
UNIT: Unifying Tensorized Instruction Compilation
Jian Weng∗†, Animesh Jain†, Jie Wang∗†, Leyuan Wang†, Yida Wang†, Tony Nowatzki∗

∗University of California, Los Angeles, USA †Amazon Web Services, USA

{jian.weng,jiewang,tjn}@cs.ucla.edu {janimesh,wangleyu,wangyida}@amazon.com

Abstract—Because of the increasing demand for intensive
computation in deep neural networks, researchers have developed
both hardware and software mechanisms to reduce the compute
and memory burden. A widely adopted approach is to use
mixed precision data types. However, it is hard to benefit
from mixed precision without hardware specialization because
of the overhead of data casting. Recently, hardware vendors
offer tensorized instructions specialized for mixed-precision tensor
operations, such as Intel VNNI, Nvidia Tensor Core, and ARM
DOT. These instructions involve a new computing idiom, which
reduces multiple low precision elements into one high precision
element. The lack of compilation techniques for this emerging
idiom makes it hard to utilize these instructions. In practice, one
approach is to use vendor-provided libraries for computationally-
intensive kernels, but this is inflexible and prevents further
optimizations. Another approach is to manually write hardware
intrinsics, which is error-prone and difficult for programmers.
Some prior works tried to address this problem by creating
compilers for each instruction. This requires excessive efforts
when it comes to many tensorized instructions.

In this work, we develop a compiler framework, UNIT, to
unify the compilation for tensorized instructions. The key to this
approach is a unified semantics abstraction which makes the
integration of new instructions easy, and the reuse of the analysis
and transformations possible. Tensorized instructions from dif-
ferent platforms can be compiled via UNIT with moderate effort
for favorable performance. Given a tensorized instruction and a
tensor operation, UNIT automatically detects the applicability of
the instruction, transforms the loop organization of the operation,
and rewrites the loop body to take advantage of the tensorized
instruction. According to our evaluation, UNIT is able to target
various mainstream hardware platforms. The generated end-to-
end inference model achieves 1.3× speedup over Intel oneDNN
on an x86 CPU, 1.75× speedup over Nvidia cuDNN on an Nvidia
GPU, and 1.13× speedup over a carefully tuned TVM solution
for ARM DOT on an ARM CPU.

I. INTRODUCTION

Dense tensor operations like matrix multiplication (Matmul)
and convolution (Conv) have long been the workhorses in
many domains, including deep learning workloads [14]. The
popularity of deep learning means that aggressively optimizing
these operations has a high payoff. Essentially, Matmul and
Conv are a series of multiply-accumulate (MAC) operations,
which perform accumulation over a number of elementwise
multiplications.

To capture the reduction behavior and perform it more
efficiently, recent general-purpose processors offer native tensor
operation specialized instructions (hereinafter referred to as
tensorized instructions), like Intel VNNI [2], Nvidia Tensor
Core [5], and ARM DOT [1]. Unlike the conventional SIMD

∗†
Work done during Jian and Jie’s internship at AWS.

instructions, after performing elementwise arithmetic opera-
tions, these instructions introduce a “horizontal computation” to
accumulate elementwise results. Further, tensorized instructions
are often mixed-precision, meaning that elementwise operations
use less precise and lower bitwidth operands (e.g., fp16 and
int8), while accumulation occurs with higher bitwidth, where
it is needed. This offers a good balance between data width
and precision that is generally sufficient for deep learning
workloads [24], [18], and enables the use of quantized data
types.

Mixed-precision is difficult to express in a single SIMD
instruction, because the output vector width is different than the
input vector width. In most ISAs this paradigm requires multi-
ple SIMD instructions to express. In a tensorized instruction, by
definition there are fewer outputs, so allocating more bitwidth
to them for the output vector is natural. In addition, tensorized
instructions sometimes reuse the same inputs multiple times,
which reduces the required register file bandwidth. Overall,
tensorized instructions offer significant advantages over SIMD
for executing MACs.

While promising, the absence of appropriate compilation
techniques limit c the applicability of these tensorized instruc-
tions. Conventional SIMD instructions are vector instructions,
so industry standard compilers only try parallelizing the
innermost loops. In addition, it is difficult for the high-
level language programmer to express the compute flow in
a tensorization-friendly way and hint the compiler to try
tensorization upon a loop nest, because the dependency of
reduction is more complicated and error-prone.

In practice, there are normally two options to leverage
tensorized instructions. One way is to call the vendor-provided
libraries such as Intel oneDNN [6], Nvidia cuBLAS and
cuDNN [4], which provides highly optimized performance
in some pre-defined single kernels using tensorized instruc-
tions [17], [44]. However, it also brings inflexibility when
it comes to new workloads or when further performance
exploitation is desired. The other option is to manually write
assembly intrinsics, which sets a high bar to ordinary developers
and hence lacks productivity. Some prior works tried to solve
this problem by developing a compiler [35], [36] for each
instruction. This requires too much effort when there are
many tensorized instructions, both within and across hardware
platforms.
Our Goal: Although different processors may provide different
tensorized instructions, in the context of deep learning work-
loads, we observe that these instructions essentially handle a
similar compute pattern, i.e., elementwise multiplication and

978-1-7281-8613-9/21 c© 2021 IEEE CGO 2021, Virtual, Republic of Korea

Accepted for publication by IEEE. c© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

77

then horizontal accumulation. They primarily differ in the
number of elementwise computation lanes and the accepting
data types. Therefore, we aim to develop a unified approach
to compile these tensorized instructions on multiple platforms
to optimize the tensor operations in deep learning workloads.
Our techniques are extensible to the tensorized instructions
with other data types and operations as well.
Challenges: There are several challenges to attain a unified
compilation pipeline:
• Instructions Integration: Instead of building a new spe-

cialized compiler for each new instruction, it is desirable
to create a unified and extensible compilation flow;

• Detecting the applicability: Given a tensorized instruction,
a first question is whether and how this instruction can be
applied to the target tensor operation, which may require
loop reorganization to make it applicable;

• Code rewriting: When applicable, the compiler must
determine how the loops involved should be rewritten
by the tensorized instruction, and how the loops should
be rearranged to achieve high performance.

Our Insight: We envision that the key to addressing these
three challenges is to have a unified semantics abstraction for
tensorized instructions so that the analysis and transformation
can also be unified.

This paper presents UNIT, an end-to-end compilation
pipeline to surmount the above three challenges. UNIT takes
the tensorized instructions (e.g., Intel VNNI instructions on
CPUs, or Nvidia Tensor Core instructions on GPUs) and a
deep learning model as input, lowers the tensor operations of
the model into loop-based IRs to identify the tensorizable com-
ponents, and inserts the tensorized instructions by transforming
and rewriting the loop. It achieves high performance for tensor
operations, and consequently, model inference. To the best
of our knowledge, this is the first work to tackle tensorized
instruction compilation and optimization with a unified solution.
UNIT not only achieves high performance for single tensor
operations, but also provides desirable model inference latency
in practice.
Key Results: According to our evaluation, UNIT is expressive
enough to target many tensorized instructions on multiple
hardware platforms, including Intel VNNI, Nvidia Tensor
Core, and ARM DOT. The generated programs for end-to-end
model inference are 1.3× and 1.75× faster than the solutions
backed up by Intel oneDNN and Nvidia cuDNN on CPU
and GPU, respectively. In addition, UNIT can be extended
to new tensorized instructions with moderate effort. Although
we designed UNIT to target Intel CPUs and Nvidia GPUs,
on an ARM Cortex A-72 CPU with DOT instructions, UNIT
achieves up to 1.13× speedup against a carefully manual tuned
solution.

To sum up, our contribution is an end-to-end compilation
pipeline of tensorized instructions for deep learning workloads,
which includes:
• A unified abstraction for tensorized instructions.
• An algorithm that detects the applicability of these

tensorized instructions.

res
ne

t-1
8

res
ne

t-5
0

res
ne

t-5
0_v

1b

inc
ep

tio
n-b

n

inc
ep

tio
n-v

3

res
ne

t-1
01

res
ne

t-1
52

mob
ilen

et-
v1

mob
ilen

et-
v2

ge
om

ea
n

0.0

0.5

1.0

Re
la

tiv
e

Pe
rfo

rm
an

ce cuDNN(fp32) cuDNN (fp16) w/o Tensor Core

Fig. 1: Performance comparison on Nvidia V100-SXM2 between fp32 and
fp16 without mixed precision instruction support.

• A rewriting and tuning mechanism that looks for favorable
loop transformations of the tensor operations to plug in
the tensorized instructions for high performance.

Paper Organization: We first introduce the background
and challenges of tensorized compilation in Section II. The
design of UNIT is presented in Section III. We explain the
implementation details in Section IV. We clarify our experiment
methodology in Section V, and evaluate our work in Section VI.
Finally, we discuss the related work in Section VII.

