

Simultaneous Localization and Mapping

Low-cost Solution Based on HUAWEI P9

VE/VM450 Capstone Design Projects

Summer 2016

Project Duration:

May 16th, 2016 — Aug 10th, 2016

Final Project Report

Prepared by:

Jie Mei

Junjie Shen

Xi Chen

Yi Zhang

Yuhao Li

Undergraduate Engineering Students

UM-SJTU Joint Institute

Team 10

Prepared for:

Dr. Chengbin Ma

Assistant Professor, VM450 Course Coordinator

UM-SJTU Joint Institute

Mr. Zhijie Wang

Company Mentor

Huawei IoV Innovation Centre

Abstract

In this project, we are going to focus on the possibility of SLAM algorithm on

HUAWEI P9. The goal is to develop a mobile app on Android platform. The app

should be able to map, model, and localize the surroundings using the sensors

embedded in the phone such as camera, gyroscope, and accelerometers while the phone

is being carried around. The core of our system is a visual SLAM algorithm. Based on

accuracy and cell phone storage capacity, we choose ORB-SLAM to be the framework.

One camera, one accelerometer and one gyroscope on Huawei P9 are serving as input

devices. A tightly coupled visual-inertial sensor fusion algorithm is applied to obtain a

camera pose estimation based on the visual and inertial inputs, to be able to work

robustly in both slow motion and crowded scenes. We also applied 3D map

reconstruction offline on a computer to visualize the SLAM result. Totally speaking,

our application is able to realize SLAM on Huawei P9 and the 3D map reconstruction

system offline is capable of visualization. Peak CPU usage is 1% beyond our

expectation. All other specifications, including localization error, localization time,

peak memory usage, internet bandwidth usage, user learning time, and cost have been

satisfied. This project indicates a bright future of self-driving car based on smart

phones.

Table of Contents

1. INTRODUCTION .. 1

2. LITERATURE SEARCH.. 2

3. CUSTOMER REQUIREMENTS & ENGINEERING _SPECIFICATIONS 3

3.1 CUSTOMER REQUIREMENTS .. 3

3.2 ENGINEERING SPECIFICATIONS ... 4

3.3 QUALITY FUNCTION DEPLOYMENT (QFD) CHART .. 4

4. CONCEPT GENERATION .. 6

5. DESIGN DESCRIPTION ... 7

5.1 SYSTEM OVERVIEW... 7

5.2 ANDROID APPLICATION ... 11

5.3 3D MAP RECONSTRUCTION... 13

6. VALIDATION PLAN ... 16

7. PROJECT PLAN .. 19

7.1 GANTT CHART .. 19

7.2 WORK ASSIGNMENT ... 20

7.3 BUDGET .. 21

8. CONCLUSION ... 21

9. ACKNOWLEDGEMENTS .. 21

REFERENCES .. 22

APPENDIX A: BIOGRAPHICAL SKETCHES ... A-1

APPENDIX B: 3D MAP RECONSTRUCTION ... B-1

1

1. INTRODUCTION

Simultaneous localization and mapping has long been a hot topic in which people in

past years discover different approaches to improve accuracy and functionality of

mapping surroundings as the sensor moves around geographically. This project focuses

on the possibility on SLAM algorithms on mobile phones, specifically, Huawei P9. The

main goal is to develop an mobile application runnable on Android environment that

will map, model, and localize the surroundings of the user as he/she moves around

using his/her mobile phone. Worth noticing, the SLAM algorithm should, ideally, be

able to tell if the user has entered a loop, meaning he/she has entered an area which

he/she has set foot on before. Therefore, the application will be able to identify the

situation if the user has moved in a cycle and can successfully localize the user at the

same location in the generated map as the point he/she was at previously.

Furthermore, since throughout the project the experiments will be conducted on mobile

phones (and should be afterwards in regular situations), the application will rely on

several censors on Huawei P9 for information as input to the algorithm. These include

the camera and inertia components inside the mobile phone. The camera will take

frequent shots of the surroundings and help identify key points, while the inertia

components will help gain information such as acceleration that contributes to the

calculation of the relative geographic location to any previous point.

Finally, while the application should be able to run on any phone with Android

environment, for this project, the team will focus on the performance on Huawei P9,

taking advantage of its high performance hardware, aiming to enhance its functionality

on this specific phone.

Currently there is a lack of well-known benchmark applicable to SLAM development

and application on mobile phones, but in general the team will work on enhancement of

accuracy of the mapping and localization in terms of comparison to benchmark. In

short, the project team commits to developing high-performance, accurate Android

application that provides simultaneous localization and mapping on HUAWEI P9.

