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We present computationally efficient and accurate semiempirical models of light transfer suitable for
real-time diffuse reflectance spectroscopy. The models predict the diffuse reflectance of both (i) semi-
infinite homogeneous and (ii) two-layer media exposed to normal and collimated light. The two-layer
medium consisted of a plane-parallel slab of finite thickness over a semi-infinite layer with identical
index of refraction but different absorption and scattering properties. Themodel accounted for absorption
and anisotropic scattering, as well as for internal reflection at the medium/air interface. All media were
assumed to be nonemitting, strongly forward scattering, with indices of refraction between 1.00 and 1.44
and transport single-scattering albedos between 0.50 and 0.99. First, simple analytical expressions for
the diffuse reflectance of the semi-infinite and two-layer media considered were derived using the two-
flux approximation. Then, parameters appearing in the analytical expression previously derived were
instead fitted tomatch results frommore accurateMonte Carlo simulations. A single semiempirical para-
meter was sufficient to relate the diffuse reflectance to the radiative properties and thickness of the semi-
infinite and two-layer media. The present model can be used for a wide range of applications including
noninvasive diagnosis of biological tissue. © 2009 Optical Society of America

OCIS codes: 010.5620, 170.0170, 170.3660, 160.1190, 000.4430, 230.4170.

1. Introduction

Diffuse reflectance spectroscopy consists of deter-
mining the radiative properties of an absorbing
and scattering sample from diffuse reflectance mea-
surements. It has been applied to noninvasive
health-monitoring of in vivo biological tissues [1–7],
quality control in agricultural applications [8–12],
and remote terrestrial sensing [13–16], for example.
In many biological applications, the irradiated med-
ium can be modeled as a strongly scattering multi-
layer medium whose radiative properties are
constant within each layer but differ from layer to
layer. For example, the human cervix [17], colon
[18], and skin [19] have been modeled as two-layer

optical systems. Skin consists of an outer layer
called the epidermis and of an underlying layer
called the dermis. The epidermis is characterized
by strong absorption in the ultraviolet and visible
part of the spectrum due to melanin. On the other
hand, the blood and connective tissues are responsi-
ble for absorption and scattering in the dermis. In
addition, the absorption characteristics of blood de-
pend on the concentrations of oxyhemoglobin and
deoxyhemoglobin [20].

Light transfer through turbid media, such as bio-
logical tissues, is governed by the radiative transfer
equation (RTE). The latter expresses an energy bal-
ance in a unit solid angle dΩ, about the direction ŝ at
location r̂. The steady state RTE in a homogeneous,
absorbing, scattering, but nonemitting, medium is
expressed as [21,22]
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ŝ ·∇Iλðr̂; ŝÞ ¼ −μa;λIλðr̂; ŝÞ − μs;λIλðr̂; ŝÞ

þ μs;λ
4π

Z
4π
Iλðr̂; ŝiÞΦλðŝi; ŝÞdΩi; ð1Þ

where the spectral intensity at location r̂ and in di-
rection ŝ is denoted by Iλðr̂; ŝÞ and expressed in
W=cm2 · sr · nm. The linear spectral absorption and
scattering coefficients are denoted by μa;λ and μs;λ, re-
spectively, and are expressed in cm−1. The scattering
phase function denoted by Φλðŝ; ŝiÞ represents the
probability that radiation propagating into the ele-
mentary solid angle dΩi around direction ŝi will be
scattered in direction ŝ. The first and second terms
on the right-hand side of Eq. (1) represent the at-
tenuation of the radiation intensity due to absorption
and out-scattering, respectively. The last term corre-
sponds to the augmentation of radiation due to in-
scattering from all directions ŝi into direction ŝ.
The contribution of scattering to the overall extinc-
tion is represented by the single-scattering albedo
ωλ expressed as

