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This supplementary information is designed to give details on issues that 

are not fully discussed in the main article. It does not refer to other con-

cepts than those introduced in the main article. 

1 DATA PROCESSING  

1.1 Connectivity Data 

Using a p-value threshold of 1x10-3, transcriptional regulatory 

networks were obtained from the ChIP-chip data of (Lee et al., 

2002) and (Harbison et al., 2004) (YPD and all conditions). The 

networks were then merged to obtain a network comprised of all 

transcription factor-promoter binding relationships known through 

ChIP-chip experimentation. The total number of genes investigated 

was 6,229, which is equal to the number of genes in the ChIP-chip 

binding data from the YPD and condition specific assays from 

(Harbison et al., 2004). It is worth noting that network connectivity 

can be constructed from ChIP-chip data in a variety of ways, and 

that the method of construction may impact an analysis. For in-

stance, more lenient or strict p-value thresholds, or binding ratios 

could be used. The p-value thresholds used here were 1x10-3, a 

very strict, common threshold used in transcription analyses, in-

cluding those of the developer and authors of the ChIP-chip data 

used here (Lee et al., 2002; Harbison et al., 2004). Use of more 

lenient values would increase the connection false positive rate, 

thereby increasing network error, and pushing ChIP-chip derived 

network performance towards that of random networks. More re-

strictive p-values would decrease the connection false positive rate, 

potentially aiding analysis. However, at a p-value of 1x10-3 (false 

positive rate �  4-6%) the majority of uncertainty in the ChIP-chip 

network would originate from environmental dependence in bind-

ing and uncorrelation between binding and regulation, not experi-

mental error. In fact, an overly restrictive p-value could be detri-

mental since fewer genes could be analyzed, due to more genes 

being found unbound in ChIP-chip data. Use of raw binding ratios 

would increase network error and result in similar issues con-

fronted from using more lenient p-values, due to the absence of 

corrections performed in the process of converting binding ratios 

to p-values. 

 

1.2 Expression Data 
Expression data was gathered from literature (Gasch et al., 2000; 

Lyons et al., 2000; Gasch et al., 2001; Yoshimoto et al., 2002). 

The mean normalized expression ratios were extracted from every 

experiment. The Gene Expression Pattern Analysis Suite v1.1 

(GEPAS) was used to process every experiment individually 

(Herrero et al., 2003; Herrero et al., 2004). Replicates were omit-

ted if they were 1.0 from the median, and merged otherwise. The 

expression of a gene was the median value of those replicates that 

were less than 1.0 from the median. After every experiment was 

individually processed, experiments from the same condition were 

combined into a single data matrix. For each condition, the data 

matrix was further processed by GEPAS by filtering out those 

genes that were absent in more 20% of the experiments, and imput-

ing the missing values for those genes that were present in more 

than 80% of the experiments by K-Nearest Neighbor (KNN) impu-

tation where K = 15. Every condition data matrix was further proc-

essed by omitting those genes that did not show at least a 2-fold 

change in expression, up or down, in any of the condition’s ex-

periments. This is not a necessary step for the method, but allows 

expedited computation for those genes whose expression was more 

considerably altered. Lastly, those genes that did not have any 

regulator bind them in the connectivity dataset were not analyzed, 

and the remaining expression was z-scored by gene. There were a 

total of 10 experimental conditions. 

2 METHOD COMPARISON 

2.1 ChIP-chip, Random Network Comparison 

Fixed Strength (type I): ChIP-chip connectivity was obtained as 

described in section 1.1. To solve Eq. 1 from the main text, non-

zero values of A  were specified to be 1, and Γ  was minimized 

via Ordinary Least Squares (OLS). Randomized connectivity was 

obtained by shuffling the connections (1’s and 0’s) in A . Eq. 1 

was then solved in the same manner. Ten different randomized 

connectivities were performed for every experimental condition 

(10 each, 100 total), and each data point in Figure 4 was the aver-

age of these ten analyses. 

Variable Strength (type II): ChIP-chip connectivity was ob-

tained as described in section 1.1. To solve Eq. 1 from the main 

text, non-zero values of A  were initialized by random numbers 

and a bi-linear optimization was performed to minimize Γ . Ten 

different initializations were performed for every experimental 

condition, and the average of their residuals was used in Figure 4. 