2

2. Literature Search

Monocular visual SLAM studies the problem of utilizing visual information from a

single camera to build a sparse or dense 3D model of the scene while traveling through

it, and simultaneously reconstruct the trajectory. The problem was initially solved by

filtering [1], [2], [3], [4] which processes every frame to jointly calculate the map

feature locations and the camera pose. It has the shortages of extensive computation in

processing consecutive frames with rarely new information. On the other hand,

keyframe-based approaches [5], [6] estimate the map using only selected frames

(keyframes), making it possible to save computational resource and perform more

accurate bundle adjustment optimizations. The work of LSD-SLAM by Engel et. al [7]

proposes to build large scale semi-dense maps, optimizing directly over image pixel

intensities whose results are very impressive. They are able to operate in real time,

without using GPU acceleration and also to build a dense map. A more recent work of

feature-based visual SLAM, known as ORB-SLAM [8], achieves better results than

LSD-SLAM with less memory constraints and less computational resources by

performing bundle adjustment over extracted visual features. These features enjoy nice

properties, such viewpoint invariance and illumination invariance, which are

fundamental to performance of visual SLAM systems.

Even though visual signal is great for estimating slow motions, it is subject to outliers

such as fast and sudden motions. On the other hand, Inertial Measurement Units (IMUs)

generate noisy but outlier-free measurement, allowing to robustly estimate fast and

sudden motions. Thus combining the complementary natures of visual information and

inertial measurements can contribute positively to robust inference of camera pose.

There has been extensive research investigation in visual-inertial state estimation.

Firstly, it is straightforward to apply variations of Bayesian filters [9], [10], to loosely

fuse visual and inertial measurements. Such fusion smoothies the vision-based tracking,

and the inertial measurements for short-term motion prediction when visual tracking

fails. These methods usually lead to suboptimal results even though at lower

computational complexity. Recent advancements in visual-inertial fusion show that

tightly-coupled methods are able to achieve much better accuracy in terms of

estimation accuracy [11], [12]. Thus we will adopt tightly-coupled methods in our

design.

3

3. Customer Requirements & Engineering

_Specifications

This section describes the customer requirements and engineering specifications of our

design. Since the final protocol of our design is expected to be an Android application

that applies our modified SLAM algorithm, our target customers are smartphone users

who are interested in SLAM algorithms and self-driving technologies. The customer

requirements and specifications are hence based on the common characteristics of

smartphone users and the requirements from the computer sponsor HUAWEI.

3.1 Customer Requirements

 Accurate Localization

Our SLAM algorithm should provide users with accurate location information when

they are using their mobile phones to locate themselves in a new environment.

 Real-time Localization and Mapping

Our mobile application should provide real-time location and construct a real-time map.

This means a user should be able to obtain the location information and a map of his/her

surroundings immediately after the environment information was captured by the

smartphone.

 Reasonable Hardware Usage

This requirement is set for the mobile application we are going to develop. Considering

that the mobile device we use has limited hardware resource compared with a low-end

computer, and our application needs to share hardware resource with other applications

ran on the mobile device, we need to carefully design our application so that it can use

minimum hardware resource to achieve the performance requirement.

 Minimum Internet Usage

This requirement is also set for the mobile application. Our application may access

internet to obtain the GPS information or map information. However, the internet

access on a mobile device consumes internet data and power. Therefore, the internet

access should be minimized for the users.

 User-friendly Interface

4

A user-friendly Interface is very important for a mobile application to attract new users.

This also applies to our mobile application.

3.2 Engineering Specifications

From the customer requirements we derive the following Engineering specifications.

Note that we have modifications on the engineering specifications.

 Localization time [ms]

The localization time refers to the time for the SLAM system to calculate the camera

pose with the environment information. According to the company sponsor Huawei,

the target value of this specification should be less than 100ms.

 Localization error [mm]

The localization error is the error in estimation of the camera frame’s translation and

orientation. Both the relative translation and orientation error should be controlled

under 5%.

 CPU Usage and Memory Usage [%]

CPU usage and memory usage are two metrics used to quantify the hardware usage of

an android application. The CPU usage is expected to be less than 50% and the memory

usage is expected to be less than 25%.

 Internet Bandwidth Usage [%]

Internet Bandwidth usage is a metrics used to quantify the internet usage of an

application. It is expected to be less than 10%.