ωλ ¼
μs;λ

μa;λ þ μs;λ
: ð2Þ

The Henyey–Greenstein scattering phase function
is an approximate expression that accounts for the
anisotropic nature of scattering and is given by [23]

Φλðŝi; ŝÞ ¼
1 − gλ

ð1þ g2λ − 2gλ cosΘÞ3=2 : ð3Þ

The Henyey–Greenstein asymmetry factor gλ is the
first moment of the scattering phase function and
is defined as [23]

gλ ¼
1
4π

Z
4π
Φλðŝi; ŝÞ cosΘdΩi: ð4Þ

It varies between �1 and 1. If scattering is isotropic,
then the phase function is constant and gλ equals
0. For gλ close to �1 and 1, scattering is strongly
backward or forward, respectively. The Henyey–
Greenstein phase function depends only on gλ
and has been used extensively in tissue optics
[4,24,25], computer animation [26,27], and astrono-
my [28,29], to name a few.
For the sake of clarity, the dependence of the radia-

tiveproperties onwavelengthwill beassumedand the
subscript “λ” omitted henceforth. Furthermore, all
analysis and results will be presented in terms of
the transport single-scattering albedo ωtr defined as

ωtr ¼
μs;tr

μs;tr þ μa
¼ μsð1 − gÞ

μsð1 − gÞ þ μa
: ð5Þ

Here, μs;tr ¼ μsð1 − gÞ is the transport scattering
coefficient that accounts for both the magnitude and
anisotropy of the scattering phenomenon [21]. For ex-
ample, in the case of complete forward scattering, i.e.,

g ¼ 1:00, scatteringhasno effect on thepropagation of
light through the medium and μs;tr ¼ 0:0 [21].

The objective of this study is to develop simple and
accurate expressions for the diffuse reflectance of
semi-infinite and two-layer absorbing and scattering
media. Such expressions could be combined with an
inverse method to retrieve the radiation properties
and thickness of these media based on spectral dif-
fuse reflectance measurements.

2. Background

Explicit analytical solutions of the RTE can be found
only for a limited range of geometries and for simpli-
fied scattering phase functions [21,30]. Approximate
or numerical solutions can be obtained based on the
two-flux approximation or Monte Carlo simulations,
for example.

A. Two-Flux Approximation

The one-dimensional (1D) RTE can be solved by the
well-known two-flux approximation [31,32] (also
called the Kubelka–Munk theory) in which the for-
ward and backward fluxes are defined as

FþðzÞ ¼ 2π
Zπ=2

0

Iðz; θÞ cos θ sin θdθ;

F−ðzÞ ¼ −2π
Zπ

π=2

Iðz; θÞ cos θ sin θdθ; ð6Þ

where z is the depth within the medium estimated
from the front surface and θ is the angle measured
from the inward normal (see Fig. 1). Then, the
RTE simplifies to a set of two coupled linear
equations [31,32]:

1
S
dFþ

dz
¼ −aFþ þ F−; ð7Þ

1
S
dF−

dz
¼ −Fþ þ aF−; ð8Þ

with a ¼ ðSþ KÞ=S, whereK and S are the Kubelka–
Munk (K-M) absorption and scattering coefficients,
respectively. They do not have any physical meaning
[33], but are related to the radiative properties μa
and μs;tr and depend on the scattering phase function.

Equations (7) and (8) have been solved for a variety
of slab geometries and boundary conditions.
Saunderson [34] used the two-flux approximation
to predict the diffuse reflectance, denoted by ~R−ðaÞ,
of a semi-infinite homogeneous medium exposed to
collimated and normally incident radiation with in-
dex mismatch at the air/medium interface as [34]

~R−ðaÞ ¼ ρ01 þ ð1 − ρ01Þð1 − ρ10Þ
~RdðaÞ

1 − ρ10 ~RdðaÞ
; ð9Þ
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where ~RdðaÞ ¼ a −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − 1

p
is the diffuse reflectance

of a semi-infinite medium exposed to diffuse irradia-
tion as predicted by the two-flux approximation.
Note that the first term ρ01 corresponds to the
specular reflection of incident radiation by the
surrounding/medium interface, while the second
term accounts for the backscattered radiation. The
specular reflectivity for normally incident radiation
denoted by ρ01 is defined as [21]