Randomized connectivity was obtained by shuffling the connec-

tions (nonzero values) in A . Eq. 1 was then solved in the same 

manner. Ten different randomized connectivities were performed 

for every experimental condition, and each data point in Figure 4 

was the average of these ten analyses. 

 

2.2 Average Relative Residual 

Calculated as: 
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where 
F

X  is the Frobenius norm of X ,  iΓ  is the residual of 

the 
th

i  gene, and ie  is the expression of the 
th

i  gene. Results in 

Figure 5 were calculated as such, and averaged over 10 different 

initial conditions for every environment. 

 
2.3 Synthetic Data Comparison 

Using synthetic data the accuracy and effectiveness of our method 

was compared to both type I and type II model-fitting procedures. 

Since both types attempt to minimize Γ  from Eq. 1, four different 

weighting schema were tested on each type. These include ordi-

nary least squares (OLS), and Huber, Cauchy, and fair weighted 

robust regression. In order to follow biological data closely but 

enhance computation speed, the proportionate size of the transcrip-

tion network was kept the same and fewer genes were analyzed. 

Synthetic systems consisted of 500 genes and 50 synthetic tran-

scription factors. For the 10 real biological conditions analyzed, 

after processing the data as described in section 1.2, the median 

network proportion between genes and regulators was 9.99.  The 

average experiment set size was 9.8 over all 10 conditions, so all 

synthetic data contained 10 experiments. In addition, to keep with 

current opinion that there is a physical limit associated with how 

many regulators can control gene expression from a single pro-

moter, regulation in the synthetic data was constrained to a maxi-

mum of 3 regulators per gene, with edge densities ranging from 1.6 

to 1.74 for the whole system. When S. cerevisiae data was ana-

lyzed under this constraint, the average transcription network edge 

density was 1.69.   

Synthetic data was created by populating the transcription factor 

activity matrix P  (Eq. 1, 50x10) with random numbers, specifying 

an edge density for the transcription network A  (Eq. 1, 500x50), 

selecting edges at random from a pre-specified edge distribution 

(3:2:1, singly:doubly:triply regulated genes), populating the non-

zero entries of A  (edges) with random numbers, and generating 

E  from Eq. 1 (500x10). The pre-specified edge distribution was 

used to approximate the real distribution found in S. cerevisiae 

which on average over the 10 experimental conditions was 

2.5:1.5:1.  White noise was added to produce a signal to noise 

(S/N) ratio of 1 or 2. The percentage of erred genes was set to ei-

ther 40, 50, 60, 70 or 80%. The percentages of genes within that 

percentage that had erred expression was 67% and erred connec-

tivity was 67%. Those genes specified to have erred expression 

had their values replaced by random numbers. Genes specified to 

have erred connectivity had their connectivity shuffled amongst 

each other, and edges shifted at random between columns. This 

results in an identical edge density, and an identical number of 

genes with 1, 2,… regulators as the true network. It was possible 

that genes could undergo this shuffle-shifting procedure and re-

main consistent, and we have accounted for that in our analysis. 

The network and expression, A  and E , were then analyzed with 

the Bayesian statistic used in our Gibbs algorithm (section 3.2) . 

This was done to determine the maximum number of regulators per 

gene that could be analyzed. Genes with too many regulators were 

omitted from the analysis, and the trimmed dataset fed to our 

Gibbs algorithm, and the model-fitting procedures.  

For comparative purposes the number of consistent genes, cg , 

was determined by the Gibbs sampler. Consistent genes identified 

from the Gibbs algorithm were the cg  genes with the highest like-

lihood to be consistent.  From the model-fitting procedures, consis-

tent genes were identified as the cg  genes with the smallest resid-

ual error, iΓ  (Eq.1).  We then determined the false positive (FP) 

and false negative (FN) rates for each procedures consistent gene 

set. These are reported in Figure 2. For every erred gene percent-

age and signal to noise ratio (eg. 40% erred genes at signal to noise 

ratio of 2) ten different synthetic networks and expression sets 

were analyzed. Therefore, every data point in Figure 2 is the aver-

age of 10 different, independent evaluations. In addition, due the 

tendency of model-fitting procedures to over fit genes with a larger 

number of regulators we compared performance on a per regulator 

basis. Again our Gibbs algorithm out performed the model-fitting 

procedures (results not reported). 