II. BACKGROUND

UNIT is an end-to-end compilation pipeline capable of
automatically mapping tensorized instructions to the deep
learning tensor operations. It defines the tensorized instruction’s
semantics using a suitable intermediate representation (IR) and
inserts them in proper places of the program of tensor opera-
tions. In this section, we give an overview of popular mixed
precision tensorized instructions, followed by the limitations
of existing solutions in automatic mapping of these tensorized
instructions. Finally, we discuss the background of tensor
domain specific language and the multi-level intermediate
representation.

A. Mixed Precision Tensorized Instructions

Deep learning is computationally expensive, requiring sub-
stantial compute and memory resources. As deep learning be-
comes more pervasive, researchers are designing both software
and hardware techniques to reduce the compute and memory
burden. A widely adopted approach in this context is using
mixed precision for expensive operations, e.g., convolution or
dense operations [24], [18]. In practice, this means representing
32-bit floating point (fp32) operands with a lower bitwidth
datatype - 16-bit floating point numbers (fp16) or 8/16-bit
integer numbers (int8, int16). To keep the accuracy in
check, it is helpful to accumulate the results in higher precision
(fp32 or int32). This type of mixed precision computation
is often called quantization for integer values [18]. In this
paper, we will always use mixed precision for brevity.

While using mixed precision data types reduces memory
footprint, it might not necessarily lead to performance im-
provement. To investigate this, we conducted an experiment
to compare the performance of Nvidia cuDNN performance
for fp16 and fp32 in the absence of Nvidia mixed precision
tensorized instructions (Tensor Core). As shown in Figure 1, we

78

…

c15

a60

b60

×

+
b61

×

b62

×

b63

×

dst15

a61 a62 a63

+ +

u8x64

i8x64

i16x32

i16x32

(a) Intel VNNI x86.avx512.pbpdusd

(b) Nvidia Tensor Core
nvvm.wmma.m16n16k16.mma.row.row.f32.f32

+= ×A: 16×16

fp16

B: 16×16

fp16

C: 16×16

fp32

c0

a0

b0

×

+
b1

×

b2

×

b3

×

dst0

a1 a2 a3

+ +

Fig. 2: The semantics of Intel VNNI and Nvidia Tensor Core. The text beside
is the name of the corresponding LLVM intrinsic.

observe that blindly using mixed precision leads to substantial
slowdown because of the overhead of casting between two
data types.

Therefore, mainstream hardware vendors (Intel, ARM and
Nvidia) have introduced mixed precision tensorized instructions
to achieve better performance. These instructions add mixed
precision arithmetic support where operands are of lower
precision while the accumulation happens in higher precision,
potentially leading to 2× - 4× speedup. The most popular
examples of these tensorized instructions are Intel VNNI, ARM
DOT and Nvidia Tensor Core. We will discuss the semantics
of these operations in Section III.

Hardware vendors have a long history of adding new
instructions to accelerate important applications. However, the
mixed precision tensorized instructions introduce a unique
idiom - horizontal accumulation. These tensorized instructions
typically conduct a sequence of elementwise multiplications
governed by a memory access pattern, followed by a horizontal
accumulation. The accumulation is termed horizontal because
all values to be accumulated are present in the same vector
register. For example, as it is shown in Figure 2(a), Intel VNNI
executes a dot product of two vectors, each having 4 int8
elements, while performing the accumulation in int32. We
observe a similar pattern, though with different numbers of
entries and data types, for Nvidia Tensor Core (in Figure 2(b))
and ARM DOT instructions (this is omitted, because it is
similar to VNNI).

B. Limitations of Existing Solutions

Though tensorized instructions seem promising, their adop-
tion pace is limited because of the absence of an automatic
technique that can detect and use these instructions seamlessly.
Currently, their usage in the deep learning domain is limited
to hardware vendor libraries like Intel oneDNN and Nvidia
cuDNN, which may provide high performance for the pre-
defined operations but are inflexible as discussed in Section I.

Similarly, conventional loop vectorizers find it hard to exploit
the profitability of these tensorized instructions, as they are
not designed to work with the horizontal reduction idiom.

Conventional loop vectorizers in general-purpose compilers
like GCC and LLVM mainly focus on either analyzing the
innermost loop body or combining instructions in the unrolled
loop bodies. When it comes to the horizontal reduction idiom,
these compilers often reorder the computation and generate
epilogue reduction, preventing us from using the tensorized
instructions.

There have been some recent works in compiling programs
to leverage tensorized instructions. PolyDL [36] generates
CPU programs for convolution kernels in neural networks
that call a GEMM micro-kernel using Intel VNNI instructions.
Bhaskaracharya et al. [35] generate CUDA programs for matrix
computation leveraging Nvidia Tensor Core. However, these
works are limited to one platform and its specific instruction,
which lacks generalizability. A generic solution to handle
tensorized instructions from multiple platforms together is
still missing.

C. Multi-Level Intermediate Representation

Compilers often have multiple levels of intermediate repre-
sentation (IR) to express the program; each level is designed to
enable different analyses and transformations. In this section,
we describe the background of a tensor domain specific
language (DSL) and the multi-level IR.

1) Graph-Level IR: Deep learning compilers like TVM [10],
Glow [34], and XLA [43] adopt a graph-level IR to represent
a deep learning model as a directed acyclic graph (DAG)
of operations. This graph-level IR is useful for inter-tensor-
operation optimization, like tensor shape padding, operation
fusion, and choosing the proper data layout [23]. Our tensorized
analysis relies on tensor padding so that loops can be tiled
by the number of lanes of the instruction perfectly. However,
this IR has little knowledge about the implementation of each
tensor operation. When compiling a graph-level IR, each node
of the DAG will be dispatched to its implementation in tensor
DSL as explained next.

2) Tensor DSL: Tensor domain-specific languages, like
Halide [31], TVM [10], and Tensor Comprehension [37],
have been developed to productively and portably express
tensor programs while enabling efficient performance tuning.
As shown in Figure 4 and Figure 5, programs written in
tensor DSLs follow this paradigm: Users first declare the
tensors and the loop variables, and then the computation is
described by expressions involving the declared tensors and
loop variables. These DSLs also provide interfaces to split,
reorder, and annotate loops without affecting the computation
semantics for performance tuning.

All the information gathered from the tensor DSL frontend
will be stored in a tensor Op data structure, including
the declared tensors, loop variables, expressions, and loop
manipulation.

3) Tensor IR: Each tensor Op is then lowered to Tensor IR,
which is an imperative program IR with additional constraints:
All the loops are canonical (starting from 0, and increased by
1 each time), and all the array operations are restricted (i.e., an
element cannot be accessed by two different pointers). These

79

Tensor Operation Prog.

Hardware Target

Inspector

RewriterTensor. Inst.

Intel x86 ARMNVIDIA

Section III.A

Section III.B

Section III.C
XForm
Tune

Fig. 3: The overview of our framework, UNIT.

two properties enable making strong assumptions for analysis
and transformation. Our work conducts analysis on the tensor
Op data structure level and then performs transformation on the
tensor IR. Although the tensor IR provides essentially identical
information for analysis, as discussed above, it is easier to
reorganize the loops via the tensor Op data structure.

4) Low-Level IR: The tensor IR is lowered to a general-
purposed low-level IR like LLVM, after all the specialized
analysis and transformations on the tensor IR are done, to get
ready for assembly code generation.

III. UNIFIED TENSORIZATION

Our goal is to automatically tensorize1 mixed-precision
deep learning tensor operations across a variety of hardware
platforms. We resolve the challenges discussed in Section I by
presenting UNIT with the following techniques:

1) Tensorized Instruction in Tensor DSL: To abstract the
diverse tensorized instructions on different hardware
platforms, we leverage the existing tensor DSL to
represent their semantics.

2) Applicability Inspection: To determine if and how a
tensorized instruction can be applied to a tensor operation,
we developed an analysis pass in the Inspector component
of UNIT, which analyzes the tensor Op data structure
of both the instruction and the operation. The result of
analysis will guide the loop reorganization and instruction
injection.

3) Code Rewriter: Once the tensorized instruction is deter-
mined applicable, the Rewriter reorganizes the loop nests
in accordance with the Inspector so that the innermost
loop nests resemble the tensorized instruction and are
ready to be replaced. Finally, it sets up the tuning space
for the remaining loop nests to exploit high performance.

These components of UNIT together enable a unified compi-
lation flow to simplify the mapping of tensorized instructions
across a variety of hardware platforms. In the rest of this section,
the details of each of the above steps will be discussed.

