T B %5 : S370PRP25001

B SEVS:

AREMRITR (PRP) #ZRILX

i —

L5 TR 5 25) PRP F A F R

B&E N e X 1TES

FHMFE F5123709192 hik A&
g FHRFIE DER

wmE
U R AT S AL RIS Zh R RE, RE) 2@ N R A, S8 e e 2838 T 1 AT AE S5
VUJiE 3 WAT A W AR AT DARE SRS R D BE AR, (AR R BRI AT 5. WF STV R W] AFE 8P g
BB, T H AT PLE QOGRS RS DU 3R, AR AT BT N TR R R, RAIXEE R, 2
S SR, R AR AT S SCBL DY 3R AT 8 00 s LTRSS WAT H i Sk,
A UASE e 2 D R, AL RGO, R SR4ED R T A R R

KU DURER, wRERE, fEE:

ABSTRACT

Quadrotor has excellent motion performance so that it can adapt to complex terrains as well as accomplish
flight missions of superior difficulty. With modules of various functions, quadrotor has great potential in
many fields, such as search and rescue, prospection of zone of ignorance and monitor of public territory.
The realization of the new control algorithm allows the quadrotor to resist large excitation with high
accuracy.

Keywords: quadrotor, high accuracy, control algorithm

1 Description

Quadrotor is a type of Unmanned Mini Aerial Vehicle, which is a nonlinear coupling dynamics system and
therefore hard to control. We apply state-of-art machine learning techniques control problem of quadrotor
attitude stabilization. Based on NI myRIO’s powerful computational capability and extreme portability, this
algorithm is implemented as a model-free, online controller tuning procedure, which improves the
controller performance, requiring no detail about the dynamical model of the vehicle.

2 Products
NI Hardware: NI myRI10-1900

NI Software: LabVIEW2013
myRI10 module
Real-Time module
FPGA module
MathScript RT module

Other Hardware: InvenSense MPU 9150 9-Axis Sensor
Sunnysky V2216 KVV900
SkyWalker Quattro ESC
SHARP IR Sensor (GP2Y0A02YKOF)
XBee 1ImW Wire Antenna Zigbee

Other Software: Matlab R2014a

L5 TR 5 25) PRP F A F R

3 Challenge

In spite of the advantage of the flexible maneuverability, quad-rotor is a dynamically unstable, nonlinear,
strongly coupled system that has to be stabilized by a elaborately designed or tuned control system.
Traditionally, quad-rotor applications use manually tuned PID or LQR controllers derived from a
simplified linear model. These controllers require exhausting parameter identification and provide no
guarantee for stability while tracking aggressive paths, especially in face of sensor noise, nonlinear
disturbance and inaccurate model.

4 Solution

This paper applies a state-of-art reinforcement learning algorithm called Policy Gradient via Signed
Derivative (PGSD) to the control problem of quad-rotor attitude stabilization. Based on NI myRIO’s
powerful computational capability and extreme portability, this algorithm is implemented as a model-free,
online controller tuning procedure, which improves the controller performance, requiring no detail about
the dynamical model of the vehicle. This proves to be a both adaptive and optimal control strategy, greatly
overcoming nonlinearity, modeling error, environmental variants. Experiments on both simulation and
hardware display the validity of the solution.

4.1 Control ler Parametrization

In spite of strongly coupled dynamics, controller policy of a quad-rotor can be roughly separated into three
less dependent channels, namely the pitch, roll and yaw channels.

We consider a linear controller with coupling term involved so that control inputs for each channel are
represented as

ug = Kpy (6": — 9-!-) — Kdy 9—}- Key ’t,,i',t(f’.?t
Uy = Kpy (7 —pt) — Kdy ¢ + Key 01
ug = Kpg (07 —0;) — Kdy 0; + Kcg 1y

where the angles with asterisks are the target we want to achieve at each time step.

Note that this controller parametrization is actually a strengthened PID control scheme, which also takes
the nonlinear coupling terms into account. The addition of coupling terms can be proved to make the
controller stable not only around equilibrium point.

In matrix form, the controller policy can be simplified as

[Kpe 0 0
0 Kp, 0
0 0 Kpy
ty I\-dg 0 0
U = | Uy | = 'H.!T(,.-";-(s;) s W = 0 Kd, 0
Uy 0 0 Kdy
Keg 0 0
0 Ke, 0
0 0 Key |

L5 TR 5 25) PRP F A F R

The nine controller parameters remain to be tuned. Instead of exhaustively determining their value by
manual trails or heuristics, we adopt the machine learning algorithm to automatically tune their values,
based on the data collected during flight. The controller is guaranteed to converge to an optimal one after a
few iterations.

4.2 Auto-Tuing using Reinforcement Learning Algorithm

In this section we briefly describe the reinforcement learning algorithm which runs online on NI
myRI10-1900, which improves controller performance during flight. The powerful computation capability
of NI myR10-1900 makes the online execution possible with little extra effort.