ρ01 ¼
�
n1 − n0

n1 þ n0

�
2
: ð10Þ

The hemispherical–hemispherical reflectivity ρ10 is
the fraction of radiation from within the medium re-
flected back into the medium due to index mismatch
[35] and assumed to be diffusely incident upon the
medium/air interface. It is given by [34–36]

ρ10 ¼
Zπ=2

0

ρ00ðθiÞ sin 2θidθi; ð11Þ

where ρ00ðθiÞ is the directional specular reflectivity of
the interface for angle of incidence θi expressed as
[21]

ρ00ðθiÞ ¼
8<
:

1
2

�
sin2ðθi−θtÞ
sin2ðθiþθtÞ þ

tan2ðθi−θtÞ
tan2ðθiþθtÞ

�
for θi � θc

1 for θi > θc
; ð12Þ

where θt is the angle of transmittance given by
Snell’s law (i.e., n0 sin θt ¼ n1 sin θi) and θc is the cri-
tical angle defined as θc ¼ sin−1ðn0=n1Þ [21].
Moreover, the diffuse reflectance of a two-layer

system composed of a plane-parallel slab (Layer 1)
of thickness L1 over a semi-infinite layer (Layer 2)
exposed to collimated and normally incident irradia-
tion has been derived as [34,35]

~R¼ða1;a2;Y1Þ ¼ ρ01 þ
ð1 − ρ01Þð1 − ρ10Þ½b1 ~Rdða2Þ þ ð1 − a1

~Rdða2ÞÞ tanhðY1Þ�
b1ð1 − ρ10 ~Rdða2ÞÞ þ ½a1ðρ10 ~Rdða2Þ þ 1Þ − ρ102 − ~Rdða2Þ� tanhðY1Þ

; ð13Þ

where aj ¼ ðSj þ KjÞ=Sj; bj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
j − 1

q
, where sub-

script “j” refers to medium 1 or 2; and the K-M optical
thickness is given by Y1 ¼ b1S1L1.
If the medium is isotropically scattering, then K ¼

2μa and S ¼ μs;tr [21,37]. However, when scattering is
anisotropic, K and S depend on ωtr. To find this re-

lationship, the following approximate phase function
can be used to reduce the RTE into a form that can be
solved analytically [21,22,30,38]:

Φλðŝi; ŝÞ ¼ ½4gδð1 − cosΘÞ þ ð1 − gÞ�: ð14Þ

It has the same zeroth and first moments as the
Henyey–Greenstein phase function [Eq. (3)], which
are equal to 1 and g, respectively. Van Gemert and
Star [22] showed that the expression of the diffuse
reflectance and transmittance found by solving the
1D RTE, assuming Eq. (14) has the same algebraic
form as the solution developed from the two-flux
approximation. Then, they developed the following
relationship between the K-M absorption and scat-
tering coefficients K and S on the one hand and μa
and μs;tr on the other:

μa ¼ ηK ; μs;tr ¼ χS; ð15Þ

where

η ¼ ðϕ − 1Þð1 − ωtrÞ=ζðϕþ 1Þ;
χ ¼ −ωtrðϕ − ϕ−1Þ=ð2ζÞ: ð16Þ

The parameter ϕ is given by [22]

ϕ ¼ ζ þ lnð1 − ζÞ
ζ − lnð1þ ζÞ ; ð17Þ

where ζ is the root of the characteristic equation [30]

ωtr ¼
2ζ

ln½ð1þ ζÞ=ð1 − ζÞ� : ð18Þ

To simplify the estimation of the diffuse reflectance,
we solved Eq. (18) numerically and fitted a third-
order polynomial to yield