A. Semantics Abstraction - Tensor DSL

In order to unify the compilation of tensorized instructions
from different platforms and keep the system open to integrate
new instructions, the first question to answer is how to have a

1We coin the word to mean rewrite and optimize a given code by the
tensorized instruction.

a, b = tensor((64,),u8), tensor((64,),i8)
c = tensor((16,), i32)
i, j = loop_axis(0,16), reduce_axis(0,4)
d[i] = c[i] + sum(i32(a[i*4+j])*i32(b[i*4+j]))

(a) Intel VNNI x86.avx512.pbpdusd

a, b = tensor((16,),i8), tensor((16,),i8)
c = tensor((4,), i32)
i, j = loop_axis(0,4), reduce_axis(0,4)
d[i] = c[i] + sum(i32(a[i*4+j])*i32(b[i*4+j]))

(b) ARM DOT arm.neon.sdot.v4i32.v16i8

a, b = tensor((16,16),fp16), tensor((16,16),fp16)
i, j = loop_axis(0,16), loop_axis(0,16)
k = reduce_axis(0,16)
c[i,j] += fp32(a[i,k]) * fp32(b[k,j])

nvvm.wmma.m16n16k16.mma.row.row.f32.f32
(c) Nvidia Tensor Core

Fig. 4: Tensorized instructions as abstracted in the tensor DSL.

unified description of the semantics of tensorized instructions.
As explained in Section II, we employ ubiquitous tensor DSL
and tensor IR to solve the abstraction problem. All mixed
precision tensorized instructions perform some elementwise
operations for vectors, followed by a horizontal reduction. Each
tensorized instruction, therefore, can be regarded as a small
tensor operation program written in the tensor DSL.

Figure 4(a) shows how an Intel VNNI instruction is described
in the tensor DSL. Three source operands of Intel VNNI are
512-bit registers. Two of them are 64 lanes of unsigned 8-bit
integers (uint8) and signed 8-bit integers (int8), and the
other one is 16 lanes of signed 32-bit integers (int32), which
correspond to the tensors a, b, c we defined. The arithmetic
behavior is defined by the loop variables and the expression
of d[i]. Here we annotate that loop i is data parallel, since
these 16 elements are independent from each other; loop j is
reduction since for every independent element it sums up 4
elements along with this loop. A similar loop pattern appears in
the other tensor operations shown in Figure 5. The description
of ARM DOT, shown in Figure 4(b), is similar to Intel VNNI,
with a different number of lanes and data types.

Nvidia Tensor Core, on the other hand, performs a 163 square
matrix multiplication as shown in Figure 4(c). Comparing with
(a) and (b), a key difference is that it requires the accumulator
register to be the same as the addition register (note the +=).
This is due to the data type opaqueness of the Tensor Core
instruction, which prevents us from giving arbitrary initial
values for the accumulators.

We describe the semantics of each tensorized instruction in
tensor DSL. The deep learning compiler pipeline parses the
operation into tensor Op, which preserves tensor information
like the expression tree, the loop trip count, and the array
buffers. This information is essential for the analysis and
transformation passes in Inspector and Rewriter.

B. Applicability Detection - Inspector

To determine if a tensorized instruction can be applied to a
tensor operation, the Inspector pass uses a two-step approach.
It first determines if (part of) the tensor operation program and

80

…

// Convolution in tensor DSL
a,b = tensor((H,W,C), u8),tensor((R,S,K,C),i8)
k,rc = loop_axis(0,K), reduce_axis(0,C)
x,y = loop_axis(0,H-R+1), loop_axis(0,W-S+1)
r,s = reduce_axis(0,R), reduce_axis(0,S)
c[x,y,k]+= i32(a[x+r,y+s,rc])*i32(b[r,s,k,rc])

(b).1 Arithmetic Isomorphism

for (x=0; x<(H-R)+1; ++x)
 for (y=0; y<(W-S)+1; ++y)
 for (ko=0; ko<K; ko+=16)
 for (r=0; r<R; ++r)
 for (s=0; s<S; ++s)
 for (co=0; co<C; co+=4)
 #pragma tensorize
 for (ki=0; ki<16; ++ki)
 for (ci=0; ci<4; ++ci) {
 k=ko+ki, rc=co+ci;

 c[x,y,k] += a[x,y,rc]*b[r,s,k,rc]; }

(c) Code Transformation:

(a). Algorithm Description

(b).2 Data Access Isomorphism

=

d[i]:i32 +:i32

*:i32c[i]:i32

VNNI:

=

c[x,y,k]:i32 +:i32

*:i32

a[x+r,y+s,rc]:u8

c[x,y,k]:i32

Conv: Two trees are exactly the same topology,
opcodes, and data type.

cast:i32

b[r,s,k,rc]:icast:i32

b[i*4+j]:i8

a[i*4+j]:u8cast:i32

cast:i32

for (x=0; x<(H-R)+1; ++x)
 for (y=0; y<(W-S)+1; ++y)
 for (k=0; k<K; ++k)
 for (r=0; r<R; ++r)
 for (s=0; s<S; ++s)
 for (rc=0; rc<C; ++rc)
 c[x,y,k] += a[x,y,rc]*b[r,s,k,rc];

Reorganize the loops in DSL primitives.

{x,y,k} →{i} ⊆{i}
{x,y,k} →{i} ⊆{i}

{x,y,r,s,rc}→{j} ⊆{i,j}
{r,s,k,rc} →{i,j}⊆{i,j}

c[x,y,k] d[i]k→i
rc→j c[x,y,k] c[i]

a[x+r,y+s,rc]
b[r,s,k,rc]

a[i*4+j]
b[i*4+j]

c[x,y,ko:16]

x16(a[x,y,co:4])

a[r,s,k+0,co:4])
a[r,s,k+1,co:4])

a[r,s,k+15,co:4])

d=pbpdusd(a,b,c);

c[x,y,ko:16]

f:A→B Index: u Index: v S(u) S’(u) ⊆S(v)

x86.avx512.pbpdusd

Fig. 5: An example of applying Intel VNNI to Conv using UNIT.

the instruction can be arithmetically equivalent by checking a
form of isomorphism between their associated expression trees.
After that, it inspects the data access pattern to confirm the
assembly operands can be prepared so as to guide the Rewriter
transformation.

1) Compute Isomorphism: Algorithm 1 shows the algorithm
we adopt to determine the isomorphism of two expression trees.
It recursively traverses both trees and matches the data type
and opcode of each pair of nodes. Figure 5(b).1 shows that
the two trees of convolution and pbpdusd (an Intel VNNI
instruction) are in exactly the same topology and data type, so
these two programs are arithmetically isomorphic.

function INSPECT(a,b)
if a.type=b.type then

if isleaf(a)∧isleaf(b) then
if a is not bound then

bind[a]:=b
else if bind[a]6=b then

return False
end if
return True

else if isarith(a), isarith(b) then
cond:=a.opcode=b.opcode
cond:=cond∧Inspect(a.lhs, b.lhs)
cond:=cond∧Inspect(a.rhs, b.rhs)
return cond

end if
end if
return False

end function
Algorithm 1: Determine the isomorphism between expression trees. a is for
the instruction, and b is for the operation.

This analysis also finds a mapping from the operands in the
tensor program to the operands in the tensorized instruction.
As we explained, tensor operands in the tensorized instruction
are the abstraction for registers. Therefore, a register cannot
correspond to multiple data sources. This property still requires
further checks, which will be explained in the next section.

2) Array Access Isomorphism: Once compute isomorphism
is determined, the next concern is how the data are fed to this
instruction. The enforcement explained in the last subsection
already determines each register operand only corresponds to
one array in the tensor operation. On top of this, we need to
determine each element in the operand tensor corresponds to
only one memory address in the tensor program when mapping
to the tensorized instruction. To map a tensor program to a
tensorized instruction, we need to know which loop levels are
tensorized. We enumerate the loop levels to be tensorized, and
these loop levels will be mapped to loops in the tensorized
instruction. Note that only loops with the same annotation
(data parallel or reduction) can be mapped to each other. Then
we check if this enumerated mapping is feasible, by scanning
each pair of operand correspondence determined in the last
paragraph. If the operand in the tensor program is a constant,
we just skip it2. If the operand is a memory operation, we
inspect the index expressions of both memory operations in
the operation and instruction. We define:

• A is the set of loop variables to be mapped to the
tensorized instruction.

• B is the set of loop variables of the tensorized instruction.
• f : A 7→ B is the mapping we enumerate.
• S(u) := {x|x is loop variable in the index expression u}
• S′(u) := {f(x)|x ∈ S(u) ∩A}

2If it is a constant, the correspondence was already checked in the last
section. This register corresponds to this constant.

81

A mapping is considered feasible, if every pair of memory
operation’s index expressions (u, v), where u is from the
operation and v is from the instruction, holds S′(u) ⊆ S(v).
Figure 5(b).2 shows an example of inspection. If S′(u) is
a subset of S(v), this means the data loaded by the tensor
operation should be broadcast along with the loop variables
that do not exist in S(v) to fill all the register lanes. If not,
this means each register lane corresponds to multiple memory
addresses under this mapping, which is not realistic for code
generation, so we should try another enumeration.

