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ABSTRACT OF THE DISSERTATION
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by
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Professor Dennis Hong, Chair

From the dawn of time humans have been trying to recreate themselves with the tech-

nology of each age. What is impressive about humans is their capabilities of navigating the

world and manipulating the world around them. It is these abilities that we wish to repli-

cate in machines which can potentially overturn our daily lives. The recent advancements of

robotics allow us to get closer than ever before to this realm of fantasy. For decades we have

seen the incredible performance of automation robots in the factories, but we still have yet

to see humanoid robots be utilized to aid humans in the everyday world. This is due in large

part to the fact that the approaches to effectively navigating these two environments are dif-

ferent. The automation robots operate in the specifically structured environments. They are

usually fully actuated with their bases being fixed, which grants them full control authority

at all times. Simple control strategies are adequate under these conditions. Unfortunately,

this is not the case with the humanoid robots in the real world.

Significantly faster development in quadruped robots than humanoid robots has been wit-

nessed as recently there has been a large surge in the number of quadruped robots available
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for commercial use. Compared to quadruped robots, humanoid robots are typically more

mechanically complex and intrinsically unstable. This poses two critical challenges in the

study of humanoid robots. First, accessibility to the physical hardware is limited as either

it takes too much effort to develop a humanoid robot platform independently, or the com-

mercially available ones, if any, are too expensive to afford. Second, as the humanoid robot

system is considerably more challenging than the quadruped robot system, more advanced

and efficient control algorithms are essential, especially when it comes to robust bipedal

locomotion which is the fundamental capability of humanoid robots.

This dissertation aims at addressing some of the problems in these challenges. First, a

next-generation miniature bipedal robot with proprioceptive actuation capable of dynamic

behaviors is being under development. The robot is named BRUCE – Bipedal Robot Unit

with Compliance Enhanced. The BRUCE robot is desired to serve as an accessible and

reliable humanoid robot platform for general research purposes. It is expected to become

open-source with an affordable price for the robotics community in the near future. Second,

a state-of-the-art dynamic bipedal locomotion control framework is being studied. The

approach is general and versatile as it is able to achieve a strong robustness of stabilizing a

wide range of dynamic bipedal locomotion gaits including walking, running, and hopping.

The effectiveness of the locomotion control framework was validated on the BRUCE robot

both in simulation and with physical hardware.
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Chapter 1

Introduction

1.1 Motivation

Recently, the topic of humanoid robots has been placed under the spotlight. CyberOne

[1], Xiaomi’s first humanoid robot, debuted at the company’s new product launch event in

Beijing on August 11th, 2022. Just a month later, Optimus [2] was unveiled at Tesla AI

Day 2022 on September 30th. There are many other remarkable humanoid robots which

we are already familiar with, e.g., ASIMO [3] from Honda, Digit [4] from Agility Robotics,

and Atlas [5] from Boston Dynamics. A lot of companies, domestic or foreign, giants or

start-ups, high-tech or even low-tech, have been working on humanoid robots or putting it

on the schedule. As humanoid robots are attracting more and more attention in industry

(not to mention academia), debates on humanoid robots surge in the meantime. Some of

the most typical ones are listed as follows with my personal thoughts:

• First of all, why robots at first place?

In the past process of civilization, we human beings have clearly realized our physi-

ological limits, e.g., humans cannot endure high or low temperature, hear ultrasound

or infrasound, see infrared or ultraviolet, not to mention limited working intensity,

efficiency, and duration. In order to make up for the deficiency, we have been building

1



a wide variety of tools, devices, and machines to accomplish the tasks which we do not

want to or even cannot engage, e.g., repetitive, intensive, and dangerous tasks. For an

easy task, a simple tool can suffice. However, for a complicated one, we might need

an advanced machine to resolve and this is where robots come into play. A robot,

in general, is an advanced machine that can sense, plan, and act. For decades we

have seen robots have incredible success in industrial applications, e.g., health care,

agriculture, food preparation, manufacturing, and military. They are capable of ac-

complishing these jobs with high endurance, speed, and precision. There is no doubt

that the robotic technologies have impacted our lives in countless ways.

• Then why humanoid robots?

There are many advantages of the human form:

1. Although we humans may not be the best in every aspect, e.g., we cannot run as

fast as cheetahs, climb as agile as monkeys, swim as fluid as fishes, we are general

and versatile. We can pretty much go anywhere and do anything. Integration

of different functions is always a great advantage for any products. Just like the

Ultimate Orb in Dota whose attributes grant the same bonuses as those of ten

Iron Branches, it is much more expensive but saves the item slots ⌣. Just like the

smartphone in everyday life, it combines tons of tools and devices into one unit.

It is not only a mobile telephone but also a mini computer, a camera, a wallet,

etc. Human life has completely changed ever since the creation of smartphone

and I believe humanoid robots have the potential to overturn it again.

2. If we want to have robot operate around/for us in human environments, it would

be convenient to have the human form. There is no denying that the entire world

is specifically designed for us humans, e.g., the door size, the stair height, all the

tools we use, the devices, the facilities. If it is of the human form, we just need

to have the robot adapt to it. If not, however, we might need to recreate all of
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these for robot use only, which can take too much effort.

3. Humanoid robots are expected to have a close relationship with human beings in

the everyday world, and psychologically, the human shape looks more approach-

able as living/working partners.

• Given the large advancements in robotics, why is it still difficult to develop humanoid

robots?

There are many difficult problems in developing humanoid robots as it is inherently

cross-disciplinary, e.g., machine vision, perception, learning, artificial intelligence, en-

ergy source, just to name a few, which are beyond the scope of this dissertation.

Mobility is another tough challenge and locomotion is the fundamental. The robot

must integrate the sensor inputs, make an environmental model, interact with the en-

vironment, plan its movements, and then send commands to its actuators.

The robots can perform greatly in the factories but not in the everyday world. This

is due in large part to the fact that the approaches to effectively navigating the two

environments are different. In the factories:

1. The environment is structured and controlled.

2. The robots are typically fully actuated with fixed bases, e.g., robotic manipulators,

which grants them full control authority at all times.

3. The robot states can be directly measured with high accuracy.

4. Compliant interaction with the environment is usually not required and instead,

high precision, stiffness, and strength are preferred.

5. Simple control strategies can be used under these conditions.

Unfortunately, this is not the case with the legged/humanoid robots in the real world:

1. The environment is unstructured and can be changing.
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2. By removing the fixed contact to the ground the system can become underactu-

ated with a floating base, which limits the control authority.

3. With the additional floating-base joint, the robot states now can no longer be

directly accessed, but instead sensor fusion and advanced filtering techniques are

required.

4. For legged/humanoid robots, when a foot makes contact with the ground a col-

lision occurs imparting an impulse to the system. These collisions must be ef-

fectively mitigated for the sake of system stability. However, hardware-wise, the

common actuators for the robots in the factories do not incorporate compliance

and thus are not capable of handling the impacts.

5. For legged/humanoid robots, the control of the robot motion is now done mainly

through regulating the contact forces at changing contact locations. These contact

forces are strongly restricted and thus need to be carefully planned to achieve the

desired behavior. In addition, the system is now no longer continuous since as the

robot travels different feet are in contact with the environment at different times.

Under these circumstances, simple control approaches are no longer feasible and

instead advanced motion planning and control techniques are required in order to

account for the complex system dynamics.

Significantly faster development in quadruped robots than humanoid robots has been

witnessed recently in terms of locomotion capability. Compared to quadruped robots, hu-

manoid robots are typically more mechanically complex, requiring more powerful actuators

and more degrees of freedom, as well as being more intrinsically unstable. This poses two

critical challenges in the study of humanoid robots:

1. Accessibility to the hardware platform is limited as either it takes too much effort to

develop a humanoid robot platform independently or the commercially available ones,

if any, are too expensive to afford. As we know, one of the biggest issues in developing
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robotics is the difference between the simulation and the real world, i.e., what works

in the simulation will likely not be reflected exactly in the real world. It is therefore

necessary to perform meticulous testing on the physical robot in order to adjust the

system to function as desired. After all, a perfect robot in the simulated world is no

use for us in the real world.

2. As the humanoid robot system is highly nonlinear and complex, nominally underactu-

ated and unstable, multi-input and multi-output, as well as time-variant and hybrid

(considerably more challenging than the quadruped robot system), more advanced and

efficient control algorithms are essential especially for robust bipedal locomotion.

This dissertation aims at addressing some of the problems in these challenges. Particularly,

first, a next-generation miniature bipedal robot capable of dynamic behaviors is being under

development for general research purposes. The robot is named BRUCE – Bipedal Robot

Unit with Compliance Enhanced. It is expected to become open-source with an affordable

price for the robotics community in the near future. Second, a state-of-the-art dynamic

bipedal locomotion control framework is being studied. The approach is general and versatile

as it intends to achieve a strong robustness of stabilizing a wide range of bipedal locomotion

gaits including walking, running, and hopping.
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1.2 Background

A humanoid robot is a robot resembling the human body in shape. In general, humanoid

robots have a torso, a head, two arms, and two legs, though some humanoid robots may

replicate only part of the human body for different purposes, e.g., bipedal robots with only

a torso and two legs for the study of bipedal locomotion.

1.2.1 A Brief History of Humanoid Robots

Automata

Automata are known as the early ancestors of robots but technically they are not robots,

as they can only act but cannot sense and plan. The word “automaton” is the latinization

of the Ancient Greek “αὐτόματον”, which means acting of one’s own will. It is more often

used to describe relatively self-operating machines, especially those made to resemble human

or animal actions, which can automatically follow a sequence of operations or respond to

predetermined instructions.

The idea of humanoid automata originated in many ancient civilizations including An-

cient Greece and Ancient China. In various ancient Greek mythologies, the Greek god of

blacksmiths, Hephaestus, created several different humanoid automata which can speak and

work for him [6]. In the 3rd century B.C., the Liezi, a Daoist text attributed to Chinese

philosopher Lie Yukou, includes mention of an engineer named Yan Shi who created a life-

size, human-like automaton for the emperor King Mu of Zhou [7]. It was primarily made of

leather and wood, capable of singing and dancing. In the 13th century, a Muslim engineer

named Ismail al-Jazari designed various humanoid automata [8]. One of them was a wait-

ress that could serve drinks. In the 15th century, Leonardo da Vinci designed a humanoid

automaton clad in a suit of armor, capable of sitting, standing, raising its visor, and indepen-

dently manoeuvring its arms [9]. The entire system was operated by a series of pulleys and

cables. In the 18th century, French inventor Jacques de Vaucanson built The Flute Player,
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a wooden, human-sized automaton capable of playing various melodies with the flute [10].

It consisted of a system of bellows, pipes, weights, and other mechanical components to

simulate the muscles necessary to play the flute. In the 19th century, Japanese craftsman

Hisashige Tanaka was developing perhaps the first mobile humanoid automaton, Karakuri

puppet, a tea carrying doll [11]. When the spring is wound, it “walks” forward with a cup

of tea while bowing its head.

These examples are just the tip of the iceberg, not to mention the unimaginable undocu-

mented ones. It is interesting to see that from the dawn of time humans have been interested

in recreating themselves with the technology of each age.

Early Robots

The term “robot” was first used to denote a fictional humanoid robot in the play R.U.R.

(Rossum’s Universal Robots) by Czech playwright Karl Čapek in 1920. In the play, artificial

people were built to work on factory assembly lines but eventually rebelled against their

human masters. According to Karl, the word was actually created by his brother Josef

Čapek from the Czech word “robota” which means forced labor.

In 1927, Japan’s first humanoid “robot”, Gakutensoku, was designed and constructed

by biologist Makoto Nishimura [12]. It was actuated by compressed air, could write fluidly

and raise its eyelids. Gakutensoku means “learning from the laws of nature” and was not

designed as a laborer but to think, write, and entertain.

In 1928, the first British humanoid “robot”, Eric, was exhibited at the annual exhibition

of the Model Engineers Society in London [13]. At the event’s opening, Eric rose to his feet,

bowed, and gave a four-minute opening address. Invented by William Richards and Alan

Reffell, the robot’s frame consisted of an aluminium body of armor with eleven electromag-

nets and one motor powered by a 12 V power source. The robot could move its hands and

head, and could be controlled through remote control or voice control.

In 1939, the humanoid “robot” known as Elektro, built by the Westinghouse Electric
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Corporation, appeared at the World’s Fair in New York [14]. Standing 2.1 meters tall and

weighing 120 kilograms, it could walk by voice command, speak about 700 words, smoke

cigarettes, blow up balloons, and move its head and arms. The body consisted of a steel

gear, cam, and motor skeleton covered by an aluminium skin. Its photoelectric “eyes” could

distinguish red and green light.

Though these nearly modern robotic devices are equipped with more advanced hardware

structures and control mechanisms, capable of more complicated task behaviors, they are

still considered more as automata than as robots because at its most basic, they lack the

sense of autonomy.

Modern Autonomous Robots

It was not until 1942 that science fiction writer Isaac Asimov coined the word “robotics” in

his short story “Runaround” and formulated the Three Laws of Robotics [15]:

• First Law - A robot may not injure a human being or, through inaction, allow a human

being to come to harm.

• Second Law - A robot must obey the orders given it by human beings except where

such orders would conflict with the First Law.

• Third Law - A robot must protect its own existence as long as such protection does

not conflict with the First or Second Law.

In 1954, the world’s first digitally operated and programmable robot, Unimate, was

invented by George Devol, which represents the foundation of the modern robotics industry

[16]. The machine undertook the job of transporting die castings from an assembly line and

welding these parts on auto bodies, a dangerous task for workers who might be poisoned

by toxic fumes or lose a limb if they were not careful. Since then, industrial robots have

been refined and expanded, capable of performing a variety of other tasks. Additionally,
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robots have made their way out of manufacturing and into other industries such as medicine,

agriculture, entertainment, and space exploration.

In 1966, Professor Ichiro Kato carried out the first studies concerning humanoid robots

at Waseda University in Japan, with the artificial lower limb WL-1 and upper limb WAM-1.

This work later led to WAP-1, 2, 3, a series of biped walking robots. In 1973, he introduced

the first full-scale anthropomorphic robot developed in the world, WABOT-1, which walked

with its lower limbs, and was able to grip and transport objects with hands which used tactile-

sensors [17]. A number of other humanoid and bipedal robots capable of stable walking were

built afterwards, e.g., WABIAN series [18].

Since the advent of WABOT-1, robot fever has broken out all over the world. In partic-

ular, this work pioneered the field of early anthropomorphic robots, the legs of which have a

minimum of six degrees of freedom (DoF), i.e., a 3-DoF hip to simulate a spherical joint, one

DoF for knee bending, and two DoFs for an ankle ball joint, in order for the feet to be able

to achieve arbitrary 3D configurations in terms of both position and orientation. Prominent

examples of such robots are ASIMO [3], HRP [19], iCub [20], NAO [21], DARwIn-OP [22],

and TALOS [23]. These robots usually utilize rotary joints with servomotors in a serial con-

figuration. Its strength lies in the simplified structure and analysis, which, however, comes

at the drawback of limited capabilities, e.g., accumulation of backlash or elasticity from each

joint, increased leg weight and inertia [24].

As the study of humanoid robots matures, i.e., they become capable of more dynamic

motions, the effect of decreased joint rigidity and increased leg inertia can be substantial,

which at the time was not necessarily appreciated because the robots moved so slow that

the dynamics could be fairly neglected. There is no denying that legs play a critical role

in humanoid dynamic motions. For example, when it comes to robust locomotion, even

slower, less dynamic robots still need to move their legs quickly and accurately enough

to reposition their feet in order to maintain balance. And in the meantime, hopefully,

the fast acceleration of the leg motion will not influence the overall dynamics too much,
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which can possibly deteriorate the operating condition. Therefore, nowadays, the popular

trend on humanoid robot platform is lightweight legs with small feet, which lowers the

leg inertia and, in the process, reduces the control efforts. To achieve this paradigm in

practice, numerous approaches have been studied. The most prevalent option is to place

the actuators off-axis, as close to the torso as possible, as opposed to collocating them

at each joint. However, off-axis actuation requires the introduction of power transmission

mechanisms, e.g., belts and linkages, which typically trade off between range of motion,

joint backlash, rigidity, and complexity [25]. Placing the actuators off-axis also leads to

interesting joint designs where parallel configurations can be involved, which exhibit higher

stiffness due to the mechanical drive coupling but can suffer the common issues of limited

workspace and increased complexity [24]. As a result, several compact and elegant solutions

have been produced, including Lola [26], CHARLI [27], SAFFiR [28], TORO [29], Valkyrie

[30], ATRIAS [31], WALK-MAN [32], LARMbot [33], RHP2 [34], NimbRo [35], Hybrid Leg

[36], and CogIMon [37]. Apart from joint-specific solutions, other main approaches to leg

weight reduction include topology-optimized structural components with high strength-to-

weight ratios (e.g., Atlas [5], BRUCE [38]), biomimetic humanoid design (e.g., Cassie [4],

Digit [4], BioBiped [39], Kenshiro [40], Kengoro [41], CARL [42], eLeg [43]), utilizing light

and strong materials such as carbon fiber, aluminum, and titanium (e.g., NABiRoS [44],

NABi-V2 [45]).

Humanoid robots have the potential to exert a much larger influence on humanity in

the future. While the world has seen large advancements in the field of humanoid robots,

humanoid robots are still only beginning to fulfill this great potential. One final phenomenon

that has just begun in the past couple of years is the commercial humanoid industry. With

the growing robustness, maturity, and ubiquity of humanoid robotics technology, more and

more full-size humanoid robots becomes commercially available, e.g., ASIMO [3], Digit [4],

Valkyrie [30], NimbRo [35], TALOS [23]. Though the price of a full humanoid robot platform

becomes more and more affordable, it is still enormous for personal use, e.g., Digit [4] costs
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over 250, 000 USD per unit. Currently, the main use of commercial humanoid robots is still

for research, entertainment, and demonstrative purposes, same as the old days. We still have

yet to see humanoid robots be utilized to aid humans in any industries. It will be interesting

to see the further development in the field of humanoid robots and its impact on human

society in the coming years! ⌣

1.2.2 Sensing

Similar to humans, humanoid robots require the sense of self-movement and environment

awareness as the first of the three primitives of robots (in advance of plan and act). Over

the years, multiple sensing technologies have been developed for modern autonomous robots,

which can be categorized into two major types as follows.

Proprioceptive Sensors

Proprioceptive sensors measure values internal to the robot system [46]. For example, an

inertial measurement unit (IMU), which is composed of an accelerometer, gyroscope, and

magnetometer, is typically used for estimation of the robot body position and orientation.

The IMU information is often fused with additional information coming from the joint sensors

for improved accuracy. Joint position measurement is usually done with high-resolution,

hall-effect-based, magnetic absolute encoders, from which joint velocity can be calculated

by straightforward differentiation. Joint force or torque can be sensed by measuring the

motor current or fluid pressure for hydraulic/pneumatic actuation. In combination with a

Jacobian, end-effector wrenches can be estimated roughly. However, fine manipulation relies

on direct force/torque (F/T) sensor feedback.

Exteroceptive Sensors

Exteroceptive sensors acquire information from the robot’s environment [46]. The infor-

mation is then interpreted by the robot in order to extract meaningful environmental fea-
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tures. Typical examples are vision sensors (cameras as the robot “eyes”), sound sensors

(for speaking and hearing), tactile sensors (robot “skin” for meticulous interaction with the

environment [47, 48], e.g., through skin humans can sense various physical quantities such as

temperature, humidity, and pressure), range sensors (for obstacle detection without physical

contact), etc.

1.2.3 Actuation

The structure of a humanoid robot is often co-dependent on the selected actuation strategy

which is one of the most crucial aspects of the entire system (as it is responsible for the

motions of the robot). While some new types of soft actuators mimicking biological muscles

show great potentials [41, 49], the technology is not mature enough at this point. Modern

electric, hydraulic, and pneumatic actuators are still the top choices for most humanoid

systems given their robust performance.

Electric Actuators

Electric actuators have long been the default choice of actuation in many applications in-

cluding robotics, as they offer a good trade-off between torque, speed, and size. Using

electric actuators also simplifies the control aspect due to the nearly linear input-to-output

(i.e., current-to-torque) relationship. In addition, power storage and distribution can be

convenient and clean.

Conventional humanoid robots used brushless direct-current (BLDC) motors with a large

gear reduction ratio in order to achieve high torque density at the cost of low speed. Nev-

ertheless, these heavily geared motors, specifically designed to perform accurate, position-

controlled tasks in fairly structured environments, are quite vulnerable when faced with sig-

nificant impacts (e.g., foot strike during locomotion), due to the increased reflected inertia

and gear friction from the gearbox [50]. The layout is a relic of classic industrial manipula-

tors and is not amenable to modern humanoid robots as they are required to interact more
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and more with their environments.

The issue can be addressed with the help of series elastic actuators (SEA) by intention-

ally adding controlled variable mechanical impedance in series with the motor [51]. The

elastic element enables SEA to absorb impacts, store energy, and control the output torque

accurately through deflection using Hooke’s law. However, the force bandwidth of SEA is

limited, i.e., limited actuation speed and operating bandwidth as determined by the stiff-

ness of the elastic element [52]. In addition, these robotic systems with added mechanical

impedance usually result in complex dynamics, making them difficult to control at best and

restricted in their capabilities at worst.

Lately, impressive advances in electromagnetic technology lead to a new approach, pro-

prioceptive actuators, which are essentially high-torque-density (due to a large gap radius)

BLDC motors with a small amount of gearing. Based on the amount of gear reduction,

proprioceptive actuators can be classified as direct-drive motors (with no gear reduction)

[50] and quasi-direct-drive motors (with little gear reduction) [53, 54, 55]. The main advan-

tage of these actuators, besides impact mitigation, is high transparency (in terms of power

transmission) and mechanical performance [50], i.e., it is possible to sense and control the

output torque directly through the current. The main drawback of proprioceptive actuators

is their high heat production caused by running the large BLDC motors at low speed, mean-

ing additional design considerations need to be made for systems requiring high continuous

torque output, e.g., a cooling system [55, 56].

Hydraulic Actuators

Electric actuators are still limited in high-power applications due to magnetic saturation

and thermal requirement. Hydraulic actuators, in that aspect, can offer a much larger

power density. They are usually produced as pistons, where linear motion is performed by

controlling the pressure difference of incompressible liquid (usually oil) between two chambers

separated by a movable cylinder. The price to pay is mainly the leakage problem, bulky size
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and loud noise of the pump. Recently, these limitations have been resolved by miniaturizing

the pump size and integrating the hydraulic system in the robot at the design level as it is

the case for Atlas [5] and BigDog [57]. In spite of these achievements, only a few groups other

than Boston Dynamics have been successful in implementing mobile hydraulic actuation on

humanoid robots due to its complexity, e.g., Hydra [58], TaeMu [59].

Pneumatic Actuators

Pneumatic actuators operate on the basis of gas compressibility (usually air). Several types of

pneumatic actuators, e.g. cylinders, bellows, pneumatic engines, pneumatic stepper motors,

and pneumatic artificial muscles (in fact inverse bellows), are commonly used to date [60].

The major attractions about pneumatics are the low weight and the inherent compliant be-

havior. Pneumatic actuation has some important drawbacks making it less popular though,

mainly with regard to its control (due to system nonlinearity), inflating speed (i.e., slow

response), embeddability, and service life [60, 61]. Some examples of robots with pneumatic

actuation are available, e.g., Lucy [62], Mowgli [63].

1.2.4 Locomotion

Locomotion is the fundamental of any types of mobile robots. As for humanoid robots,

bipedal locomotion has been studied for decades and yet it remains an active research field.

