EECS 598 – Terahertz Technology & Applications MW 12pM-1:30PM, 1012 EECS (Fall 2009)

Instructor:	Mona Jarrahi Room 3243 EECS, Phone: 647-1799 Office Hours: MW. 2:00 – 3:00 or by appointment. Email: mjarrahi@umich.edu	
Text:	"Terahertz Optoelectronics" by Kiyomi Sakai (Springer 2005), Books on the reference list are recommended. In addition to these texts, the handouts (thanks to Dr. Konstantin Vodopyanov) will also be available on CTools.	
References	 "Terahertz Spectroscopy: Principle Engineering Series), Susan L. Dexl group, 2007) "Terahertz Sensing Technology: E Device Concepts "(Selected Topi Dwight L. Woolard, William R Scientific, 2003) "Millimeter and Submillimeter W Applied Physics) by George Grune vol.74, 1998) 	 ¹, Daniel Mittleman, ed. (Springer, 2004) ¹es and Applications" (Optical Science and heimer, ed. (CRC Press, Taylor and Francis ²Emerging Scientific Applications & Novel cs in Electronics and Systems, Vol. 32), ²8. Loerop, Michael Shur (Eds), (World ³10 Wave Spectroscopy of Solids" (Topics in for (Editor), (Springer, Topics in Appl. Phys, ⁴10 Kenneth J. Button (editor) (New York:
Homework:	Weekly assignments are due on Wednesdays in the class. Late homework is discounted at 50% for the first day, not accepted if more than a day late. Homework solutions will be available on CTools.	
Exams:	The midterm examination will be a written test on October 28th during class time. The examination is open-book, and you may use any notes, handouts, or materials from the class. The final examination is in the form of 15min students' presentations and a final paper, the topic should be selected from THz articles from different journals.	
Grading:	Midterm (October 28 th) Homework Final presentation	30% 30% 40%

Course Outline

This course will provide graduate students with an overview on the unique specifications of terahertz waves and potential applications as well as the state of the current terahertz systems and the major technological challenges in the field. The topics covered in this course are THz Detectors (single-photon detectors, microbolometers, Golay cells, Pyroelectric detectors, diode detectors, and focal-plane arrays), THz Sources (vacuum-electronics-based, semiconductor-based, photoconduction-based and nonlinearity-based), THz electronic components (waveguides, Metamaterials, filters and modulators), sensing with THz radiation (THz spectroscopy, imaging and tomography), and THz applications (biology, medicine, space sciences, pharmaceutical industry, security and communications).