If there are multiple feasible mappings, we leave this as
a dimension of code tuning space. Once this mapping is
determined, it will guide the further loop transformation and
code generation.

C. Code Transformation - Rewriter

There are three phases in the code transformation: loop
reorganization, tensorized instruction replacement, and tuning.

1) Loop Reorganization: As discussed in Subsection III-B,
the inspector selects the loop levels to be executed by the given
instruction. To get poised for code generation, as shown in
Figure 5(c), we need to tile these loops and reorder them to the
innermost loop levels so that those innermost loops perform
exactly the same semantics as the instruction. As we explained,
tensor DSL provides the capability to reorganize the loops
nests easily.

2) Tensorized Instruction Replacement: After identifying
the code region to be replaced by a tensorized instruction, the
code generator should prepare each operand of this instruction.
It is difficult to fully automate the operand preparation for
different platforms because of their diverse execution models
and assembly formats. Therefore, we formalize a unified
programming interface to compiler developers to manually
specify the rule of operand generation. In this interface, each
loop variable to be replaced, and their coefficients in the index
expression are exposed. For example, as shown in Figure 5(c),
by analyzing the strides and trip count of ki, and ci, the
array access c[x,y,c] will be transformed to a 16-lane
vector; a[x,y,rc] will be vectorized along with c by 4,
and broadcast along with ki by 16; b[r,s,k,c] will be
vectorized along with ci by 4, and unrolled and concatenated
along with ki.

3) Tuner: All the other loop levels that are not involved in
instruction rewriting can be reorganized to tune the performance.
Here, we develop strategies to optimize the performance of
tensor programs on both CPU and GPU. The generic philosophy
is to exploit both fine- and coarse-grained parallelism. We
also developed specialized strategies because of the different
execution models and memory hierarchy.
CPU Tuning: On CPU, data-parallel loops are distributed to
multiple threads to achieve coarse-grained parallelism. On the
other hand, the loop-carried dependence in reduction loops
introduces RAW hazards in the execution pipeline. To avoid this
penalty, and achieve instruction-level parallelism, we reorder
and unroll a small degree of data parallel loops below the
innermost reduction loop.

// a[n,k], b[k,m], c[n,m]
Buffer<fp16,16,16> A, B;
Buffer<fp32,16,16> C;
for (i=0; i<n; i+=16)
 for (j=0; j<m; j+=16)
 for (r=0; r<k; r+=16) {
 A = Load(a[i:16,r:16]);
 B = Load(b[r:16,j:16]);
 C += TensorCore(A, B); }
 Store(c[i:16,j:16], C);

// a[n,k], b[k,m], c[n,m]
for (i=0; i<n; i+=16*p)
 for (j=0; j<m; j+=16*p)
 for (r=0; r<k; r+=16) {
 Buffer<fp16,16,16> A[p], B[p];
 Buffer<fp32,16,16> C[p][p];
 for (x=0; x<p; ++x) {
 A[x] = Load(a[i+x*16:16,r:16]);
 B[x] = Load(b[r:16,j+x*16:16]); }
 for (x=0; x<p; ++x)
 for (y=0; y<p; ++y)
 C[x][y] += TensorCore(a[x],b[y]); }
 for (x=0; x<p; ++x)
 for (y=0; y<p; ++y)
 Store(c[i+x*16,j+y*16], C[x][y];); }

(a) Direct Accumulation
- No data reuse.
- Loop carried
dependences.

+ Each buffered submatrix reused p times.
+ Loop carried dependences hidden by p×p accumulation.

(b) "p×p Outer Product" Accumulation

• Split

• Reorder

• Unroll

Fig. 6: Accumulating a p×p “square window” avoids loop-carried data
dependences, and reuses buffered submatrices.

The tuning space of CPU involves two dimensions, the
degree of unrolling and parallelization. We enumerate these
two parameters and profile the execution time to search for the
best one. If the unrolling degree is too small, there will not
be enough independent instructions to fill in the idle penalty
cycles caused by RAW hazards. If it is too large, it will cause
I-cache misses. Similarly, the number of threads can neither
be too few or too many. If it is too few, the computing cores
would have insufficient utilization and memory latency would
not be hidden. Too many threads introduce context switching
overhead. We rely on the tuning process to look for the best
combination.
GPU Tuning: On GPU, coarse-grained parallelism is achieved
by distributing the data parallel loops across the streaming
multiprocessors. Similar to CPU, fine-grained parallelism is
also achieved by reordering and unrolling a small degree of
data parallel loops to avoid the pipeline penalty caused by
loop-carried dependences. Moreover, on GPU, data reuse is
explicitly managed by the software. Therefore, as it is shown
in Figure 6, we adopt an outer-product style matrix multiply
accumulation to reuse the buffered submatrices.

Besides the generic optimization, we also developed opti-
mization mechanisms specialized for DNN kernels. Among
popular DNN models, there are many layers with relatively
small width and height and deep channels. We apply dimension
fusion to layers with small width and height – these two
dimensions are fused into one to save the redundant padding. In

82

addition, we apply split reduction to layers with deep channels.
For a reduction loop with large trip count, we can split it and
parallelize each split segment on threadIdx. After all the
segments are done, we synchronize the threads and reduce the
splitted segments in the shared memory.

IV. IMPLEMENTATION

In this section, we will discuss technical details in our
implementation. UNIT is implemented by extending Apache
TVM [10], a full-stack deep learning compiler, with tensorized
instruction support. We leverage TVM’s tensor DSL, tensor
Op, tensor IR infrastructure, and the tuning infrastructure
mechanisms [11], [23] to generate high performance kernels. In
addition, implementing UNIT on top of TVM enables end-to-
end model inference with other optimizations such as operator
fusion, in addition to tensorization.

A. Inspector

The inspector pass is implemented by analyzing TVM’s
ComputeOp data structure. This matches the expression tree
of both the instruction and program and enumerates mappings
between the loop variables. We enumerate the loops from the
tensor’s innermost dimension to outermost dimension, and
greedily return the first eligible one because of the better
potential data locality for inner dimensions. The enumerated
mapping provides us with the correspondence of loop variables
between the instructions and the tensor operations.

B. Rewriter

These following steps will be performed by the rewriter:
1) According to the loop correspondence analyzed by the

inspector, we reorganize the loops to be tensorized by
tiling these loops by the trip counts of the corresponding
loops in the instruction, and reorder them to be the
innermost loops. These loops will be annotated by a
tensorize pragma to hint the instruction injection.

2) Based on the strategies discussed in Section III-C, we
reorganize the loops above not involved in instruction
rewriting to tune the performance.

3) We lower the manipulated loop nest to the tensor IR, and
replace the loop body annotated with the tensorize
pragma with the target instructions, as shown in Fig-
ure 5(c).

Steps 1 and 2 are achieved by invoking TVM scheduling
primitives on the tensor DSL level, and step 3 is a tensor IR
transformation pass.

Next, we discuss the implementation of the tuning strategies
discussed in the last section.
CPU Tuning: The code sketch of tuned CPU code is shown
in Figure 7. To implement the tuning we discussed in Sec-
tion III-C, we enumerate two breaking points on the data
parallel loop nest, which define how the loop levels are
parallelized and unrolled. A breaking point is defined by a
loop level and tiling factor, giving more flexibility to the
division. Loops before the first breaking point, will be fused and

for (ax0=0; ax0<ext0; ++ax0)
 ...
 for (axn=0; axn<extn; ++axn)
 // Reduce Loops
 for (r0=0; r0<extr0; ++r0)
 ...
 for (rm=0; r1<ext_rm; ++rm)
 tensorized-instruction;

parallel (fused=0; fused<fused_ext; ++fused)
 for (serial=0; serial<serial_ext; ++serial)
 for (r0=0; r0<extr0; ++r0)
 ...
 for (rm=0; r1<ext_rm; ++rm) {
 tensorized-instruction.0;
 tensorized-instruction.1;
 ... }

(a) Loop Organization After Tensorization

(b) Tuned Code Sketch

fuse and parallel reorder and unrollserialized exec. break points

Fig. 7: The code sketch of CPU tuning.

parallelized. Loops between these two points will be executed
in serialized order. Loops after the second breaking point will
be reordered to the innermost and unrolled.
GPU Tuning: As it is discussed in the last paragraph of
Section III-C, both coarse-grained and fine-grained parallelism
optimizations are applied on data-parallel loops, so there is a
tradeoff between them: data reuse is increased by increasing
the unrolling degree (each buffered submatrix is reused p
times), but the coarse-grained parallelism is decreased. Also, a
large unrolling degree may overwhelm the register resources.
Therefore, the key to generic optimization is to choose a proper
unrolling degree.