The first control paradigm for bipedal locomotion used the notion of static walking [18],

where the center of mass (CoM) projection on the ground is always contained within the

support polygon of the feet. Ever since locomotion on bipedal robots has become more and

more dynamic, which results from continued progress in three key aspects: the mathematical

understanding of locomotion, the computational ability to encode this mathematics, and the

hardware capable of realizing this understanding in practice [64]. The hardware perspective

has been contextualized previously. In terms of control, mathematical modeling of locomo-

tion captures the essential walking behaviors at first place, which forms the basis for gait
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generation. These generated motions are then tracked by real-time feedback control.

Mathematical Modeling

The mathematical modeling of the bipedal system can be divided into two categories roughly,

full-order model and reduced-order model. The full-order model is concrete but sophisticated

as it exploits every single detail of the robot. The reduced-order model is abstract but simple

as it only focuses on the most salient aspect of the system dynamics.

• Floating-Base System

Bipedal robots can be modeled as a “tree” of rigid bodies, one of which can serve as

the root/base (usually pelvis or torso). The structure lends itself well to the gener-

alization of efficient kinematics and dynamics algorithms for different configurations

[65]. Because interactions with the environment are always changing during locomo-

tion, a convenient way of modeling the system is to construct a general representation

of the robot floating in the air, and then enforce ground contacts through forces arising

from the associated holonomic constraints which are imposed at the stance feet. This

is thus often referred to as the floating-base model of the robot. The configuration

space involves the position and orientation of the floating base, as well as the local

coordinates dictating the shape of the robot (e.g., revolute joint angles and prismatic

joint displacements). The resultant floating-base dynamics is complicated as it is non-

linear and high-dimensional, nominally underactuated and unstable, multi-input and

multi-output, as well as time-variant and hybrid [66].

• Centroidal Momentum Model

For the sake of computational efficiency, the full floating-base dynamics can be sim-

plified. The first working assumption is sufficient torque authority and kinematic

reachability, i.e, the robot always has enough joint torques to realize the actuated part

of the dynamics as long as the motion is kinematically feasible. As a result, we can just
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focus on the six unactuated coordinates of the floating base, the dynamics of which is

equivalent to the Newton-Euler equations. This model is known as centroidal momen-

tum model as it relates the rate of change in the linear and angular momentum to the

net external wrench acting on the robot.

• Linear Inverted Pendulum Model

Simple as centroidal momentum model, it is still nonlinear (due to the bilinear terms,

e.g, the resultant moment of the external force is the cross product between its as-

sociated moment arm and the force itself). If we further assume constant angular

momentum about the CoM (typically zero) as well as a linear CoM trajectory (typi-

cally at a fixed height) as observed in human walking on a flat ground [67], a linear

expression for the robot dynamics can be derived. This linearized model is called lin-

ear inverted pendulum (LIP) model as a bipedal robot supporting itself on one leg

during walking resembles an inverted pendulum [68]. The LIP can also be viewed as a

cart–table system, where the cart–table lies on a base with a geometry corresponding

to the support polygon [69].

• Variations on Inverted Pendulum Models

In an attempt to overcome issues associated with the strict assumptions of the LIP,

more complex pendulum models have been introduced. For example, inverted pendu-

lum with a variable height has been studied to address the main drawback of a constant

CoM height [70, 71]. To account for the inertia of a swing leg, its mass concentrated

at its foot has been added to the LIP [72]. To make use of nontrivial angular momenta

from the torso and limbs, a flywheel with centroidal moment of inertia and rotational

angle limits has been investigated based on the LIP [73].

• Zero-Moment Point

Zero-moment point (ZMP) represents the point on the ground at which the net moment

of the inertial and gravity forces has no component tangential to the ground surface
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[74]. If the ZMP approaches the edge of the support polygon, the robot would start

to rotate about the foot edge. This led to perhaps the most commonly used dynamic

stability margin, referred to as the ZMP criterion, which states that locomotion is

stable as long as the ZMP remains within the support polygon. Though this notion is

effective, it is conservative, producing unnatural walking, and controlling these motions

typically requires the robot to remain fully actuated. The ZMP also coincides with the

center of pressure (CoP) when the robot is in contact with a single surface [75], e.g.,

walking on a flat ground.

• Capturability

When the robot starts to tip over, the ZMP does not exist and therefore the ZMP

criterion becomes pointless. Capturability can serve as a more general stability condi-

tion. The idea of capture point (CP) has been introduced at the first place [73, 76].

It describes the point on the ground onto which the CoP has to reach for the robot

to come to a complete rest, e.g., if the CP is within the support polygon, the robot

can modulate its CoP (to the CP) to balance without taking a step; if the CP and

the support polygon are disjoint, the robot must take a step (to cover the CP) to

come to a stop. To account for the step length and step time constraints, the N -step

capturability has been analyzed based on the CP – the ability of a robot to come to a

stop without falling by taking N or fewer steps [77]. Capture regions can be generated

accordingly which define appropriate foot placement to avoid falling.

• Divergent Component of Motion

The dynamics of the LIP can be decomposed into two parts, one is stable and the

other is unstable. This implies that controlling only the unstable part is enough to

generate stable locomotion. The unstable part of the dynamics has been referred to

as the divergent component of motion (DCM) [78], which acts as the CP of the LIP.

Accordingly, the capturability-based analysis can be applied to the DCM directly. The
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name of “DCM” is more commonly used when it comes to locomotion as the CP is

originally proposed for push recovery (CP literally means the “point” where the robot

can “capture” itself).

• Spring-Loaded Inverted Pendulum

The spring-loaded inverted pendulum (SLIP) is a conceptual model for locomotion

on compliant legs, originating from biological studies of animal locomotion (especially

running) [79]. In the simplest form, it reduces the body to a point mass that rebounds

on a massless spring leg in stance and moves on a ballistic trajectory in flight [80].

The SLIP is attractive due to its inherent energy efficiency and robustness to ground

height variation, which serves as a natural starting point for many running robots in

design and control [31, 81, 82, 83, 84, 85, 86]. Simple as the SLIP, its dynamics do not

admit a closed-form solution, which limits its applications to some extent.

• Single Rigid Body Model

If the leg of the robot is light enough, i.e., the mass/inertia ratio of the torso to the

leg is sufficiently large, the leg dynamics will not significantly affect those of the torso

and thus they can be neglected fairly. The resultant model is called single rigid body

(SRB) model as it only considers a single rigid body (i.e., torso) subject to the contact

forces at the feet [87]. Though the SRB model is popular for quadrupedal robots with

lightweight leg design (it efficiently captures the effect of the net external wrench on the

evolution of both robot torso position and orientation) [88, 89, 90, 91, 92, 93], it does

not work well for most bipedal robots as their leg dynamics can hardly be neglected

due to more DoFs and thus increased weight/inertia [94].

• Hybrid Zero Dynamics

Instead of using approximated models, some researchers have adopted more complete

paradigms for locomotion which consider nontrivial impacts at touchdown with the

18



robot full-order model. To deal formally with the nonlinearity, tools in nonlinear con-

trol theory have been introduced, zero dynamics in particular, which are the internal

dynamics (if exist) of any system compatible with the output being identically equal

to zero [95]. Hybrid zero dynamics (HZD) is the extension of zero dynamics to hybrid

systems, e.g., walking includes both continuous (leg swing) and discrete (velocity jump

due to foot strike) dynamics. The idea of HZD is to encode desired locomotion behav-

iors via a set of suitably parametrized virtual constraints, which effectively coordinate

the higher-dimensional robot plant into a lower-dimensional hybrid subsystem that

governs the stability properties of the robot’s locomotion behavior [96].

Gait Generation

Throughout the mathematical modeling of locomotion, we can see how the problem is funda-

mentally different from the conventional textbook examples. Due to the inherent complexity,

e.g., hybrid dynamics, high nonlinearity, strong restrictions, and considerable DoFs, almost

all approaches to producing stable dynamic locomotion gaits (i.e., gait generation) must

tackle the problem by means of motion planning. In order to properly handle the various

constraints naturally imposed on the problem, it is typically transcribed into an optimal

control problem (OCP), a control design process using mathematical optimization (see Ap-

pendix A). However, it is not possible to derive the analytical solution for general nonlinear

systems and therefore the technique of trajectory optimization (TO) is widely adopted as a

numerical approach, which computes an open-loop solution to the OCP (see Appendix B).

The TO of bipedal locomotion in its most complete form, i.e, optimizing over contact

schedule and contact force simultaneously with the robot full-order model, is extremely

challenging even offline:

1. Trajectories are infinite-dimensional, the first challenge of TO is to suitably discretize

the space of trajectories in order for numerical optimization.

2. A second challenge is that the discretized optimization problem is usually also fairly
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large depending on the system dimension and granularity of the discretization, and

hence optimization may be computationally inefficient.

3. The optimization problem is highly nonlinear due mainly to the involvement of the

sophisticated robot full-order model including both kinematics and dynamics. In par-

ticular, a nonlinear optimization problem is often formulated as a nonlinear program

(NLP) which suffers the issues of computational complexity, initial guess, local min-

ima, feasibility, etc. Therefore, it is imperative that the TO problem is conditioned

appropriately to be used.

Due to the very limited computing power of early devices, this approach was still stuck

with simple planar models by the end of 1990s [97, 98, 99, 100, 101]. It was not until

the year of 2000 that the optimal walking motions for complete 3D models could be solved

[102, 103, 104]. Fortunately, numerical methods have continued to improve, recently allowing

the problem to be solved in real time [105, 106]. Nevertheless, the curse of the NLP still

limits its performance, i.e., often at best a locally optimal solution to the OCP is provided

(not even that any global optimum exists [107]) depending on the initial guess. Not being

able to efficiently generate gait online limits the robots to a predefined set of precomputed

actions, potentially ruining their versatility and reactivity in the presence of even small

perturbations. One way to alleviate this serious limitation is to generate a database of

trajectories (i.e., gait library) which can be queried online (or serve as the initial guess of

the NLP), possibly conditioned on the commands sent to the robot and the current states

of the robot in order to improve its locomotion stability [108, 109, 110, 111].

To reduce the computational burden of planning with robot full-order model, there exist

a variety of methods using the reduced-order models. The introduction of the reduced-order

models naturally breaks down the problem into multiple stages (typically the higher the

level, the simpler the model and the longer the horizon) as they only focus on the most

salient aspect of the system, e.g., CoM and ZMP, and therefore requires the low-level motion

controller to track the high-level plan while handling other neglected behaviors, e.g., leg
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swing and torso orientation. For the most typical model of walking, i.e., LIP, its linear

dynamics of the restricted system often yield efficient motion planning approaches. One of

the earliest and most representative method is the ZMP preview control [69], i.e, considering

the jerk of the COM as an input, CoM and ZMP trajectories can be solved optimally and

analytically for predefined footsteps using a preview control based on the linear quadratic

regulator (LQR).

The significantly enhanced computational efficiency thereof leads to a marvelous idea: if

the algorithms for motion planning could work sufficiently fast to be applied online, we can

use them as a feedback control policy which is able to continuously adapt the motions to the

current states of the robot and its environment [112]. This is what we called model-predictive

control (MPC), also known as receding horizon control as the prediction horizon keeps being

shifted forward. Using the idea of MPC, an improvement of the original ZMP preview control

scheme [69] was proposed by simply running the algorithm online continuously, focusing on

the problem of compensating real-time perturbations [113].

However, predefining the footholds is not desirable under strong disturbances and un-

certainties. Fortunately, without introduing too much extra computation, the simplicity of

the LIP additionally allows to plan over a horizon of multiple steps through a quadratic

program (QP) while restricting the CoP within the support polygon [114, 115, 116]. In

this vein, more progresses have been achieved to make full use of the LIP in the MPC. It

has been noted that accurate modulation of the CoP is often limited [117], especially when

the moving speed is fast, not to mention robots with a small footprint, e.g., point [118] or

line foot [111], or limited ankle authority, e.g., deficient DoF [38] or passive joint [119, 120].

In this regard, we do not need to specifically sample in time to take into account variable

CoP, at least for the high-level motion planning. Accordingly, with invariant CoP associated

with the footstep location, the LIP dynamics can be integrated analytically so that only an

order of magnitude less decision variables are involved [121, 122]. Note that a closed-form

solution also exists for a linear CoP trajectory [123]. Nevertheless, in all these strategies,
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phase duration is always fixed to maintain the convexity of the problem, even though opti-

mizing both footstep location and phase duration can greatly improve the stability margin,

as shown by some nonlinear approaches [124, 125]. Notably, the LIP dynamics can be de-

composed into two parts, one is stable and the other is unstable, and controlling only the

unstable part (i.e., DCM) is enough to generate stable walking [78, 126]. Unlike the full

CoM states including both position and velocity, the DCM follows a first-order dynamics,

which helps simplify other aspects of locomotion analysis and control. Based on the DCM, it

was reported to successfully adapt both location and timing of the next step while keeping a

convex TO problem thanks to a suitable change of variable, which leads to even less decision

variables [119]. The promising idea has also been utilized and verified in later works, e.g.,

[127, 128, 129, 130, 131, 132].

Despite the ability of these algorithms to be implemented online, they do not consider

the discrete dynamics associated with foot strike, ruling out the nontrivial impacts which

are naturally associated with dynamic locomotion [133]. In addition, naively executing the

reduced-order plan would limit the motion capability of the robot and additional details

need to be separately designed on the low-level stage, e.g., swing-leg motion, which increase

the overall system complexity. This could also possibly fight against the reduced-order plan

as it is difficult to provide a priori guarantees on whether any given reduced-order plan is

feasible to execute on the full-order model either in the near term or in the long horizon

[134]. Recently, a new approach called model hierarchy predictive control (MHPC) has been

introduced, which plans with the full-order model in the near horizon and the reduced-order

model in the long horizon to benefit from both model accuracy and computational efficiency

[135]. Nevertheless, nonlinear MHPC is still of considerable computational complexity and

suffer the issues of the NLP due to the involvement of the intricate robot full-order model

[135, 136]. In this regard, a convex formulation for MHPC was proposed, which can be

solved efficiently and thus implemented in real time for feedback control at the cost of

slightly reduced model accuracy [38].
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Motion Control

Properly executing the locomotion gait generated previously requires the deployment of the

real-time motion control. When the locomotion has been planned using the reduced-order

models, the spatial geometry of the robot must be translated into joint space that can be

controlled. In addition, the locomotion behaviors which are neglected by the reduced-order

models must be taken into account. Even with the full-order hybrid model, controllers must

be synthesized in order to track these desired motions in practice due to the inevitable

disturbances and uncertainties.

The simplest control scheme for determining joint torques is proportional-derivative (PD)

control on joint positions and velocities. The desired references can be obtained either from

inverse kinematics (IK) for the reduced-order model or directly from the outputs of a TO

using the full-order model. The strongest advantage of this method is the sheer simplicity

of its implementation as well as its intuitive physical meaning with respect to tuning. For

full-order TO, simply tracking the outputs with a well-tuned joint PD controller is sometimes

sufficient to achieve stable walking [110, 111, 137, 138, 139, 140] and even running [141] on

hardware. This is because the output trajectories implicitly encode the stability constraints

with the robot full-order model information, even if achieving these behaviors requires slightly

different torques on the actual robot.

Unfortunately, this is not the case with the reduced-order model as some aspects of

the system are approximated or simply omitted in return for computational efficiency. For

example, most reduced-order models typically consider a point-mass representation of the

robot. As a result, other locomotion behaviors such as torso orientation, whole-body momen-

tum, contact force regulation, and leg swing, become important concerns when developing

feedback controllers for implementation of a low-dimensional plan.

For simultaneous execution of multiple tasks in the low level, whole-body control (WBC)

is also a good candidate which exploits the full capabilities of the entire body of redundant,

floating-based robots interacting with the environment. In addition, it is able to realize
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fast, agile, and compliant motions yet without sacrificing accuracy. The WBC scheme typi-

cally uses inverse dynamics (ID) to handle contact force interactions with the environment

[142, 143]. However, ID-based WBCs heavily depend on the high quality of the dynamic

model which is often difficult to obtain in practice. On the contrary, the robot kinematic

model is much easier to get with high accuracy. As a result, examples of the WBC also

exist which are based instead on IK [144, 145] or the combination of both [120, 146]. In

addition, early approaches usually considered trajectories in joint space, resulting in an in-

credible amount of required motion details [147, 148]. By contrast, task-space control eases

this burden by designing trajectories in the intuitive task space [149, 150, 151]. However,

for all these methods, contact stability and torque limits are not properly handled, the vio-

lation of which can easily cause poor performance or even control failure. Lately, an elegant

way to implement WBC is using optimization, mostly QP (to exploit the fact that the in-

stantaneous system dynamics can be expressed linearly with respect to a certain choice of

decision variables), which is able to account for system dynamics, map between the task

space and joint space, as well as satisfy various constraints concurrently. Depending on how

the task hierarchy is managed, QP-based WBC can be mainly categorized into two types.

A weighted WBC scheme sets all operational tasks as the objectives of a single QP with

priorities implicitly being enforced with different weights [146, 152, 153]. A strictly hier-

archical framework solves cascaded QPs from the highest priority to the lowest, where the

subsequent QP is carried out with additional constraints to preserve the optimality of the

previous one [154, 155, 156].
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1.3 Organization

This dissertation contributes to the advancement of humanoid robots, with a focus on the

humanoid robot system design, joint mechanisms, kinematics, bipedal locomotion, optimiza-

tion and optimal control, motion planning and control. The remainder of this dissertation

is organized as follows.

Chapter 2 introduces the Bipedal Robot Unit with Compliance Enhanced (BRUCE), a

cost-effective miniature bipedal robot platform capable of dynamic behaviors. Details of the

hardware design are first presented. Complete modeling and analysis of the robot system,

e.g., kinematics and dynamics, are also carried out. Preliminary experiments are then con-

ducted to verify the basic functionalities of the robot design as well as to explore its dynamic

capabilities. The BRUCE project is aimed to provide accessible and reliable humanoid robot

platforms for general research purposes.

Chapter 3 goes through the Divergent Component of Motion Based Analysis and Control

of Dynamic Bipedal Locomotion Using Reduced-Order Models. The nominal gait pattern is

first derived and the viability condition is also investigated based on the reduced-order mod-

els. The locomotion control is solving a small-scale QP with multiple steps being considered

in advance, which optimally plans the step location and timing in real time. In a numerical

simulation environment, the theoretical capabilities of the approach is verified independent

of the actual robot.

Chapter 4 emphasizes some other key aspects of the entire robot system to properly

apply the locomotion control strategy presented in Chapter 3 to a full humanoid robot,

e.g., software architecture, state estimation, and low-level control. A full discussion on

practical Implementation Details is also considered valuable to promote the research on

humanoid robots as they are likely to be skipped in the literature. The effectiveness of the

overall locomotion control framework is finally validated on the BRUCE robot introduced

in Chapter 2 with an extensive series of successful simulation and hardware experiments.

The experimental results demonstrate the strong robustness of stabilizing various dynamic
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bipedal locomotion gaits including walking, running, and hopping.

Chapter 5 summarizes the work presented in this dissertation and discusses the potential

future directions.

Some fundamental knowledges and tools are also provided in Appendix A, B, and C

which can help better comprehend this dissertation.
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Chapter 2

Bipedal Robot Unit with Compliance

Enhanced

2.1 Introduction

2.1.1 Background

Ever since the creation of the first humanoid robot, WABOT-1 [17], humanoid robots have

been developed in various aspects such as joint design with high precision and torque, in-

tegration of sensors and computer vision to sense the environment, as well as software and

control algorithms. However, dynamic behaviors such as running and jumping remain chal-

lenging for humanoid robots. One of the main problems is the lack of capability to properly

handle contact impact due to the high gear ratio of traditional servo motors. Series elastic

actuators (SEA) provide a great potential solution to this, but they can still suffer from

the low force control bandwidth [52]. Recently, proprioceptive actuation has exerted huge

influence on robotics due to its impact mitigation and wide-bandwidth force control capa-

bilities [54]. With proprioceptive actuators, highly dynamic motions have become feasible

for quadruped robots [92, 157], but few examples exist for humanoid robots.
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2.1.2 Motivation and Contribution

The main reason for the slower development in humanoid robots than quadruped robots

in terms of dynamic behaviors lies not only on more complex control algorithms but also

on the limited accessibility to hardware. Atlas [5] from Boston Dynamics is proved to be

the most dynamic full-size humanoid robot with advanced control algorithms and state-

of-the-art hardware. However, its accessibility is highly restricted. Digit [4] from Agility

Robotics is also a great humanoid robot platform that addresses the mobility limitations of

conventional humanoids, but it costs over 250, 000 USD per unit. In terms of accessibility,

the small-size humanoid robots seem to be a more preferable option for research purposes.

DarwIn-OP [22] by the Robotics and Mechanisms Laboratory (RoMeLa) has been a reliable

open-platform humanoid robot due to its great performance and affordable price. Although

traditional servo motors are used in DarwIn-OP for actuation, it still presents better dynamic

performance than regular full-size humanoid robots thanks to its reduced size and moment

of inertia. In order to promote highly dynamic motion development for humanoid robots, a

miniature bipedal robot with proprioceptive actuation is thus desired.

As the study of humanoid robots becomes a worldwide interdisciplinary research field, the

demand for a cost-effective bipedal robot system capable of dynamic behaviors is growing ex-

ponentially. Inspired by the accessibility and reliability of current small-size humanoid robot

platforms, as well as the rising technology of proprioceptive actuation, the next-generation

miniature Bipedal Robot Unit with Compliance Enhanced (BRUCE) has been under devel-

opment recently, as shown in Figure 2.1. In order to perform human-like dynamic motions,

the joint configuration and range of motion are designed to be as close as possible to those

of human beings as seen in Figure 2.2. In addition, unlike the traditional humanoid robots

whose actuators are directly located at each joint, a 2-DoF cable-driven differential pulley

system and a 4-bar linkage mechanism are applied to the hip and ankle joints, respectively.

By doing so, the moment of inertia of each leg is significantly reduced in favor of highly

dynamic leg motions. Meanwhile, the choice of cable drive for the differential transmission
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Figure 2.1: Bipedal Robot Unit with Compliance Enhanced (BRUCE). On the left is the
CAD model and on the right is its hardware platform.

also brings less backlash than conventional bevel gears. The delicate design also brings about

interesting problems in modeling and analysis.

2.2 Design of BRUCE

This section discusses the detailed hardware design of BRUCE. It elaborates on how and

why BRUCE is designed in its own way.

2.2.1 Mechanical Configuration

Joint Configuration

To ensure BRUCE has an adequate range of motion while keeping the overall platform simple

and lightweight, each leg is composed of a spherical hip joint, a single DoF knee joint, and a

single DoF ankle joint, as shown in Figure 2.1. Moreover, each foot has a line contact with
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Figure 2.2: Lower body comparison of joint configuration and range of motion between
BRUCE and human [158].

the ground so that the actuation in the foot roll direction can be omitted. Unlike regular

full-size humanoid robots with fully actuated ankles, the single DoF ankles of BRUCE could

lose some functionality on the foot since it only rotates in the pitch direction. Nevertheless,

the benefit from the lightweight design outweighs this drawback distinctly when it comes to

highly dynamic leg motions.
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Table 2.1: BRUCE mechanical parameters.

Parameter Symbol Value Unit

Torso mass mb 315 g

Hip mass mh 667 g

Thigh mass mt 839 g

Calf mass mc 96 g

Foot mass mf 24 g

Total mass M 3,567 g

Torso length lb 291.5 mm

Pelvis width lp 150 mm

Thigh length lt 175 mm

Calf length lc 169.5 mm

Foot length lf 24 mm

Total height L 660 mm

Link Length

BRUCE is designed to be a miniature bipedal robot with a similar range of motion to that

of a human’s lower body. Therefore, the size of BRUCE is scaled down from a full-size

human. The total height of BRUCE is designed to be 660 mm which is approximately 1/3

of an adult male’s height. The resultant link lengths of its torso, thigh, calf, and foot are

respectively 291.5 mm, 175 mm, 169.5 mm, and 24 mm, which results in a similar length

ratio to that of an average adult [159]. The distance between the two legs is chosen to be

150 mm to prevent possible collision between the hip actuators when they are rotating in

the yaw direction. Table 2.1 lists the key mechanical parameters of BRUCE.