Interestingly at a signal to noise ratio of 1, the false positive rate 

of 70% erred genes analyses was larger than the false positive rate 

from 80% erred genes analyses. This is due to two factors. The 

first is due to the thresholds (see Section 3.2) used by our Gibbs 

algorithm. As the amount of noise and percentage of erred genes 

increases our method has reduced resolution with genes regulated 

by a higher number of regulators. In the before mentioned case, 

three of the ten networks analyzed at signal to noise ratio of 1 and 

80% erred genes could not be resolved above single regulation. If 

these three networks are omitted during comparison the false posi-

tive rate would be 6.6 as opposed to 6.2. The second factor stems 

from the scale and noise. As the noise level increases the number 

of consistent genes identified by our Gibbs algorithm decreases. In 

addition, due to the level of noise (80%) even fewer genes are 

consistent to begin with. As the number of consistent genes identi-

fied approaches its limit of zero it is conceivable that the false 

positive rate may decrease, since mis-identification at such small 

numbers is unlikely. This is only observed with a signal to noise 

ratio of 1 and 80% erred genes because all other examples pro-

vided in Figure 2 identify ~60-480% more consistent genes. Unfor-

tunately, we could not investigate further at signal to noise ratio 1 

since resolution at 90% erred genes was too often compromised to 

single regulation.  

3 GIBBS DETAILS 

3.1 Network Relationships 
Our approach is based on concepts presented in (Brynildsen et al., 

2006). The goal of this method is to identify genes with accurate 

gene expression and accurate network topology (consistent genes). 

If accurate network topology is present, the network will require 

the expression of genes to conform to a set of constraints deline-

ated by Theorem 2 of (Brynildsen et al., 2006). These constraints 

form a series of relationships that should exist between the expres-

1
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sions of different genes.  If gene expression is accurate, it will 

abide by relationships dictated by accurate topology. However, if 

either gene expression or topology is erred constraints will be vio-

lated. Therefore, identifying relationships that are intact will pro-

vide us with a means to identify consistent genes. Following Ap-

pendix B of (Brynildsen et al., 2006), we see that: 

 

 1
1 2

-1
A A 2E = Z Z E  (S2)  

 

where 
2

AZ ( )LxL  is an invertible subnetwork of AZ , 2E ( )LxM  

is the expression data of genes whose topology comprise 
2

AZ , 

1
AZ  (( ) )N L xL−  is the network of the remaining genes not within 

2
AZ , and  1E  (( ) )N L xM−  is the expression data of genes 

whose topology comprise 
1

AZ . We use AZ  here to indicate that 

we do not know the strength with which TFs control their targets, 

and that we leave these interactions unconstrained within our 

analysis. Eq. (S2) relates the expression of L  genes in 2E  to the 

expression of the remaining genes in 1E  through the network term 

1 2

-1
A AZ Z . To test if network relationships remain intact we rear-

range Eq. (S2): 

 

  (S3) 

 

where I  is an ( ) ( )N L x N L− −  identity matrix. To satisfy Eq. 

(S3), for every irow  of  
 -1

1 2
A A

I Z Z   the matrix composed of 

those rows of  
 
  

1

2

E

E
 that multiply against nonzero entries in irow  of 

 
 -1

1 2
A A

I Z Z  must be rank deficient. Since gene expression data 

is fairly noisy rank calculations are insufficient, therefore condition 

numbers can be used to give a measure of how close a matrix is to 

rank deficiency. To determine the condition number thresholds that 

are indicative of rank deficiency we use a Bayesian statistic de-

scribed in section 3.2. 

Every gene of 1E  is analyzed against the genes of 2E  (seeds) to 

determine whether the connectivity data of the genes is consistent 

with their gene expression. If 2E  were completely populated with 

erred genes, all genes would violate Eq. (S3) whether or not they 

are consistent. If 2E  were populated with consistent genes, consis-

tent genes would satisfy Eq. (S3).  Therefore, we want genes in 

2E to be consistent. However, we do not have any prior informa-

tion pertaining to which genes would be best suited for 2E . To 

determine those genes best suited for 2E we have devised a Gibbs 

sampler, which will be described in section 3.3. 

 

3.2 Bayesian Statistic for Condition Number Threshold 

We employed a Bayesian statistic to determine condition number 

thresholds indicative of rank deficiency for matrices of varying 

sizes. It takes the form of: 

 

 

 (S4) 

 

 

where Pr( )rdX  is the posterior probability that X  is rank defi-

cient, rdL  is a likelihood function for rank deficient matrices, rfL  

is a likelihood function for full rank matrices, rdprior  is the rank 

deficient prior probability, and rfprior  is the full rank prior prob-

ability. 