On the other hand, greedily applying each specialized
optimization does not always improve the performance. Though
dimension fusion may save the memory traffic, it also intro-
duces software overhead on data rearrangement. Similarly,
though splitting the reduction loop introduces more parallelism,
it also introduces thread synchronization overhead and register
pressure. We enumerate each parameter, including the degree
of reduction parallelization and whether to fuse the width and
height dimensions, and then apply these transformations to
the program and profile the performance to determine which
transformation leads to the best performance.

V. METHODOLOGY

A. Target Hardware Platforms

We assess UNIT on three hardware platforms:
Intel x86 CPU: We use Amazon EC2 C5.12xlarge instance
as our x86 platform with 24-core Intel Xeon Platinum 8275CL
CPU @3.00GHz (codename: Cascade Lake) and 96GB mem-
ory.
ARM CPU: We use Amazon EC2 M6g.8xlarge instance as our
ARM platform with AWS Graviton2 CPU, which features 32-
core ARM Cortex-A72 CPU @2.30GHz and 128GB memory.
Nvidia GPU: We use Amazon EC2 P3.2xlarge instance as our
GPU platform with Nvidia Tesla V100 SXM2 GPU that has
16GB host memory.

83

res
ne

t-1
8

res
ne

t-5
0

res
ne

t-5
0_v

1b

inc
ep

tio
n-b

n

inc
ep

tio
n-v

3

res
ne

t-1
01

res
ne

t-1
52

mob
ilen

et-
v1

mob
ilen

et-
v2

ge
om

ea
n

0.0

0.5

1.0

1.5

2.0
Re

la
tiv

e
Pe

rfo
rm

an
ce MxNet w/ oneDNN TVM UNIT

Fig. 8: Quantized network inference (bs=1) accelerated by Intel VNNI.

res
ne

t-1
8

res
ne

t-5
0

res
ne

t-5
0_v

1b

inc
ep

tio
n-b

n

inc
ep

tio
n-v

3

res
ne

t-1
01

res
ne

t-1
52

mob
ilen

et-
v1

mob
ilen

et-
v2

ge
om

ea
n

0.0

0.5

1.0

1.5

2.0

2.5

Re
la

tiv
e

Pe
rfo

rm
an

ce cuDNN (fp16) w/ Tensor Core UNIT

Fig. 9: Mixed precision network inference (bs=1) accelerated by Tensor Core.

B. Software Frameworks

Code Generation: All programs implemented in Apache TVM
are emitted to LLVM IR for code generation. We choose LLVM-
10 as our backend, and to be compatible, we use CUDA-10.0
as the NVPTX linker and runtime.
Baseline: We use vendor-provided libraries for baseline per-
formance of operators whenever possible. Specifically, Intel
oneDNN v1.6.1 and Nvidia cuDNN 7.6.5 are used as our
CPU and GPU baselines, respectively. For end-to-end model
inference, we looked for the best available solutions with
those libraries, which was MXNet integrated with oneDNN for
CPU and TVM integrated with cuDNN for GPU. Another set
of baselines is the manually written implementation. To this
end, we use the existing TVM solutions for Intel and ARM
CPUs, which involve heavy engineering effort to carefully write
intrinsics to use Intel VNNI and ARM DOT instructions. We
did not find a manually written Tensor Core implementation
that covers our evaluated workloads.

C. Workloads

DNN Models: All DNN models are from the MXNet Model
Zoo and converted to TVM’s graph IR, Relay [32], for
quantization [19], layout transformation, and data padding.
All these models adopt NCHW[x]c data layout [23] for the
data and KCRS[y]k[x]c for the kernel. Here N denotes the
batch size, C denotes the input channels, H and W are the width
and height of the input image, and [x]c denotes that the
original C is split by x. Similarly, K denotes the number of
output channels, R and S are the height and width of the kernel,
and [y]k denotes the original dimension K is split by y. [x]
equals to the number of lanes of the instruction output, and
[y] equals to the width of reduction.

In the evaluation, we target the N=1 cases, because it is hard
to optimize but critical for inference use cases. Comparing
with batched cases where N>1, we cannot reuse the kernel
tensor across samples, or exploit the parallelism brought by
the data-parallel batching dimension.

VI. EVALUATION

Our evaluation of UNIT attempts to answer these questions:
1) What is the performance of the end-to-end deep learning

model inference powered by tensorized instructions?
2) How does each optimization technique that UNIT uses

impact the performance?

3) Can UNIT be extended to support new hardware plat-
forms and tensor operations?

A. End-to-End Performance

In this subsection, we show the UNIT end-to-end effective-
ness on Intel x86 and Nvidia GPU processors for tensorizing
mixed precision instructions. For Intel x86 experiments, we use
MXNet integrated with Intel oneDNN (referred to as MXNet-
oneDNN) as the baseline. Another comparison of ours is TVM
with manually written schedules using Intel’s VNNI instruction.
The findings of this experiment are shown in Figure 8.

We observe that UNIT achieves significant speedup com-
pared to MXNet-oneDNN. Note that Intel oneDNN has access
to manually written schedules that have been aggressively
optimized and tuned by domain experts. We also observe
that TVM overall achieves better performance than MXNet-
oneDNN, but has suboptimal performance on resnet50 and
resnet50b, which were heavily tuned by oneDNN engineers.
On the other hand, UNIT outperforms both baselines, by 1.3×
over MXNet-oneDNN and by 1.18× over TVM.

Next, we test the efficacy of UNIT on utilizing Nvidia
Tensor Core instructions for Nvidia GPUs. For the baseline,
we integrate TVM with cuDNN, which has access to manually
written aggressively tuned Tensor Core schedules. The findings
of this experiment are shown in Figure 9. We observe that
UNIT consistently achieves better performance than cuDNN
with a mean speedup of 1.75× and up to 2.2×.

B. Optimization Implications

In this subsection, we focus on the convolution operators
of the DNN models to perform an in-depth analysis of the
impact of different optimization techniques used by UNIT’s
Rewriter. This is essentially an ablation study, showing how
important different parts of UNIT are. There are 148 different
convolution workloads (i.e., convolution with different feature
map sizes, kernel sizes, strides, etc.) in the models, out of
which we choose 16 representative convolution layers. These
kernels cover diverse input shapes and strides. Other workloads
behave similarly in the ablation study. We summarize the
characteristics, namely, convolution attributes, like shapes,
strides, etc., of the selected workloads in Table I.
Intel x86 servers: As we discussed in Section III-C, we have
two breaking points in CPU scheduling. The loop nests before
the first breaking point are parallelized and the loop nests
after the second breaking point are unrolled, while the ones
in between the breaking point are executed serially. As loop

84

nests can either be parallelized or unrolled (remaining one
is serialized), we have a search space represented by the
tuning pairs. Rewriter tunes this search space to generate a
high-performance kernel. In this experiment, we incrementally
measure the performance improvements brought by paralleliz-
ing, unrolling and tuning. The findings of this experiment are
shown in Figure 10, normalizing the speedup to Intel oneDNN
execution latency.

First we fuse outer loop nests such that the loop bound
of the fused loop nest is < 3000, and measure the latency
of the resulting kernel (shown by Parallel). Then, we take
the remaining loop nests, and tile and unroll them such the
unrolling factor is < 8, and measure this performance (shown
by +Unroll). Finally, instead of setting the limits as 3000 and 8,
we tune the search space and measure performance (shown by
+Tune), getting the final latency UNIT achieves. We observe
that Parallel and Unroll together is responsible for most of the
speedup. The additional speedup introduced by Tuning is quite
small. It turns out that more than half of the kernels get the
optimal performance on the first tuning pair (i.e. 3000 and 8),
and more than 95% of the kernels get the optimal performance
within the first 8 tuning pairs.

CPU does poorly on workloads #1 and #4, because their
output shapes (OH/OW) can neither be perfectly tiled nor fully
unrolled. Inherited from TVM, loop residues are handled the by
guarding it with a likely clause, which results in an if-branch
that harms the performance.
Nvidia GPU servers: As discussed in Section III-C, we
employ three optimizations on GPU: generic coarse- and fine-
grained parallelism, fusing width and height to save memory
bandwidth, and parallelizing the reduction dimension. In this
subsection, we study the impact of these optimizations on the
performance. We show the findings in Figure 11, normalizing
the speedup to Nvidia cuDNN.

According to our evaluation, any unrolling degree (p in
Figure 6) larger than 2 may overwhelm the registers, so
we use p=2 to apply the generic optimization. The generic
optimization already beat cuDNN in most cases (shown by
Generic). Then, depending on the height and width values,
Rewriter fuses the height and width dimensions to save memory
bandwidth (shown by +FuseDim). Then, we split the reduction
dimension K by 64 and measure the performance (+SplitK).
Finally, we let Rewriter to choose the sizes for these 3
optimizations and measure performance (shown by +Tune).