ζ2 ¼ 47
52

þ 31
49

ωtr −
49
54

ω2
tr −

17
27

ω3
tr: ð19Þ

The relative difference between Eq. (19) and the
exact solution of Eq. (18) was found to be less than
1% for 0:40 < ωtr < 1:00. Finally, the K-M optical
thickness is given by

Y1 ¼ ζðμa þ μs;trÞL1 ¼ ζτtr;1; ð20Þ
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where τtr;1 ¼ ðμa þ μs;trÞL1 is the transport optical
thickness of a slab of thickness L1 [21].

B. Monte Carlo Methods

Alternatively, Monte Carlo methods are commonly
used to numerically solve the RTE [39–43]. To do
so, a stochastic model is constructed such that the ex-
pected value of a certain random variable is equiva-
lent to the value of a physical quantity that is
determined by the exact differential equation [44].
The expected value is estimated by sampling the ran-
dom variable multiple times. In effect, by repeating
the simulation, the variance of the estimate di-
minishes. Thus, the solution may be found with
arbitrary accuracy by increasing the number of simu-
lations, albeit at the cost of time [45].
Therefore, Monte Carlo simulations are difficult to

use in inverse methods associated with diffuse reflec-
tance spectroscopy [21]. Indeed, the forward problem
of evaluating the diffuse reflectance must be solved
numerous times to iteratively determine the med-
ium’s radiative properties. Instead, Gardner et al.
[41] developed a semiempirical model for 1D light
transfer through a semi-infinite medium exposed
to collimated incident radiation based on Monte
Carlo simulations. An analytical model of the fluence
profile in the medium was developed using the diffu-
sion approximation. The constants of integration, in-
stead of being determined analytically, were found by
fitting them to results fromMonte Carlo simulations.
The predictions of local fluence by the semiempirical
model compared well with results from Monte Carlo
simulations and could be rapidly estimated.
The objective of this study is to develop a semiem-

pirical model for the diffuse reflectance of a nonemit-
ting, absorbing, and strongly forward-scattering
medium consisting of two layers exposed to colli-
mated incident radiation. An approach similar to
that used by Gardner et al. [41], but based on the
two-flux approximation, is developed in this study.

3. Methods

A. Model Geometry and Radiative Properties

Figure 1 shows the 1D geometries investigated in
this study. First, a homogeneous semi-infinite slab
characterized by μa, μs, g, and n1 was considered. A
wide range of property values was explored, namely,
0:3 � ωtr � 0:99, 0:70 � g � 0:90, and n1 ¼ 1:00,
1.33, 1.44, 1.77, and 2.00.
Moreover, a two-layer medium was considered. It

consisted of a plane-parallel slab (Layer 1) character-
ized by μa;1, μs;tr;1, g1, n1, and thickness L1, supported
by a semi-infinite sublayer (Layer 2) characterized
by μa;2, μs;tr;2, and g2. The polar angle θ is taken rela-
tive to the inward surface normal. The physical dis-
tance from the surface is denoted by z and measured
in centimeters. The thickness of Layer 1, denoted by
L1, was considered between 0 and infinity. The inci-
dent light source was modeled as a collimated, mono-
chromatic, and normally incident beam of infinite

radius and intensity I0 ¼ q0δðθÞ. The quantity q0 de-
notes the radiative flux of the collimated beam and
δðθÞ is the Dirac delta function. The air/slab interface
and the interface between the slab and the semi-
infinite sublayer are assumed to be optically smooth.
Under these conditions, radiative transfer can be
considered as 1D [21,46]. Light scattering was as-
sumed to dominate over absorption in both layers
and to be strongly forward. The transport single-
scattering albedo of the slab ωtr;1 and of the sublayer
ωtr;2 varied between 0.50 and 0.99. The Henyey–
Greenstein asymmetry factors of the two layers, g1
and g2, varied between 0.70 and 0.90. These ranges
correspond, but are not limited to, biological tissues,
such as skin, muscle, and brain [4]. Finally, the index
of refraction was assumed to be identical
within the two layers but different from that of the
surroundings. The values of refractive index investi-
gated were n1 ¼ n2 ¼ 1:00, 1.33, and 1.44, corre-
sponding to vacuum, water in the visible [47], and
biological tissues in the visible and near-infrared
part of the electromagnetic spectrum [4,24]. The sur-
rounding was assumed to be air or vacuum, so
that n0 ¼ 1:00.