31



Table 2.2: Koala BEAR specifications.

Parameter Value Unit

Weight 250 g

Speed Constant 27.3 RPM/V

Torque Constant 0.035 Nm/A

Gear Ratio 9 /

Stall Torque (15 sec) 3.5 Nm

Stall Torque (1.5 sec) 10.5 Nm

2.2.2 Actuation Scheme

In order to have better actuation transparency and compliance to unstructured environments,

Koala BEAR proprioceptive actuators [55] from Westwood Robotics [160] are adopted. The

module can provide real-time joint states including joint position, velocity, and torque while

running an internal control loop at 2 kHz with the embedded microcontroller. The actuator

specifications can be found in Table 2.2.

With this proprioceptive actuation scheme, BRUCE’s legs are desired to have low inertia

in favor of dynamic behaviors. The distribution of the actuators needs to be reconsidered so

that they can be kept close to the torso instead of being directly located at each joint like

traditional humanoid robots. In the past, researchers have proposed some reliable solutions

by using linkage mechanisms [4] and cable-driven systems [161, 162] to reduce the inertia and

mass of the limbs. Inspired by previous work, a 2-DoF cable-driven differential pulley system

is designed for the hip pitch and roll motions, and two pairs of 4-bar linkage mechanisms are

used to actuate the ankle joint.
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2.2.3 Hip Design with Cable-Driven System

Instead of connecting two actuators in serial for the pitch and roll directions of the hip

joint, a 2-DoF parallel actuation configuration is preferable for BRUCE. First, this design

could mount the two actuators on the hip to reduce the mass and inertia of the femur link.

Moreover, the available hip pitch torque is doubled as the two actuators are powering the

same joint, which could benefit BRUCE during dynamic motions in the sagittal plane, as is

usually the case.

Previously, the prototype of BRUCE [158] was using bevel gears to realize the parallel

actuation scheme of the hip. However, the leg wobbled easily, and hip joint accuracy was low

due to the backlash in gears. To improve the joint accuracy and stability, the compact cable

transmission with cable differential [163] is novelly applied on the hip joint to form a cable-

driven differential pulley system, which has already been successfully implemented on other

robotic joints such as the torso [164] and shoulder [165]. Despite the extra complexity in

installation, the cable-driven differential pulley system appears to be a suitable replacement

for traditional bevel gears due to its zero-backlash feature. In addition, unlike gears in which

grease is necessary for lubrication, no lubrication is needed between the cable and pulley,

which could benefit the cleanliness of the hip assembly.

The proposed 2-DoF cable-driven differential pulley system is illustrated in Figure 2.3(a)–

(c). To effectively actuate the hip joint in both pitch and roll directions without slip, at least

two cables are needed for each pulley attached to the hip actuator, and it results in a total

of four cables for the pulley connected to the femur link. As shown in Figure 2.3(b), the

blue cable is active when Actuator 2 rotates along positive z3 direction, while the reverse

rotation will make the red cable active. To avoid any broken cables due to the excessive

load, the minimum radius Rmin of wrapping the cable around the pulley needs to be carefully

determined, which is related to the maximum torque of the actuator Tmax and the material
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Figure 2.3: BRUCE leg design highlights. (a) Spherical hip joint. (b) Assembly of pulleys
and cables, where the cables are pretensioned by screws. (c) Wiring schematic of 2-DoF
cable-driven differential pulley system, where β represents the effective rotation region for
the pulley and also corresponds to the range of hip roll motion. (d) Linkage mechanism for
ankle joint actuation.

property for the cable as follows:

Rmin =
T

Fy

≤ Tmax

Fy

=
Tmax

σy · πr2c
, (2.1)

where Fy is the axial force at yield, σy is the yield stress of the cable material, and rc is

the radius of the cable. In our case, with Tmax = 10.5 Nm for the Koala BEAR actuator,

σy = 215 MPa and rc = 2.4 mm for a 304 stainless steel cable, the maximum of Rmin is

determined to be 16.2 mm for a safety factor of 1.5. On the real hardware, it is adjusted to

19 mm to properly fit into the assembly.

The parallel configuration of the hip joint in the pitch and roll directions leads to the

coupling of the two actuators. As illustrated in Figure 2.3(b) and (c), pure hip pitch motion
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will be achieved when the two side pulleys rotate for the same angle in the opposite directions,

while rotating in the same direction leads to pure roll motion. Any other combinations of the

two pulley rotations will result in both pitch and roll motions simultaneously. The detailed

kinematics relationship will be derived in the next section.

Hip Joint Backlash Comparison

To show the cable-driven differential pulley system has far less backlash than the traditional

differential bevel gear system, a comparison experiment was conducted to visualize the two

backlash conditions. For test setup, two hip assemblies with different designs were mounted

to a fixed location respectively, and a background paper was placed behind with reference

points on it. For data collection, the thigh link in each assembly was manually aligned to

the reference points, and the angle readings from the two hip actuators were recorded for

comparison. The result is shown in Figure 2.4 and we can see that the measured angles from

the cable-driven hip joint almost perfectly fit the reference while the bevel gear hip module

has a poorer performance.

Hip Joint Stiffness Analysis

Furthermore, as the cable-driven transmission is applied to the hip joint, the joint stiffness

needs to be analyzed since it might be affected by the cable elongation. The cable axial

stiffness kc can be first determined to be

kc =
AEc

Lc

=
πr2c · Ec

2πR
=
r2cEc

2R
, (2.2)

where A, Lc are the cross-sectional area and the length of the cable, and Ec is the Young’s

Modulus for the cable material. The cable axial stiffness kc relates the axial force F and the

cable elongation δ by Hooke’s law:

F = kcδ. (2.3)
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Figure 2.4: BRUCE hip joint backlash comparison between the cable-driven differential
pulley system and the differential bevel gear system.

The joint stiffness kj can then be determined to be

kj =
T

∆θ
=
FR

δ/R
= (F/δ)︸ ︷︷ ︸

:= kc

R2 =
1

2
r2cEcR, (2.4)
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where ∆θ is the resultant joint rotation angle. With R = 19 mm for the pulley, rc = 2.4 mm

and Ec = 1.9 × 1011 N/m2 for the 304 stainless steel cable, the hip joint stiffness is 10,397

Nm/rad, which is sufficiently stiff as the actuator only has a maximum torque of 10.5 Nm.

The resultant joint rotation due to cable elongation is 0.058◦ at worst, which is negligible.

In addition, each cable is properly pretensioned by adjusting the screws as shown in Figure

2.3(b) to ensure reliable power transmission.

2.2.4 Leg Design with Linkage Mechanism

The femur and tibia linkages of BRUCE are composed of carbon fiber tubes and topology-

optimized aluminium parts. The two actuators for the knee and ankle joints are mounted

in the femur link to keep the tibia link as light as possible. Since the ankle actuator is

relocated to the femur link, a mechanism to transmit the torque from the actuator to the

ankle joint is needed. Generally, timing belt is a good option for power transmission due

to its simplicity and the ability to transmit continuous rotational motions. However, due to

its low stiffness, there will be unwanted compliance between the belt teeth and pulley. As

a result, the rotor-belt resonant frequency will be low, which could limit the torque control

bandwidth of the ankle joint [166]. To overcome this problem, a reliable torque transmission

with high stiffness is used instead, e.g., linkage mechanism.

As shown in Figure 2.3(d), BRUCE utilizes two pairs of 4-bar linkage mechanisms both

of parallelogram configuration to properly transmit the torque from the actuator to the

ankle joint with a 1:1 transmission ratio. Since the lower bar is such a thin and long link,

the buckling load Fb verification must be done to determine its radius rl so that it will not

buckle under extreme scenarios:

Fb =
π2ElI

L2
l

≥ Tmax

l
⇒ I ≥ L2

l Tmax

π2Ell
, (2.5)

where El, I, Ll, l are the Young’s Modulus for the lower bar material, moment of inertia of
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Table 2.3: BRUCE ankle joint range of motion.

Knee Angle Ankle Angle Range

−30◦ −25◦ ∼ 77◦

0◦ −60◦ ∼ 72◦

30◦ −58◦ ∼ 50◦

60◦ −58◦ ∼ 28◦

90◦ −58◦ ∼ −3◦

120◦ −58◦ ∼ −32◦

the cross section of the lower bar, the length of the lower bar, and the moment arm of the

slave link. To match with the tibia link length, we need to use a 169.5 mm long aluminum

rod with El = 6.9× 1010 N/m2. Substitute I = πr2l /4 into (2.5) and we have

rl ≥
2Ll

π

√
Tmax

πEll
. (2.6)

With Tmax = 10.5 Nm for the Koala BEAR actuator and l = 30 mm, (2.6) will lead to the

minimum radius of 3 mm for the lower bar with a safety factor of 1.5. Moreover, due to the

complexity of the combination of the two linkage mechanisms, the ankle joint motion depends

on the knee configuration. Table 2.3 lists the ankle joint range with varying knee angles.

Even though its range of motion is restricted when the knee angle is large, e.g., squatting, it

still meets the needs for our applications. Note that we define the positive direction of the

knee angle as the knee flexes. The ankle angle is 0◦ when the foot is perpendicular to the

tibia and its positive direction is defined as the foot flexes.

Similar to the hip joint, the two actuators for the knee and ankle joints are coupled. The

detailed kinematics relationship will be derived in the next section.
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Figure 2.5: BRUCE contact sensing foot V1. On the left is the exploded view of the CAD
model and on the right is the hardware assembly. For the assembly, the two copper foils are
glued to the plastic contact layer, which is then attached to the aluminum base using screws.

2.2.5 Contact Sensing Foot

For BRUCE being able to detect when the contact between the foot and the ground is created

or broken for state estimation purpose in an unstructured environment, a contact sensor is

needed. A reliable yet lightweight contact sensing foot module is thus proposed for BRUCE,

as shown in Figure 2.5. The sensing foot is designed based on the working principle of an

electronic switch. When the foot is touching the ground and the contact force is sufficiently

large, the plastic contact layer will bend and make the copper foils touch the aluminum base

to close the circuit. As for the trigger force, a simple experiment was conducted where the

proposed sensing foot was pressed downwards gradually on top of a precise scale by a custom

2-DoF testbed. The critical value of the contact force is recorded as the trigger force when

the contact is detected by the sensor. From the experimental results, the trigger forces for

the toe and heel both almost remain constant under different contact angles, as 1.18 N for

the toe and 2.45 N for the heel on average. The constant trigger force provides BRUCE a

reliable contact sensing ability for ground touching status.

Meanwhile, there is a potential false positive contact detection when the leg is swinging

in the air with a large acceleration since the plastic contact layer can possibly bend due

to inertia force. However, while the contact layer weighs only 1.5 g which is extremely
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Aluminum Base

Tactile Switch
Rubber Contact Layer

Figure 2.6: BRUCE contact sensing foot V2. On the left is the CAD model and on the right
is the hardware assembly.

lightweight, the required acceleration to trigger that false positive detection is computed to

be about 80 and 166 times gravitational acceleration for the toe and heel, respectively, which

far exceeds the normal operating condition for BRUCE. In addition, the sensing foot is easy

for maintenance given its simple structure.

During the hardware experiments, the design of the sensing foot is further modified to

ensure more reliable ground contact information for walking purpose. Previously, the plastic

contact layer can break from time to time due to the touchdown impact. In addition, dust

can easily stick to the copper foils, which can affect their contact quality. The new design

of the sensing foot has tactile switches directly inserted into the rubber contact layer, as

shown in Figure 2.6. In this way, the foot touchdown is more compliant and the contact

detection mechanism is fully isolated from the outside environment, which greatly improves

the contact sensing.

2.2.6 Upper Body

The upper body of BRUCE is designed to make BRUCE fully untethered. Meanwhile, the

overall system will also benefit from the upper body with the additional DoFs and more

lumped inertia at the hip. In the plan, each arm of BRUCE will have three DoFs, which

includes a 2-DoF shoulder joint and a 1-DoF elbow joint. Note that the two arms are not

40



actively used for the locomotion purpose at this point and therefore the entire upper body

is considered as one SRB for simplicity from now on.

2.3 Kinematics

Kinematics is the study of the motion of the subject without regard to the forces that

cause it. One usually focuses on the position and the orientation, their velocities, and their

accelerations while any order derivatives of the variables (not necessarily with respect to time)

can be involved as well. Therefore, kinematics can refer to all the space and time properties

of the motion. When it comes to the motions of robots, especially robots with articulated

limbs, e.g., manipulators and legged robots, kinematic analysis is usually to find out the

relationship of the motions between the joint space and operational (or task-oriented) space.

The joint space refers to the space of the joint variables which define the spacial relationship

(including both position and orientation) between the intermediate frames. The operational

space refers to the space of the variables which define the target (or task) frame, e.g., the

end effector of a manipulator, the foot and CoM of a legged robot.

While the kinematic analysis can be addressed numerically, it is always better to derive

its closed-form solution if possible. First, one can better understand the kinematic relation-

ship with the analytical equations. Second, it can speed up the computation in practice.

And third, most importantly, it is just fun to derive them in an elegant manner ⌣, right?

This section discusses the detailed kinematic analysis of BRUCE. Most of the symbolic cal-

culations are done in Mathematica [167]. We will first solve the leg kinematics within the

base (or body, or torso) frame and from there the floating base joint will be added to derive

the overall whole-body kinematics with respect to the world (or inertia, or global) frame.
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Figure 2.7: BRUCE frame attachment (units in mm).

2.3.1 Leg Kinematics

Consider the leg kinematics of BRUCE as a manipulator problem, it can be solved using

the general Denavit-Hartenberg (DH) approach. Figure 2.7 shows the frame attachment and

Table 2.4 lists the corresponding modified DH parameters. Note that some of the intermedi-

ate frames are intentionally removed for simplicity and as a result, the corresponding spacial

relationships cannot be summarized using the DH parameters. In addition, the original

version of BRUCE has the link offset d2 and since it does not add too much computational

complexity, we keep it here.

The leg kinematics is almost the same for both legs. There are only two differences. The

first one is the sign of hy (+ for the left leg and − for the right leg). From now on, we will use

the postsuperscript leg to emphasize the variables are leg dependent and if necessary, we will

use the postsuperscript l or r to specifically select the left leg or the right leg respectively.

Note that a lot of the variables in this subsection should come with the postsuperscript leg
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Table 2.4: Modified Denavit-Hartenberg parameters.

i αi−1 ai−1 di θi

2 −π
2

0 d2 θ2

3 +
π

2
0 0 θ3

4 0 a3 0 θ4

5 0 a4 0 θ5

to be exact but it is removed most of the time for better readability, e.g., the DH joint

positions should always be denoted as

θleg :=



θleg1

θleg2

θleg3

θleg4

θleg5


. (2.7)

The second difference is the conversion between the DH joint space and the actuator space

(since the joint directions are the same but the legs are symmetric and the actuators are

actually facing to each other), as we will see soon.

Forward Kinematics

Forward Kinematics (FK) is the problem of computing the position and orientation of the

target frame given the joint variables. We first derive the individual (homogeneous) transfor-

mation matrices which relate the frames attached to neighboring links. We then concatenate

these individual transformations to solve for the target frame relative to the base frame.
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The individual transformation matrices of BRUCE can be determined to be

Tb 1 =



cos θ1 − sin θ1 0 hx

sin θ1 cos θ1 0 hlegy

0 0 1 −hz
0 0 0 1


, T1 2 =



cos θ2 − sin θ2 0 0

0 0 1 d2

− sin θ2 − cos θ2 0 0

0 0 0 1


, (2.8)

T2 3 =



cos θ3 − sin θ3 0 0

0 0 −1 0

sin θ3 cos θ3 0 0

0 0 0 1


, T3 4 =



cos θ4 − sin θ4 0 a3

sin θ4 cos θ4 0 0

0 0 1 0

0 0 0 1


, (2.9)

T4 5 =



cos θ5 − sin θ5 0 a4

sin θ5 cos θ5 0 0

0 0 1 0

0 0 0 1


, T5 f =



0 0 −1 a5

1 0 0 a6

0 −1 0 0

0 0 0 1


, (2.10)

where a6 = at > 0 for the toe, a6 = am = 0 for the middle, and a6 = −ah < 0 for the heel.

The overall transformation matrix is thus determined to be

Tb f = Tb 1 T1 2 T2 3 T3 4 T4 5 T5 f =



r11 r12 r13 px

r21 r22 r23 py

r31 r32 r33 pz

0 0 0 1


, (2.11)

where the elements

r11 = −c1c2s345 − s1c345, (2.12)

r21 = −s1c2s345 + c1c345, (2.13)

r31 = s2s345, (2.14)
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r12 = −c1s2, (2.15)

r22 = −s1s2, (2.16)

r32 = −c2, (2.17)

r13 = −c1c2c345 + s1s345, (2.18)

r23 = −s1c2c345 − c1s345, (2.19)

r33 = s2c345, (2.20)

px = c1c2a
c
3456 − s1 (d2 + as3456) + hx, (2.21)

py = s1c2a
c
3456 + c1 (d2 + as3456) + hlegy , (2.22)

pz = −s2ac3456 − hz. (2.23)

ac3456 = a3c3 + a4c34 + a5c345 − a6s345, (2.24)

as3456 = a3s3 + a4s34 + a5s345 + a6c345. (2.25)

Note that we denote cijk = cos
(
θi + θj + θk

)
and sijk = sin

(
θi + θj + θk

)
for simplicity.

With Tb f , we can know both the position pb f (θ) and the orientation Rb f (θ) of the foot

frame {f} relative to the base frame {b} (both as functions of the joint configuration θ):

pb f =


px

py

pz

 , Rb f =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 . (2.26)

Now we just need to take the time derivatives to get their velocities and accelerations:

ṗb f =
d pb f

dt
=
∂ pb f

∂θ

dθ

dt
= Jbv f θ̇, (2.27)

p̈b f =
d2 pb f

dt2
=

d ṗb f

dt
= Jbv f θ̈ + J̇bv f θ̇, (2.28)
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Ṙb f =
d Rb f

dt
= ω̂b f Rb f ⇒ ωb f =

(
Ṙb f Rb ⊤

f

)∨
= Jbω f θ̇, (2.29)

ω̇b f =
d ωb f

dt
= Jbω f q̈ + J̇bω f θ̇. (2.30)

Based on that, the linear velocity Jacobian Jbv f (θ) can be determined to be

Jbv f =
∂ pb f

∂θ
=


j11 j12 j13 j14 j15

j21 j22 j23 j24 j25

j31 j32 j33 j34 j35

 , (2.31)

where the elements

j11 =
dpx
dθ1

= −s1c2ac3456 − c1 (d2 + as3456) , (2.32)

j21 =
dpy
dθ1

= +c1c2a
c
3456 − s1 (d2 + as3456) , (2.33)

j31 =
dpz
dθ1

= 0, (2.34)

j12 =
dpx
dθ2

= −c1s2ac3456, (2.35)

j22 =
dpy
dθ2

= −s1s2ac3456, (2.36)

j32 =
dpz
dθ2

= −c2ac3456, (2.37)

j13 =
dpx
dθ3

= −s1ac3456 − c1c2a
s
3456, (2.38)

j23 =
dpy
dθ3

= +c1a
c
3456 − s1c2a

s
3456, (2.39)

j33 =
dpz
dθ3

= +s2a
s
3456, (2.40)

j14 =
dpx
dθ4

= −s1ac456 − c1c2a
s
456, (2.41)
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j24 =
dpy
dθ4

= +c1a
c
456 − s1c2a

s
456, (2.42)

j34 =
dpz
dθ4

= +s2a
s
456, (2.43)

j15 =
dpx
dθ5

= −s1ac56 − c1c2a
s
56, (2.44)

j25 =
dpy
dθ5

= +c1a
c
56 − s1c2a

s
56, (2.45)

j35 =
dpz
dθ5

= +s2a
s
56, (2.46)

ac456 = a4c34 + a5c345 − a6s345, (2.47)

as456 = a4s34 + a5s345 + a6c345, (2.48)

ac56 = a5c345 − a6s345, (2.49)

as56 = a5s345 + a6c345. (2.50)

Its time derivative is then determined to be

J̇bv f =
d Jbv f

dt
=


j̇11 j̇12 j̇13 j̇14 j̇15

j̇21 j̇22 j̇23 j̇24 j̇25

j̇31 j̇32 j̇33 j̇34 j̇35

 , (2.51)

where the elements

j̇11 = −j21θ̇1 − j22θ̇2 − j23θ̇3 − j24θ̇4 − j25θ̇5, (2.52)

j̇21 = +j11θ̇1 + j12θ̇2 + j13θ̇3 + j14θ̇4 + j15θ̇5, (2.53)

j̇31 = 0, (2.54)

j̇12 = −j22θ̇1 − c1c2a
c
3456θ̇2 + c1s2

(
as3456θ̇3 + as456θ̇4 + as56θ̇5

)
, (2.55)
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j̇22 = +j12θ̇1 − s1c2a
c
3456θ̇2 + s1s2

(
as3456θ̇3 + as456θ̇4 + as56θ̇5

)
, (2.56)

j̇32 = s2a
c
3456θ̇2 + c2

(
as3456θ̇3 + as456θ̇4 + as56θ̇5

)
, (2.57)

j̇13 = −j23θ̇1 + c1s2a
s
3456θ̇2 − (j21 + s1d2) θ̇3 + (s1a

s
456 − c1c2a

c
456) θ̇4+

(s1a
s
56 − c1c2a

c
56) θ̇5, (2.58)

j̇23 = +j13θ̇1 + s1s2a
s
3456θ̇2 + (j11 + c1d2) θ̇3 − (c1a

s
456 + s1c2a

c
456) θ̇4−

(c1a
s
56 + s1c2a

c
56) θ̇5, (2.59)

j̇33 = c2a
s
3456θ̇2 + s2

(
ac3456θ̇3 + ac456θ̇4 + ac56θ̇5

)
, (2.60)

j̇14 = −j24θ̇1 + c1s2a
s
456θ̇2 + (s1a

s
456 − c1c2a

c
456)

(
θ̇3 + θ̇4

)
+ (s1a

s
56 − c1c2a

c
56) θ̇5, (2.61)

j̇24 = +j14θ̇1 + s1s2a
s
456θ̇2 − (c1a

s
456 + s1c2a

c
456)

(
θ̇3 + θ̇4

)
− (c1a

s
56 + s1c2a

c
56) θ̇5, (2.62)

j̇34 = c2a
s
456θ̇2 + s2a

c
456

(
θ̇3 + θ̇4

)
+ s2a

c
56θ̇5, (2.63)

j̇15 = −j25θ̇1 + c1s2a
s
56θ̇2 + (s1a

s
56 − c1c2a

c
56)
(
θ̇3 + θ̇4 + θ̇5

)
, (2.64)

j̇25 = +j15θ̇1 + s1s2a
s
56θ̇2 − (c1a

s
56 + s1c2a

c
56)
(
θ̇3 + θ̇4 + θ̇5

)
, (2.65)

j̇35 = c2a
s
56θ̇2 + s2a

c
56

(
θ̇3 + θ̇4 + θ̇5

)
. (2.66)

The angular velocity Jacobian Jbω f (θ) can be alternatively determined by the following

simple construction:

Jbω f =

[
zb 1 zb 2 zb 3 zb 4 zb 5

]
, (2.67)
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where the rotation (or z) axes

zb 1 = Rb 1 z1 1 =


0

0

1

 , zb 2 = Rb 2 z2 2 =


−s1
c1

0

 , (2.68)

zb 3 = Rb 3 z3 3 =


c1s2

s1s2

c2

 , zb 4 = Rb 4 z4 4 =


c1s2

s1s2

c2

 , (2.69)

zb 5 = Rb 5 z5 5 =


c1s2

s1s2

c2

 . (2.70)

We can see that the last three columns are the same since their rotation axes are parallel to

each other. Note that Jbω f θ̇ will actually give us the angular velocity of frame {5} described

in the base frame {b} and frame {f} shares the same angular velocity since they are relatively

stationary. Its time derivative is then determined to be

J̇bω f =
d Jbω f

dt
=


g11 g12 g13 g14 g15

g21 g22 g23 g24 g25

g31 g32 g33 g34 g35

 , (2.71)

where the elements

g11 = 0, (2.72)

g21 = 0, (2.73)

g31 = 0, (2.74)

g12 = −c1θ̇1, (2.75)
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g22 = −s1θ̇1, (2.76)

g32 = 0, (2.77)

g13 = −s1s2θ̇1 + c1c2θ̇2, (2.78)

g23 = +c1s2θ̇1 + s1c2θ̇2, (2.79)

g33 = −s2θ̇2, (2.80)

g14 = −s1s2θ̇1 + c1c2θ̇2, (2.81)

g24 = +c1s2θ̇1 + s1c2θ̇2, (2.82)

g34 = −s2θ̇2, (2.83)

g15 = −s1s2θ̇1 + c1c2θ̇2, (2.84)

g25 = +c1s2θ̇1 + s1c2θ̇2, (2.85)

g35 = −s2θ̇2. (2.86)

Inverse Kinematics

Inverse Kinematics (IK) is the converse of FK – given the desired position and orientation

of the target frame relative to the base frame, how do we compute the set of joint variables

which will achieve it? It usually refers to the configuration part only since the inversion of

the velocity and acceleration can be simply done by the “inverse” of the Jacobians.