 Average user learning time [min]

We decided to use average user learning time as an indicator of the user-friendliness,

since it is relatively easy to measure the user learning time and the user learning time is

positively correlated with the user-friendliness.

3.3 Quality Function Deployment (QFD) Chart

The QFD chart is shown as following. It is based on the engineering specifications set

before DR#2.

5

Figure 3.1: QFD Chart.

The QFD was developed according to the procedure described in the lecture slide.

First, we make binary comparisons for the customer requirements and calculate the

customer weights for each customer requirement. As is seen from the chart, the two

most important requirements are Accurate Localization and Real-Time Localization. In

Fact, these two are the primary requirements set by the company sponsor Huawei.

Then we cross correlate each engineer specification and have these correlations: 1.

Tracking time and local mapping time are negatively correlated with the CPU usage

and memory usage, since as we increase our hardware usage, the calculation time will

be reduced and hence the tracking time and the local mapping time will be reduced. 2.

Local mapping is medium negatively correlated with the internet bandwidth usage,

since increasing internet bandwidth can reduce the time spent on accessing remote

database/GPS and therefore reduce the local mapping time. 3. Absolute KeyFrame

Trajectory RMSE is positively related with the CPU usage and memory usage, as

increasing the computation accuracy requires more hardware resource.

6

Next we correlate the customer requirements to the engineering specification. As is

mentioned before, Accurate localization will be judged according to the value of

absolute KeyFrame Trajectory RMSE; Real-time localization will be judged according

to the value of average tracking time and average local mapping time.

Finally, we make the importance rating and normalized target values for each

engineering specifications, which are shown in the QFD chart.

4. Concept Generation

The core of our system is a visual SLAM algorithm. There are two state-of-the-art

visual SLAM algorithms, namely ORB-SLAM ([8]) and LSD-SLAM ([7]). Here we

show a detailed comparison between them. To satisfy the accuracy and storage

requirement, we select ORB-SLAM as the framework of our system.

Notably, besides a camera, an Inertial Measurement Unit is also available on a Huawei

P9, which consists of an accelerometer and a gyroscope. The IMU measurements can

help visual SLAM algorithm better handle fast and sudden motions. Thus we decide to

use both sensors in the design.

Table 4.1: Comparison between ORB-SLAM and LSD-SLAM.

To utilize the merits of both sensors and to make them work seamlessly and robustly,

a visual-inertial sensor fusion algorithm is applied. Currently, there are also two main

stream methods for this purpose, so called loosely-coupled and tightly-coupled

methods. As the names suggest, the loosely-coupled methods ignore intrinsic structure

of the problem but apply variants of Kalman filters (EKF, UKF, etc.)

straightforwardly ([12]). On the other side, the tightly-coupled methods fully utilize

the structure and express the problem as an optimization objective ([14]). In general,

tightly-coupled methods have much better accuracy but with higher computational

burden, due to solving a non-linear least square problem.

7

However, because the ORB-SLAM is formulated as an optimization problem which is

in a similar form of tightly-coupled methods, the extra computational burden can be

ignored and thus the higher accuracy comes at free.

In the validation section, we provide a detailed comparison among vision-only,

loose-coupled and tightly-coupled methods, which clearly shows the superiority of

tightly-coupled methods.

5. Design Description

This section describes the selected concept in detail. Three main parts are discussed,

System Overview, Android Application, and 3D Map Reconstruction.

5.1 System Overview

Our system is the first SLAM system, in academic corpus, that successfully combines

visual-inertial sensor fusion with the most accurate and the most comprehensive SLAM

algorithm (ORB-SLAM). Before us, many researchers employed visual-inertial fusion

on specific application, such as aerial vehicle control and therefore chose to embed a

visual-inertial fusion algorithm into a dense SLAM system ([15]) and ignore local

mapping and loop-closing for simplicity. In contrary, as a general SLAM solution, our

system utilizes every single possible technique, including visual-inertial fusion, local

mapping, loop-closing, two-way marginalization to boost SLAM accuracy.

The design uses both camera and Inertial Measurement Unit (IMU) on Huawei P9 to

feed data into the SLAM system. In order to obtain robust estimation of camera pose,

the visual SLAM algorithm (ORB-SLAM) is augmented with a visual-inertial data

fusion algorithm to take advantage of the complementary natures of visual and inertial

measurements. Specifically, our system is able to work robustly under fast and slow

motions of the mobile devices as well as in crowded scenes.

8

Figure 5.1: System Overview.