Fig. 1. Schematic of the semi-infinite and two-layer media con-
sidered along with coordinate system and boundary conditions.
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The RTE given in Eq. (1) was solved numerically
for both geometries after specifying the boundary
conditions and selecting the method of solution.

B. Boundary Conditions

Because of index mismatch, the collimated intensity
incident onto the air/slab interface is reflected and
refracted according to Fresnel’s equations and Snell’s
law, respectively. The flux transmitted through the
air/slab interface is ð1 − ρ01Þq0, while the reflected
flux is ρ01q0. In addition, light from within the slab
and incident onto the slab/air interface at an oblique
angle θi is specularly reflected with intensity
ρ00ðθiÞIð0; π − θiÞ. On the other hand, light backscat-
tered from within the medium that is incident on
the slab/air interface at an angle θi larger than the
critical angle undergoes total internal reflection, as
illustrated in Fig. 1. Therefore, the boundary condi-
tions of the RTE at the slab/air interface (z ¼ 0) can
be expressed as [21]

Ið0; θÞ ¼ ð1 − ρ01Þq0δðθÞ þ ρ00ðθÞIð0; π − θÞ
for 0 � θ � π=2:

ð21Þ

Furthermore, the intensity vanishes as z tends to
infinity, i.e.,

Iðz → ∞; θÞ ¼ 0 for − π � θ � π: ð22Þ

Note that no reflection or refraction takes place at
the slab/sublayer interface since they have the same
index of refraction. Thus, no boundary conditions
need be imposed.

C. Method of Solution

The RTE was solved using the Monte Carlo simula-
tion software developed byWang and Jacques [48] for
simulating light transfer through multilayer none-
mitting, absorbing, and scattering media. The
Henyey–Greenstein scattering phase function, given
by Eq. (3), was used to account for anisotropic scat-
tering. A complete and detailed description of the im-
plementation and theoretical underpinnings of this
software is given in Ref. [48]. The variance in the pre-
diction of the diffuse reflectance increases with de-
creasing single-scattering albedo since absorption
by the medium dominated over scattering, resulting
in fewer backscattered photons. Thus, the number of
simulated photon packets per simulation was in-
creased until the variance associated with the esti-
mate of the diffuse reflectance fell below 1% for
the most stringent case of a homogeneous medium
with ωtr ¼ 0:50. Each simulation required
1,000,000 photon packets or less to achieve the con-
vergence criteria.

D. Diffuse Reflectance

The total intensity of the light reflected from semi-
infinite or two-layer media is the sum of the
specularly reflected intensity and the intensity back-
scatteredby themediumand transmitted through the

slab/air interface. In practice, this quantity can be
measured in vivo by a variety of optical instruments,
suchasan integrating sphere coupled toadetector [4].
It is denoted by IrðθtÞ and expressed as

IrðθtÞ ¼ ρ01q0δðπ − θtÞ þ ½1 − ρ00ðθiÞ�Ið0; π − θiÞ
for 0 � θi � π=2;