Before we even start, note that each leg of BRUCE is deficient since it only has five DoFs,

which is less than six. As a result, we cannot achieve any arbitrary special configurations of

both position and orientation. For our application, we are most interested in the position

configuration with three DoFs as well as the direction of the xf–axis (foot pointing direction)

with two DoFs. Therefore, the IK problem is that given (2.12) (2.13) (2.14) (2.21) (2.22)

50



(2.23), solve θ1, θ2, θ3, θ4, θ5. By OBSERVATION ⌣, we can obtain

(
(px − hx) c1 +

(
py − hlegy

)
s1
)
s2 + (pz + hz) c2 = 0, (2.87)

(r11c1 + r21s1) s2 + r31c2 = 0. (2.88)

Further eliminating θ2 yields

((px − hx) r31 − (pz + hz) r11)︸ ︷︷ ︸
k1

c1 +
((
py − hlegy

)
r31 − (pz + hz) r21

)︸ ︷︷ ︸
k2

s1 = 0 (2.89)

⇒ θ1 = atan2 (−k1, k2) . (2.90)

Note that θ1 is nominally around −90◦ and thus s1 < 0 for our case, i.e., the other solution

is ignored. To be exact, we also need to discuss the situations when k1 and k2 are both zero,

e.g., px = hx, py = hlegy , pz = −hz or px = hx, py = hlegy , r11 = r21 = 0, which lead to infinite

numbers of solutions of θ1. However, they will hardly happen during nominal operation.

With θ1 solved, θ2 can be determined to be

θ2 = atan2
(
−pz − hz, (px − hx) c1 +

(
py − hlegy

)
s1
)
. (2.91)

Note that θ2 is nominally around 90◦ and thus s2 > 0 for our case, i.e., the other solution is

ignored as well. Substituting θ1 and θ2 into (2.12), (2.13), and (2.14) we can get

c345 = r21c1 − r11s1, (2.92)

s345 =


r31
s2

if s2 ̸= 0,

−r11c1 + r21s1
c2

if s2 = 0.

(2.93)
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Substituting c345 and s345 into (2.21), (2.22), and (2.23) we can obtain

k3 = a3c3 + a4c34 = −a5c345 + a6s345 +


pz + hz
−s2

if s2 ̸= 0,

(px − hx) c1 +
(
py − hlegy

)
s1

c2
if s2 = 0,

(2.94)

k4 = a3s3 + a4s34 =
(
py − hlegy

)
c1 − (px − hx) s1 − a5s345 − a6c345 − d2. (2.95)

Sum of squares of them above yields

k23 + k24 = a23 + a24 + 2a3a4c4 ⇒ c4 =
k23 + k24 − a23 − a24

2a3a4
(2.96)

⇒ θ4 = atan2

(
−
√

1− c24, c4

)
. (2.97)

Note that θ4 is nominally nonpositive and thus s4 ≤ 0 for our case, i.e., the other solution is

ignored. Substituting θ4 into (2.94) and (2.95) we can obtain

 (a3 + a4c4) c3 − a4s4s3 = k3

a4s4c3 + (a3 + a4c4) s3 = k4

(2.98)

⇒ θ3 = atan2 ((a3 + a4c4) k4 − a4s4k3, (a3 + a4c4) k3 + a4s4k4) , (2.99)

since the determinant (a3 + a4c4)
2 + (a4s4)

2 = k23 + k24 > 0. Note that θ3 will have infinitely

many solutions if k23 + k24 = 0 ⇒ a3 = a4, c4 = −1, which will never happen ⌣. Finally,

substituting θ3 and θ4 into (2.92) and (2.93) and we can solve

θ5 = atan2 (s345, c345)− θ3 − θ4. (2.100)

To sum up, the IK solution of the legs is given by

θ1 = atan2 (−k1, k2) , (2.101)
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θ2 = atan2
(
−pz − hz, (px − hx) c1 +

(
py − hlegy

)
s1
)
, (2.102)

θ4 = atan2

(
−
√

1− c24, c4

)
, (2.103)

θ3 = atan2 ((a3 + a4c4) k4 − a4s4k3, (a3 + a4c4) k3 + a4s4k4) , (2.104)

θ5 = atan2 (s345, c345)− θ3 − θ4, (2.105)

where the variables

k1 = (px − hx) r31 − (pz + hz) r11, (2.106)

k2 =
(
py − hlegy

)
r31 − (pz + hz) r21, (2.107)

c345 = r21c1 − r11s1, (2.108)

s345 =


r31
s2

if s2 ̸= 0,

−r11c1 + r21s1
c2

if s2 = 0,

(2.109)

k3 = −a5c345 + a6s345 +


pz + hz
−s2

if s2 ̸= 0,

(px − hx) c1 +
(
py − hlegy

)
s1

c2
if s2 = 0,

(2.110)

k4 =
(
py − hlegy

)
c1 − (px − hx) s1 − a5s345 − a6c345 − d2, (2.111)

c4 =
k23 + k24 − a23 − a24

2a3a4
. (2.112)

Note that θ1 ∼ −π/2, θ2 ∼ π/2, θ3 ∼ 0, θ4 ≤ 0, and θ5 ∼ 0. With BRUCE leg IK derived

in closed form, we can easily achieve any desired leg configuration by simply specifying the

foot position pb leg
f and direction xb leg

f , denoted as

θleg = IK
(
pb leg
f , xb leg

f

)
or θleg = IK

(
Tb leg
f

)
(2.113)

for convenience although the other two axes are not used at all.
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Conversion Between DH Joint Space and Actuator Space

To get the present DH joint information, e.g., present position, velocity, and torque (or force),

as well as to realize the joint command, e.g., goal position, velocity, and torque, we need to

know the conversion between the DH joint space and the actuator space. The conversion is

not trivial since the actuators are coupled, e.g., for the right leg, we have



θr1 = −φr
1

θr2 = −1

2
(φr

2 + φr
3) +

π

2

θr3 = +
1

2
(φr

2 − φr
3)

θr4 = −φr
4

θr5 = +φr
4 + φr

5

⇒



φr
1 = −θr1

φr
2 = −θr2 + θr3 +

π

2

φr
3 = −θr2 − θr3 +

π

2

φr
4 = −θr4

φr
5 = +θr4 + θr5

, (2.114)

where φleg
i denotes the rotor rotational position of the ith Koala BEAR actuator. Similarly,

for the left leg, we have



θl1 = −φl
1

θl2 = −1

2

(
φl
2 + φl

3

)
+
π

2

θl3 = +
1

2

(
φl
2 − φl

3

)
θl4 = +φl

4

θl5 = −φl
4 − φl

5

⇒



φl
1 = −θl1

φl
2 = −θl2 + θl3 +

π

2

φl
3 = −θl2 − θl3 +

π

2

φl
4 = +θl4

φl
5 = −θl4 − θl5

. (2.115)

We can see that the hip configurations for both legs are the same while the knee and ankle

configurations are not. This is because the corresponding actuators are facing to each other,

which reverses the actuator rotor rotation direction. Note that the rotor zero position should

also coincide with the nominal stance configuration in Figure 2.7, where the frames are all
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aligned. Now taking the time derivatives of them gives the velocity mapping:



θ̇r1

θ̇r2

θ̇r3

θ̇r4

θ̇r5


=



−1 0 0 0 0

0 −0.5 −0.5 0 0

0 +0.5 −0.5 0 0

0 0 0 −1 0

0 0 0 +1 +1





φ̇r
1

φ̇r
2

φ̇r
3

φ̇r
4

φ̇r
5


, (2.116)



θ̇l1

θ̇l2

θ̇l3

θ̇l4

θ̇l5


=



−1 0 0 0 0

0 −0.5 −0.5 0 0

0 +0.5 −0.5 0 0

0 0 0 +1 0

0 0 0 −1 −1





φ̇l
1

φ̇l
2

φ̇l
3

φ̇l
4

φ̇l
5


. (2.117)

We can easily verify that these two Jacobians are invertible. Finally, the transpose of these

two Jacobians yields the static torque mapping:



κr1

κr2

κr3

κr4

κr5


=



−1 0 0 0 0

0 −0.5 +0.5 0 0

0 −0.5 −0.5 0 0

0 0 0 −1 +1

0 0 0 0 +1





τ r1

τ r2

τ r3

τ r4

τ r5


, (2.118)



κl1

κl2

κl3

κl4

κl5


=



−1 0 0 0 0

0 −0.5 +0.5 0 0

0 −0.5 −0.5 0 0

0 0 0 +1 −1

0 0 0 0 −1





τ l1

τ l2

τ l3

τ l4

τ l5


, (2.119)
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where κlegi denotes the actuator output torque and τ legi denotes the joint torque. It is tricky

to fully understand the static torque relationship and one easy way is to compare BRUCE’s

parallel (or coupled) leg configuration with its series counterpart. For example, for the serial

leg with the same configuration (and the same frame attachment), the net torque acting on

the left foot link would be τ l5. However, for the parallel leg of BRUCE, the net torque acting

on the left foot link is −κl5. We need to set them equal in order to have the same effect and

thus we have κl5 = −τ l5. Similarly, for the serial leg, the net torque acting on the left shank

link would be τ l4 − τ l5 and for the BRUCE leg, it is just κl4. We need to set them equal as

well for the same effect. Things get complicated for the thigh link. For the serial leg, the net

torque would be τ l3 − τ l4 in the pitch direction and τ l2 in the roll direction. For the BRUCE

leg, it is −κl4 + κl5 + κl2 − κl3 in the pitch direction and −κl2 − κl3 in the roll direction. We

need to set them equal in each direction respectively. The same logic applies to the left hip

link in the yaw direction and the right leg as well.

2.3.2 Whole-Body Kinematics

We now solve the robot whole-body kinematics relative to the world frame {w} in considera-

tion of the floating base motion (the presuperscript w will always be omitted for readability).

Before we start, let us define the generalized coordinates, velocities, and accelerations:

q =



log (Rb)
∨

pb

θr

θl


, q̇ =



ωb b

vb b

θ̇r

θ̇l


, q̈ =



αb b

ab b

θ̈r

θ̈l


, (2.120)

where ωb b and vb b are the angular and linear velocity of the floating base described in its

own frame, αb b and ab b are thus the corresponding angular and linear acceleration. Note

that the generalized velocities and accelerations do not need to be the strict time derivatives

of the generalized coordinates for the floating base part.
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Given the base position pb and orientation Rb (which can be estimated in Section 4.3),

we can compute the foot position in the world frame first:

pleg
f = pb +Rb p

b leg
f . (2.121)

Its velocity can be derived by taking the time derivative:

ṗleg
f = ṗb + Ṙb p

b leg
f +Rb ṗ

b leg
f (2.122)

= vb +Rb ω̂
b

b p
b leg

f +Rb Jb leg
v f θ̇leg (2.123)

= Rb

(
vb b − p̂b leg

f ωb b + Jb leg
v f θ̇leg

)
(2.124)

⇒ ṗr
f = Rb

[
− p̂b r

f I Jb r
v f 0

]
︸ ︷︷ ︸

Jr
v f

q̇ = J r
v f q̇, (2.125)

ṗl
f = Rb

[
− p̂b l

f I 0 Jb l
v f

]
︸ ︷︷ ︸

J l
v f

q̇ = J l
v f q̇. (2.126)

A second time derivative gives the acceleration:

p̈r
f = J r

v f q̈ + J̇ r
v f q̇, (2.127)

p̈l
f = J l

v f q̈ + J̇ l
v f q̇, (2.128)

where

J̇ r
v f = Ṙb

[
− p̂b r

f I Jb r
v f 0

]
+Rb

[
−
.
p̂b r
f 0 J̇b r

v f 0

]
(2.129)

= Rb

(
ω̂b b

[
− p̂b r

f I Jb r
v f 0

]
+

[
− Ĵb r

v f θ̇
r 0 J̇b r

v f 0

])
(2.130)

= Rb

[
− ω̂b b p̂

b r
f − Ĵb r

v f θ̇
r ω̂b b ω̂b b Jb r

v f + J̇b r
v f 0

]
, (2.131)

J̇ l
v f = Rb

[
− ω̂b b p̂

b l
f − Ĵb l

v f θ̇
l ω̂b b 0 ω̂b b Jb l

v f + J̇b l
v f

]
. (2.132)
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The foot orientation can be determined to be

Rleg
f = Rb R

b leg
f . (2.133)

Its angular velocity is simply

ωleg
f = Rb

(
ωb b + ωb leg

f

)
(2.134)

= Rb

(
ωb b + Jb leg

ω f θ̇leg
)

(2.135)

⇒ ωr
f = Rb

[
I 0 Jb r

ω f 0

]
︸ ︷︷ ︸

Jr
ω f

q̇ = J r
ω f q̇, (2.136)

ωl
f = Rb

[
I 0 0 Jb l

ω f

]
︸ ︷︷ ︸

J l
ω f

q̇ = J l
ω f q̇. (2.137)

Its angular acceleration is thus

αr
f = J r

ω f q̈ + J̇ r
ω f q̇, (2.138)

αl
f = J l

ω f q̈ + J̇ l
ω f q̇, (2.139)

where

J̇ r
ω f = Ṙb

[
I 0 Jb r

ω f 0

]
+Rb

[
0 0 J̇b r

ω f 0

]
(2.140)

= Rb

(
ω̂b b

[
I 0 Jb r

ω f 0

]
+

[
0 0 J̇b r

ω f 0

])
(2.141)

= Rb

[
�
�̂ωb b 0 ω̂b b Jb r

ω f + J̇b r
ω f 0

]
, (2.142)

J̇ l
ω f = Rb

[
�
�̂ωb b 0 0 ω̂b b Jb l

ω f + J̇b l
ω f

]
. (2.143)

Note that the first block ω̂b b can be removed since ω̂b b ω
b

b = 0. In addition, we also need
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the foot angular velocity Jacobian in its local foot frame and thus we have

Jf leg
ω f = Rf leg

w J leg
ω f , (2.144)

J̇f leg
ω f = Rf leg

w J̇ leg
ω f . (2.145)

2.3.3 Kinematics Verification

Several tests are conducted to verify the robot kinematic model.

Posture Setup

The robot posture can be fully defined by first specifying the transformation matrices of the

base frame and the two foot frames relative to the world frame:

Tb =

 Rb pb

0 1

 , T leg
f =

 Rleg
f pleg

f

0 1

 . (2.146)

We can then describe the foot frame relative to the base frame:

Tb leg
f = T−1

b T leg
f . (2.147)

Once we have the foot position and direction relative to the base frame, we can use the

analytical IK solution (2.113) to solve for the corresponding joint angles. Note that the

nominal standing posture of BRUCE is designed in this way.

Seesaw Balancing

Note that this is only a naive balancing strategy. It is not designed for push recovery,

which requires robot dynamic information. We are only trying to keep the base frame fixed

based solely on the kinematic model whenever the seesaw terrain is changing. Also, we

are only considering the variation in the seesaw orientation for now, i.e., BRUCE will be
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commanded to keep its torso in the upright configuration when the seesaw is moving while

the translational effect will just be disregarded (well it is problematic to measure the absolute

position of the seesaw).

Let BRUCE start with the nominal standing posture on a seesaw. We can specify T ref
b

which is our reference. We need to find out T leg
f such that when the feet move with the seesaw

Tb is maintained (and we can then use IK again to get the corresponding joint angles). We

can further decompose T leg
f into two parts:

T leg
f = Ts Ts leg

f , (2.148)

where Ts describes the seesaw frame {s} relative to the world frame which is unknown and

varying while Ts leg
f describes the foot frame relative to the seesaw frame which is known and

fixed (assuming no slipping). Since we do not care about ps, it is zeroed for simplicity, i.e.,

ps = 0. If we further have the direct information of Rs, the problem is trivial, e.g., we can

mount an IMU on the seesaw for orientation measurement. However, to make the problem

even more interesting ⌣, we estimate the seesaw orientation using the on-board IMU with

a PID control [168] on SO(3) (see Appendix C).

Suppose we have a small variation in base orientation at the kth time step:

ek = Log
(
R⊤

b,kR
ref
b

)
, (2.149)

where Rb,k is the current base orientation. The seesaw orientation is then estimated as

Rs,k = Rs,0Exp
(
Kpek +Kiek −Kd ωb b,k

)
, (2.150)

ek = ek−1 +
(
Kpek −Kd ωb b,k

)
∆t, e0 = 0, (2.151)

where Kp, Ki, Kd are the diagonal positive definite proportional, integral, and derivative

gain matrices, respectively, which can be experimentally tuned, ∆t is the control frequency,
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and ωb b,k is the current base angular velocity.

Open-Loop Walking

A preliminary walking experiment is also carried out to show the fundamental locomotion

capability of BRUCE. The walking pattern generator is both kinematically and dynamically

consistent, using MPC for the robot CoM based on LIP [122] (we will go over the LIP model

in detail later in Section 3.2.1) and cycloidal interpolation for the swing leg motion [134].

The planned walking trajectory is then tracked using IK again.

Suppose we have N slices of body yaw angle ψref
k and position pref

b,k =
[
xrefk , yrefk

]⊤
,

k = 1, . . . , N , with ψref
1 = 0, xref1 = yref1 = 0. Note that we are only considering the

horizontal motion with a fixed CoM height. Given the desired step changes ∆xk, ∆yk, ∆ψk

in the robot body frame, we can determine the body yaw angle and position reference as

follows

ψref
k+1 = ψref

k +∆ψk, (2.152)

pref
b,k+1 = pref

b,k +Rz(ψ
ref
k )

 ∆xk

∆yk

 , (2.153)

where Rz is the planar rotation matrix. We can further determine the foothold locations

pref
r,k = pref

b,k +Rz(ψ
ref
k )

 0

d/2

 , (2.154)

pref
l,k = pref

b,k −Rz(ψ
ref
k )

 0

d/2

 , (2.155)

where d is the nominal foot lateral distance. Suppose we start with swinging the right leg
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and thus the CoP locations are determined to be

uref
k =


pref
l,k if k is odd,

pref
r,k if k is even.

(2.156)

For each step we have

xk+1 = ΦTd

(
ATs

xk +BTs
uref

k

)
, (2.157)

where the state xk =
[
pb,k, ṗb,k

]⊤
, the single-stance transition matrices

ATs
=



cosh(ωTs) 0 sinh(ωTs)/ω 0

0 cosh(ωTs) 0 sinh(ωTs)/ω

ω sinh(ωTs) 0 cosh(ωTs) 0

0 ω sinh(ωTs) 0 cosh(ωTs)


, (2.158)

BTs
=



1− cosh(ωTs) 0

0 1− cosh(ωTs)

−ω sinh(ωTs) 0

0 −ω sinh(ωTs)


, (2.159)

the double-stance state-transition matrix

ΦTd
=



1 0 Td 0

0 1 0 Td

0 0 1 0

0 0 0 1


(2.160)

assuming to preserve a constant velocity after each single-stance phase, Ts is the single-stance

duration, Td is the double-stance duration, and ω is the natural frequency of LIP. We can
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further add an extra double-stance phase before the first step as well as after the final step

to regulate the initial and final CoM states:

x1 = ATd
x0 +BTd

u0, (2.161)

xN+1 = ATd
xN +BTd

uN . (2.162)

With the initial and final CoM states specified, e.g., pb,0 = pref
b,1 , pb,N+1 = pref

b,N , and ṗb,0 =

ṗb,N+1 = 0, we can solve for the rest:



AT −I 0 0 0 0 · · · 0

0 AT −I 0 0 0 · · · 0

0 0 AT −I 0 0
. . .

...

...
...

. . . . . . . . . . . . . . . 0

0 0 · · · 0 AT −I 0 0

0 0 · · · 0 0 ATd
0 BTd

−I 0 · · · 0 0 0 BTd
0





x1

x2

x3

...

xN

u0

uN



=



−BTu
ref
1

−BTu
ref
2

−BTu
ref
3

...

−BTu
ref
N

xN+1

−ATd
x0



, (2.163)

where the matrices

AT = ΦTd
ATs

, (2.164)

BT = ΦTd
BTs

. (2.165)

Figure 2.8 shows the walking trajectory with an average forward velocity of 0.1 m/s and a

yaw rate of 0.1 rad/s for a CoM height of 0.3 m, d = 0.1 m, Ts = 0.3 s, and Td = 0.1 s.

2.4 Dynamics

Dynamics is the study of the forces required to cause the motion of the subject. In particular,

we consider the equations of motion for a robot – the way in which motion of the robot arises
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Figure 2.8: Open-loop walking trajectory.

from torques applied by the actuators or from external forces applied to the robot. There

are two problems related to the dynamics of a robot. The first one is forward dynamics (FD)

which is to calculate how the robot will move under application of a set of joint forces. This

is usually useful for simulating the robot. The second one is inverse dynamics (ID) which

is to find the required joint forces given a trajectory point. This formulation of dynamics is

useful for controlling the robot. We will focus on ID here.

2.4.1 Inverse Dynamics

Given the generalized coordinates of BRUCE (2.120) yet without considering the external

forces, the joint-space equations of motion can be written in the following canonical form:

H(q)q̈ +C(q, q̇)q̇ +G(q) = τ , (2.166)

where H(q) is the inertia matrix, C(q, q̇)q̇ is the vector of centrifugal and Coriolis terms,

G(q) is the gravity vector, and τ is the joint torque vector. Each element of H(q) and G(q)
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is a complex function that depends on q. Each element of C(q, q̇) is a complex function

of both q and q̇. Once these dependencies are understood, the shorter symbols H , C,

and G are used. While the analytical solution of them is almost impossible to derive (the

equations will be several pages long at best), we have many numerical algorithms which can

run efficiently in practice.

