 129–140, ACM, 2011.

[62] R. Krashinsky, C. Batten, M. Hampton, S. Gerding, B. Pharris, J. Casper,
and K. Asanovic, “The vector-thread architecture,” in Proceedings of the
31st Annual International Symposium on Computer Architecture, ISCA
’04, (Washington, DC, USA), pp. 52–, IEEE Computer Society, 2004.

[63] S. Rivoire, R. Schultz, T. Okuda, and C. Kozyrakis, “Vector lane
threading,” in 2006 International Conference on Parallel Processing
(ICPP’06), pp. 55–64, Aug 2006.

[64] J. Kim, S. Jiang, C. Torng, M. Wang, S. Srinath, B. Ilbeyi, K. Al-Hawaj,
and C. Batten, “Using intra-core loop-task accelerators to improve
the productivity and performance of task-based parallel programs,” in
Proceedings of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO-50 ’17, (New York, NY, USA), pp. 759–773,
ACM, 2017.

[65] R. Foundation, “Working draft of the proposed risc-v v vector exten-
sion.” https://github.com/riscv/riscv-v-spec.

[66] A. Smith, R. Nagarajan, K. Sankaralingam, R. McDonald, D. Burger,
S. W. Keckler, and K. S. McKinley, “Dataflow predication,” in 2006
39th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO’06), pp. 89–102, IEEE, 2006.

[67] D. Voitsechov and Y. Etsion, “Control flow coalescing on a hybrid
dataflow/von neumann gpgpu,” in 2015 48th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO), pp. 216–227, Dec
2015.

[68] R. Fasthuber, F. Catthoor, P. Raghavan, and F. Naessens, Energy-Efficient
Communication Processors: Design and Implementation for Emerging
Wireless Systems. Springer Publishing Company, Incorporated, 2013.

[69] A. Pedram, A. Gerstlauer, and R. van de Geijn, “Algorithm, architecture,
and floating-point unit codesign of a matrix factorization accelerator,”
IEEE Transactions on Computers, no. 1, pp. 1–1, 2014.

[70] S. Rixner, W. J. Dally, U. J. Kapasi, B. Khailany, A. López-Lagunas,
P. R. Mattson, and J. D. Owens, “A bandwidth-efficient architecture for
media processing,” in Proceedings of the 31st Annual ACM/IEEE Inter-
national Symposium on Microarchitecture, MICRO 31, (Los Alamitos,
CA, USA), pp. 3–13, IEEE Computer Society Press, 1998.

[71] S. Ciricescu, R. Essick, B. Lucas, P. May, K. Moat, J. Norris,
M. Schuette, and A. Saidi, “The reconfigurable streaming vector proces-
sor (rsvp),” in Proceedings of the 36th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 36, (Washington, DC, USA),
pp. 141–, IEEE Computer Society, 2003.

[72] G. Weisz and J. C. Hoe, “Coram++: Supporting data-structure-specific
memory interfaces for fpga computing,” in 25th International Confer-
ence on Field Programmable Logic and Applications (FPL), pp. 1–8,
Sept 2015.

[73] T. Hussain, O. Palomar, O. Unsal, A. Cristal, E. Ayguad, and M. Valero,
“Advanced pattern based memory controller for fpga based hpc ap-
plications,” in 2014 International Conference on High Performance
Computing Simulation (HPCS), pp. 287–294, July 2014.

[74] Z. Wang and T. Nowatzki, “Stream-based memory access specialization
for general purpose processors,” in Proceedings of the 46th International
Symposium on Computer Architecture, ISCA ’19, (New York, NY, USA),
pp. 736–749, ACM, 2019.

716