We observe that SplitK leads to the maximal speedup, as
it leads to significant parallelism and keeps the Tensor Cores
busy. More than 70% of the kernels can get high performance
by employing fusion and parallelizing the reduction dimension.
Similar to CPUs, the additional speedup by tuning is small.

UNIT cannot outperform cuDNN on #1 and #15, because
the strided data accesses lead to less data locality. However,
since these adversarial cases (both CPU and GPU) only occupy
a very small portion among all these models, we can still
outperform vendor-provided libraries because of the generality
of our optimization.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 160

1

2

3

4

Re
la

tiv
e

Pe
rfo

rm
an

ce oneDNN Parallel +Unroll +Tune

Fig. 10: The performance impact of the code space exploration.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 160

1

2

3

Re
la

tiv
e

Pe
rfo

rm
an

ce cuDNN Generic +FuseDim +SplitK +Tune

Fig. 11: The performance impact of the code space exploration.
TABLE I

CHARACTERISTICS OF THE SELECTED CONVOLUTION LAYERS.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

C 288 160 1056 80 128 192 256 1024 128 576 96 1024 576 64 64 608
IHW 35 9 7 73 16 16 16 14 16 14 16 14 14 29 56 14
K 384 224 192 192 128 192 256 512 160 192 128 256 128 96 128 192
R=S 3 3 1 3 3 3 3 1 3 1 3 1 1 3 1 1
Stride 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1
OHW 17 7 7 71 14 14 14 14 14 14 14 14 14 27 28 14

C. Extensibility

We evaluate the extensibility of UNIT in two aspects: to new
hardware platforms and to new deep learning tensor operations.
We observe that by just representing the semantics of the new
tensorized instruction in tensor DSL, UNIT can easily extend
to new tensorized instructions and tensor operations.
New Hardware Platforms: To demonstrate the capability of
extending to new hardware platforms, we apply UNIT to an
ARM CPU supporting the ARM DOT instruction. To the
best of our knowledge, there is a lack of a deep learning
framework with well-integrated ARM backend library support.
In the absence of a framework baseline, we choose TVM
compiling to ARM Neon assembly as the baseline (shown by
TVM-NEON). Additionally, we find that TVM has manually-
written schedules using ARM DOT instructions, which forms
our second comparison baseline (shown by TVM-Manual).
Note that in contrast to UNIT’s automatic approach, this is a
manually written schedule requiring intense engineering efforts.
Finally, we represent the semantics of ARM DOT instruction in
UNIT’s tensor DSL and use UNIT to compile the models. The
findings of this experiment are shown in Figure 12, showing
normalized speedup compared to the TVM-Neon baseline. The
results show that UNIT consistently outperforms both TVM-
NEON and TVM-Manual, proving UNIT’s effectiveness in
extending to new hardware platforms.
3D Convolution: We test UNIT on 3D convolution operation
for mapping Intel VNNI tensorized instructions. Note that this
does not require any changes from UNIT perspective; we are
just giving a new input (tensor-level IR for conv3d) to UNIT.

85

res
ne

t-1
8

res
ne

t-5
0

res
ne

t-5
0_v

1b

inc
ep

tio
n-b

n

inc
ep

tio
n-v

3

res
ne

t-1
01

res
ne

t-1
52

mob
ilen

et-
v1

mob
ilen

et-
v2

ge
om

ea
n

0

2

4

6

8
Re

la
tiv

e
Pe

rfo
rm

an
ce

12.610.0 15.4
TVM-NEON
TVM-Manual
UNIT

Fig. 12: The performance of ARM on model inference.

0 1 2 3 4 5 6 7 8 9 10 gmean0.0

0.2

0.4

0.6

0.8

1.0

1.2

Re
la

tiv
e

Pe
rfo

rm
an

ce

2.0 2.4 2.0
oneDNN UNIT

Fig. 13: The performance of each layer on res18-3d.

To evaluate this extensibility, we take all the 2D convolutions
from Resnet18 and manually convert them to 3D convolutions.
We then apply UNIT on these kernels and show the speedup
compared to oneDNN baseline in Figure 13. We observe that
UNIT easily extends to 3D convolution, as it has comparable
performance for many convolution kernels, with an average of
1.2× speedup.

VII. RELATED WORK

Compilation support for hardware intrinsics: There exists
a large body of literature on compilation support for various
hardware intrinsics [33], [20], [27], [29], [16], [22], [28],
[15], [36], [35]. Existing production compilers such as GCC
and LLVM implement auto-vectorization to leverage SIMD
intrinsics. Prior works such as [20], [33] propose various
approaches to further improve the performance of the auto-
vectorizer. These approaches cannot be extended to support
tensor computation intrinsics which introduce “horizontal
computation” within each lane. TVM [10] implements an
extensible interface to support new hardware intrinsics that
are not limited to SIMD instructions. However, programmers
need to transform the program to match the behavior of the
intrinsics and declare the lowering rule for the intrinsics prior
to compilation. TVM will match the computation and replace
it with the code snippets that call the target hardware intrinsics.
Compared to TVM, UNIT performs the code detection and
transformation automatically. This achieves higher flexibility
and productivity. There are some prior works that, similar
to UNIT, also perform program transformation and code
generation automatically for tensor computation [36], [35].
However, these are limited to one platform or certain intrinsics
and hence are not as flexible as UNIT.
Decoupled Computation and Data Access: The analysis
pass of UNIT is inspired by the decoupled-access execute

(DAE) architectures [21], [30], [26], [41], [13], [42], [40].
Computation and data access are decoupled and specialized
separately. The computation is offloaded onto a programmable
data path and data access is encoded in hardware intrinsics and
executed on specialized address generation unit (AGU). UNIT
adopts a reversed approach, it matches computation on a fixed
data path, and analyzes data access fed to the data path.
Polyhedral model: Many prior works have built program
analysis and transformation frameworks based on the polyhedral
model for tensor programs [20], [36], [35], [15], [37], [12],
[25], [38]. Loop Tactics [9] is one representative work which
matches the pre-defined computation patterns in the polyhedral
IR and transforms the matched patterns to optimized programs.
UNIT distinguishes itself from Loop Tactics in: 1) Compared
with the schedule tree [39] in the polyhedral model, the
tensor DSL provides more information such as loop reduction
properties and operand types; 2) UNIT provides an end-
to-end solution including auto-tuning to obtain the optimal
performance, whereas Loop Tactics requires the optimized
schedules to be provided manually.
Deep learning frameworks: UNIT is complementary to the
existing deep learning frameworks. Existing frameworks such
as Tensorflow [8], PyTorch [7], and MXNet [3] rely on vendor-
crafted libraries to support the new tensor intrinsics. TVM [10]
requires code re-writing at the user side. UNIT is able to
handle new operators which might not be covered by the
vendor libraries and spare the user from having to perform
manual re-writing. We have demonstrated the effectiveness of
the methodology of UNIT based on TVM. Similar technique
can be applied to other frameworks to further boost their
performance.

VIII. CONCLUSION

Deep learning has prompted hardware vendors to add
specialized tensorized instructions for dense tensor operations.
These instructions perform “horizontal reduction” accumulate
elementwise computation. While promising, introducing this
new idiom complicates its general purpose applicability, as one
has to rely on hand-written kernels to gain high performance
brought by these instructions. In this paper, we introduce UNIT,
a unified compilation pipeline, that represents the tensorized
instructions from different hardware platforms using the same
IR, then automatically detects the applicability of the tensorized
instructions in a given tensor operation, transforms the loop
nest to enable easy mapping of the tensorized instruction, and
finally rewrites the loop body with the tensorized instructions.
UNIT enables automatic tensorized instruction compilation
over a variety of hardware platforms like Intel/ARM CPUs and
Nvidia GPUs. Our analysis shows that UNIT achieves 1.3×
speedup over oneDNN (VNNI instruction), 1.75× over cuDNN
(Tensor Core instruction), and 1.13× over the manually written
ARM intrinsics in TVM (DOT instruction).

ACKNOWLEDGEMENTS

This work is supported by NSF grant CCF-1751400 and Mu
Li’s team at Amazon Web Services.

86

APPENDIX

A. Abstract

This guide describes how to set up UNIT compilation
infrastructure and run the workloads we discussed in Section VI.
This guide provides instructions to:

• Set up the experiment environment for UNIT through
Docker.

• Run end-to-end inference model shown in Figure 8, 9,
and 12.

• Run the experiments to demonstrate the effects of our
tuning strategies shown in Figure 10, and 11.

• Run the 3D-convolution results shown in Figure 13.

Our experiments are conducted on Amazon EC2
c5.12xlarge for Intel VNNI, p3.2xlarge for Nvidia
TensorCore, and m6g.8xlarge for ARM VDOT. To down-
load and install our infrastructure, approximately 32GB of
disk is required. We provide Dockerfile to set up the
environment, and scripts to automatically run the experiments
and plot the figures.