It’s well-known ([15]) that visual signal can be utilized to estimate slow motions but it

usually loses tracking under fast and sudden motions. On the other hand, inertial

signal is noisy and subject to bias drift but it’s able to estimate fast motions using

proper filtering mechanism.

In our system, specifically, the visual signal captured by the camera goes through a

visual SLAM algorithm, ORB-SLAM in this case, to generate visually estimated

poses. At the mean time, the IMU generates noisy but outlier-free inertial

measurements of the camera pose as well. Then a visual-inertial data fusion algorithm

is adopted to take advantage of the complementary natures of both signals. The pose

estimations going out of the pipeline are expected to be robust under both slow and

fast motions.

9

Figure 5.2: Asynchronous measurement rates of camera and IMU.

For sake of limited space, we omit the details of common visual SLAM algorithms

and we refer interested readers to a complete survey [14] for details. However, we

emphasize our unique contribution, with detailed mathematical derivation, of

augmenting the state-of-the-art feature based visual SLAM algorithm (ORB-SLAM)

with inertial information to circumventing the well-known limitations faced by all

visual SLAM systems, such as scale ambiguity and poor fast motion estimation.

From a high-level perspective, the tightly coupled visual-inertial SLAM can be

captured by a non-linear least square optimization problem over state vectors χ

which is formally defined as

The state vectors χ represents a trajectory of the camera frame, which consist of the

position, rotation, and velocity estimates from the initial time instant 0 to the current

time instant k. In the optimization object, the first term is a prior regularization on the

χ, calculated from two-way marginalization ([15]). The third term is the core of a

visual SLAM algorithms, which searches for plausible camera poses that could

explain the matched visual feature points among consecutive frames. Most

importantly, the second term represents inertially measured motion constraints

between two consecutive frames. For example, we can simply integrate the readings

between two frames to get an approximate estimation of the rotate the camera

encountered during the period. As a matter of fact that gyroscope readings are

10

accurate in short term, we know the final solution to the optimization above shouldn’t

deviate too much from this estimation. The specific form for the inertial regularization

term will be defined soon.

In practice, on Huawei P9, the IMU measurement rates (~100Hz) is much higher than

camera measurement rate (~30Hz) and these rates vary through time. As a result, our

system assumes asynchronous measurement rates of camera and IMU, as shown in

Figure 5.2. Specifically, a non-exhaustively running thread keeps collecting and

processing IMU measurements between consecutive captured camera frames, to

generate inertially measured motion constraints.

Mathematically, assuming the axes of camera and IMU are perfectly aligned, between

the k-th and the k+1-th key camera frames, the inertial information is summarized as a

10-dimensional vector �̂�k+1
k :

where at
b and ωbt are the instantaneous linear acceleration and angular velocity in

the IMU body frame at time t respectively, while Rt
k is the 3D rotation matrix of the

camera frame from time instant t with respect to time instant k, and qt
k is its

corresponding quaternion representation.

Finally, we can define the regularization term for the inertial measurements as:

where the vector g0 is the gravity and the vector vk is the velocity of the

camera frame at time instant k.

As the core of ORB-SLAM system is solving Bundle Adjustment problems (similar

11

to the third term in the optimization objective), adding two more regularization

terms incur little extra computational complexity and makes the overall

optimization problem more well-behaved by eliminating the scale ambiguity.

5.2 Android Application

The main prototype of our project is the Android application to deliver. The

application, developed and tested on Android studio, is run on HUAWEI P9. The

application, in short, lets users use camera to select certain view angles and the

application correspondingly will analyze and process the images to produce respective

key points and visual pose and other SLAM results.

Figure 5.3: App welcome splash screen.

As far as the application works to the user, the application first opens and shows a

welcome splash screen to indicate to the user who developed and/or supported the

application and show a logo of the application. Afterwards the screen will appear as a

double-layered camera screen with the smaller screen appearing as if the user is just

videoing the surroundings and the bigger screen will show the same images but with

key points appearing as small dots and visual pose estimation appearing as green

strokes. This is the application reading information from the camera of the phone’s

surroundings and analyzing to produce visual SLAM results. At the meantime, inertia

measurement sensors will also help the process by integrating its inertially estimated

pose and visually estimated pose from the camera to achieve the final estimation of

the camera pose.

12

Figure 5.4: App GUI.