Recursive Newton-Euler Algorithm

The computation of Cq̇ and G can be done using ID based on the recursive Newton-Euler

algorithm (RNEA). RNEA is specifically to calculate ID of a kinematic tree (in comparison

to closed-loop systems) and it is the simplest, most efficient algorithm for the job. It has

a computational complexity of O(n), which means that the amount of calculation grows

linearly with the number of bodies, or joint variables, in the tree. RNEA in body coordinates

can be summarized as follows:

v0 = 0, (2.167)

a0 = g, (2.168)

vJi = Siq̇i, (2.169)

aJi = Siq̈i, (2.170)

vi = Xi λ(i)vλ(i) + vJi, (2.171)

ai = Xi λ(i)aλ(i) + aJi + vi × vJi, (2.172)

fB
i = Iiai + vi×∗Iivi, (2.173)

fi = fB
i +

∑
j∈µ(i)

Xi ∗
j fj, (2.174)

τi = S⊤
i fi, (2.175)

where g = [0, 0,−9.81]⊤ m/s2 is the gravitational acceleration, Si is the joint motion subspace

vector which is equal to [0, 0, 1, 0, 0, 0]⊤ for revolute joint, vi and ai are the spatial velocity
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and acceleration of body i, vJi and aJi are the spatial velocity and acceleration across joint

i, Ii is the spacial inertia, fB
i is the net force acting on body i, fi is the force transmitted

from body λ(i) to body i across joint i,

Xi λ(i) =

 Ri λ(i) 0

− Ri λ(i) p̂
i

λ(i) Ri λ(i)

⇒ Xi ∗
λ(i) = Xi −⊤

λ(i) =

 Ri λ(i) − Ri λ(i) p̂
i

λ(i)

0 Ri λ(i)

 (2.176)

is the coordinate transform from λ(i) to i, λ(i) is the parent of body i, µ(i) is the set of

children of body i, and × with its dual ×∗ is the spatial cross product. More detailed

information is available in [65].

Now that we have an ID calculation function, ID, which performs the calculation

τ = ID(q, q̇, q̈). (2.177)

On comparing this expression with (2.166), it follows immediately that

Cq̇ +G = ID(q, q̇,0), (2.178)

G = ID(q,0,0). (2.179)

The ith column of H can also be computed as follows:

Hi = ID(q, q̇, δi)− ID(q, q̇,0), (2.180)

where δi is a column vector having a 1 in its ith element and zeros elsewhere. The algorithm

has the advantage of being simple and straightforward. However, it is not the most efficient

way to calculate H . The fastest algorithm for that job is the composite-rigid-body algorithm

(CRBA), which is the subject of the following subsubsection.
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Composite-Rigid-Body Algorithm

CRBA has a computational complexity of O(nd), where d is the depth of the kinematic tree.

CRBA in body coordinates can be summarized as follows:

Ic
i = Ii +

∑
j∈µ(i)

Xi ∗
j I

c
j Xj i, (2.181)

F
λ(i)

i = X
λ(i) ∗

j Fj i, (2.182)

Fi i = Ic
i Si, (2.183)

Hij =


Fj ⊤

i Sj if i ∈ ν(j),

Hji if j ∈ ν(i),

0 otherwise,

(2.184)

where Ic
i is the inertia of the subtree rooted at body i, treated as a single composite rigid

body (this is where the algorithm gets its name), Fj i is the value of I
c
i Si expressed in body

j coordinates (i.e., Fj i = Xj ∗
i I

c
i Si), and ν(i) is the set of bodies in the subtree starting at

body i (or the set of all bodies supported by joint i). More information is available in [65].

2.4.2 Centroidal Momentum Dynamics

The control of centroidal momentum is important for humanoid robots, which consists of

the net linear momentum lG as well as the net angular momentum kG about the robot CoM.

While the linear part has a well-known relationship with the CoM velocity vG:

lG =MvG, (2.185)

the angular component is abstract as it represents the sum of the angular momenta of

each individual body. As a result, properly designing the angular momentum trajectory is

still an open problem. Fortunately, biomechanics studies of human walking have shown that
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although humans have large nonzero angular momenta for individual bodies in the limbs, yet,

the neuro-control system coordinates significant inter-segmental momentum cancelations,

regulating their centroidal angular momentum to near zero [67].

To effectively control the centroidal momentum, the centroidal momentummatrix (CMM)

AG(q) and its derivative ȦG(q) are required, which relate the centroidal momentum hG =[
k⊤
G, l

⊤
G

]⊤
and its rate of change ḣG to the generalized velocity and acceleration of the robot:

hG = AGq̇, (2.186)

ḣG = AGq̈ + ȦGq̇. (2.187)

The computation of AG and ȦGq̇ can be done from knowledge of the floating-base kinemat-

ics, the inertia matrix H , and the the Coriolis term Cq̇ alone:

Ic
b = SbHS⊤

b =

 Īc
b M p̂b G

−M p̂b G MI

 , (2.188)

Xb ⊤
G =

 Rb −Rb p̂
b

G

0 Rb

 , (2.189)

AG = Xb ⊤
GSbH , (2.190)

ȦGq̇ = Xb ⊤
GSbCq̇, (2.191)

where Sb is the base selection matrix. More detailed information is available in [169].

2.4.3 System Identification

An accurate dynamic model is essential for BRUCE to perform highly dynamic motions since

the controller heavily relies on it. Meanwhile, for miniature robots, CAD measurement is less

accurate due to the relatively high ratio of the electronics and accessories. Accordingly, mass-

inertial parameters are obtained by performing a system identification which is formulated
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as a least-squares problem with the joint measurement along some excitation trajectories

[170]. However, ill-conditioned observation matrix can lead to inaccurate identification. To

mitigate this issue, an optimal excitation trajectory is generated by minimizing the condition

number of the observation matrix based on a parameterized trajectory with finite fourier

series [171, 172], while regularization towards the nominal values obtained from the CAD

model is also considered. The regularized least-squares problem is formulated as follows:

min
Ψ

∥Γ(q, q̇, q̈)Ψ− τ∥+ λR(Ψ,Ψ0) , (2.192)

where q, q̇, q̈, τ are respectively the measured joint positions, velocities, accelerations, torques,

Γ is the state-dependant observation matrix, and Ψ ∈ R10n consists of the mass-inertial pa-

rameters for an n-link system including mass, first mass moment, and rotational inertia

tensor [170]. As for the regularization term R with the scalar weight λ, the formulation in

[173] is adopted to make the difference between Ψ and its nominal quantity Ψ0 physically

consistent but still convex.

2.5 Conclusion

This chapter presents the early development of BRUCE, a next-generation miniature bipedal

robot. With the designed differential cable-driven pulley system and linkage mechanism, the

distribution of leg mass and inertia is optimized in favor of dynamic behaviors. Propriocep-

tive actuation and contact sensing further enable BRUCE to safely interact with unstructured

environments while providing rich feedback information. Complete modeling and analysis of

the robot system, e.g., kinematics, dynamics, system identification, are also carried out. The

preliminary testing results verify the basic functionalities of the robot design and explore its

dynamic capabilities. The BRUCE project is aimed to become an open-source, cost-effective,

accessible, reliable, miniature humanoid robot platform for general research purposes in the

near future.
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Chapter 3

Divergent Component of Motion

Based Analysis and Control of

Dynamic Bipedal Locomotion Using

Reduced-Order Models

3.1 Introduction

3.1.1 Background

Bipedal locomotion has been studied for decades and yet it remains an active research

field. Besides the great demand for a reliable hardware platform, various challenges emerge

in developing an efficient control algorithm, e.g., the complex robot dynamics and strict

real-time requirements. To date, many successful online locomotion control strategies still

utilize the reduced-order models, which only focus on the most salient aspect of the system

dynamics, e.g., linear inverted pendulum (LIP) model [68].

In the presence of strong perturbations, when the ankle [113, 174] and hip [73, 175]

strategies are no more effective, it is necessary to take recovery steps to avoid falling. While
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linear feedback control and simple heuristics work for small footstep adjustment [71, 126], a

real-time trajectory optimization (TO) scheme outperforms them with the consideration of

a time prediction horizon and various physical constraints.

One of the main progresses in the field has been how the LIP is handled in this TO scheme.

Considering piecewise constant center of mass (CoM) jerk as input, the LIP dynamics can

be discretized as cubic polynomials. The footstep locations can be optimized through a

quadratic program (QP), which minimizes the overall tracking errors while restricting the

center of pressure (CoP) within the support polygon [114, 115, 116]. Assuming invariant

CoP coincident with the footstep location, the LIP dynamics can be analytically integrated

so that the intermediate process can be omitted and thus only an order of magnitude less

decision variables are involved in the QP [121, 122]. Nevertheless, in all these strategies,

step duration is always fixed to maintain the convexity of the TO problem. Notably, the

LIP dynamics can be decomposed into two parts, one is stable and the other is unstable,

and controlling only the unstable part, the so-called divergent component of motion (DCM),

is enough to generate stable walking [78, 126]. Unlike the full CoM states including both

position and velocity, the DCM follows a first-order dynamics, which helps simplify other

aspects of locomotion analysis and control. Based on the DCM, both location and timing

of the next footstep can be adapted within a convex TO formulation thanks to a suitable

change of variable, which leads to even less decision variables [119, 130].

3.1.2 Motivation and Contribution

Though many progresses have been advanced, some problems remain open:

• The latest developments in robot hardware, e.g., proprioceptive actuation [50, 53,

54, 55], have enabled quadrupedal robots to perform highly dynamic motions [157],

which will extensively ameliorate bipedal robots sooner or later so that a vast range of

dynamic gaits can be achieved not just in simulations, e.g., running and hopping. How-

ever, almost all DCM-based locomotion frameworks only concentrate on the walking
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scenario without considering a flight phase.

• Compared with walking, the horizontal and vertical CoM dynamics are more coupled in

running and hopping, which makes it less consistent with the LIP assuming a constant

CoM height during the stance phase. In this respect, the variable-height inverted

pendulum [71] and spring-loaded inverted pendulum [79] generalize the LIP by getting

rid of the fixed CoM height constraint, which can better describe the overall 3D CoM

motion. Unfortunately, they are non-integrable and costly to evaluate, which increases

complexity in the TO. It is still debatable to which extent the LIP is effective in

modeling highly dynamic bipedal locomotion given that the decoupling of the CoM

dynamics has seen success in the control of bipedal running [123, 132]. Notably, in

biomechanics studies of human locomotion, Lee and Farley showed that the CoM of

their subjects moved upwards by 0.031 m during the first half of the stance phase

during walking and moved downwards by 0.073 m during the first half of the stance

phase during running [176]. If we say the CoM height is changing between 0.9 and 1.0

m during the stance phase, the natural frequency of the pendulum will only change

between 3.13 and 3.30 Hz. The small variance in the pendulum frequency verifies the

effectiveness of the LIP in modeling running to some extent.

• When designing TO-based locomotion controllers, we always ask the question: How

many steps ahead shall we plan? While most of them usually have a preview of

adequate steps to ensure gait viability, it can be computationally expensive and un-

necessary. Koolen et al. hypothesize bipedal robots can usually stop within two steps

if ever possible [77]. Zaytsev et al. claim in most cases the robot does not perform

better by looking more than two steps ahead [177]. Khadiv et al. argue it is sufficient

to only consider the next step location and timing to ensure walking stability from

any viable state [130]. Nonetheless, almost all of them only focus on the gait viability

without thinking about other aspects.
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This chapter addresses the aforementioned problems and the main contributions are

summarized as follows:

• The decoupling of the CoM dynamics is preserved and the work of [119] is extended

by further considering a flight phase for each gait cycle. Consequently, DCM-based

analysis of both nominal gait pattern and viability condition for the reduced-order

models is augmented in closed form. A similar study has been conducted but the

results are deficient, e.g., assumption (16) is only valid with a zero nominal lateral

CoM velocity [132].

• A corresponding TO-based locomotion control framework is designed, which can be

formulated into a small-scale QP even with a horizon of multiple steps being planned

ahead of time, so that both step location and timing can be optimally determined in

real time.

• The theoretical capabilities of the proposed DCM-based locomotion analysis and con-

trol are studied independent of the actual robot. The approach is implemented on the

reduced-order models and verified through push recovery simulations. The results also

indicate while planning with one step ahead is mostly enough for gait viability, three

preview steps is the wise choice in terms of system robustness1, transient behavior2,

and computational efficiency.

1System robustness is defined as the ability to recover from external disturbances.
2Transient behavior is defined as the response to a deviation from the nominal gait pattern, e.g., due to

external disturbances.
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(a) (b)

Figure 3.1: Schematic diagram of reduced-order models: (a) LIP during the stance phase
and (b) BM during the flight phase.

3.2 Reduced-Order Models

This section elaborates the reduced-order models in order to characterize the evolution of

the robot states in a computationally efficient manner. Note that only the horizontal motion

is studied. The CoM horizontal and vertical motions have been decoupled for 3D bipedal

locomotion analysis and control previously. Therefore, existing vertical results, e.g., [123,

132, 178], can be readily applied if needed in practice.

Generally, a nominal symmetric and periodic gait can be designed by considering two

phases in each gait cycle, the stance phase with duration Ts followed by the flight phase

with duration Tf . The total duration T of each gait cycle is thus equal to Ts + Tf . As

illustrated in Figure 3.1, during the stance phase, LIP is used which allows closed-form

dynamic integration. During the flight phase, the CoM movement is described by the simple

ballistic motion (BM).
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3.2.1 Linear Inverted Pendulum Model

Dynamic Equations

Without worrying about torque saturations, the centroidal momentum dynamics efficiently

captures the effect of the net external wrench on the evolution of both linear and angular

momentum, which is given by

l̇ = mc̈ = −mg +
N∑
i=1

fi, (3.1)

k̇ =
N∑
i=1

(pi − c)× fi, (3.2)

where l,k ∈ R3 are respectively the linear and angular momentum, c =
[
cx, cy, cz

]⊤ ∈ R3

is the robot CoM position, fi ∈ R3 is the ith contact force exerted at the corresponding

contact location pi ∈ R3, N ∈ N is the number of contacts, g = [0, 0, g]⊤ ∈ R3 is the gravity

vector with gravitational acceleration g = 9.81 m/s2, and m ∈ R is the robot mass.

For general robot locomotion design synthesis, one can usually simplify the multi-contact

scenario with one single equivalent resultant force f :=
N∑
i=1

fi exerted at the center of

pressure (CoP) location p =
[
px, py, pz

]⊤ ∈ R3 on the ground:

p :=

N∑
i=1

(n̂ · fi)pi

N∑
i=1

n̂ · fi

=

N∑
i=1

fn
i pi

N∑
i=1

fn
i

, (3.3)

which gives

l̇ = mc̈ = −mg + f , (3.4)

k̇ = (p− c)× f . (3.5)
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Note that we assume the contact points are all on the same ground plane with a common

unit normal vector n̂ ∈ R3. We thus have

(pi − p) · n̂ = 0, (3.6)

and fn
i = n̂ · fi ∈ R denotes the normal component. With the unilateral constraint of the

contact forces as follows:

n̂ · fi = fn
i ≥ 0, (3.7)

the CoP must lie within the convex hull of the contact points. We can further verify that

the tangential angular momenta of the contact forces with respect to the CoP vanishes:

t̂ ·

 N∑
i=1

(pi − p)×
(
fn
i n̂+ f

ti
i t̂i

)
︸ ︷︷ ︸

=fi

 (3.8)

=
N∑
i=1

(pi − p) ·

fn
i

(
n̂× t̂

)
︸ ︷︷ ︸

= t̂′

+f
ti
i

(
t̂i × t̂

)
︸ ︷︷ ︸

= ain̂

 (3.9)

= t̂′ ·
N∑
i=1

fn
i (pi − p)︸ ︷︷ ︸

=0 per (3.3)

+
N∑
i=1

aif
ti
i (pi − p) · n̂︸ ︷︷ ︸

=0 per (3.6)

(3.10)

= 0, (3.11)

where t̂, t̂i ∈ R3 are the unit tangential vectors and f
ti
i = t̂i · fi ∈ R thus denotes the

tangential component. As a result, the CoP is also referred to as the Zero-Moment Point

(ZMP) [75].

If we further assume the change rate of the centroidal angular momentum is negligible,

i.e., k̇ = 0, the resultant force f needs to point towards the CoM according to (3.5), which
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indicates f is in the form of

f = ω2 ·m (c− p) , (3.12)

where the parameter ω ∈ R is known as the natural frequency of the pendulum. Substituting

(3.12) into (3.4) yields

c̈ = ω2 (c− p)− g ⇒


c̈x = ω2 (cx − px)

c̈y = ω2
(
cy − py

)
c̈z = ω2 (cz − pz)− g

. (3.13)

The resultant CoM dynamics will be the well-known LIP with an additional assumption of

a constant vertical CoM acceleration, i.e., c̈z = 0, which leads (3.13) to

0 = c̈z = ω2 (cz − pz)− g ⇒ ω =

√
g

cz − pz
. (3.14)

In addition, pz = 0 is usually considered. Finally, the dynamics of the classic LIP can be

written as

c̈ = ω2 (c− p) (3.15)

with the vertical CoM dynamics (3.14) embedded, where we redefine c =
[
cx, cy

]⊤ ∈ R2 and

p =
[
px, py

]⊤ ∈ R2. From now on, we will only focus on the horizontal CoM motions. We

can then rewrite (3.15) in its state-space form as follows:

 ċ

c̈


︸ ︷︷ ︸

ẋ

=

 0 I

ω2I 0


︸ ︷︷ ︸

A

 c

ċ


︸ ︷︷ ︸

x

+

 0

−ω2I


︸ ︷︷ ︸

B

p︸︷︷︸
u

. (3.16)
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Let’s define new state-space variables z related to x via x = Tz, where

T =

 I 0

−ωI ωI

 , T−1 =

 I 0

I ω−1I

 , (3.17)

z =

 c

ξ

 , (3.18)

ξ := c+ ω−1ċ. (3.19)

The state-space equations in the new coordinates are

 ċ

ξ̇


︸ ︷︷ ︸

ż

=

 −ωI ωI

0 ωI


︸ ︷︷ ︸

T−1AT

 c

ξ


︸ ︷︷ ︸

z

+

 0

−ωI


︸ ︷︷ ︸

T−1B

p︸︷︷︸
u

. (3.20)

We can see that (3.20) can be split into two first-order differentiation equations:

ċ = ω (ξ − c) , (3.21)

ξ̇ = ω (ξ − p) . (3.22)

The dynamics (3.21) is stable, i.e., c always follows ξ, whereas the dynamics (3.22) is un-

stable, i.e., ξ is pushed away by p, which implies that controlling only the unstable part is

enough to achieve stable locomotion. The variable ξ is known as the DCM [78].

Analytical Solutions

Assuming ω is a constant during the stance phase, the linear CoM dynamics (3.15) can be

solved in closed form as an initial value problem (IVP). With the initial CoM condition

c(0) = c0 and ċ(0) = ċ0, as well as the initial CoP location p0, the solution is given as
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follows:

c(t) = ρ(t)r0 + ω−1σ(t)ċ0 + p0, (3.23)

ċ(t) = ωσ(t)r0 + ρ(t)ċ0, (3.24)

for 0 ≤ t ≤ Ts, where

ρ(t) := cosh(ωt), (3.25)

σ(t) := sinh(ωt), (3.26)

and the CoM offset r =
[
rx, ry

]⊤ ∈ R2 is defined as

r := c− p. (3.27)

The CoM states at the end of the stance phase, i.e., cTs
:= c(Ts) and ċTs

:= ċ(Ts), are thus

given by

cTs
= ρTs

r0 + ω−1σTs
ċ0 + p0, (3.28)

ċTs
= ωσTs

r0 + ρTs
ċ0, (3.29)

where ρTs
:= ρ(Ts) and σTs

:= σ(Ts). Note that the subscript indicates the gait time.

The DCM dynamics (3.22) can also be analytically solved as an IVP with the initial

DCM state ξ(0) = ξ0:

ξ(t) = η(t)b0 + p0, (3.30)

for 0 ≤ t ≤ Ts, where

η(t) := eωt, (3.31)
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and the DCM offset b =
[
bx, by

]⊤
is defined as

b := ξ − p. (3.32)

The DCM state at the end of the stance phase, i.e., ξTs
:= ξ(Ts), is thus given by

ξTs
= ηTs

b0 + p0, (3.33)

where ηTs
:= η(Ts).

3.2.2 Ballistic Model

Dynamic Equations

When the robot is in flight, no external forces can affect its horizontal CoM states:

c̈ = 0. (3.34)

The corresponding DCM dynamics based on the DCM definition (3.19) is given by

ξ̇ = ċ. (3.35)

Analytical Solutions

Based on (3.34), the equations of motion for the horizontal CoM states are given by

c(t) = cTs
+ (t− Ts) ċTs

, (3.36)

ċ(t) = ċTs
, (3.37)
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for Ts ≤ t ≤ T . The CoM states at the end of the flight phase, i.e., cT := c(T ) and

ċT := ċ(T ), are thus given by

cT = cTs
+ Tf ċTs

, (3.38)

ċT = ċTs
. (3.39)

Using (3.35) along with (3.37), the equations of motion for the horizontal DCM state is

given by

ξ(t) = ξTs
+ (t− Ts) ċTs

, (3.40)

for Ts ≤ t ≤ T . The DCM state at the end of the flight phase, i.e., ξT := ξ(T ), can thus be

determined to be

ξT = ξTs
+ Tf ċTs

. (3.41)

Note that the DCM trajectory (3.40) is not well defined during the flight phase due to the

absence of the CoP and in fact only the final DCM state ξT is used, which initializes the

next gait cycle.

3.3 Gait Analysis

The nominal symmetric and periodic gait is designed and analyzed in this section, as illus-

trated in Figure 3.2. Let’s define the step difference L =
[
Lx, Ly

]⊤
for the two gait cycles

as follows:

LT := pT − p0, (3.42)

L2T := p2T − pT , (3.43)
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Figure 3.2: Illustration of the CoP, DCM, and initial DCM offset for two gait cycles. Each
gait cycle includes a stance phase followed by a flight phase. Note that the robot is facing
and locomoting to the positive x direction.

where pT and p2T are the next footstep location and the one after next, respectively. Note

that we consider the CoP corresponds to the footstep location here and the robot is alter-

nating between left and right stances.

3.3.1 Gait Prediction

At any moment, given the elapsed time τ since the start of the current phase, the current

CoM states cτ and ċτ , the current CoP location pτ if available, and the current DCM state

ξτ , the DCM state at the end of the current cycle (i.e., upcoming touchdown moment) ξ1

can be determined per (3.40) using (3.23), (3.24), (3.30), (3.36) and (3.37) as follows:

ξ1 = ξτ +
(
Tf − τ

)
ċτ , (3.44)

for 0 ≤ τ ≤ Tf during the flight phase, or

ξ1 = ηTs
e−ωτbτ + pτ + Tf ċ1, (3.45)
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for 0 ≤ τ ≤ Ts during the stance phase, where

ċ1 = ωσTτ
rτ + ρTτ

ċτ , (3.46)

c1 = ρTτ
rτ + ω−1σTτ

ċτ + pτ + Tf ċ1, (3.47)

ρTτ
:= ρ(Ts−τ), and σTτ

:= σ(Ts−τ). Similarly, the next N−1 gait cycles can be predicted

as follows:

ċk+1 = ωσTs
rk + ρTs

ċk, (3.48)

ck+1 = ρTs
rk + ω−1σTs

ċk + pk + Tf ċk+1, (3.49)

ξk+1 = ηTs
bk + pk + Tf ċk+1, (3.50)

for k = 1, . . . , N − 1.

3.3.2 Nominal Gait Pattern

The nominal gait can be characterized by the nominal phase durations T nom
s and T nom

f , as

well as the nominal lengths Lnom and bnom. For the sake of readability, the superscript

nom is omitted in this subsection from now on. The length parameters depend on the time

parameters and thus need to be determined.