B. Artifact Checklist

• Program: As it is demonstatrated in Section V, we use
nine typical DNN models, including ResNet, ImageNet,
and MobileNet.

• Compilation: We need specific versions of TVM to run
our experiments and baselines. They are included in the
zip release.

• Data set: The test data is included in our zip release.
• Runtime environment: We run our artifact all on Ubuntu

18.04. For GPU, Nvidia GPU driver and additional runtime
for Docker should be installed.

• Hardware: We run our experiments on AWS
EC2 instances — c5.12xlarge for Intel
VNNI, p3.2xlarge for Nvidia TensorCore, and
m6g.8xlarge for ARM DOT.

• Execution: We provide scripts to run our experiments
discussed in Section VI. It takes 2 hours to compile the
models in Figure 8, half an hour to compile the models in
Figure 9, and 1.4 hours to compile the models in Figure 12.
It takes half an hour to run the experiments in Figure 10,
and 11.

• Output: Our scripts both run the experiments and plot
the figures in PDF files.

• Experiments: The results reported in our paper are
generated by a physical machine, but in this artifact
evaluation they all run on a virtual machine in Docker.
Performance fluctuation may happen because of the
overhead of virtualization.

C. Description

1) How Delivered: Download our Dockerfile, scripts, and
model test data at https://doi.org/10.5281/zenodo.4420522.

2) Hardware Dependencies:
• AVX512_VNNI: This is available on Intel CPUs with

Cascadelake architecture. In this work, we use AWS EC2
c5.12xlarge. The CPU model is Intel(R) Xeon(R)
Platinum 8275CL CPU @3.00GHz. The rate is $2.04/hour,
and it takes approximately one hour to set up the
environment and 5 hours to run all the related experiments.

• TensorCore: This is avaiable on Nvidia GPUs with
TensorCore extension. In this work, we use AWS EC2
p3.2xlarge. The GPU model is Tesla V100. Please
install the GPU driver. The rate is $3.06/hour, and it
takes approximately 1 hour to set up the environment, and
another one hour run all the related experiments.

• ARM VDOT: This is available on ARM CPU v8.2 with
dotprod extension. In this work, we use AWS EC2
m6g.8xlarge. The CPU model is Amazon Graviton 2.
The rate is $1.232/hour, and it takes 1 hour to set up the
environment and run the experiments.

3) Software Dependencies: All our software dependences
are installed automatically in Docker. Refer to this link for
Docker installation. When setting up the last step of the the
package repository, do choose the proper tab for your CPU
platform (x86 or ARM). Refer to this to install Docker that
runs Nvidia GPU. Nvidia Docker requires GPU driver installed,
use this command to install:

$ sudo apt-get install nvidia-driver-455

D. Installation

Unzip the downloaded file, and there are three sub-zips —
tensorcore.zip, vnni.zip, and arm.zip to evaluate
the three platform we discussed in this paper.

E. Experiment Workflow

1) GPU: We run the TensorCore experiment on an AWS
EC2 p3.2xlarge instance.
• After building the docker image, an image hash value will

be generated in the console log:

$ unzip tensorcore.zip && cd tensorcore
$ sudo docker build . # 20 mins to build
$ sudo docker run -tid --runtime=nvidia <image>
$ sudo docker attach <container>

• After entering the container, the experiment scripts are
all in $HOME directory:

$ cd $HOME

• To replicate experiments run in Figure 9, and 11:

$ bash run_e2e.sh # Fig.9: e2e.pdf
$ bash run_ablation.sh # Fig.11: gpu-dse.pdf

• It takes half an our to run these two scripts. Both the
experiments and data plotting are done in these two scripts.
Use these commands to take the generated PDF out of
the container and look at them:

87

https://doi.org/10.5281/zenodo.4420522
https://docs.docker.com/engine/install/ubuntu/
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#docker

$ <ctrl-p><ctrl-q> # Temporarily detach
$ sudo docker cp <container>:/root/e2e.pdf gpu-

e2e.pdf
$ sudo docker cp <container>:/root/gpu-dse.pdf .

2) CPU: We run the Intel VNNI experiment on an AWS
EC2 c5.12xlarge instance. It is also used to cross-compile
ARM target.
• After building the docker image, an image hash value will

be generated in the console log:

$ unzip vnni.zip && cd vnni
$ sudo docker build .
$ sudo docker run -tid <image>
$ sudo docker attach <container>

• After entering the container, the experiment scripts are
all in $HOME directory:

$ cd $HOME

• To replicate experiments run in Figure 8, 10, and 13:

$ bash run_e2e.sh # Fig.8: e2e.pdf
$ bash run_ablation.sh # Fig.10: cpu-dse.pdf
$ bash run_3d.sh # Fig.13: conv3d.pdf

• It takes about 2.5 hours to run these experiments, and you
can use the following commands to take out these plotted
figures and look at them:

$ <ctrl-p><ctrl-q> # Temporarily detach
$ sudo docker cp <container>:/root/e2e.pdf .
$ mv e2e.pdf cpu-e2e.pdf # Avoid conflict
$ sudo docker cp <container>:/root/gpu-dse.pdf .
$ sudo docker cp <container>:/root/conv3d.pdf .

• Use the following script to run ARM target compilation:

$ bash run_arm.sh

It takes about two hours to get all models com-
piled on ARM. The compiled models will be in
$HOME/arm-base and $HOME/arm-unit.

• Copy the compiled model to the ARM machine:

$ scp -i key.pem -r arm-unit <arm-machine>:~
$ scp -i key.pem -r arm-base <arm-machine>:~
$ ssh -i key.pem <arm-machine>

• Set up the ARM environment and run the experiments on
ARM machine:

$ unzip arm.zip && cd arm
$ mv ../arm-unit .
$ mv ../arm-base .
$ sudo docker build .
$ sudo docker run -tid <image>
$ sudo docker attach <container>
$ cd $HOME && bash run_e2e.sh
<ctrl-p> <ctrl-q>
$ sudo docker cp \

<container>:/root/baseline.result .
$ sudo docker cp \

<container>:/root/tensorize.result .

• Bring these two .result files to a x86 machine, and
plot the graph:

$ python plot_e‘2e.py baseline.result tensorize.
result

Fig. 13
$ mv e2e.pdf arm-e2e.pdf

F. Evaluation and Expected Result

Finally, we have these PDF files:
• Figure 8, 9, and 12 should be compared against
cpu-e2e.pdf, gpu-e2e.pdf, and arm-e2e.pdf.

– The ARM results reported in this paper were gener-
ated by an old version of TVM. The performance is
improved in the newer version. We will fix this in
camera ready.

• Figure 10, and 11 should be compared against
cpu-dse.pdf, and gpu-dse.pdf.

• Figure 13 should be compared against conv3d.pdf.

REFERENCES

[1] Exploring the Arm dot product instructions.
https://community.arm.com/developer/tools-software/tools/b/tools-
software-ides-blog/posts/exploring-the-arm-dot-product-instructions,
2017.

[2] Introduction to Intel deep learning boost on sec-
ond generation Intel Xeon scalable processors.
https://software.intel.com/content/www/us/en/develop/articles/introduction-
to-intel-deep-learning-boost-on-second-generation-intel-xeon-
scalable.html, 2019.

[3] Apache MXNet | a flexible and efficient library for deep learning.
https://mxnet.apache.org/versions/1.6/, 2020.

[4] Nvidia CUDA R© deep neural network library (cuDNN).
https://developer.nvidia.com/cudnn, 2020.

[5] Nvidia tensor cores. https://www.nvidia.com/en-us/data-center/tensor-
cores/, 2020.

[6] oneAPI deep neural network library (oneDNN). https://github.com/oneapi-
src/oneDNN, 2020.

[7] Pytorch. https://pytorch.org/, 2020.
[8] Tensorflow. https://www.tensorflow.org/, 2020.
[9] Lorenzo Chelini, Oleksandr Zinenko, Tobias Grosser, and Henk Corpo-

raal. Declarative loop tactics for domain-specific optimization. ACM
Transactions on Architecture and Code Optimization (TACO), 16(4):1–25,
2019.

[10] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan,
Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze,
et al. TVM: An automated end-to-end optimizing compiler for deep
learning. In 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), pages 578–594, 2018.

[11] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry Moreau,
Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. Learning to
optimize tensor programs. In Advances in Neural Information Processing
Systems, pages 3389–3400, 2018.

[12] Jason Cong and Jie Wang. PolySA: Polyhedral-based systolic array
auto-compilation. In 2018 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pages 1–8. IEEE, 2018.

[13] Vidushi Dadu and Tony Nowatzki. Towards general purpose acceleration
by exploiting common data-dependence forms. In Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture,
2019.

[14] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei. ImageNet:
A large-scale hierarchical image database. In 2009 IEEE Conference on
Computer Vision and Pattern Recognition, pages 248–255, 2009.