We generated two likelihood functions, one intended to be rep-

resentative of rank deficient data matrices and one intended to be 

representative of full rank data matrices. Since condition number is 

dependent on matrix size, we obtained likelihood functions for 

every matrix size analyzed. The likelihood functions were popu-

lated by 5000 appropriately sized matrices, and were constructed 

for every experimental dataset individually. It should be noted that 

these likelihood functions were constructed from all genes within a 

dataset, and not just those genes whose binding profile matched 

their gene expression. This will have important implications for the 

type of likelihood function selected.  

Rank deficient likelihoods, rdL , were constructed by selecting 

gene expression data from genes whose AZ  indicated that a rank 

deficiency should be present. Inevitably, since genes have been 

included whose binding profile cannot accurately describe their 

expression, some matrices indicated by AZ  to be rank deficient 

will undoubtedly be full rank. This does not concern us much since 

we are looking to identify rank deficiencies with our algorithm. 

Even if some matrices used to populate the rdL are full rank it 

should not affect our threshold much as long as we use a high 

Pr( )rdX  for selection.  

Full rank likelihoods, rfL , were constructed by selecting at ran-

dom by experiment. For instance, if we were generating a data 

matrix that has N  genes and M  experiments to populate rfL , for 

each experiment N  values would be chosen at random to inhabit 

the corresponding column in the NxM data matrix. This is per-

formed independently for each experiment. We chose to use this 

method instead of one based off of indications from AZ , because 

we are using the combined ChIP-chip data. It is reasonable to as-

sume that not all potential regulators of a gene compiled over all 

known conditions will be acting on a promoter at a given time. 

Therefore, if we used our combined connectivity data to select for 

full rank matrices, we would more often than not end up with rank 

deficient matrices populating our full rank likelihood.  This would 

severely impact the resolution with which we could identify rank 

deficiencies necessary to perform our algorithm. Therefore, we 

sought to include the experimental variability of the dataset with-

out relying upon AZ  to provide us with full rank matrices, and 

thus settled on our current approach.  

When selecting priors for the statistic we sought to find a meas-

ure that would reflect current understanding of TF-promoter rela-

tionships. It is generally appreciated that the number of regulators 

that can act on a promoter at any given time is bounded, and is 

generally much smaller than the number of regulators known to 

bind the promoter. Therefore, we chose priors that identify rank 

deficiencies at a higher rate for matrices expected to be controlled 

by fewer regulators. The prior for the data to be rank deficient can 

be written as: 

 

 (S5) 

 

 
    

 
1 2

1-1
A A

2

E
0 = I Z Z

E

( )
*

Pr
* *

rd rd
rd

rd rd rf rf

L prior

L prior L prior
=

+
X

1

2

reg

rdprior
 

=  
 
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where reg  is equal to the total number of regulators supposedly 

acting on the promoters of genes whose expression data was used 

to compile the rank deficient likelihood function. For instance, a 

data matrix composed of expression from two genes whose only 

known regulator is the same would have .5rdprior = , while a data 

matrix composed of expression from three genes who share 2 regu-

lators, have .25rdprior = . The full rank prior was simply, 

1rf rdprior prior= − . 

Finally, to determine the rank deficiency threshold for matrices 

of varying sizes, we searched for the condition number which 

yielded a posterior probability, Pr( ) .9rd =X  from Eq. (S4), start-

ing at a condition number of 1 and going up. If a given matrix size 

could not reach the Pr( ) .9rd =X , then we would not be able to 

resolve whether a rank deficiency was present. Genes with ≥  the 

number of regulators expected to be acting in the rank deficient 

matrix where could not be reached Pr( ) .9rd =X  were then omitted 

from analysis. 

 

3.3 Sampling 

We look to populate 2E  with genes that when analyzed with Eq. 

(S3) yield the correct list of consistent genes. We begin by recog-

nizing that if the proper genes inhabit 2E  the number of consistent 

genes will be maximized. We define r  as a vector of length N  

(  #  N genes= ), populated by 0’s and 1’s.  

 

 1, 0, ..., 1r =     

 

where a 1 designates a consistent gene, and 0 designates an erred 

gene (0 can indicate an error in expression, connectivity, or both). 