Longitudinal Direction

Assuming at steady state, a nominal average longitudinal velocity vx is realized by a nominal

step difference:

Lx = T · vx = px,T − px,0. (3.51)
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Consider for each gait cycle that the initial DCM offset should be equal to the nominal value

bx to sustain the periodicity:

bx = bx,0 = bx,T . (3.52)

Similarly, the initial CoM velocity should also be equal to the corresponding nominal value

ċx:

ċx = ċx,0 = ċx,T . (3.53)

Substituting (3.33) into (3.41) with (3.32) and (3.39) yields

pT − p0 = ηTs
b0 − bT + Tf ċT . (3.54)

Substituting (3.51), (3.52), and (3.53) into (3.54) gives

Lx = ηTs
bx − bx + Tf ċx (3.55)

Substituting (3.29) into (3.39) with (3.19) and (3.32) yields

ċT = ωσTs
b0 + η−1

Ts
ċ0. (3.56)

Substituting (3.52) and (3.53) into (3.56) gives

ċx = ωσTs
bx + η−1

Ts
ċx. (3.57)

The system of equations (3.55) and (3.57) is now in terms of bx and ċx, solving them yields

bx =
Lx

ηTs
− 1 + ωαTs

Tf
, (3.58)
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ċx = ωαTs
bx, (3.59)

where the parameter

αTs
:=

σTs

1− η−1
Ts

≥ 1, (3.60)

given ωTs ≥ 0. We can further investigate the characteristics of bx in terms of its components,

e.g., Ts, Tf , vx. Without the flight phase, i.e., Tf = 0, as shown in Figure 3.3(a), we can see

that bx increases as vx increases but as Ts decreases. This makes sense because for faster vx

and shorter Ts, larger bx is expected to produce greater CoM acceleration at the beginning.

With the flight phase involved, as shown in Figure 3.3(b), for fixed vx, Tf does not play an

important role in bx. This also makes sense because since the CoM and DCM share the same

velocity throughout the flight phase, the nominal gait with and without the flight phase will

result in almost identical bx with only slight differences.

Lateral Direction

Assuming at steady state, a nominal average lateral velocity vy is realized by a nominal step

difference:

Ll
y = Wy − dy = py,T − py,0, (3.61)

Lr
y = Wy + dy = py,2T − py,T , (3.62)

for the left and right stances, respectively, whereWy = T ·vy is the nominal pelvis movement

and dy is the lateral footstep clearance resulting from the pelvis width. Note that two

complete gait cycles need to be considered to sustain the periodicity in the lateral direction:

bly = by,0 = by,2T , bry = by,T , (3.63)

ċly = ċy,0 = ċy,2T , ċry = ċy,T . (3.64)
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(a) (b)

Figure 3.3: Characteristics of nominal initial DCM offset bx, (a) without the flight phase
and (b) with the flight phase, where the top and bottom layers correspond to vx = 0.75 m/s
and 0.25 m/s, respectively. Note that ω ≈ 3.50 Hz with cz = 0.8 m is assumed.

Substituting (3.61), (3.62), (3.63), and (3.64) into (3.54) gives

Wy − dy = ηTs
bly − bry + Tf ċ

r
y, (3.65)

Wy + dy = ηTs
bry − bly + Tf ċ

l
y. (3.66)

Substituting (3.63) and (3.64) into (3.56) gives

ċly = ωσTs
bry + η−1

Ts
ċry, (3.67)

ċry = ωσTs
bly + η−1

Ts
ċly. (3.68)
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The system of equations (3.65), (3.66), (3.67), and (3.68) is now in terms of bly, b
r
y, ċ

l
y and

ċry, solving them yields

bly =
Wy

ηTs
− 1 + ωαTs

Tf
− dy
ηTs

+ 1 + ωβTs
Tf
, (3.69)

bry =
Wy

ηTs
− 1 + ωαTs

Tf
+

dy
ηTs

+ 1 + ωβTs
Tf
, (3.70)

ċly =
ωβTs

(
ηTs
bry + bly

)
ηTs

− 1
, (3.71)

ċry =
ωβTs

(
ηTs
bly + bry

)
ηTs

− 1
. (3.72)

where the parameter

βTs
:=

σTs

1 + η−1
Ts

≥ 0, (3.73)

given ωTs ≥ 0.

A series of nominal gait patterns for walking (i.e., Tf = 0) with different step durations

are shown in Figure 3.4. We can see that the robot CoM tends to swing more in the lateral

direction as Ts increases. Note that it is undesirable to have a large Ts as the real robot does

not behave as the LIP exactly especially when Ts is large and thus the nominal gait pattern

becomes meaningless.

3.3.3 Viability Condition

The viability condition is further investigated to specify the boundary of the DCM-based

gait pattern. In terms of the initial DCM offset, if it is within the limits, there exists at least

one combination of step location and timing to keep the DCM from diverging. If it is out

of the limits, no solution exists, i.e., the DCM will just diverge and the robot will fall down

eventually. The DCM offset limits can be derived based on the concept of capturability [77].

87



Figure 3.4: Nominal gait pattern with different step durations. Note that the robot is walking
to the positive x direction with a fixed average CoM speed of 0.1 m/s, a fixed CoM height
of 0.3 m, and a fixed step width of 0.1 m.

Longitudinal Direction

For the forward (i.e., positive x) direction, suppose the initial DCM offset bx,0 is M -step

capturable:

bx,0 ≤ γ+x,M , (3.74)

where γ+x,M is the corresponding capturability bound. The initial DCM offset of the next

gait cycle bx,T is thus (M − 1)-step capturable:

bx,T ≤ γ+x,M−1. (3.75)

88



Substituting (3.54) into (3.75) and rearranging gives

bx,0 ≤ η−1
Ts

(
γ+x,M−1 + Lx,T − Tf ċx,T

)
. (3.76)

The upper bound in (3.76) is maximized when Ts = Ts,min and Lx,T = Lx,max+Tf ċx,T , where

we take into account both physical limit Lx,max and flight velocity, i.e., the feasible footstep

region for the next gait cycle travels with the robot during the flight phase, which also leads

to a similar result without considering the flight phase. This maximum upper bound should

coincide with γ+x,M in (3.74), which yields the recursive expression:

γ+x,M = η−1
Ts,min

(
γ+x,M−1 + Lx,max

)
. (3.77)

The solution with γ+x,0 = 0 is given by

γ+x,M = Lx,max

1− e−ωMTs,min

ηTs,min
− 1

, (3.78)

and its limit is known as the ∞-step capturability bound:

γ+x,∞ = lim
M→∞

γ+x,M =
Lx,max

ηTs,min
− 1

, (3.79)

which is also considered the DCM offset limit for the forward direction and we thus denote

bx,max = γ+x,∞. Similarly, for the backward (i.e., negative x) direction, we have

bx,min = lim
M→∞

Lx,min

1− e−ωMTs,min

ηTs,min
− 1︸ ︷︷ ︸

= γ−
x,M

=
Lx,min

ηTs,min
− 1

. (3.80)
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Lateral Direction

For the inward (i.e., positive y) direction of the right leg, suppose the initial DCM offset by,0

is 2M -step capturable:

by,0 ≤ γr+y,M , (3.81)

where γr+y,M is the corresponding capturability bound. The initial DCM offset after two gait

cycles by,2T is thus 2(M − 1)-step capturable:

by,2T ≤ γr+y,M−1. (3.82)

Again, two gait cycles are considered for the lateral case. Substituting (3.54) into (3.82)

twice and rearranging yields

by,0 ≤ η−1
Ts

(
Ly,T − Tf ċy,T

)
+ η−2

Ts

(
γr+y,M−1 + Ly,2T − Tf ċy,2T

)
. (3.83)

The upper bound is maximized when Ts = Ts,min, Ly,T = Lr
y,max + Tf ċy,T , and Ly,2T =

Ll
y,max + Tf ċy,2T . This maximum upper bound should coincide with γr+y,M in (3.81), which

yields the recursive expression:

γr+y,M = η−1
Ts,min

Lr
y,max + η−2

Ts,min

(
γr+y,M−1 + Ll

y,max

)
. (3.84)

The solution of this recursive expression with γr+y,0 = 0 and its limit are respectively

γr+y,M =
(
ηTs,min

Lr
y,max + Ll

y,max

) 1− e−2ωMTs,min

η2Ts,min
− 1

, (3.85)

bry,max = lim
M→∞

γr+y,M =
ηTs,min

Lr
y,max + Ll

y,max

η2Ts,min
− 1

. (3.86)
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Similarly, for the outward (i.e., negative y) direction and the left leg, we have

γr−y,M =
(
ηTs,min

Lr
y,min + Ll

y,min

) 1− e−2ωMTs,min

η2Ts,min
− 1

, (3.87)

bry,min = lim
M→∞

γr−y,M =
ηTs,min

Lr
y,min + Ll

y,min

η2Ts,min
− 1

, (3.88)

γl+y,M =
(
ηTs,min

Ll
y,max + Lr

y,max

) 1− e−2ωMTs,min

η2Ts,min
− 1

, (3.89)

bly,max = lim
M→∞

γl+y,M =
ηTs,min

Ll
y,max + Lr

y,max

η2Ts,min
− 1

, (3.90)

γl−y,M =
(
ηTs,min

Ll
y,min + Lr

y,min

) 1− e−2ωMTs,min

η2Ts,min
− 1

, (3.91)

bly,min = lim
M→∞

γl−y,M =
ηTs,min

Lr
y,min + Ll

y,min

η2Ts,min
− 1

. (3.92)

Figure 3.5 helps better understand the gait viability condition. Given the left foot p0 of

the current gait cycle, the feasible footstep region for the right foot of the next gait cycle can

be first determined. The DCM viability kernel [179] can be further obtained by adding the

DCM offset limits. The system is viable, i.e., the robot is able to avoid falling, as long as the

initial DCM of the next gait cycle ξT is within the viability kernel, or equivalently, the initial

DCM offset is bounded by the DCM offset limits. The viability condition can be useful for

robot to make its own judgement, e.g., recovery stepping, fall detection, prevention, and

preparation.

3.4 Locomotion Control

In previous sections, the DCM evolution is predicted, the nominal gait pattern is derived,

and the viability condition is also investigated. We can now construct our locomotion control

framework which is capable of real-time planning for the next few steps including both step

location and timing, such that robust locomotion can be achieved in the presence of external
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𝐿𝑥,max𝐿𝑥,min
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𝑥

𝑦

Figure 3.5: Illustration of gait viability condition. The green and gray boxes are respectively
the next footstep region and DCM viability kernel. The system is viable as long as ξT is
within the viability kernel.

disturbances. This TO problem is formulated as the following mathematical optimization (a

QP problem essentially):

min
pk,bk,
ηTs

,Tf

N∑
k=1

∥Lk −RkL
nom
k ∥2WL

+ ∥bk −Rkb
nom
k ∥2Wb

+ ws

∣∣ηTs
− ηTnom

s

∣∣2 + wf

∣∣Tf − T nom
f

∣∣2 (3.93)

s.t. ξ1 =


ηTs
e−ωτbτ + pτ + Tf ċ1 if in stance,

ξτ +
(
Tf − τ

)
ċτ if in flight,

(3.94)

ξk+1 = ηTnom
s

bk + pk + T nom
f Rkċ

nom
k+1 , k = 1, . . . , N − 1, (3.95)

Lmin ≤ R⊤
k Lk ≤ Lmax, k = 1, . . . , N, (3.96)

ηTs,min
≤ ηTs

≤ ηTs,max
, (3.97)

Tf,min ≤ Tf ≤ Tf,max, (3.98)
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Table 3.1: QP specifications.

Decision Variables 2N︸︷︷︸
#(pk)

+ 2N︸︷︷︸
#(bk)

+ 1︸︷︷︸
#(ηTs

)

+ 1︸︷︷︸
#(Tf )

= 4N + 2

Equality Constraints 2︸︷︷︸
#(3.94)

+2(N − 1)︸ ︷︷ ︸
#(3.95)

= 2N

Inequality Constraints 4N︸︷︷︸
#(3.96)

+ 2︸︷︷︸
#(3.97)

+ 2︸︷︷︸
#(3.98)

= 4N + 4

where

Lk =


pk − pτ if k = 1,

pk − pk−1 if k = 2, . . . , N,

(3.99)

N is the number of preview steps, andR ∈ SO(2) is the planar rotation matrix describing the

desired robot orientation, which transfers vectors from the robot frame to the world frame.

Note that all the nominal gait length parameters are derived in the robot frame. Table

3.1 summarizes the QP specifications, which is really a small-scale optimization even with

multiple steps being considered ahead of time. Let us go over the details of its formulation.

3.4.1 Decision Variables

The decision variables first include the footstep locations pk and the initial DCM offsets bk

for the next N gait cycles, where k = 1, . . . , N . The DCM states ξk can be easily expressed

by them using (3.32) and thus are excluded. Since the flight phase is considered as well, the

CoM states should also have been involved as decision variables so as to properly predict

the DCM states per Section 3.3.1. However, for the sake of linearity and simplicity, they are

excluded and only their current measurements or nominal values are used, which still works

well in practice.

In addition, the phase durations of the current gait cycle are also included as decision
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variables because step timing is just as critical as step location to robust locomotion, if not

more so. Note that a change of variable is introduced for the stance duration in order to

maintain the linearity of the constraints, i.e., ηTs
is used instead of Ts. The phase durations

of the rest gait cycles in the long horizon are not of high priority. They are not optimized

and are set to their nominal values for linearity and simplicity.

3.4.2 Cost Function

The optimizer adapts the nominal gait pattern which is characterized by the gait parameters

Ts, Tf , L, and b. Accordingly, the cost function (3.93) penalizes the overall deviation from

their corresponding nominal values in the least-squares sense, where the weighted vector

norm square is defined as ∥e∥2W := e⊤We for e ∈ Rn and W ∈ Sn
+. In practice, having a

much larger Wb than WL enhances gait viability. Furthermore, steering capability can be

easily achieved by introducing the desired robot orientation Rk for each gait cycle. Finally,

the first cost term only considers the relative step differences Lk, which however can be

replaced or extra guided with global references if necessary.

3.4.3 Constraints

Several constraints need to be imposed in order to satisfy the various requirements, which

are all linear in terms of the decision variables.

DCM Prediction

For locomotion with several steps being planned ahead of time, the DCM state needs to be

predicted properly. Specifically, (3.94) predicts ξ1 based on (3.45) during the stance phase

and (3.44) during the flight phase. In the long run, (3.95) predicts the DCM evolution for

the next N − 1 gait cycles using (3.50).
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Kinematic Reachability

To ensure each stepping is physically feasible, (3.96) bounds the relative step difference

between each adjacent pair of the footstep locations, with flight phase considered. Note that

similar to Lnom, the limits in the lateral direction depend on the stance foot due to the pelvis

width, and meanwhile, leg crossing is also prevented.

Phase Duration Limit

The stance and flight durations for the current gait cycle are constrained by (3.97) and (3.98),

respectively, where the minimum prevents large swing foot acceleration while the maximum

avoids slow stepping.

Viability Condition

In general, the viability condition could also be imposed as a hard constraint to guarantee

the system viability, which bounds the initial DCM offset per Section 3.3.3. However, this

viability constraint along with the kinematic reachability constraint (3.96) can overconstrain

the problem in extreme scenarios, which may result in optimizer failure, i.e., infeasible. In

practice, this constraint is omitted and instead, the weight Wb is set large in the cost (3.93)

to drive the planned DCM offset as close to its nominal value as possible, even if viability

cannot be sustained. In this way, the problem is always feasible.
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3.4.4 QP Formulation

The locomotion TO can be manipulated and rearranged into the standard QP form as (A.3),

where

x =



p1

b1

p2

b2
...

pN−1

bN−1

pN

bN

ηTs

Tf



, (3.100)

P = 2



2WL 0 −WL 0 · · · 0 0 0 0 0 0

0 Wb 0 0 · · · 0 0 0 0 0 0

−WL 0 2WL 0 · · · 0 0 0 0 0 0

0 0 0 Wb · · · 0 0 0 0 0 0

...
...

...
...

. . .
...

...
...

...
...

...

0 0 0 0 · · · 2WL 0 −WL 0 0 0

0 0 0 0 · · · 0 Wb 0 0 0 0

0 0 0 0 · · · −WL 0 WL 0 0 0

0 0 0 0 · · · 0 0 0 Wb 0 0

0 0 0 0 · · · 0 0 0 0 ws 0

0 0 0 0 · · · 0 0 0 0 0 wf



, (3.101)
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q = −2



WL (pτ +R1L
nom
1 −R2L

nom
2 )

WbR1b
nom
1

WL (R2L
nom
2 −R3L

nom
3 )

WbR2b
nom
2

...

WL

(
RN−1L

nom
N−1 −RNL

nom
N

)
WbRN−1b

nom
N−1

WLRNL
nom
N

WbRNb
nom
N

wsηTnom
s

wfT
nom
f



, (3.102)
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G =



R⊤
1 0 0 0 · · · 0 0 0 0 0 0

−R⊤
2 0 R⊤

2 0 · · · 0 0 0 0 0 0

0 0 −R⊤
3 0 · · · 0 0 0 0 0 0

...
...

...
...

. . .
...

...
...

...
...

...

0 0 0 0 · · · R⊤
N−1 0 0 0 0 0

0 0 0 0 · · · −R⊤
N 0 R⊤

N 0 0 0

0 0 0 0 · · · 0 0 0 0 1 0

0 0 0 0 · · · 0 0 0 0 0 1

−R⊤
1 0 0 0 · · · 0 0 0 0 0 0

R⊤
2 0 −R⊤

2 0 · · · 0 0 0 0 0 0

0 0 R⊤
3 0 · · · 0 0 0 0 0 0

...
...

...
...

. . .
...

...
...

...
...

...

0 0 0 0 · · · −R⊤
N−1 0 0 0 0 0

0 0 0 0 · · · R⊤
N 0 −R⊤

N 0 0 0

0 0 0 0 · · · 0 0 0 0 −1 0

0 0 0 0 · · · 0 0 0 0 0 −1



, (3.103)
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h =



Lmax +R⊤
1 pτ

Lmax

Lmax

...

Lmax

Lmax

ηTs,max

Tf,max

−Lmin −R⊤
1 pτ

−Lmin

−Lmin

...

−Lmin

−Lmin

−ηTs,min

−Tf,min



, (3.104)

A =



−I −I 0 0 · · · 0 0 0 0


e−ωτbτ ċ1 if in stance

0 ċτ if in flight

I ηTnom
s

I −I −I · · · 0 0 0 0 0 0

0 0 I ηTnom
s

I · · · 0 0 0 0 0 0

...
...

...
...

. . .
...

...
...

...
...

...

0 0 0 0 · · · −I −I 0 0 0 0

0 0 0 0 · · · I ηTnom
s

I −I −I 0 0



,

(3.105)
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b =




−pτ if in stance

−ξτ + τ ċτ if in flight

−T nom
f R1ċ

nom
2

−T nom
f R2ċ

nom
3

...

−T nom
f RN−2ċ

nom
N−1

−T nom
f RN−1ċ

nom
N



. (3.106)

3.4.5 Discussion

• We are constantly solving and adapting the phase duration of the current gait cycle

and therefore, first, we need to make sure the solution respects causality, i.e., the

solved phase duration should be at least greater than the elapsed time τ . In addition,

to prevent instantaneous stepping, i.e., the optimizer may suggest ending the current

cycle instantly while the swing foot could be still high in the air, we ensure the minimum

phase duration longer than τ + Tg, where Tg > 0 is the timing gap. Finally, we keep

adapting the step location and timing only if τ + Tg < T ∗, where T ∗ is the solved

optimal total gait duration:

T ∗ = T ∗
s + T ∗

f , (3.107)

T ∗
s = ω−1 ln η∗Ts

, (3.108)

via the inverse of (3.31).

• Recall the desired Ts is involved to compute ċ1 per (3.46), which is true only for the

very first optimization of the current gait cycle. Afterwards, the previous T ∗
s is actually

used for better prediction results.

• During the flight phase, optimizing the previous stance duration of the current gait
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Table 3.2: Parameters of model and QP.

Parameter Value Parameter Value

m 60 [kg] WL diag(1, 1)

cz 0.8 [m] Wb diag(1000, 1000)

dy 0.2 [m] ws 10

Lx −0.5 ∼ 0.5 [m] wf 0.1

Ll
y −0.4 ∼ −0.05 [m] Ts 0.2 ∼ 0.5 [s]

Lr
y 0.05 ∼ 0.4 [m] Tf 0.0 ∼ 0.2 [s]

cycle is meaningless and thus ηTs
is excluded from the decision variables.

3.5 Numerical Results

To study the theoretical capabilities of the proposed approach independent of the actual

robot, it was first implemented on the reduced-order models, i.e., LIP during the stance

phase and BM during the flight phase, in a numerical simulation environment. In particular,

the closed-form dynamic solutions (3.23), (3.24) and (3.36), (3.37) are used to determine the

CoM states at any moment during the stance and flight phases, respectively. The locomotion

controller optimally plans the step location and timing via the QP in Section 3.4. Table 3.2

summarizes the parameters of the model and QP, where the ranges indicate the parameter

limits, e.g., Lmin /max in (3.96).

3.5.1 Test Setup

We are most interested in the system performance in terms of external disturbance rejection

and a push recovery test was thus conducted. In this test, a nominal CoM velocity ċnom =

[0.3, 0]⊤ m/s, a nominal stance duration T nom
s = 0.35 s, and a nominal flight duration

T nom
f = 0.15 s are considered. The nominal step difference and initial DCM offset can then
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be determined to be Lnom = [0.15,±0.2]⊤ m and bnom = [0.0421,±0.0397]⊤ m per Section

3.3.2. The QP in Section 3.4 is solved using the quadprog function in MATLAB and the

optimal solution is adapted at a frequency of 500 Hz. At steady state, a constant external

force F with a duration of 0.1 s was exerted on the robot CoM at t = 1.6 s, when its left

foot was in stance.

3.5.2 System Robustness

Figure 3.6 compares the range of the external force that the robot can resist. For each push

direction θ, we gradually increased the force magnitude ∥F ∥ until the states diverged and

the maximum value was recorded. With phase duration fixed, the allowable force region is

always the same no matter how many preview steps N are considered in advance. With

phase duration optimized, the force region expands significantly, and it gets slightly larger

as N gets bigger. We also tried N > 3 but the results are almost identical to N = 3.

The theoretical force boundary is plotted as well to verify the viability condition. With a

constant force F applied from t1 to t2 since the stance phase begins, the DCM state at the

end of the stance phase ξTs
becomes

ξTs
= p0 +

(
ξt2 − p0

)
eω(Ts−t2), (3.109)

ξt2 = p0 +
(
ξt1− p0

)
eω∆t +

eω∆t − 1

ω2
· F
m
, (3.110)

by adding F / (mω) to the right of (3.22), where ∆t = t2− t1. The force region can be solved

by putting in the viability kernel of ξTs
per Figure 3.5. Note that the viability condition

of ξTs
is the same as ξT if there is no disturbance during the flight phase. We did not

consider disturbance during the flight phase, but interested readers can derive that theoretical

region with a similar technique. The simulated results well match the theoretical ones with

phase duration fixed. However, the results deviate with phase duration optimized. This is

because the theoretical boundary is calculated with Ts,min, but in simulation, the timing gap
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mechanism Tg can prevent the current stance duration from reaching its minimum in order

to avoid instantaneous stepping, as observed in Figure 3.7. While we do see better matching

result with smaller Tg, we still keep Figure 3.6 as it is since it is more reasonable in practice.

3.5.3 Transient Behavior

We further compare the detailed simulation results of the case with ∥F ∥ = 370 N and

θ = 90◦ in Figure 3.7. With phase duration fixed, the robot fell down as expected since it is

beyond the force boundary. With phase duration optimized, as N gets bigger, the robot was

able to recover faster and closer to its original path. The updated phase duration was also

less chaotic. In addition, the nominal gait pattern was sacrificed for the best of viability,

i.e., T ∗
f = 0 immediately after push. Again, we tried N > 3 but the results are almost

identical to N = 3. Similar behavior can be observed for other cases. We thus conclude that

optimization of phase duration is as critical as footstep location to robust locomotion, if not

more so. Furthermore, the system performs better as N gets larger yet without significant

improvement for N > 3, which is also supported by the full bipedal robot simulation later

in the next chapter.