[15] Andi Drebes, Lorenzo Chelini, Oleksandr Zinenko, Albert Cohen, Henk
Corporaal, Tobias Grosser, Kanishkan Vadivel, and Nicolas Vasilache.
TC-CIM: Empowering tensor comprehensions for computing-in-memory.
In IMPACT 2020-10th International Workshop on Polyhedral Compilation
Techniques, 2020.

[16] Alexandre E Eichenberger, Peng Wu, and Kevin O’brien. Vectorization
for simd architectures with alignment constraints. Acm Sigplan Notices,
39(6):82–93, 2004.

88

[17] Qingchang Han, Yongmin Hu, Fengwei Yu, Hailong Yang, Bing Liu,
Peng Hu, Ruihao Gong, Yanfei Wang, Rui Wang, Zhongzhi Luan, and
Depei Qian. Extremely low-bit convolution optimization for quantized
neural network on modern computer architectures. In ICPP ’20: 49th
International Conference on Parallel Processing - ICPP, 2020.

[18] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew
Tang, Andrew G. Howard, Hartwig Adam, and Dmitry Kalenichenko.
Quantization and training of neural networks for efficient journal. CoRR,
abs/1712.05877, 2017.

[19] Animesh Jain, Shoubhik Bhattacharya, Masahiro Masuda, Vin Sharma,
and Yida Wang. Efficient execution of quantized deep learning models:
A compiler approach. arXiv preprint arXiv:2006.10226, 2020.

[20] Martin Kong, Richard Veras, Kevin Stock, Franz Franchetti, Louis-Noël
Pouchet, and Ponnuswamy Sadayappan. When polyhedral transformations
meet SIMD code generation. In Proceedings of the 34th ACM SIGPLAN
conference on Programming language design and implementation, pages
127–138, 2013.

[21] Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna. MAERI:
Enabling flexible dataflow mapping over DNN accelerators via reconfig-
urable interconnects. SIGPLAN Not., 53(2):461–475, March 2018.

[22] Samuel Larsen and Saman Amarasinghe. Exploiting superword level
parallelism with multimedia instruction sets. Acm Sigplan Notices,
35(5):145–156, 2000.

[23] Yizhi Liu, Yao Wang, Ruofei Yu, Mu Li, Vin Sharma, and Yida Wang.
Optimizing CNN model inference on CPUs. In 2019 USENIX Annual
Technical Conference (USENIX ATC 19), pages 1025–1040, Renton, WA,
July 2019. USENIX Association.

[24] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory F. Diamos,
Erich Elsen, David García, Boris Ginsburg, Michael Houston, Oleksii
Kuchaiev, Ganesh Venkatesh, and Hao Wu. Mixed precision training.
CoRR, abs/1710.03740, 2017.

[25] MLIR. Multi-level IR compiler framework. https://mlir.llvm.org.
[26] Tony Nowatzki, Vinay Gangadhar, Newsha Ardalani, and Karthikeyan

Sankaralingam. Stream-dataflow acceleration. In 2017 ACM/IEEE 44th
Annual International Symposium on Computer Architecture (ISCA), 2017.

[27] Dorit Nuzman and Richard Henderson. Multi-platform auto-vectorization.
In Proceedings of the International Symposium on Code Generation and
Optimization, CGO ’06, page 281–294, USA, 2006. IEEE Computer
Society.

[28] Dorit Nuzman, Ira Rosen, and Ayal Zaks. Auto-vectorization of
interleaved data for SIMD. In Michael I. Schwartzbach and Thomas
Ball, editors, Proceedings of the ACM SIGPLAN 2006 Conference on
Programming Language Design and Implementation, Ottawa, Ontario,
Canada, June 11-14, 2006, pages 132–143. ACM, 2006.

[29] Phitchaya Mangpo Phothilimthana, Archibald Samuel Elliott, An Wang,
Abhinav Jangda, Bastian Hagedorn, Henrik Barthels, Samuel J Kaufman,
Vinod Grover, Emina Torlak, and Rastislav Bodik. Swizzle inventor:
data movement synthesis for GPU kernels. In Proceedings of the
Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 65–78, 2019.

[34] Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Summer Deng, Roman
Dzhabarov, James Hegeman, Roman Levenstein, Bert Maher, Satish
Nadathur, Jakob Olesen, Jongsoo Park, Artem Rakhov, and Misha
Smelyanskiy. Glow: Graph lowering compiler techniques for neural
networks. CoRR, abs/1805.00907, 2018.

[30] Raghu Prabhakar, Yaqi Zhang, David Koeplinger, Matt Feldman, Tian
Zhao, Stefan Hadjis, Ardavan Pedram, Christos Kozyrakis, and Kunle
Olukotun. Plasticine: A reconfigurable architecture for parallel paterns.
In 2017 ACM/IEEE 44th Annual International Symposium on Computer
Architecture (ISCA), 2017.

[31] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris,
Frédo Durand, and Saman Amarasinghe. Halide: A language and
compiler for optimizing parallelism, locality, and recomputation in
image processing pipelines. In Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’13, pages 519–530, New York, NY, USA, 2013. ACM.

[32] Jared Roesch, Steven Lyubomirsky, Logan Weber, Josh Pollock, Marisa
Kirisame, Tianqi Chen, and Zachary Tatlock. Relay: A new IR for
machine learning frameworks. In Proceedings of the 2nd ACM SIG-
PLAN International Workshop on Machine Learning and Programming
Languages, MAPL 2018, page 58–68, New York, NY, USA, 2018.
Association for Computing Machinery.

[33] Ira Rosen, D. Nuzman, and A. Zaks. Loop-aware SLP in GCC. pages
131–142, 01 2007.

[35] Vinod Grover Somashekaracharya G. Bhaskaracharya, Julien Demouth.
Automatic kernel generation for Volta tensor cores. arXiv preprint
arXiv:2006.12645, 2020.

[36] Sanket Tavarageri, Alexander Heinecke, Sasikanth Avancha, Gagandeep
Goyal, Ramakrishna Upadrasta, and Bharat Kaul. PolyDL: Polyhedral
optimizations for creation of high performance DL primitives. arXiv
preprint arXiv:2006.02230, 2020.

[37] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya
Goyal, Zachary DeVito, William S Moses, Sven Verdoolaege, Andrew
Adams, and Albert Cohen. Tensor comprehensions: Framework-
agnostic high-performance machine learning abstractions. arXiv preprint
arXiv:1802.04730, 2018.

[38] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, Jose Ignacio Gomez,
Christian Tenllado, and Francky Catthoor. Polyhedral parallel code
generation for CUDA. ACM Transactions on Architecture and Code
Optimization (TACO), 9(4):1–23, 2013.

[39] Sven Verdoolaege, Serge Guelton, Tobias Grosser, and Albert Cohen.
Schedule trees. In International Workshop on Polyhedral Compilation
Techniques, Date: 2014/01/20-2014/01/20, Location: Vienna, Austria,
2014.

[40] Z. Wang and T. Nowatzki. Stream-based memory access specialization for
general purpose processors. In 2019 ACM/IEEE 46th Annual International
Symposium on Computer Architecture (ISCA), pages 736–749, 2019.

[41] J. Weng, S. Liu, V. Dadu, Z. Wang, P. Shah, and T. Nowatzki. DSAGEN:
Synthesizing programmable spatial accelerators. In 2020 ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA),
pages 268–281, 2020.

[42] J. Weng, S. Liu, Z. Wang, V. Dadu, and T. Nowatzki. A hybrid systolic-
dataflow architecture for inductive matrix algorithms. In 2020 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), pages 703–716, 2020.

[43] XLA Team. Xla - tensorflow, compiled, March 2017.
[44] D. Yan, W. Wang, and X. Chu. Demystifying tensor cores to optimize

half-precision matrix multiply. In 2020 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pages 634–643, 2020.

89

	Introduction
	Background
	Mixed Precision Tensorized Instructions
	Limitations of Existing Solutions
	Multi-Level Intermediate Representation
	Graph-Level IR
	Tensor DSL
	Tensor IR
	Low-Level IR

	Unified Tensorization
	Semantics Abstraction - Tensor DSL
	Applicability Detection - Inspector
	Compute Isomorphism
	Array Access Isomorphism

	Code Transformation - Rewriter
	Loop Reorganization
	Tensorized Instruction Replacement
	Tuner

	Implementation
	Inspector
	Rewriter

	Methodology
	Target Hardware Platforms
	Software Frameworks
	Workloads

	Evaluation
	End-to-End Performance
	Optimization Implications
	Extensibility

	Related Work
	Conclusion
	Appendix
	Abstract
	Artifact Checklist
	Description
	How Delivered
	Hardware Dependencies
	Software Dependencies

	Installation
	Experiment Workflow
	GPU
	CPU

	Evaluation and Expected Result

	References

