Stability Analysis in a Cognitive Radio System with Cooperative Beamforming

Mohammed Karmoose1 Ahmed Sultan1 Moustafa Youseff2

1Electrical Engineering Dept, Alexandria University
2E-JUST
Agenda

1 Motivation and Related Work

2 System and Data Models

3 Problem Insights and Formulation

4 Queue Service Rates

5 Stability analysis using dominant systems
Motivation and Related Work

- Queuing analysis in CRNs to study the stability of the primary and secondary networks
- Shortcomings of such models: no time-frequency sharing between primary and secondary networks
- Cooperative beamforming to increase the available spectrum opportunities for the secondary networks
- No queuing analysis to characterize the stability regions of such systems
- Our goal: study a CR scenario in which cooperative beamforming is enabled for the secondary network, and obtain the stability region of the system for the primary and secondary network
System and Data Models

Primary Network:
- Single link (Tx-Rx pair)
- Primary transmit power P_p
- Infinite buffer Q_p - Bernoulli arrival R.P with mean λ
- Noise at the receivers $\mathcal{CN} \sim (0, 1)$

Figure: System Model
System and Data Models

Secondary Network:

- Single link (Tx-Rx pair)
- Relay-assisted transmission (K relays) operating in a decode-and-forward fashion
- Relays are close to the secondary source
- Power control on total transmitted power by all relays ($P_s \leq P_{\text{max}}$)
- Infinite buffer Q_s - Bernoulli arrival R.P with mean λ_s
- Noise at the receivers $\mathcal{CN} \sim (0, 1)$

Figure: System Model

Mohammed Karmoose, Ahmed Sultan, Moustafa Youseff

Stability Analysis in a Cognitive Radio System with Cooperative Beamforming
Motivation and Related Work

System and Data Models

Problem Insights and Formulation

Queue Service Rates

Stability analysis using dominant systems

System and Data Models

Channel Conditions:

- Small pathloss between secondary source and relays (error free communications)
- Imperfect sensing of primary transmission
- Channel between relays and receivers are $CN \sim (0, 1)$
- Slow fading (channel constant over many time slots)

Figure: System Model
System and Data Models

System Operation:

- Perfect channel estimation at relays based on transmitted ARQs
- Channel estimations are reported to secondary transmitter (negligible time)
- PU packets are sensed by secondary transmitter - imperfect sensing (p_{md} and p_{fa})

Figure: System Model
System and Data Models

- Secondary transmitter computes required beamforming weights
- Secondary data packet is sent to relays which decode perfectly (beamforming vector included in the header)
- Time required for relay reception and decoding is negligible

Figure: System Model

Mohammed Karmoose, Ahmed Sultan, Moustafa Youseff
Alex. Univ.

Stability Analysis in a Cognitive Radio System with Cooperative Beamforming
System and Data Models

- If PU is detected
 \[w_p = \sqrt{P_s} \frac{(I - \Phi)H_s}{\sqrt{H_s^H (I - \Phi) H_s}} \]
- If PU is not detected
 \[w_a = \sqrt{P_s} \frac{H_s}{\|H_s\|}. \]

Figure: System Model

Mohammed Karmoose, Ahmed Sultan, Moustafa Youseff
Stability Analysis in a Cognitive Radio System with Cooperative Beamforming
If sensing was perfect: PU will not be aware of the secondary transmitter. What would only limit its achievable service rate (μ_p) is the channel conditions between PU Tx-Rx.

If sensing is not perfect: SU can unintentionally interfere with PU transmission, reducing achievable service rate of primary user.

For the SU: Two factors govern its achievable service rate (μ_p):

1. Channel conditions between relays and secondary destination
2. The rate at which PU uses the channel (i.e., λ_p and μ_p)
Problem Insights and Formulation

Problem Formulation

- Stability for a queue is achieved iff $\lambda < \mu$
- We try to find the stability region of the system (the regions of λ_p and λ_s for which the two queues are stable), i.e.:

$$
\lambda_p < \mu_p \\
\lambda_s < \mu_s
$$
Queue Service Rates

Primary Queue: If secondary queue is empty OR secondary queue is not empty and PU is detected:

\[p_{\text{out},p} = \Pr\{P_p|H_p|^2 < \beta_p\} = 1 - \exp\left(\frac{-\beta_p}{P_p}\right) \]

If secondary queue is not empty and PU is misdetected:

\[p_{\text{out},p}^{\text{md}} = \Pr\left\{ \frac{P_p|H_p|^2}{|H_{sp}^H w_a|^2 + 1} < \beta_p \right\} \]

Service rate:

\[\mu_p = (1 - p_{\text{out},p}) \left(\Pr\{Q_s = 0\} + (1 - p_{\text{md}})\Pr\{Q_s \neq 0\} \right) \]

\[+ (1 - p_{\text{out},p}^{\text{md}}) p_{\text{md}} \Pr\{Q_s \neq 0\} \]
Queue Service Rates

Secondary Queue:

PU queue is empty
AND not detected:

\[p_{\text{out},s} = \Pr \{ P_s \| H_s \|^2 < \beta_s \} \]

PU queue is empty
AND detected (false alarm):

\[p_{\text{out},s}^{fa} = \Pr \{ |H_s^H w_p|^2 < \beta_s \} \]

PU queue is not empty
AND detected:

\[p_{\text{out},s}^{(d)} = \Pr \{ \frac{|H_s^H w_p|^2}{P_p |H_{ps}|^2 + 1} < \beta_s \} \]