We postulate that the correct r  contains the most 1 entries, since 

introduction of erred genes into 2E  would create 0’s from entries 

that would otherwise be 1’s. Thus, if we maximize 
1

N

i
i

r
=

∑  we should 

obtain the correct r . However, r  is not a simple function: 

 

 1 2( , ,..., , )Lr f η η η= AZ ,E  (S6) 
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 ( ) ,
1

sj
c j

j k i
k

f rη
=

= ∑  (S8) 

 

 

 

  

 

 

 (S9) 

 

 

 

 

 

Here jη  is gene j  of 2E , ir  is the r  value (1 or 0)  for the thi  

gene, ( )cond X  is the condition number of matrix X , iR  is the 

matrix composed of the rows of  
 
  

1

2

E

E
 that multiply against nonzero 

entries in the row of [ ]-1

1 2
A AI Z Z   that corresponds to the thi  

gene, iB  is the same as iR  except that the row of   
 
  

1

2

E

E
 that corre-

sponds to the thi  gene is substituted with a random vector (back-

ground), thresholdX  is the condition number threshold for rank 

deficiency of a matrix the size of X  derived from the before men-

tioned Bayesian statistic ( Pr( )rdX = .90), 
c

f  is as described, Sj  

is the set of all possible candidates for jη  that are not already 

,h h jη ≠ , sj  is equal to the number of genes in Sj , ,
j

k ir  is a sj  

vector populated as described, the i  and j  in ,
j

k ir  stand for the thi  

gene being jη  while k  refers to the thk  entry of Sj , and jΝ  is 

the same as kR  except that the row of   
 
  

1

2

E

E
 that corresponds to 

jη is substituted with a random vector.  

We can view 
1

N

i
i

r
=

∑  as our joint distribution: 

 

 1 2 3
1

( , , ,..., , )
N

i L
i

r f η η η ηΣ
=

=∑ AZ ,E  (S10) 

 

To explore the parameter space of 
1

N

i
i

r
=

∑  we have chosen to employ 

a Gibbs sampler. Our goal is to maximize 
1

N

i
i

r
=

∑  by sampling from 

the conditional distributions: 

 

 1 2 3( | , ,..., , )Lf η η η ηΣ AZ ,E  

 2 1 3( | , ,..., , )Lf η η η ηΣ AZ ,E  

  

 1 2 1( | , ,..., , )L Lf η η η ηΣ − AZ ,E  

 

For each jη  there is a list of genes that are possible candidates. 

This list is denoted as Sj , and we strive to identify the members of 

Sj  that will maximize 
1

N

i
i

r
=

∑  when positioned as jη . Since the set 

of genes, 1 2, ,..., Lη η η   , needs each regulator to partially control at 

least one gene (full rank of 2A  requirement),  any candidate for 

jη  must be regulated by TFj . Therefore, every Sj  is composed 

of all the genes regulated by TFj  that are not currently one of the 

,h h jη ≠ . This implies that a gene can be a member of multiple 

Sj ’s if it is regulated by more than one TF, which is indeed true.  

For every jη , we set all other variables ( ,h h jη ≠ ) constant, 

and construct the conditional distribution, ( | , )j h jf η ηΣ ≠ AZ ,E , by 

evaluating 
1

N

i
i

r
=

∑  once for every member of Sj  as jη . With the 

results for these sj  evaluations we construct a probability based 

off of the values from a collapsed version of ( | , )j h jf η ηΣ ≠ AZ ,E , 

,
j

k ir , and select the update for jη  by sampling from this probability 

distribution. The collapsed version of ( | , )j h jf η ηΣ ≠ AZ ,E  includes 

those genes that are related to jη  through 
1 2

-1
A AZ Z . Genes whose 

( )

( )

( ) ( )

( )

( )

( ) ( )

1 2

1

, ,...,

,

,
0

1

0

i

i

i

i

i

i

i i

L

i

i
i

i i

cond thresh  &       

cond thresh  &        

cond cond *.9       

for i      
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consistency is not impacted by jη  are omitted from ,
j

k ir . The 

probability is constructed by: 

 

 

 (S11) 

 

 

We then select results from those 1 2[ , ,..., ]Lη η η  that yield a 
1

N

i
i

r
=

∑  

value of at least 80% of the 
1

max
N

i
i

r
=

 
 ∑ 
 

. The algorithm is said to con-

verge once a convergence criteria based on general rank invariabil-

ity of the genes has been attained. After the number of 

1 2[ , ,..., ]Lη η η  that yield a 
1

N

i
i

r
=

∑  value 
1

 max
N

i
i

r
=

 
≥  ∑ 

 
 is greater than or 

equal to 1000 the sampler is tested for convergence. Convergence 

is tested every iteration until the convergence criteria is met or 

1

max
N

i
i

r
=

 
 ∑ 
 

 changes.  