ð23Þ

where θi is given by Snell’s law. The specularly re-
flected intensity ρ01q0δðπ − θtÞ was ignored in this
study. In practice, this is achieved by illuminating
the medium with polarized light [49]. The specularly
reflected intensity remains polarized and can be fil-
tered by a linear polarizer before reaching the detec-
tor [49]. The backscattered light is depolarized due to
multiple scattering in the medium and passes unat-
tenuated through the polarizer filter to reach the
detector. Thus, the diffuse reflectance R is defined
as the ratio of the backscattered radiative flux qr to
the incident radiative flux, q0, i.e., R ¼ qr=q0, where
qr is expressed as

qr ¼ −2π
Zπ

π=2

½1 − ρ00ðθtÞ�Ið0; π − θtÞ cos θt sin θtdθt: ð24Þ

The goal of the study is to develop an expression to
rapidly predict the diffuse reflectance of a two-layer
medium as a function of its radiative and geometrical
properties, namely, n1 ¼ n2, L1, μa;1, μs;1, μa;2, μs;2, g1,
and g2. As an intermediate step, an expression for the
reflectance of a semi-infinite medium is developed.

4. Analysis

A. Semiempirical Diffuse Reflectance of Semi-Infinite
Media

This section aims to determine the relationship be-
tween the diffuse reflectance R− from a semi-infinite
layer and its transport single-scattering albedo ωtr
with higher accuracy than the original two-flux ap-
proximation. Prediction accuracy was calculated re-
lative to results from Monte Carlo simulations.
Figure 2 shows the diffuse reflectance R− as a func-
tion of ωtr for n1 ¼ 1:00 for different values of g, along
with the predictions from the two-flux approximation
given by Eq. (9) and values of a obtained from
Eqs. (15)–(17) and (19). It is evident that the diffuse
reflectance R− increases with ωtr as scattering dom-
inates over absorption and more light is backscat-
tered by the medium. Furthermore, the diffuse
reflectance is almost completely determined by ωtr
and is nearly independent of the Henyey–Greenstein
asymmetry factor g in the range of interest. This is
known as the similarity relation [38].

Moreover, the reflectance predicted by the two-flux
approximation follows a similar trend as that pre-
dicted by Monte Carlo simulations (Fig. 2). However,
the relative difference varies from 100% to 5% as ωtr
increases from 0.3 to 1.0 for all values of g considered.
This can be attributed to the fact that Eq. (11), used
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to determine ρ10, was derived with the assumption
that intensity at the medium/air interface was dif-
fuse [34,35]. It has been shown that this is not the
case [50]. Thus, unlike Monte Carlo simulations,
ρ10 used in the two-flux approximation does not ac-
curately account for the optical phenomena at the
medium/air interface.
Consequently, Eq. (9), predicting the reflectance of

a semi-infinite medium, was replaced by the follow-
ing semiempirical expression:

R−ðωtrÞ ¼ ½1 − ρ01�½1 − ρ̂10ðωtrÞ�
R̂dðωtrÞ

1 − ρ̂10ðωtrÞR̂dðωtrÞ
;

ð25Þ

where ρ01 is given by Eq. (10). To account for the fact
that intensity Iðz ¼ 0;−1 � μ � 0Þ inside the medium
is not diffuse, the reflectivity ρ10 and the reflectance
~Rd in Eq. (9) were replaced by ρ̂10 and R̂d, respec-
tively, which are assumed to be polynomial functions
of aðωtrÞ:

ρ̂10ðωtrÞ ¼ ρ10 þ
Xi¼N

i¼0

Ai½aðωtrÞ�i; ð26Þ

R̂dðωtrÞ ¼ ~RdðaðωtrÞÞ þ
Xi¼N

i¼0

Bi½aðωtrÞ�i; ð27Þ

where ðAiÞ0�i�N and ðBiÞ0�i�N are regression coeffi-
cients and N is the polynomial order. These para-
meters were found by minimizing the sum of the
squared residuals between the reflectance R− ob-
tained by Monte Carlo simulations and that pre-
dicted by Eqs. (25)–(27). Numerical results were
found for n1 ¼ 1:00, 1.33, 1.44, 1.77, and 2.00. The
polynomial order N was increased until the residual
between the diffuse reflectance determined byMonte
Carlo simulations and Eq. (25) was small and ran-
dom. This condition was met with N ¼ 3. More pre-
cisely, for 0:70 � g � 0:90, the residual was less than
(i) 10% for ωtr ≥ 0:40, (ii) 5% for ωtr ≥ 0:50, and (iii) 2%
for ωtr ≥ 0:70.
Figure 3 shows the diffuse reflectance from a semi-