The android application architecture is roughly a two-layer architecture, which is

shown in the following figure. On the top of the layers is the JAVA layer, which

provides the user-interface, interaction with the camera and inertia measurement units,

result visualization. In the JAVA layer, we use OpenCV camera modules and android

sensor APIs to capture camera frames from camera and sensor information from

inertia units. Furthermore, we use OpenGL to visualize the camera poses and map

points. We decided to implement these functions in the JAVA layer since they are not

performance critical. At the bottom is the C++ native layer, which consists of the

SLAM module and the Dalvik Virtual Machine. The Dalvik virtual machine provides

communication between the JAVA layer and the actual hardware. The SLAM system

calculates the map points in each frame and estimate the camera poses based on the

input information. We decided to use the state of the art ORB-SLAM system and add

our novel data-fusion algorithm into it so that it can process both inertia information

and visual information. We chose to implement the SLAM system with native C++,

because it is performance-critical.

Figure 5.5: App Architecture.

13

Figure 5.6: Data-flow in the App.

The application works in all scenarios geographically in that whether the environment

is crowded or roomy, whether the user is moving fast or slow while using the

application, while the user is moving among a vast or small area, the application will

work just as normally, smoothly, and correctly.

5.3 3D Map Reconstruction

In order to visualize our SLAM result, we applied 3D Map Reconstruction to make it

more realistic.1 Figure 5.7 shows the flow chart of 3D Map Reconstruction. More

details are illustrated in APPENDIX B.

Figure 5.7: 3D Map Reconstruction Flow Chart.

1 In DR#3, Prof. Ma asked why 3D Map Reconstruction is applied since it is not a requirement.

14

 Scale-invariant Feature Transform

First, we took a video of the structure by HUAWEI P9. Then, we captured photos

from the video. For each photo, we identified correspondences/feature points,

especially corner points, using the algorithm called SIFT (Scale-invariant Feature

Transform developed by David Lowe). Furthermore, we could match these feature

points between any pair of these photos.

 Structure-from-Motion

With the matched feature points, we could calculate the camera poses. The algorithm,

called SfM (Struture-from-Motion developed by Noah Snavely), mainly applied the

knowledge of rigid body motion in 3D, Relative Motion, and triangulation to reflect

the camera motion between two adjacent photos. Taking the initial camera pose as the

key coordinate system, we were able to get all the camera poses (each one

corresponding to each photo) from the calculated camera motions. The next step is

just to transform all the feature points from the auxiliary coordinate systems into the

key coordinate system so as to obtain sparse point clouds of the 3D map.

 Multi-View-Stereo

The sparse point clouds are not as visualized as we actually can see from the structure.

Therefore, the algorithm called MVS (Multi-View-Stereo developed by Yasutaka

Furukawa) is implemented subsequently. The main idea is to transform sparse point

clouds into dense point clouds by iteratively expanding feature points to nearby

locations [13].

Figure 5.8 shows the 3D map reconstruction of JI Building. Figure 5.9 shows the 3D

map reconstruction of Yu Liming Center. The quality is influenced by the video

clarity, distortion, brightness, etc. Although it is not perfect, the location can be

clearly identified and we think that’s enough for our application.

15

Figure 5.8: 3D Map Reconstruction of JI Building.

Figure 5.9: 3D Map Reconstruction of Yu Liming Center.

16

6. Validation Plan

Upon finishing implementing, we test for following engineering specifications:

 Localization error

 Frame rate

 Localization time

 CPU usage

 Memory usage

 User learning time

 Cost

Firstly, we validate our design choices in terms of localization errors by comparing

vision-only, loosely-coupled and tightly-coupled (ours). As a matter of fact that there

is no ground truth data available in real-life environment, we run all of the

experiments on a PC using EuRoC MAV dataset ([16]) which is an open benchmark

for visual-inertial SLAM. Since the localization accuracy depends mainly on the

algorithm instead of specific platforms. We are confident that the test results on a PCs

can truly reflect the competence of the algorithm on a mobile device.

17

Above is a 2D map constructed using different SLAM methods on a long term route

in the EuRoC MAV dataset. This result is firstly reported by [17] and we replicate

their experimental result by our own. As expected, the loosely-coupled approach

shows approximately no performance gain over the vision-only method, while our

tightly-coupled method exhibits the closest route to the ground truth.

We also run several short-term indoor experiments to get quantitative results on

localization error. As we found out, the translation error <= 5% and orientation error

<= 2% which both decrease linearly as the distance traveled increases.