  

3.4 Convergence 

To check for convergence the set of 1 2[ , ,..., ]Lη η η  with 
1

N

i
i

r
=

∑  values 

1

.8* max
N

i
i

r
=

 
≥  ∑ 

 
 is split in half, where one half ( )Hr  contains the most 

recently found 1 2[ , ,..., ]Lη η η  , and the other half ( )Hl  the latter 

1 2[ , ,..., ]Lη η η . Each half is then analyzed to produce Gr  and Gl , 

which are vectors of length N  populated by integer values. If 

11iGr =  it means that ir  was found to be 1 in 11 1 2, ,..., Lη η η    

from Hr , and if 12iGl =  it means that ir  was found to be 1 in 12 

1 2, ,..., Lη η η    from Hl . The larger the value of Gr  or Gl  the 

more likely a gene is to be consistent. We then parse Gr  and Gl  

into: 

 

 
0 10 90
,  ,  ..., Gr Gr Gr Gr→  (S12) 

 
0 10 90
,  ,  ..., Gl Gl Gl Gl→  (S13) 

 

where XGr  contains those genes with a Gr  value 

( /100) * max( )X Gr≥ , and the same said for Gl . In this formal-

ism 90 80 0...Gr Gr Gr∈ ∈ ∈ , 90 80 0...Gl Gl Gl∈ ∈ ∈ , and 
0 0Gl Gr=  since they would include all genes. We then check: 

 

 

 (S14) 

 

 

where XCP  is the percentage of genes in common between XGr  

and XGl , corrected for a possible difference in size between XGr  

and XGl . If all .9XCP > , the Gibbs sampler is said to be con-

verged.  
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Diamide DTT Gamma H2O2 Menadione MMS Salt N2 Zinc Calcium

ChIP-chip, typeI 0.89 0.94 0.88 0.94 0.87 0.81 0.93 0.94 0.93 0.96

Random,   typeI 0.91 0.94 0.9 0.94 0.88 0.83 0.93 0.94 0.94 0.96

ChIP-chip, typeII 0.46 0.62 0.65 0.76 0.7 0.35 0.49 0.6 0.68 0.73

Random, typeII 0.44 0.61 0.68 0.74 0.72 0.41 0.42 0.56 0.61 0.66

Specific values used in Figure 4 of main text. Type I and type II refer to fixed and variable strength methods respectively.

Table S2: Comparison of ChIP-chip derived and Randomized Connectivities

Table S1b: Comparison of False Negative Rates for Gibbs and Model-fitting Techniques

56.3%49.25%44.66%35.15%30.19%63.58%53.19%48.79%40.09%35.92%OLS(I)

55.30%46.38%41.66%31.71%28.07%61.95%50.87%46.40%37.91%34.30%Fair (I)

55.19%45.41%40.59%31.36%28.01%61.41%51.24%45.64%37.95%34.12%Cauchy (I)

55.02%45.17%40.80%31.40%28.00%61.14%51.41%46.19%37.94%34.16%Huber (I)

23.33%10.62%6.43%2.94%1.40%21.32%10.52%3.05%1.44%0.85%OLS (II)

19.07%9.67%6.23%3.01%1.53%19.06%7.56%2.36%0.60%0.22%Fair (II)

20.69%9.69%5.80%2.33%1.64%19.43%7.82%1.83%0.56%0.16%Cauchy (II)

19.74%10.99%4.74%2.32%1.64%18.32%8.96%2.17%0.74%0.12%Huber (II)

6.24%7.55%4.18%1.57%1.64%4.36%1.25%1.09%0.65%0.31%Gibbs

80%, 

SN:1

70%, 

SN:1

60%, 

SN:1

50%, 

SN:1

40%, 

SN:1

80%, 

SN:2

70%, 

SN:2

60%, 

SN:2

50%, 

SN:2

40%, 

SN:2

56.3%49.25%44.66%35.15%30.19%63.58%53.19%48.79%40.09%35.92%OLS(I)