3.6 Conclusion

In this chapter, the DCM-based analysis and control of dynamic bipedal locomotion with

flight phase included is presented. The nominal gait pattern is first derived and the viability

condition is also investigated using the reduced-order models. The locomotion control is

solving a small-scale QP with a horizon of multiple steps being planned in advance, which

optimally determines the footstep location and phase duration in real time. The proposed

locomotion strategy is verified with numerical simulations in the presence of external distur-

bances. The results further suggest that planning with three preview steps is a wise choice

in terms of system robustness, transient behavior, and computational efficiency.
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Figure 3.6: System robustness comparison in terms of external force plotted in polar coor-
dinates, e.g., θ = 0◦ and 90◦ correspond to positive x and y directions, respectively. The
dashed lines indicate the theoretically calculated boundary (i.e., maximum allowable force)
for phase duration both fixed and optimized. The shaded areas represent the corresponding
simulated results.
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Chapter 4

Implementation Details

4.1 Introduction

4.1.1 Background

Trajectory optimization (TO) is a powerful technique for gait generation as it considers a time

prediction horizon and various physical constraints. However, TO-based approaches heavily

depend on system models of the process. Because of the complexity of bipedal robots, e.g.,

hybrid dynamics, high nonlinearity, strong restrictions, and considerable degrees of freedom

(DoF), solving the problem holistically is extremely challenging even offline, i.e., optimizing

over contact schedule and contact forces simultaneously with the full-order model [105, 106].

To date, most successful online locomotion control strategies break down the problem into

multiple stages and simplify the robot model according to the use of each stage, sacrificing

the global optimality while achieving the real-time execution [122, 131, 146]. A practical

paradigm is to have a two-level structure [119, 121, 153, 178], where the high level plans

the footsteps and the low level controls the whole-body motions while establishing the foot

contact as planned.
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4.1.2 Motivation and Contribution

Comparatively slower development in bipedal robots than quadruped robots in terms of

dynamic behaviors is being noticeable. Besides the limited accessibility to reliable hardware,

one of the main reasons is that bipedal robots impose a serious challenge on developing

dynamic motion controllers due to the required real-time coordination of multiple tasks in

a complex, high-dimensional state space. The two-level structure described in the previous

subsection for locomotion purpose has been proven an effective approach for many bipedal

robots, e.g., Sarcos [130], Atlas [153], and Cassie [178]. However, practical guidance on

implementation of such framework is rarely covered fully in detail or out of date [22, 112].

Complete discussions on implementation details, including but not limited to parameter

selection experience and matters needing attention, are also valuable to promote research on

dynamic behaviors of bipedal robots, especially for new people to dive into the field.

Meanwhile, investigation on the performance of the state-of-the-art bipedal control strat-

egy for platforms in different scales, e.g. full-size and miniature bipedal robots, is not done

yet. Differences between them may put new challenges on both control algorithms and hard-

ware design principles. One of the obvious differences is the lower center of mass (CoM)

height of miniature bipedal robots, which will lead to higher natural frequency and quicker

diverging speed. As for dynamic locomotion applications, step duration must be reduced

accordingly to catch the fall in time but too fast swing trajectories may degenerate the

tracking performance.

This chapter discusses similar issues for implementation of a two-level dynamic locomo-

tion controller on a miniature bipedal robot, as presented in Chapter 2. The high-level

footstep planner is based on the divergent component of motion (DCM) where both the step

location and timing can be optimized for stronger robustness, as presented in Chapter 3.

The low-level whole-body control (WBC) is using a weighted quadratic programming (QP)

scheme in consideration of computational cost despite sacrificing the strict task priority.
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User Command

State Estimation
Kinematics & Dynamics

(500 Hz)

Whole-Body 
Control
(500 Hz)

Footstep 
Planning
(500 Hz)

BEAR Actuator

Sensing Foot

IMU
Robot States

Desired
References

Mini PC

E-Stop

Battery

Figure 4.1: System overview. The robot BRUCE is designed to be fully untethered, powered
by a LiPo battery, controlled by a mini PC, and equipped with a wireless E-Stop. The
state estimator uses a complementary filter that fuses information from the onboard IMU
(acceleration a and angular rate ω), the joint encoders (position q and velocity q̇), and the
sensing feet (boolean contact states d). Given the current robot states and desired references,
the high-level footstep planner determines the next footstep location p and phase duration
T while the low-level WBC calculates the desired joint torques τ des.

4.2 System Overview

Figure 4.1 shows the block diagram for the entire system.

4.2.1 Hardware Platform

As presented in Chapter 2, Bipedal Robot Unit with Compliance Enhanced (BRUCE) is

a low-cost miniature bipedal robotic platform for dynamic behaviors. BRUCE has a total

height of 660 mm adapting an average human body proportion. It is composed of a torso

and two 5-DoF legs. Each leg of BRUCE has a spherical hip joint, a single DoF knee

joint, and a single DoF ankle joint. Accordingly, each foot has a line contact with the

ground. To have better torque transparency and compliance to the unknown environment,

proprioceptive actuation is equipped for each joint, using the Koala BEAR actuators [55]
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from Westwood Robotics [160]. Moreover, BRUCE’s legs are designed to have low inertia

for performing highly dynamic motions. A 2-DoF parallel actuation configuration realized

by a cable-driven differential pulley system is applied to the hip joint to reduce the mass

and inertia of the femur link. Meanwhile, two pairs of 4-bar linkage mechanisms are used to

relocate the ankle actuator to the femur link for the light weight of the tibia link.

To have a convenient hardware experimental setup, it is desired to make BRUCE fully

untethered. All the electronics are directly mounted onto the torso for easy installation and

better weight distribution. A mini PC with an Intel Core i5-7260U Dual-Core CPU at 2.2

GHz is utilized as the onboard computing resource. A 14.8 V 2200 mAh LiPo battery is

used to power the whole system with a running time of approximately 20 minutes. For the

sake of safety during operation, a wireless E-Stop built in-house is mounted onboard as well

to cut the power in emergencies. In total, BRUCE has a net weight of around 5.2 kg.

4.2.2 Software Architecture

To make BRUCE favorable to dynamic behaviors which require fast response, the overall

software framework is developed in a multithreaded environment, which includes a state

estimation thread combined with robot model computation, a high-level footstep planning

thread, and a low-level WBC thread. The locomotion controller presented in Section 3.4

optimally plans the step location and timing. The low-level WBC presented in Section

4.4 utilizes a weighted QP scheme, leveraging the full-body dynamics to establish the foot

contact as planned while regulating other task-space behaviors, e.g., CoM height and torso

orientation. Both of them are updated at a frequency of 500 Hz using the off-the-shelf QP

solver OSQP [180], which is sufficient for real-time feedback control. The main advantage

of multithreading is that the idle time of the central processing unit (CPU) can be kept to

minimum since the waiting time for sensor response can be well distributed and utilized,

which leads to faster overall execution as the CPU would have been idle if only a single

thread was executed. Data communication utilizes a custom shared memory library similar
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to the setup developed in [45], All programs are implemented in Python while some parts,

including kinematics, dynamics, and state estimation, are precompiled using Numba [181]

for acceleration.

4.3 State Estimation

A reliable state estimation is crucial to a good performance of any systems in control. For

some systems, e.g., robotic manipulators, the states are directly provided with the on-board

sensors. However, for mobile robots which are not fixed in the world frame, their floating-

base joint (typically referred to as the robot main body) states cannot be measured directly

and are estimated in different ways according to the specific system and task. When it comes

to legged robots, an accurate estimate of their floating-base joint is of particular importance

since it takes the lead in describing the system dynamic behavior. Unlike other mobile

robots, legged robots experience intermittent contact with the ground during locomotion,

which suggests a unique state estimation approach by combining both the on-board inertial

measurement unit (IMU) information and the kinematic model of the robot. While Kalman

filter (KF) has been widely used for legged state estimation in various forms [182, 183], its

global convergence is not guaranteed for nonlinear systems. In addition, it is computationally

expensive, not to mention the annoying tuning of the numerous covariance parameters in

order to give a reasonable performance. Meanwhile, simple linear filters, e.g., complementary

filter (CF), work robustly in practice [92]. As an aside, CF is simply a weighted combina-

tion of different measurements which are complementary, but in essence it applies low-pass

filtering to the noisy measurements and high-pass filtering to the biased measurements. In

the end, CF gives us the best of both worlds, i.e., no noise and no drift.

In this section, we will go over the state estimation of BRUCE using CF in detail. Two

types of measurement sources are used, i.e., one is the on-board IMU sensor (ISM330DHCX)

which measures the base acceleration and angular velocity while the other is Koala BEAR
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actuator encoder sensor which gives the rotor rotational position and velocity. Note that

the sensor raw data are processed before use for better results. The estimation of the base

rotational part (orientation and angular velocity) and linear part (position and velocity) are

decoupled. In specific, we use the IMU solely for base rotational estimation while we use

both sensors for base linear estimation. Once we have the floating-base joint estimation

results, we can use the robot kinematic model in Section 2.3 as well as the dynamic model

in Section 2.4 to directly get other quantities of interest, e.g., foot position and orientation,

foot linear and angular velocities, CoM position and velocity.

4.3.1 Sensor Raw Data Processing

On-Board IMU Sensor

At any time tk, the angular velocity raw measurement ω̃b k from the gyroscope and the

linear acceleration raw measurement ãb g
k (the superscript g indicates it also includes the

gravitational acceleration g = [0, 0,−g]⊤, where g = 9.81 m/s2) from the accelerometer are

first unbiased:

ωb g
k = ω̃b k − bb ω, (4.1)

ab g
k = ãb g

k − bb a, (4.2)

where bb ω and bb a are the measured biases. Note that the raw readings are both expressed

in the IMU frame which is aligned with the base frame. The signals are then smoothed out

using an exponential filter (acting as low-pass filters to remove high-frequency noises):

ωb k = αω ωb g
k + (1− αω) ωb k−1, ωb 0 = ωb 0, (4.3)

ab g
k = αa ab g

k + (1− αa) ab g
k−1, ab g

0 = ab g
0, (4.4)
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where 0 ≤ αω, αa ≤ 1 are the smoothing factors, e.g., we choose αω = 0.1 and αa = 0.1. We

regard ωb k as a good estimate of the angular velocity while we will further work on ab g
k.

Koala BEAR Actuator Encoder Sensor

At any time tk, the rotational position raw measurement φk from the encoders are used

directly to get the joint positions θk using (2.114) and (2.115). The rotational velocity raw

measurement ˜̇φk are first smoothed out using an exponential filter (the raw velocity feedback

from the encoder is simply the difference between two consecutive position readings divided

by the encoder sampling period so it is pretty noisy as the sampling period is extremely

short, e.g., typically at 2 kHz):

φ̇k = αφ̇
˜̇φk +

(
1− αφ̇

)
φ̇k−1, φ̇0 =

˜̇φ0, (4.5)

where we choose the smoothing factor αφ̇ = 0.1. We then compute the corresponding joint

velocities θ̇k using (2.116) and (2.117).

4.3.2 Base Orientation Estimation

For estimating the base orientation, given the previous estimation results Rk−1 and ωb k−1,

we can first predict for the current iteration (using the forward Euler method and assuming

zero angular acceleration):

R̃k = Rk−1Exp
(
ωb k−1∆t

)
, (4.6)

where ∆t is the sampling period.

If the base external acceleration (excluding g) is small, i.e., the accelerometer exclusively

measures gravity, which means it should point straight downward in the world frame, i.e.,
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ideally we should have

Rk ab g
k = g. (4.7)

Note that although we know both ab g
k and g, Rk generally cannot be solved since there will

be infinite numbers of solutions. However, due to sensor noise and integration error, we will

probably get something different:

R̃k ab g
k = g̃k. (4.8)

We can thus correct R̃k (particularly tilt, i.e., pitch and roll) with some small rotation δRk

(to be determined), i.e., Rk = δRkR̃k, such that

δRkg̃k = g. (4.9)

There are several ways one could go about calculating δRk but one intuitive way is to find

the minimum rotation between g̃k and g (or simply the −z axis) using the cross product

along with the dot product:

g̃k × g = −g sin δϕk∥g̃k∥nk, (4.10)

g̃k · g = −g cos δϕk∥g̃k∥, (4.11)

where nk is the rotation axis and δϕk is the minimum angle. We can solve

δϕk = arccos

(
g̃k · g
−g∥g̃k∥

)
, (4.12)

nk =


g̃k × g

−g sin δϕk∥g̃k∥
if sin δϕk ̸= 0,

arbitrary if sin δϕk = 0.

(4.13)
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Let us now choose

δRk = Exp
(
αϕδϕknk

)
, (4.14)

where the user-defined parameter 0 ≤ αϕ ≤ 1 decides how aggressively tilt correction is

being applied, e.g., αϕ = 0 means no correction at all and we choose αϕ = 0.001. Finally,

the corrected orientation is given by

Rk = δRkR̃k = Exp
(
αϕδϕknk

)
Rk−1Exp

(
ωb k−1∆t

)
. (4.15)

In general, this naive orientation estimation approach should have heading (or yaw)

drift issue over time as there is nothing to correct it, e.g., a magnetometer could resolve.

Surprisingly, this issue is almost unnoticeable with the ISM330DHCX module during nominal

operation. By the way, people usually do not trust the heading direction estimation result

without exteroceptive information, e.g., vision, and therefore do not control the absolute

heading of the robots with only proprioceptive sensors (like what we do here).

4.3.3 Base Position and Velocity Estimation

For estimating the base position and velocity, given the previous estimation results pk−1 and

vk−1, we can first predict for the current iteration:

p̃k = pk−1 + vk−1∆t+
1

2
ak−1∆t

2, (4.16)

ṽk = vk−1 + ak−1∆t, (4.17)

where

ak−1 = Rk−1 ab g
k−1 − g (4.18)
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is the acceleration measurement compensated with gravity (thus without the superscript g).

We can then correct these predictions with the kinematic model using the complementary

filter. For the position correction, given the stance foot location pleg
m (we consider the middle

point as the foot location) in the world frame as well as pb leg
m

(
θleg
k

)
(as a function of θleg

k ) in

the base frame, we can reversely compute the base position using (2.121) such that

pleg
k = pleg

m −Rk pb leg
m . (4.19)

The overall base position pk from the kinematic model will be the average if both legs are

in stance. Now combining the prediction and the kinematic model yields

pk = αppk +
(
1− αp

)
p̃k, (4.20)

where the blending weight 0 ≤ αp ≤ 1 can be experimentally tuned, e.g., we have αp = 0.1.

Note that the stance foot location is explicitly fixed when it is in contact with the ground.

When the contact is broken, it will not be considered in the position correction (same for the

velocity correction later). When the contact is created again, the foot location is updated

using the kinematic model and then fixed again. As a result, the base position estimation

cannot handle foot slippage, not to mention inaccurate stance foot location update. While

the global position accuracy is not guaranteed, the estimation works fairly well locally for

each step, which suffices our application.

For the velocity correction, given the stance foot velocity vb leg
m

(
θleg
k , θ̇leg

k

)
= Jb leg

v m

(
θleg
k

)
θ̇leg
k

(as a function of both θleg
k and θ̇leg

k ) in the base frame, the base velocity can be reversely

solved using (2.124) such that

vleg
k = −Rk

(
ω̂b k pb leg

m + vb leg
m

)
, (4.21)

where we assume the stance foot velocity is always zero in the world frame. The overall base

115



velocity vk will be the average of the stance legs. Now fusing together the prediction and

the kinematic model yields

vk = αvvk + (1− αv) ṽk, (4.22)

where the blending weight 0 ≤ αv ≤ 1 can be experimentally tuned and we choose αv = 0.1.

4.4 Whole-Body Control

The joint-space equations of motion for a bipedal robot can be written in the following

canonical form:

Hq̈ +Cq̇ +G = S⊤
a τ +

Nc∑
j=1

J⊤
cj
fj, (4.23)

where q is the vector of generalized coordinates, H is the inertia matrix, C is the vector of

centrifugal and Coriolis terms, G is the gravity vector, Sa is the actuation selection matrix,

τ is the joint torque vector, Jcj
and fj are respectively the foot contact Jacobian and contact

force at the jth contact vertex, and Nc is the number of contact vertices.

Given desired operational space acceleration ẍdes
i for the ith task, the goal of WBC is

then to find the instantaneously required, dynamically consistent q̈, τ , and fj. This can be

done using a weighted WBC scheme, which is formulated as the following optimization (a

QP problem essentially):

min
q̈,fj

Nt∑
i=1

∥∥∥Jiq̈ + J̇iq̇ − ẍdes
i

∥∥∥2
Wi

+

Nc∑
j=1

∥∥fj

∥∥2
Wf

+ ∥q̈∥2Wq̈
(4.24)

s.t. Sf

(
Hq̈ +Cq̇ +G−

Nc∑
j=1

J⊤
cj
fj

)
= 0, (4.25)

fj ∈ Cj, j = 1, · · · , Nc, (4.26)
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where Ji is the ith task Jacobian and Nt is the number of tasks. As we can see, the ith

operational task is set as a QP cost with priority implicitly being enforced with weight Wi.

In particular, ẍdes
i consists of both feedforward and feedback terms, which is specified with

the form of

ẍdes
i = aref

i +Kp

(
pref
i − pi

)
+Kd

(
vref
i − vi

)
, (4.27)

ẍdes
i = αref

i +KpLog
(
R⊤

i R
ref
i

)
+Kd

(
ωref

i − ωi

)
, (4.28)

for the linear and angular motion, respectively, where ai, vi, pi are the linear acceleration,

velocity, position while αi, ωi, Ri are the angular acceleration, velocity, orientation, the

superscript ref corresponds to the reference, and Kp/d is the proportional/derivative (P/D)

feedback gain matrix. Table 4.1 shows all the task weights W (first row) and gains Kp/d

(second/third row) for our system. Note that W , Kp, and Kd are all 3×3 diagonal positive

semi-definite matrices so only the diagonal elements are listed in the order of x, y, z direction.

The symbol / means the object is not used. In addition to the task costs, regularization costs

are added to the decision variables q̈ and fj with small weights Wq̈ and Wf respectively to

ensure the overall QP cost is strictly positive definite even when the task Jacobians contain

singularities, which avoids potential numerical issues. Let us now go over the details of the

WBC framework.

Table 4.1: WBC task weight and gain setup.

Task Right Stance Left Stance Double Stance Flight

Angular

Momentum

(1, 1, 1)

/

(10, 10, 1)

(1, 1, 1)

/

(10, 10, 1)

(1, 1, 1)

/

(10, 10, 1)

/

/

/
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Linear

Momentum

(1, 1, 100)

(1, 1, 100)

(5, 5, 10)

(1, 1, 100)

(1, 1, 100)

(5, 5, 10)

(10, 10, 100)

(50, 50, 200)

(10, 10, 15)

/

/

/

Torso

Orientation

(10, 10, 10)

(500, 500, 200)

(25, 25, 20)

(10, 10, 10)

(500, 500, 200)

(25, 25, 20)

(10, 10, 10)

(500, 500, 200)

(25, 25, 20)

(10, 10, 10)

(500, 500, 200)

(25, 25, 20)

Right

Stance

Contact

(103, 103, 103)

/

/

/

/

/

(103, 103, 103)

/

/

/

/

/

Right

Swing

Position

/

/

/

(10, 10, 10)

(100, 100, 100)

(10, 10, 10)

/

/

/

(10, 10, 10)

(100, 100, 100)

(10, 10, 10)

Right

Swing

Orientation

/

/

/

(/, 1, 1)

(/, 50, 300)

(/, 10, 50)

/

/

/

(/, 1, 1)

(/, 50, 300)

(/, 10, 50)

Left

Stance

Contact

/

/

/

(103, 103, 103)

/

/

(103, 103, 103)

/

/

/

/

/

Left

Swing

Position

(10, 10, 10)

(100, 100, 100)

(10, 10, 10)

/

/

/

/

/

/

(10, 10, 10)

(100, 100, 100)

(10, 10, 10)

Left

Swing

Orientation

(/, 1, 1)

(/, 50, 300)

(/, 10, 50)

/

/

/

/

/

/

(/, 1, 1)

(/, 50, 300)

(/, 10, 50)
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4.4.1 System Dynamics

The consistency of the variables q̈, τ , and fj with the system dynamics (4.23) must be

strictly enforced. Notably, the equations can be split into the floating-base dynamics and

joint dynamics. To accelerate the QP performance, only the floating-base dynamics are

considered as (4.25), where Sf is the base selection matrix. In this manner, variables for τ

can be removed if it is assumed that there is always enough torque to achieve the generated

motion, i.e., no torque limits. Once the QP is solved with optimal solution q̈∗ and f ∗
j , the

corresponding joint torques can be computed as follows:

τ ∗ = Sa

(
Hq̈∗ +Cq̇ +G−

Nc∑
j=1

J⊤
cj
f ∗
j

)
. (4.29)

4.4.2 Centroidal Momentum

The control of centroidal momentum is a critical component of WBC for bipedal robots,

which consists of the linear momentum lG as well as the centroidal angular momentum

(CAM) kG about the robot CoM. While the linear part has a straightforward relationship

with the CoM velocity, i.e., (2.185), the angular part is abstract. Notably, biomechanics

studies have shown that for human walking, the CAM is well regulated to near zero by the

neuro-control system [67]. Accordingly, the angular momentum task is just to damp out the

excessive CAM:

k̇des
G = −KdkG. (4.30)

The linear momentum task is decoupled in the vertical and horizontal directions. For the

vertical direction, we want the robot CoM to maintain a nominal height above the ground to

match the LIP in Section 3.2.1. For the horizontal direction, it is simply tracking the velocity

command with low priority and PD gains since the robot movement is mainly realized by

taking steps. Another reason is that our BRUCE robot has only five DoFs for each leg,
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which means during single stance not all the six spatial DoFs can be directly controlled.

We prioritize the CoM height and torso orientation for a good posture, which generally

contributes to the locomotion stability. Note that for the momentum tasks, the centroidal

momentum matrix [169] is used as the task Jacobian, as discussed in Section 2.4.2.

4.4.3 Torso Orientation

Controlling the torso orientation is essential for a good locomotion posture, e.g., to avoid

unwanted torso oscillations which can largely affect the robot CoM and complicate the

control process. Accordingly, since we also have a small yaw drift rate, all the three angles

are controlled globally.

4.4.4 Stance Foot

For BRUCE with line feet, we consider two point contacts per foot, the toe and heel. The

constraint (4.26) ensures each contact force is bounded and lies within the local friction cone

Cj which is approximated by a square pyramid for linearity, e.g., on the even ground we have



±1 0 −µ

0 ±1 −µ

0 0 −1

0 0 1


︸ ︷︷ ︸

Gf

fj ≤



0

0

−fz,min

fz,max


︸ ︷︷ ︸

hf

, (4.31)

where µ is the friction coefficient and fz,min /max is the minimum/maximum normal force.

Note that a positive minimum can prevent loose contact, or otherwise one foot might lose

contact if the CoM is shifted to the other one.

Moreover, for each contact force constraint, a corresponding zero contact acceleration
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constraint needs to be specified to prevent the stance foot from moving:

Jcj
q̈ + J̇cj

q̇ = 0. (4.32)

In practice, we treat (4.32) as one of the task-space objectives, i.e., a soft constraint, which

can generally speed up the QP and give better numerical stability [146]. Then with sufficient

task weight, it will act as a nullspace projector so that other tasks will properly respect the

nonmoving contact condition.

4.4.5 Swing Foot

For a multi-layered control scheme, accurate execution of the high-level plan is important

for the low-level controller. For our case, the high-level planner determines when and where

to take the next step in an optimal manner, which is essentially realized by the swing foot

task of the WBC. Note that for the foot position, instead of considering some point on the

foot bottom which is sensitive to the ankle joint, we choose to control the ankle position

for simplicity. As a result, the ankle joint is only responsible for foot orientation. This

decoupling is also beneficial for the tuning process.