To measure the localization time, we monitored the frame rate of the SLAM system,

i.e., how many camera frames our mobile system can process per second, and used the

relation 𝐿𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 =
1

𝑓𝑟𝑎𝑚𝑒𝑠 𝑟𝑎𝑡𝑒
 to obtain the localization time. We tested

the mobile application in three different scenes, including Yu Liming Center, a

hallway in the dormitory and the road next to the JI building. Based on our

observation, the frame rate of our system is never below 15 fps in different scenes, so

we concluded that the localization time of our system should not be greater than 66.7

ms, which is well below the target value required by the company sponsor.

Figure 6.1: Monitoring real-time frame rate

To measure the CPU usage and Memory usage, we utilized the Android Debugging

Bridge (ADB) to set up shell access to the Huawei P9 device, and then monitored the

CPU usage and memory usage via shell access from the laptop using the top

command in the shell. The top command displays real-time information of processes

running on the android kernel, including the CPU usage (in %) and the physical

memory usage (in KB). We monitored the real-time CPU usage and memory usage

while we tested the mobile application in three different scenes mentioned above.

18

Based on our observation, the peak CPU usage is 51% and the peak physical memory

usage is around 508MB (12.4% of the total physical memory) among three different

scenes. Therefore, we conclude that the peak CPU usage slightly exceeds the

constraint and the peak memory usage is well below the constraint.

Figure 6.2: Monitorint the CPU and Memory Usage with adb

To measure the user learning time, we randomly picked 10 people and measured the

average time for to them to learn to use our android application. The result showed

that all the users learnt to use the application within 1min. This is due to our simple

UI design.

For internet bandwidth usage, since the mobile application does not use network, the

internet bandwidth usage is 0%.

For cost, since we only spend 3,688 RMB on our Huawei P9 phone, the cost in this

project is 3,688 RMB.

To sum up, followings are our outcomes for the validation results.

 Localization error:

translation = 5% <= 5%, orientation 2% < 5%

 Localization time = 66.7 ms < 100ms

 Peak CPU usage = 51% > 50%

 Peak Memory usage = 12.4% < 25%

 Internet Bandwidth usage = 0% < 10%

 User learning time = 1min < 10min

 Cost = 3,688 RMB < 5,000 RMB

19

7. Project Plan

This section presents the schedule of our project in the form of Gantt Chart, each team

member’s work assignment, and the budget.

7.1 Gantt Chart

Figure 7.1 shows the Gantt Chat of our project. By June 16, we finished our literature

research. That is, we had every material we needed and every tool we used. As

scheduled, By June 30, we managed to migrate the ORB_SLAM source code into

visual-inertial algorithm. Later, we focused on the recompilation of the source code

from Linux platform to Android platform. This assignment lasted for about two weeks.

At meantime, the development of GUI was taken into action as well. Then, at the end

of July, we started to test the performance of our prototype. Especially, accuracy and

efficiency were considered as two most important characteristics.

20

Figure 7.1: Gantt Chart.

We completed our project at the beginning of August. Currently, we are just on

schedule and preparing ourselves for the oral defense and final report.

7.2 Work Assignment

Mei and Shen are focusing on the implementation of 3D map reconstruction algorithm.

It is called multi-view-stereo (MVS), developed by Yasutaka Furukawa, a Japanese

professor.

Chen and Zhang are learning the structure of ORB_SLAM source code. Later, they

will concentrate on the modification and development for our use.

21

Li is working on the recompilation of the source code from Linux platform to Android

platform. As mentioned, our project will be finally operated on HUAWEI P9, which

is an Android-based smartphone.

7.3 Budget

Note that our project is a pure software development and the only hardware we will

use is an Android-based smartphone, which can be borrowed conveniently. After

discussion with Prof. Chengbin Ma, we bought HUAWEI P9 for 3,688 RMB. As a

result, the total cost of our project is 3,688 RMB by now.

8. Conclusion

Our application is able to realize SLAM on Huawei P9 and the 3D map reconstruction

system offline is capable of visualization. Peak CPU usage is 1% beyond our

expectation. All other specifications, including localization error, localization time,

peak memory usage, internet bandwidth usage, user learning time, and cost have been

satisfied.

9. Acknowledgements

This project was carried out under the direction of Mr. Zhijie Wang from HUAWEI,

together with the help of Prof. Chengbin Ma and Prof. Mian Li from UM-SJTU Joint

Institute. Many thanks to them!

22

REFERENCES

[1] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, “MonoSLAM: Real-time

single camera SLAM,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 29, no. 6, pp. 1052–1067, 2007.

[2] J. Civera, A. J. Davison, and J. M. M. Montiel, “Inverse depth parametrization for

monocular SLAM,” IEEE Transactions on Robotics, vol. 24, no. 5, pp. 932–945,

2008.