55.30%46.38%41.66%31.71%28.07%61.95%50.87%46.40%37.91%34.30%Fair (I)

55.19%45.41%40.59%31.36%28.01%61.41%51.24%45.64%37.95%34.12%Cauchy (I)

55.02%45.17%40.80%31.40%28.00%61.14%51.41%46.19%37.94%34.16%Huber (I)

23.33%10.62%6.43%2.94%1.40%21.32%10.52%3.05%1.44%0.85%OLS (II)

19.07%9.67%6.23%3.01%1.53%19.06%7.56%2.36%0.60%0.22%Fair (II)

20.69%9.69%5.80%2.33%1.64%19.43%7.82%1.83%0.56%0.16%Cauchy (II)

19.74%10.99%4.74%2.32%1.64%18.32%8.96%2.17%0.74%0.12%Huber (II)

6.24%7.55%4.18%1.57%1.64%4.36%1.25%1.09%0.65%0.31%Gibbs

80%, 

SN:1

70%, 

SN:1

60%, 

SN:1

50%, 

SN:1

40%, 

SN:1

80%, 

SN:2

70%, 

SN:2

60%, 

SN:2

50%, 

SN:2

40%, 

SN:2

26.65%35.79%44.56%51.68%61.42%26.95%33.93%44.11%52.20%65.35%OLS(I)

26.64%35.23%43.46%50.14%60.04%26.53%33.08%42.85%50.54%63.59%Fair (I)

26.60%35.03%43.14%49.98%59.99%26.39%33.22%42.41%50.58%63.36%Cauchy (I)

26.59%34.98%43.16%49.99%60.02%26.33%33.27%42.73%50.58%63.40%Huber (I)

22.09%27.64%30.86%37.53%43.66%16.65%17.97%19.54%23.17%27.07%OLS (II)

21.54%27.43%30.71%37.59%43.71%16.12%16.87%19.17%22.53%26.41%Fair (II)

21.96%27.40%30.63%37.31%43.80%16.15%16.99%18.90%22.50%26.31%Cauchy (II)

21.84%27.70%30.20%37.27%43.80%15.97%17.43%19.08%22.64%26.27%Huber (II)

19.75%26.92%29.83%36.98%43.81%12.53%14.50%18.50%22.57%26.49%Gibbs

80%, 

SN:1

70%, 

SN:1

60%, 

SN:1

50%, 

SN:1

40%, 

SN:1

80%, 

SN:2

70%, 

SN:2

60%, 

SN:2

50%, 

SN:2

40%, 

SN:2

26.65%35.79%44.56%51.68%61.42%26.95%33.93%44.11%52.20%65.35%OLS(I)

26.64%35.23%43.46%50.14%60.04%26.53%33.08%42.85%50.54%63.59%Fair (I)

26.60%35.03%43.14%49.98%59.99%26.39%33.22%42.41%50.58%63.36%Cauchy (I)

26.59%34.98%43.16%49.99%60.02%26.33%33.27%42.73%50.58%63.40%Huber (I)

22.09%27.64%30.86%37.53%43.66%16.65%17.97%19.54%23.17%27.07%OLS (II)

21.54%27.43%30.71%37.59%43.71%16.12%16.87%19.17%22.53%26.41%Fair (II)

21.96%27.40%30.63%37.31%43.80%16.15%16.99%18.90%22.50%26.31%Cauchy (II)

21.84%27.70%30.20%37.27%43.80%15.97%17.43%19.08%22.64%26.27%Huber (II)

19.75%26.92%29.83%36.98%43.81%12.53%14.50%18.50%22.57%26.49%Gibbs

80%, 

SN:1

70%, 

SN:1

60%, 

SN:1

50%, 

SN:1

40%, 

SN:1

80%, 

SN:2

70%, 

SN:2

60%, 

SN:2

50%, 

SN:2

40%, 

SN:2

Table S1a: Comparison of False Positive Rates for Gibbs and Model-fitting Techniques

a) False positive and  b) false negative rates used in Figure 2 of main text, plus those from type I model fit. Type I and type II refer 

to fixed and variable strength methods respectively. SN:2 and SN:1 refer to signal to noise ratios of 2 and 1.