infinite medium as a function of its transport single-
scattering albedo ωtr for different values of n1 and g.
Predictions by Eqs. (25)–(27) are also plotted for the
regression coefficients ðAiÞ0�i�3 and ðBiÞ0�i�3 as re-
ported in Table 1. The similarity relationship pre-
viously observed for the case of n1 ¼ 1:00 (Fig. 2)
was also valid for other values of n1. Thus, the diffuse
reflectance of a semi-infinite medium R− is only a
function of (i) the index of refraction n1 and (ii) the
transport single-scattering albedo ωtr.

B. Diffuse Reflectance of Two-Layer Media—Two-Flux
Approximation

Figure 4(a) shows the diffuse reflectance of the two-
layer medium ~R¼ða1;a2;Y1Þ predicted by Eq. (13)
as a function of the K-M optical thickness Y1 for nine

pairs of parameters a1 and a2 varying between 1 and
6, while ρ01 ¼ 0:033 and ρ10 ¼ 0:56. These values cor-
respond to ωtr;1 and ωtr;2 varying between 0.50 and
1.00,n0 ¼ 1:00, andn1 ¼ n2 ¼ 1:44. Figure 4(a) shows
that the diffuse reflectance of the two-layer medium
progresses from ~R−ða2Þ to ~R−ða1Þ asY1 increases from
10−3 to 6. Indeed, there are two asymptotic cases:

~R¼ða1;a2;Y1Þ →

Y1→0
~R−ða2Þ;

~R¼ða1;a2;Y1Þ →

Y1→∞

~R−ða1Þ;
ð28Þ

where ~R−ðaÞ is given by Eq. (9) and shown in Fig. 4(a).
In other words, the two-layer medium behaves as a
semi-infinite medium as the top layer becomes either

Fig. 3. Diffuse reflectanceofa semi-infinitehomogeneousmedium
predicted by Monte Carlo simulations and Eqs. (25) for n1 ¼ 1:00,
1.33, 1.44, 1.77, and 2.00, 0:3 � ωtr � 1:0, and 0:7 � g � 0:9.

Fig. 2. Diffuse reflectance of a homogeneous semi-infinite med-
ium predicted by Monte Carlo simulations (symbols) and the
two-flux approximation [Eqs. (9) and (19)] (dashed curve) for
n1 ¼ 1:00, 0:3 � ωtr � 1:00, and 0:70 � g � 0:90.
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optically thin or thick. This behavior suggests the
definition of a reduced reflectance as

~R� ¼
~R¼ða1;a2;Y1Þ − ~R−ða2Þ

~R−ða1Þ − ~R−ða2Þ
; ð29Þ

where ~R� increases from 0 to 1 as Y1 varies from 0 to
infinity. After combining Eqs. (13) and (29), the re-
duced reflectance can be expressed as a function of
two dimensionless parameters, ~α and Y1,

~R�ð~α;Y1Þ ¼
tanhðY1Þ

1=~αþ ð1 − 1=~αÞ tanhðY1Þ
; ð30Þ

where ~α is given by

~α ¼ 1þ ρ10 þ ~Rdða2Þa1½ρ10 ~Rdða2Þ þ 1�ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
1 − 1

q
½ρ10 ~Rdða2Þ − 1�

: ð31Þ

Figure 4(b) shows ~R� as a function of Y1 for the same
values of a1 and a2 used to produce Fig. 4(a). Unlike
~R¼ shown in Fig. 4(a), ~R� is nearly independent of a1
and a2. Furthermore, ~α was found to be nearly con-
stant and equal to 2.0 for a1 and a2 between 1.0
and 6.0, or for ωtr;1 and ωtr;2 between 0.50 and 0.99.
Similar results were obtained for other values of n1 ¼
n2 between 1.00 and 2.00.