[3] A. Chiuso, P. Favaro, H. Jin, and S. Soatto, “Structure from motion causally

integrated over time,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 24, no. 4, pp. 523–535, 2002.

[4] E. Eade and T. Drummond, “Scalable monocular SLAM,” in IEEE Com- puter

Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1,

New York City, USA, June 2006, pp. 469–476.

[5] E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, and P. Sayd, “Real time

localization and 3d reconstruction,” in Computer Vision and Pattern Recognition,

2006 IEEE Computer Society Conference on, vol. 1, 2006, pp. 363–370.

[6] G. Klein and D. Murray, “Parallel tracking and mapping for small AR workspaces,”

in IEEE and ACM International Symposium on Mixed and Augmented Reality

(ISMAR), Nara, Japan, November 2007, pp. 225–234.

[7] J. Engel, T. Scho ̈ps, and D. Cremers, “LSD-SLAM: Large-scale direct monocular

SLAM,” in European Conference on Computer Vision (ECCV), Zurich,

Switzerland, September 2014, pp. 834–849.

[8] Mur-Artal, Raul, J. M. M. Montiel, and Juan D. Tardós. "Orb-slam: a versatile and

accurate monocular slam system." IEEE Transactions on Robotics 31.5 (2015):

1147-1163.

[9] S. Shen, Y. Mulgaonkar, N. Michael, and V. Kumar, “Vision-based state

estimation and trajectory control towards high-speed flight with a quadrotor,” in

Proc. of Robot.: Sci. and Syst., Berlin, Germany, 2013.

[10] D. Scaramuzza, M. Achtelik, L. Doitsidis, F. Fraundorfer, E. Kosmatopoulos, A.

Martinelli, M. Achtelik, M. Chli, S. Chatzichristofis, L. Kneip, D. Gurdan, L. Heng,

G. Lee, S. Lynen, L. Meier, M. Pollefeys, A. Renzaglia, R. Siegwart, J. Stumpf, P.

Tanskanen, C. Troiani, and S. Weiss, “Vision-controlled micro flying robots: from

system design to autonomous navigation and mapping in GPS-denied

environments,” IEEE Robot. Autom. Mag., vol. 21, no. 3, 2014.

[11] J. A. Hesch, D. G. Kottas, S. L. Bowman, and S. I. Roumeliotis, “Consistency

analysis and improvement of vision-aided inertial navigation,” IEEE Trans. Robot.,

vol. 30, no. 1, pp. 158–176, Feb. 2014.

[12] M. Li and A. Mourikis, “High-precision, consistent EKF-based visual-inertial

odometry,” Intl. J. Robot. Research, vol. 32, no. 6, pp. 690–711, May 2013.

23

[13] R. Fergus, “Multi-view Stereo & Structure from Motion,” [Online]. Available:

http://cs.nyu.edu/~fergus/teaching/vision/11_12_multiview.pdf.

[14] Aulinas, Josep, et al. "The SLAM problem: a survey." CCIA. 2008.

[15] Y. Ling, T. Liu, S. Shen, “Aggressive Quadrotor Flight Using Dense

Visual-Inertial Fusion.” ICRA. 2016.

[16] Burri, Michael and Nikolic, Janosch and Gohl, Pascal and Schneider, Thomas and

Rehder, Joern and Omari, Sammy and Achtelik, Markus W and Siegwart, Roland,

“The EuRoC micro aerial vehicle datasets”, International Journal of Robotic

Research, 2016.

[17] Leutenegger, Stefan, et al. "Keyframe-based visual–inertial odometry using

nonlinear optimization." The International Journal of Robotics Research, 2015.

A-1

APPENDIX A: Biographical Sketches

1. Jie Mei

This is Jie Mei. I am a graduate student learning Naval

Architecture and Marine Engineering in University of Michigan,

and an undergraduate student learning Mechanical Engineering in

SJTU-UM Joint Institute. I am going to finish my graduate school

in May, 2017. However, I do not have a very clear future plan yet.

Due to the poor oil market, getting a job in ship building or oil

company is nearly impossible. So I am switching to mechanical

engineering again starting from next semester. My life is composed of study, basketball,

reading, and visiting my girlfriend, who is working in Hong Kong. I need to keep hard working

on hunting for a decent job to live with her, with some dignity.

2. Junjie Shen

I am Junjie Shen, a senior ME student at UM-SJTU Joint

Institute. I am born in Shanghai and have never left for

long. My parents both major in ME and this may be one of

the main reason why I choose ME as my career. As a

teenager, I enjoyed building models and making origamis.