Following the controller parametrization above, we consider a control cost induced by deviation from the
target state at each discrete time step.

Ci(se,up) = (8¢ — 7)) Qu(sy — s7) + ul Ryuy

The weighting matrices Q and R are selected to be semi-definite so that the furthe the quad-rotor deviates
the target state, the more cost is induced at the time step.
Consider a control task for the quadrotor to following a series of attitude states

{s5,87s---,51}

The total cost, which is the sum of all costs at each time step, is the criterion of the controller performance.
Hence our aim now becomes to find a appropriate parameter matrix such that

H

Wopt = arg min E Cy(s¢,us)

t=1
where the state and control data s and u are all derived from the flight data. This problem setting is actually
a abbreviation of Markov Decision Process(MDP).

The procedure of calculating the optimal parameter matrix is based on the gradient descent method, and
uses no details about dynamics model of the quad-rotor at all.

Algorithm 1 Policy Gradient w/ Signed Derivative (PGSD)

Input:
S5 € R™*"; signed derivative matrix
H € Z,: horizon
Q; € R™*" R, € R™*™: diagonal cost function matrices
o € R, : learning rate
¢ :R"™ x R — RF: feature vector function
W € RFX™: initial policy parameters

Repeat:
1. Execute policy for I steps to obtain

Uy STy - s UH—1, UH.
2. Compute approximate gradients w.r.t. controls:

H
Vi, 7(50,0) — Y STQu(sv — s}) + Rowe
t'=t+41
3. Update parameters:

us)

8]

E Q')(‘:t t)(euf J(“"Ov (_JJJT

w e w-

N

L5 TR 5 25) PRP F A F R

Note that in the algorithm a signed derivative matrix is still needed. This matrix can be viewd as a very
rough approximation to the

Jacobian matrix of the derivative of future state with respect to current control input, with the signs retained
but concrete values discarded. Hence, encoded in this matrix is a rough, naive model description, which is
sufficient for the algorithm to converge efficiently. In the application of our quad-rotor, the signed
derivative matrix is set to

0

o O = O D
o= o = O

_ O = O

4, 3 Hardware Experiment

NI myRI0O-1900 is used as flight control processor, responsible for sensor data acquisition, data fusion,
algorithm computation, rotor control as well as communication. The huge number of channels on NI
myRI10 and their reconfigurability make it possible to integrate multiple sensors, needed on a quad-rotor,
into a unit processing center.

As the default development environment for NI myRIO, NI LabVIEW?2013 provides our team with a
variety of customized functionalities, extremely simplifying the development and commissioning process
and allowing us to focus consistently on the high level design of the project.

Pach off Rolloff Vawoff Caibrate
) o 0 []
Pch Rl Yaw

7161 16065 15818

Wich Rol Vew

2581 Joowst o0

10-| w}h%t ot ol
T
1
0°

5t
o
5
0°

E!

-1

Fig 1. Overview of our quadrotor. Fig.2 Overview of VI front panel.

In order to display the efficiency of this algorithm, we set the control loop frequency to a medium level,
100 Hz, which is commonly used on commercial quad-rotor, although myRIO FPGA allows much higher
frequency.

L5 TR 5 25) PRP F A F R

The procedure of the experiment is as follows. At first, we choose a reasonable but not possibly optimal set
of controller parameters, for instance,

Kpyg = Kp, = Kpy, = 0.01
Kdy = Kd, = Kd,, = 0.10
Kcg = Kcp = Key =0

Then, we collect data while the quad-rotor is aviating for each 10 seconds, which is equivalent to
H=10*100=1000 time steps. Based on the data collected, the algorithm described in section 2 updates the
controller parameters automatically. This data-acquisition, update iteration runs for a few times. According
to our result, 10 iteration would be sufficient for apparent improvement on controller performance to be
seen. The initial performance is shown in Fig.3 and the ultimate optimal performance is shown in Fig.4.

20 . : : T T . . . T 15
: 2 ¥ : pitch

151N : : : ——=rll |
T . P [

pitch
| el
o yaw

2
Vil

o \) A
3 eme Ko LAl Bl o
Ik .,..;?'.‘.'?ﬁ,;;\ 4 C e e R RN %Wﬁ'-fs

f
S04) R
! 3
! 5
A5EA
2 1 ZIZ 3 4 & B ; g 9 10 2 1 2I 3 4 B 7:' 8 9 10
8 8
Fig.3 Initial performance Fig.4 Ultimate performance

5 Revision

1. The linear controller parametrization could be replaced by a nonlinear one, for example, artificial
neural network.

2. The Controller VI could be programmed into FPGA to release RT resource and improve performance.

3. Position control of the quad-rotor could be added.

4. The VI user interface could be strengthened.

6

Reference
The preceding parts are all our own works, so there’s no reference.
7 Acknowledge

We want to appreciate anyone who has helped us in this PRP. In particular, we are grateful to Prof. Ma
Quanbing who gave us relative knowledge. Without his help, it’s impossible for us to finish our project.