PU queue is not empty
AND misdetected:

\[p_{\text{out},s}^{md} = \Pr \{ \frac{P_s \| H_s \|^2}{P_p |H_{ps}|^2 + 1} < \beta_s \} \]

\[\mu_s = \left(p_{\text{out},s}^{(d)} (1 - p_{fa}) + p_{\text{out},s}^{fa} p_{fa} \right) \Pr \{ Q_p = 0 \} + \left(p_{\text{out},s}^{md} (1 - p_{md}) + p_{\text{out},s}^{md} p_{md} \right) \Pr \{ Q_p \neq 0 \} \]
Stability analysis using dominant systems

- Continuing analysis is hard to interacting queues
- We use the concept of “dominance”: We assume two auxiliary systems
 1. Primary queue is dominant (sends dummy packets when queue is empty)
 2. Secondary queue is dominant (sends dummy packets when queue is empty)
- It is proven that the union of the stability regions of both systems is exactly the stability region of the original system
Stability analysis using dominant systems

Primary dominant queue:

- \(\Pr\{Q_p = 0\} = 0 \)
- \(\mu_s^{pd} = \left(p^{(d)}_{out,s} (1 - p_{md}) + p^{md}_{out,s} p_{md} \right) \)
- Secondary queue does not depend on the state of primary queue (channel stationarity is guaranteed). We apply Little’s theorem \(\Pr\{Q_s = 0\} = 1 - \frac{\lambda_s}{\mu_s^{pd}} \)
- \(\mu_p^{pd} = (1 - p_{out,p}) - \frac{\lambda_s}{\mu_s^{pd}} p_{md} \left(p^{md}_{out,p} - p_{out,p} \right) \)
Stability analysis using dominant systems

Effect of changing P_s:

- **On secondary rate:** Increasing P_s increases μ_{s}^{pd}
- **On primary rate:**
 - Increasing P_s increases interference on the primary receiver when misdetection occurs
 - Increasing P_s helps SU empty its queue faster and evacuates the channel

- The impact of both effects depend on λ_s and μ_{p}^{pd}

- Optimization problem over P_s to maximize μ_{p}^{pd}

$$\max_{P_s} \lambda_p = \mu_{p}^{pd} \quad \text{s.t.} \quad \lambda_s < \mu_{s}^{pd}, \quad P_s \leq P_{\text{max}}$$
Stability analysis using dominant systems

Primary dominant queue:

Figure: $P_p = 1, K = 4, p_{md} = 0.1, p_{fa} = 0.01, \beta_p = \beta_s = 1$ and $P_{max} = 2$.
Stability analysis using dominant systems

Primary dominant queue:

Figure: $P_p = 1$, $K = 4$, $p_{md} = 0.1$, $p_{fa} = 0.01$, $\beta_p = \beta_s = 1$ and $P_{\text{max}} = 2$.
Stability analysis using dominant systems

Secondary dominant queue:

- \(\Pr\{Q_s = 0\} = 0 \)
- \(\mu_{sp}^{sd} = (1 - p_{out,p})(1 - p_{md}) + (1 - p_{out,p}^{md})p_{md} \)
- Primary queue does not depend on the state of secondary queue (channel stationarity is guaranteed). We apply Little's theorem \(\left(\Pr\{Q_p = 0\} = 1 - \frac{\lambda_p}{\mu_{sp}^{sd}} \right) \)

\[
\mu_{sp}^{sd} = \frac{\lambda_p}{\mu_{sp}^{sd}} \left(p_{out,s}^{(d)}(1 - p_{md}) + p_{out,s}^{md}p_{md} - p_{out,s}(1 - p_{fa}) \right.
- p_{out,s}^{fa}p_{fa} \) + \left(p_{out,s}^{fa}(1 - p_{fa}) + p_{out,s}^{fa}p_{fa} \right)
\]
Stability analysis using dominant systems

Effect of changing P_s:

- **On primary rate**: Increasing P_s decreases μ_p^{sd}
- **On secondary rate**:
 - Increasing P_s enhances SINR of secondary transmission and increase μ_s^{sd}
 - Increasing P_s interferes with primary transmission - PU will occupy the channel for longer times which decreases μ_s^{sd}

- The impact of both effects depend on λ_p and μ_s^{sd}
- Optimization problem over P_s to maximize μ_s^{sd}

$$\max_{P_s} \lambda_s = \mu_s^{pd} \quad \text{s.t.} \quad \lambda_p < \mu_p^{pd}, \quad P_s \leq P_{\text{max}}$$
Stability analysis using dominant systems

Secondary dominant queue:

Figure: $P_p = 1$, $K = 4$, $p_{md} = 0.1$, $p_{fa} = 0.01$, $\beta_p = \beta_s = 1$ and $P_{max} = 2$.

Mohammed Karmoose, Ahmed Sultan, Moustafa Youseff

Stability Analysis in a Cognitive Radio System with Cooperative Beamforming
Stability analysis using dominant systems

Secondary dominant queue:

\[\text{2nd Dominant System} \]

\[\lambda_p = 0, \lambda_p = 0.1, \lambda_p = 0.35, \lambda_p = 0.36 \]

Figure: \(P_p = 1, K = 4, p_{md} = 0.1, p_{fa} = 0.01, \beta_p = \beta_s = 1 \) and \(P_{\text{max}} = 2 \).
Stability analysis using dominant systems

Stability region of the original system:

Figure: $K = 4$, $p_{md} = 0.1$, $p_{fa} = 0.01$, $\beta_p = \beta_s = 1$ and $P_{max} = 2$.
Stability analysis using dominant systems

Stability region of the original system:

Figure: \(P_p = 1, 10, K = 4, p_{md} = 0.1, p_{fa} = 0.01, \beta_p = \beta_s = 1 \) and \(P_{\text{max}} = 2 \).
Thank you

For any questions, feel free to contact the author at m_h_karmoose@alexu.edu.eg