I also attended a lot of science and technology

competitions and won many of them, which contributes to

another prime reason why I choose ME. Essentially, I

succeeded in going to the Joint Institute. After four-year ME undergraduate education,

I am capable of using CAD software, LabVIEW, MATLAB, etc. My research of

interest lies in Systems and Control, Mechanisms Design, and Robotics. After

graduation, I plan to further my graduate education in the United States. In fact, I have

been admitted as a PhD student in the Mechanical and Aerospace Engineering

Department at UCLA, which is a great honor. I will continue to major in ME and

especially concentrate on the area of robotics. Subsequent to my PhD program, I plan

to come back to China to continue working on projects related to my dissertation.

Practical application area of my research will be robotics and the Chinese robotics

market is in a great need of researchers. At my leisure time, I like doing sports,

particularly, basketball and jogging. I am also fond of movies and music for

relaxation. Thank you!

A-2

3. Xi Chen

I am Xi Chen, a senior ECE student at UM-SJTU Joint

Institute and just graduated as a CSE student at University of

Michigan, Ann Arbor. I’m born in Tianjin, a northern city,

and moved to Shanghai when I was 9. My parents are both in

ME and this may be one of the main reasons I chose ECE

instead of ME. As a teenager, I never really considered either

ME or ECE as a future career, even after I graduated from

high school. In a way, I entered the Joint Institute without

knowing what I want to do in my later career in advance. With

my parents objection I opted out ME and chose ECE and pretty much liked it freshman

and sophomore year. After data structure and algorithm class in UMich, I realized I

want to be in the CS area. After two years at SJTU and two years at UMich, I’m capable

of programming in C/C++, Python, and some PHP, Javascript, and a bit of Java. My

interest lies in Natural language processing. After graduation I plan to start my career

and join Microsoft in Seattle as a software engineer in Windows operating system team.

At my leisure time, I’m a huge movie fan and I love eating at newest and best

restaurants and bakeries. I also love skiing, which I’m not able to enjoy in Shanghai,

unfortunately. Thank you!

4. Yi Zhang

I’m Yi Zhang, a senior ECE student at UM-SJTU Joint

Institute, and have received a BSE degree in Computer

Science from University of Michigan, Ann Arbor. I’m

specifically interested in Artificial Intelligence and I

have been involved in front-end research of machine

learning under mentorship of Prof. Honglak Lee since

my junior year. Fortunately, I have published two

papers at top conferences of Machine Learning during

my undergraduate years. After graduation, I’ll pursue a PhD degree in Computer

Science at Princeton University and will hopefully continue to contribute to Artificial

Intelligence research. At leisure time, I play basketball and work out a lot. I’m also a

big fan of movie and music.

A-3

5. Yuhao Li

I am Yuhao Li, a senior ECE student at UM-SJTU Joint

Institute. I just received my B.S.E. in Computer Engineering

from the University of Michigan. After graduation, I am going

to pursue a Ph.D. in Computer Science at Duke University. My

research interest lies in the interface of computer architecture

and computer system. Specifically, I am interested in research

topics about large-scale datacenter design, such as energy

efficiency, resource allocation, etc. I am a huge fan of TV

series. I have been supporting Arsenal F.C. (an English

professional football club) for 14 years.

B-1

APPENDIX B: 3D Map Reconstruction

VisualSFM (http://ccwu.me/vsfm/) is an open source software developed by

Changchang Wu under GPL licence. It is used for 3D reconstruction using SfM. The

system integrates several projects to obtain sparse point clouds of the structure.

However, for dense reconstruction, this program requires the execution of Yasutaka

Furukawa’s CMVS/PMVS tool chain, which can be obtained from

http://francemapping.free.fr/Portfolio/Prog3D/CMVS.html.

Figure B-1 shows the operation process overview.

Figure B-1: Operation Process Overview. Retrieved from http://ccwu.me/vsfm/.

Step 1: Add some images.

You can see the image data from the log window.

http://ccwu.me/vsfm/
http://francemapping.free.fr/Portfolio/Prog3D/CMVS.html
http://ccwu.me/vsfm/
http://ccwu.me/vsfm/doc.html#usage

B-2

Step 2: Match the images.

Step 3: Sparse Reconstruction.

Camera poses are calculated first.

B-3

Step 4: Dense Reconstruction.

Step 5: Press Tab to see the result.

The corresponding 3D Model file (.ply) can be found in the root directory.