Trajectory Generation

The swing foot orientation can be simply set constant relative to the torso. However, recall

that each leg of BRUCE has only five DoFs and thus the rotation in the foot roll direction is

excluded since it has the least effect for a line foot. In addition, because the robot is walking

blindly with no terrain information, the gain in the pitch direction is intentionally set low,

which can make the foot adaptive to a certain range of terrains.

The swing foot position trajectory needs to be carefully designed to adapt the changing

footstep location and timing. In the horizontal direction at some time t0, when a new step

is planned with optimal solution p and T , the reference trajectory is regenerated using a
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fifth-order polynomial to ensure continuity up to acceleration:

prefx/y(t) =
5∑

i=0

cit
i = c0 + c1t+ c2t

2 + c3t
3 + c4t

4 + c5t
5, (4.33)

ṗrefx/y(t) =
5∑

i=1

ciit
i−1 = c1 + 2c2t+ 3c3t

2 + 4c4t
3 + 5c5t

4, (4.34)

p̈refx/y(t) =
5∑

i=2

cii(i− 1)ti−2 = 2c2 + 6c3t+ 12c4t
2 + 20c5t

3, (4.35)

with boundary conditions given as follows:

prefx/y(t0) = pprex/y(t0), (4.36)

ṗrefx/y(t0) = ṗprex/y(t0), (4.37)

p̈refx/y(t0) = p̈prex/y(t0), (4.38)

prefx/y(T ) = px/y, (4.39)

ṗrefx/y(T ) = 0, (4.40)

p̈refx/y(T ) = 0, (4.41)

where ppre(t) is the previously generated trajectory. We can then solve for the coefficients

as follows: 

1 t0 t20 t30 t40 t50

0 1 2t0 3t20 4t30 5t40

0 0 2 6t0 12t20 20t30

1 T T 2 T 3 T 4 T 5

0 1 2T 3T 2 4T 3 5T 4

0 0 2 6T 12T 2 20T 3





c0

c1

c2

c3

c4

c5


=



pprex/y(t0)

ṗprex/y(t0)

p̈prex/y(t0)

px/y

0

0


. (4.42)

In the vertical direction, the swing foot height first increases to a fixed apex value until a

fixed time, and then decreases to prepare for landing on the ground with a similar trajectory
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regeneration method in the horizontal direction. In addition, due to modeling and state

estimation errors, the landing height of the swing foot needs to be adjusted based on the

stance foot to mitigate the touchdown impact.

Inverse Kinematics Compensation

While ID-based WBCs such as ours are able to provide compliant behaviors and strong

robustness, they heavily depend on the high quality of the dynamic model which is often

difficult to obtain in practice. In addition, considering the short step duration for BRUCE,

the swing foot acceleration is usually significant and thus accurate control of the foot move-

ment is typically hard even with a good system identification. On the contrary, IK-based

approaches only require the robot kinematic model which is much easier to get. On top of

that, utilizing joint position PD control benefits bipedal systems due to its modeling error

compensation and high updating frequency [146, 184], e.g., the BEAR actuator runs internal

control loop at 2 kHz which is four times faster than our WBC. As a result, in addition to

the optimal joint torques (4.29) from the WBC, i.e., think of it as the feedforward term,

we take into account the joint position and velocity references by solving the swing foot IK,

which can greatly enhance the tracking performance:

τ des = τ ∗ + kp
(
qref − q

)
+ kd

(
q̇ref − q̇

)
, (4.43)

where kp/d is the P/D feedback gain for each joint.

4.4.6 Task Transition

During contact changes, i.e., foot transition from stance to swing and vice versa, task transi-

tion needs to be performed, e.g., for a stance foot, the stance contact task is activated while

the swing position and orientation tasks are deactivated. This can be handled by simply

changing the relative task weight, e.g., if a task is deactivated, its weight can be assigned
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zero or tiny value and we can easily bring it back if it becomes activated again. Note that

foot contact transition happens instantaneously and thus smooth task transition [185] is un-

necessary for the locomotion scenario. No chatter of the joint acceleration is observed either

in the simulation or on the hardware. In addition, the contact force constraint (4.31) needs

to be adjusted accordingly as well, e.g., the limit fz,min /max should be reduced to zero for a

swing foot.

4.4.7 QP Formulation

The weighted WBC optimization can be manipulated and rearranged into the standard QP

form as (A.3), where

x =



q̈

frt

frh

flt

flh


, (4.44)

P = 2



Wq̈ +

Nt∑
i=1

J⊤
i WiJi 0 0 0 0

0 Wf 0 0 0

0 0 Wf 0 0

0 0 0 Wf 0

0 0 0 0 Wf


, (4.45)

q = 2



Nt∑
i=1

J⊤
i Wi

(
J̇iq̇ − ẍdes

i

)
0

0

0

0


, (4.46)
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G =



0 Gf 0 0 0

0 0 Gf 0 0

0 0 0 Gf 0

0 0 0 0 Gf


, (4.47)

h =



hf

hf

hf

hf


, (4.48)

A =

[
SfH −SfJ

⊤
crt

−SfJ
⊤
crh

−SfJ
⊤
clt

−SfJ
⊤
clh

]
, (4.49)

b = −Sf (Cq̇ +G) . (4.50)

Note that the subscript rt, rh, lt, and lh indicate the right toe, right heel, left toe, and left

heel, respectively.

4.5 Experimental Results

Finally, to verify the effectiveness of the proposed approach on the full bipedal robot BRUCE,

an extensive series of simulation and hardware experiments were conducted. The simulation

of BRUCE is built based on Gazebo [186], an open-source 3D robotics simulator using the

ODE physics engine. The hardware experiments were conducted fully untethered.

4.5.1 Simulation Results

Versatile Dynamic Bipedal Locomotion Gaits

We first demonstrate that our controller is able to stabilize several typical dynamic bipedal

locomotion gaits, including walking, running, single-legged hopping, and double-legged hop-

ping, as shown in Figure 4.2. Note that for the single-stance phase, the stance foot center
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(a)

(b)

(c)

(d)

Figure 4.2: Snapshots of one complete gait cycle for BRUCE (a) walking, (b) running, (c)
single-legged hopping, and (d) double-legged hopping.

is simply considered as the CoP location while for the double-stance phase, the midpoint of

the two foot centers is considered as the CoP. In addition, for the gaits with a flight phase,

a constant CoM height reference during the stance phase is good enough to stabilize the

vertical CoM motion thanks to the compliance of the WBC. The controller is also versatile.

Besides the typical bipedal locomotion gaits mentioned before, it is also possible to generate

any arbitrary gaits by simply modifying the nominal gait parameters in Section 3.3.2, e.g.,
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some interesting gaits just like dancing can be produced by having a negative lateral footstep

clearance dy or even introducing a longitudinal footstep clearance dx. We can also change

the time parameters to make each step slower or faster.

Omnidirectional Locomotion

In this experiment, to verify DCM-based footstep planning is effective for generating stable

locomotion in general, the robot was commanded and managed to locomote omnidirection-

ally, e.g., forward and backward, left and right, stationary yaw rotation, as well as any combi-

nations of them. Note that only a velocity command needs to be specified, e.g., longitudinal

and lateral velocity, yaw rate. In addition, due to modeling error, a velocity calibration is

needed as the robot may drift slightly even with a zero velocity command.

Push Recovery

We then demonstrate the strong robustness of our controller with a push recovery test. In

the first scenario, as shown in Figure 4.3, when BRUCE was locomoting in place, external

pushes were exerted on its torso in both lateral and longitudinal directions, and BRUCE

was able to recover within the next few steps by adapting both step location and timing. In

the second scenario, BRUCE was commanded to walk with a forward velocity of 0.3 m/s.

At t around 2, 4, 6, 8 seconds, a constant external force with a duration of 0.1 s and a

magnitude of 12 N (BRUCE has a weight of only 5.2 kg) was exerted on its torso in the

left, right, forward, and backward directions, respectively. The detailed simulation results

are shown in Figure 4.4. For all the experiments, a preview of three steps is considered in

our controller, which is suggested by the numerical simulation results of the reduced-order

models in Section 3.5. In the third scenario, we had a similar push recovery comparison on

BRUCE and the results agree with each other, as shown in Figure 4.5.
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(a) (b)

(c) (d)

Figure 4.3: Snapshots of BRUCE taking recovery steps after its torso was pushed during (a)
walking, (b) running, (c) single-legged hopping, and (d) double-legged hopping.

Uneven Terrain

In the simulation, BRUCE was commanded to walk with a forward velocity of 0.3 m/s and

on the ground there were random wood slats with different sizes but a fixed height of 1 cm

(BRUCE has a CoM height of only 30 cm), as shown in Figure 4.7. Thanks to the robust

footstep planning and compliance of the WBC, BRUCE successfully conquered this uneven

terrain.
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(a) Robot Trajectories

(b) Optimal Step Duration

Figure 4.4: Simulation results of push recovery. (a) Position trajectories of robot CoM, DCM,
and feet. Note that the robot was locomoting to the positive x direction with a forward
velocity command of 0.3 m/s. (b) Time series of the optimal step duration suggested by
the footstep planner. The amber and green shaded areas indicate the left- and right-stance
phases, respectively. The gray areas indicate the duration of the external pushes.

4.5.2 Hardware Results

We further implemented the proposed locomotion controller on the hardware platform. Note

that only the walking gait was realized at this point.

Push Recovery

The push recovery test was also conducted on the real hardware. We pushed BRUCE on

different parts, e.g., torso and leg, in various directions, e.g., longitudinal and lateral, at

random times with random durations, and BRUCE managed to survive. An example clip is

shown in Figure 4.6.
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Irregular Terrains

In this experiment, to gauge the overall system robustness in terms of terrain uncertainty,

BRUCE was challenged to a series of irregular terrains, as shown in Figure 4.7. Note that

BRUCE was walking blindly without any terrain information.

Uneven Terrain In the real world, BRUCE was also able to walk with small ground

height variations.

Soft Terrain In this scenario, BRUCE was stepping on a yoga mat in the real world. This

kind of soft terrain is challenging as it is difficult for the stance foot to remain stationary

due to the surface compliance, which can easily cause oscillations and even instability of

the system. During the experiment, the stance leg (in particular the ankle) was constantly

adapting in order to keep the balance and our walking controller was able to stabilize the

system on this soft terrain.

Sliding Terrain In this scenario, BRUCE was stepping on foam boards which can easily

slide on the ground. The sliding can also mess up the state estimation which assumes fixed

contact location. However, our walking controller could still stabilize the system with an

adapted gait.

4.6 Conclusion

In this chapter, a two-level dynamic bipedal locomotion controller was presented. Specifi-

cally, the DCM-based high-level footstep planner is solving a TO with multiple steps being

planned in advance, which optimally determines the footstep location and timing. The ID-

based low-level WBC is finding the instantaneously required, dynamically consistent joint

torques to best realize the task-space behaviors. Both problems can be transcribed into

small-scale QPs which can be solved efficiently with guaranteed optimality for real-time
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(a) (b)

(c) (d)

Figure 4.7: Snapshots of BRUCE walking on irregular terrains. (a) Uneven terrain. (b)
Height variation. (c) Soft terrain. (d) Sliding terrain.

applications. Additionally, detailed implementation guidance of the control framework is

provided on BRUCE, a miniature bipedal robot with proprioceptive actuation. To the best

of our knowledge, this is the first fully-untethered miniature bipedal robot which can achieve

robust dynamic walking using this framework. The presented practical experience and in-

sightful discussion will benefit the robotics community, especially for new people to dive into

the field. Lastly, an extensive series of simulation and hardware locomotion experiments were

carried out, including omnidirectional walking, push recovery, and irregular terrains, which

demonstrate the strong robustness of the approach in the presence of various disturbances

and uncertainties.
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Chapter 5

Conclusion

5.1 Summary

Humanoid robots, despite their increased complexity compared with other types of robot,

have the potential to exert a much larger influence on human society in the future. What is

fascinating about humanoid robots is their inimitable possibility of going anywhere humans

can go and doing anything humans can do. It is these abilities that we wish to replicate

in machines which can potentially overturn our daily lives. While progress has been made,

humanoid robots are only beginning to fulfill this great potential.

This dissertation aims at addressing some of the challenges in the current study of hu-

manoid robots, i.e., limited hardware accessibility and locomotion control. Chapter 1 in-

troduces the necessary ingredients of humanoid locomotion and their technological advance-

ments in history, e.g., humanoid robot deign, sensing technology, actuation scheme, motion

planning and control. Chapter 2 details the design and analysis of a miniature bipedal robot

called BRUCE – Bipedal Robot Unit with Compliance Enhanced. Preliminary experiments

were also conducted to verify the basic functionalities of the robot design as well as to explore

its dynamic capabilities. The BRUCE robot is desired to serve as an accessible and reliable

humanoid robot platform for general research purposes. Chapter 3 elaborates the online lo-
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comotion gait regeneration strategy using the reduced-order models. The locomotion control

is solving a small-scale trajectory optimization problem with multiple steps being considered

in advance, which optimally plans the step location and timing in real time. Chapter 4

presents other critical components of the locomotion control framework, e.g, software archi-

tecture, state estimation, and low-level whole-body control. The effectiveness of the overall

approach was finally validated on the BRUCE robot with an extensive series of successful

simulation and hardware experiments.

5.2 Future Works

The advancements made in this dissertation can lead to the following potential research

directions in the future:

• For the BRUCE robot, an upgraded upper body with arms will be added for more

capabilities, e.g., standing up on its own and loco-manipulation. A future concept is

shown in Fig. 5.1. The overall system will also benefit from the upper body due to the

additional DoFs and more lumped inertia at the hip. In addition, the integration of

a liquid cooling system into the actuators will ensure steadier actuation performance

with longer endurance. Moreover, we are working on making the BRUCE robot an

open-source platform for the robotics community with an affordable cost. We envision

it will boost the studies of humanoid robots as an accessible and reliable miniature

humanoid robot platform.

• In terms of locomotion studies, realizing the running and hopping gaits with the phys-

ical system is also on the future list. The inclusion of the flight phase can bring new

challenges to both the hardware platform and control framework, e.g., the physical

structure may not be strong enough to handle the landing impact and the state es-

timation cannot deal with the flight phase with just a simple complementary filter.

Meanwhile, with an upgraded upper body, arm-assisted locomotion strategy can be
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Figure 5.1: BRUCE future concept (https://www.westwoodrobotics.io/bruce).

investigated for stronger robustness. Other dynamic behaviors including jumping and

parkour is under exploration as well.
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Appendix A

Mathematical Optimization

The control of humanoid robot system is difficult as the problem is usually too complicated

and has no closed-form solution. While classic control theories are no more effective, the

reliance on numerical approaches has increased among which mathematical optimization has

become a popular tool in robotics, e.g., reactive controller and motion planner, thanks to the

rapid development in computer hardware and solving algorithms. A general optimization

problem is minimizing (or maximizing) some cost while satisfying the constraints:

min
x

J(x)

s.t. f(x) ≤ 0, (A.1)

g(x) = 0,

where x is the set of decision variables, J(x) is the cost function, f(x) is the set of inequality

constraints, and g(x) is the set of equality constraints.

Nonlinear Program

If at least one of J , f , and g is nonlinear but not known to be convex, (A.1) is called a

nonlinear program (NLP). NLP is the most general form of optimization and can be “solved”
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using commercial solvers such as SNOPT [187] or IPOPT [188]. However, for complicated

problems with high nonlinearity NLP can be computationally expensive, suffer from initial

guess and local minima issues, and sometimes even end up being intractable. Therefore, it

is imperative to make sure the NLP problem is conditioned appropriately to be used on the

robotic system.

Convex Program

If the cost function is a convex function and the feasible set is a convex set, i.e., J is convex,

f is convex, and g is affine:

min
x

J(x)

s.t. f(x) ≤ 0, (A.2)

Ax = b,

whereA is a constant matrix and b is a constant vector, (A.1) is reduced to a convex program

(CP). A CP problem can typically be solved much more efficiently than an NLP problem

additionally with guaranteed convergence to the global optimality. CVX [189], a package for

specifying and solving CPs, is readily available.

Quadratic Program

Furthermore, if the cost function is a (convex) quadratic function and all the constraint

functions are affine, the problem can be formulated into a quadratic program (QP):

min
x

1

2
x⊤Px+ q⊤x

s.t. Gx ≤ h, (A.3)

Ax = b,
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where P is symmetric positive definite, q and h are constant vectors, and G is a constant

matrix. Solving time can be further reduced with off-the-shelf QP solvers such as OSQP

[180] and qpOASES [190]. Accordingly, if applicable people usually try to transcribe their

problems into QPs which can be solved efficiently and steadily in real time.
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Appendix B

Trajectory Optimization

Often the computation of robot motion is solving an optimal control problem (OCP), a

control design process using mathematical optimization. The fundamental idea is to find a

control over a period of time such that some measure of the system performance is optimized.

Rather than trying to solve for the optimal control law for the entire state space, e.g., linear

quadratic regulator (LQR), if only an open-loop trajectory is interested, e.g., the state x(t)

and the control u(t) defined over a finite interval, the optimal control problem is then referred

to as trajectory optimization (TO), which is widely adopted as a numerical approach.

Problem Formulation

A general TO problem is minimizing some performance index

J (u(·),x0) = ϕ
(
x(tf ), tf

)
+

∫ tf

t0

L (x(t),u(t), t) dt, (B.1)

where ϕ is the endpoint cost and L is the running cost over time t ∈
[
t0, tf

]
, subject to the

first-order dynamics constraints

ẋ(t) = f (x(t),u(t), t) , (B.2)

x(t0) = x0, (B.3)
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and other additional constraints, e.g., path and boundary constraints [191]. As written,

the problem is an optimization over continuous trajectories. In order to formulate it as a

numerical optimization as introduced in Appendix A, we need to parameterize it with a

finite set of variables. There are many different ways to write down this parametrization,

e.g., transcription, shooting, and collocation [192].

Often times the TO formulation is an NLP problem in its original form due to the

nonlinear system dynamics. To decrease the computation time, simplifications can be made

to the robot model to make the optimization more tractable, e.g., the problem can be turned

into a CP or even QP with a linearized dynamic model. However, an oversimplified model

can limit the robot’s motion capability. The challenge is thus to capture enough of the actual

dynamics in the simplified model for successful control of the robot.

Model-Predictive Control

The computational efficiency of solving QP problems leads to an amazing idea: if we can

optimize trajectories fast enough, we can use TO as a feedback control policy. The recipe is

straightforward [193]:

1. Measure the current states.

2. Optimize the trajectory from the current states as the initial condition for a short time

horizon in the future.

3. Execute the first action from the optimized trajectory.

4. Repeat for the new current states.

This recipe is known as model-predictive control (MPC) or receding horizon control as the

prediction horizon keeps being shifted forward. Unlike classic control, MPC has the ability

to anticipate future events and can take actions accordingly while addressing various system

constraints. Although there is no closed-form representation of this policy nor general proof

of long-term stability, in practice it has been proven an effective approach in robotics.
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Appendix C

Special Orthogonal Group

Rigid body rotation is more complicated than translation as it cannot be represented by the

common Euclidean space directly. The orientation is originally described by the rotation

matrix evolving on the manifold of the special orthogonal group SO(3). Many researchers

use Euler angles to parametrize the orientation. Despite their intuitive interpretations,

using Euler angles and applying the regular techniques of Euclidean spaces are not properly

invariant under the action of rigid transformations [194, 195]. Moreover, Euler angles suffer

from the singularity issue. Unlike Euler angles, quaternion is a minimal globally nonsingular

representation for orientation [196], but its state space of 3-sphere provides a double covering

of SO(3) where a single orientation may correspond to two unit quaternions. This ambiguity

should be carefully resolved, otherwise the unwinding phenomenon would occur where the

body unnecessarily rotates through a large angle even if the initial orientation error is small

[197]. Meanwhile, exploiting the manifold structure of rotation proves to be a general and

decent approach in robot kinematics and control. This appendix thus collects some basic

concepts [195, 198, 199].
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Lie Group

The special orthogonal group is a subgroup of the general linear group, defined as

SO(n) =
{
R ∈ GL(n,R) : RR⊤ = I, detR = 1

}
. (C.1)

The dimension of SO(n) as a manifold is n(n − 1)/2. For n = 3, the group SO(n) is also

referred to as the rotation group on R3. The corresponding group operation is the usual

matrix multiplication and the inverse is the matrix transpose.

Lie Algebra

The Lie algebra (the tangent space at the identity) of SO(3) is denoted as so(3) which

coincides with the space of 3 × 3 skew symmetric matrices. We can identify every skew

symmetric matrix with a vector in R3 with the hat operator (̂·). If a = [a1, a2, a3]
⊤ ∈ R3,

we have

â =


0 −a3 a2

a3 0 −a1
−a2 a1 0

 ∈ s0(3). (C.2)

The hat operator coincides with the vector cross product × such that

âb = a× b, (C.3)

for all a, b ∈ R3. A useful property of skew symmetric matrices is

âb = −b̂a. (C.4)
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The inverse of the hat operator is the vee operator (·)∨ which maps a skew symmetric matrix

to a vector in R3:

â∨ = a. (C.5)

Exponential Map

The exponential map (at the identity) exp : so(3) → SO(3) associates an element of the Lie

algebra to a rotation, which coincides with the general matrix exponential and Rodrigues’

rotation formula:

exp (â) = I+
sin ∥a∥
∥a∥ â+

1− cos ∥a∥
∥a∥2

â2, (C.6)

where ∥ · ∥ denotes the Euclidean norm, e.g., ∥a∥ =
√

a⊤a. It can be shown that

exp (â)a = a, (C.7)

i.e., the vector does not change if it is rotating along itself. Note that the exponential map

reduces to I when ∥a∥ = 0. For notational convenience, a capitalized Exp : R3 → SO(3) is

usually adopted:

Exp (a) = exp (â) . (C.8)

A common first-order approximation of the exponential map is

Exp (a) ≈ I+ â. (C.9)

Another useful property of the exponential map is

RExp (a)R⊤ = exp
(
RâR⊤) = exp

(
R̂a
)
= Exp (Ra) . (C.10)
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Logarithm Map

The inverse of the exponential map is the logarithm map log : SO(3) → so(3) which associates

a rotation to a skew symmetric matrix:

log (R) =
θ

2 sin θ

(
R−R⊤) , θ = arccos

(
tr (R)− 1

2

)
, (C.11)

where tr (·) calculates the trace of a square matrix. Note that the logarithm map reduces

to 0 when R = I. For notational convenience, a capitalized Log : SO(3) → R3 is usually

adopted:

Log (R) = log (R)∨. (C.12)

Right Jacobian

The right Jacobian of SO(3) relates an additive increment in the tangent space to a multi-

plicative increment on the manifold (applied on the right-hand side), defined as

Jr (a) =
∂Exp (a)

∂a
. (C.13)

The right Jacobian and its inverse can be derived in closed form:

Jr (a) = I− 1− cos ∥a∥
∥a∥2

â+
∥a∥ − sin ∥a∥

∥a∥3
â2, (C.14)

J−1
r (a) = I+

1

2
â+

(
1

∥a∥2
− 1 + cos ∥a∥

2 ∥a∥ sin ∥a∥

)
â2. (C.15)

The right Jacobian has the following properties, e.g., for small δa, we have

Exp (a+ δa) ≈ Exp (a) Exp (Jr (a) δa) , (C.16)

Exp (a) Exp (δa) ≈ Exp
(
a+ J−1

r (a) δa
)
, (C.17)
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Log (Exp (a) Exp (δa)) ≈ a+ J−1
r (a) δa. (C.18)

The left Jacobian of SO(3) is similar.
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