C. Diffuse Reflectance of a Two-Layer System—
Semiempirical Expression

A semiempirical approach similar to that presented
in Subsection 4.A for a semi-infinite medium was ap-
plied to the two-layer medium described in Fig. 1 to
improve the accuracy of the two-flux approximation
in predicting the diffuse reflectance of two-layermed-
ia. Results from Monte Carlo simulations presented
in this section correspond to the case where g1 ¼ g2.
However, similar results hold for a given pair of ωtr;1
and ωtr;2 when g1 and g2 are different, and regardless
of their values between 0.7 and 0.9. This will be
shown numerically in Subsection 5.A.
Figures 5(a) and 5(c) show the diffuse reflectance

R¼ of a two-layer system determined by Monte Carlo
simulations as a function of Y1 for ωtr;2 ¼ 0:479 and
ωtr;2 ¼ 0:958, with g1 ¼ g2 ¼ 0:77, n1 ¼ n2 ¼ 1:44,

and ωtr;1 ranging between 0.50 and 0.99. The asymp-

Fig. 4. (a) Diffuse reflectance of two-layer optical medium
~R¼ða1;a2;Y1Þ as a function of Y1 predicted by Eq. (13). Asymptotic
values ofR−ðaÞwere computed from Eq. (9). (b) Reduced diffuse re-
flectance ~R� given by Eq. (29) as a function ofY1 for different values
of a1 and a2; ρ01 ¼ 0:033 and ρ10 ¼ 0:56. The legend applies to both
figures.

Table 1. Regression Coefficients ðAi Þ0�i�3 and ðBi Þ0�i�3 Used in Eqs. (26) and (27) to Estimate the Diffuse Reflectance R− of a Semi-Infinite
Homogeneous Medium with Index of Refraction n1 ¼ 1:33, 1.44, 1.77, and 2.00

n1 i ¼ 0 1 2 3

1.00 Ai ¼ 0 0 0 0
Bi ¼ −6:387 × 10−2 −1:282 × 10−2 5:701 × 10−3 −4:503 × 10−4

1.33 Ai ¼ −6:738 × 10−1 1.767 −1:554 5:855 × 10−1

Bi ¼ −9:898 × 10−2 6:117 × 10−3 3:774 × 10−1 −6:291 × 10−1

1.44 Ai ¼ −6:696 × 10−1 1.853 −1:732 6:791 × 10−1

Bi ¼ −1:189 × 10−1 7:524 × 10−3 5:606 × 10−1 −9:807 × 10−1

1.77 Ai ¼ −6:322 × 10−1 1.716 −1:625 6:574 × 10−1

Bi ¼ −1:192 × 10−1 7:863 × 10−3 7:001 × 10−1 −1:254
2.00 Ai ¼ −4:688 × 10−1 1.234 −1:139 4:544 × 10−1

Bi ¼ −8:223 × 10−2 5:441 × 10−3 6:325 × 10−1 −1:123
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totic values for smaller and larger values of Y1 were
calculated using Eqs. (25)–(27). The slope of R¼ðY1Þ
was found to be positive for ωtr;1 > ωtr;2 and negative
otherwise. Furthermore, the slope of R¼ðY1Þ with re-
spect to Y1 increases as the difference between ωtr;1
and ωtr;2 increases.
Here,also,areducedreflectanceR� canbedefinedby

analogy with ~R� given by Eq. (29):

R� ¼ R¼ −R−ðωtr;2Þ
R−ðωtr;1Þ − R−ðωtr;2Þ

: ð32Þ

Note that thepredictions of the single-layerdiffuse re-
flectance by the two-flux approximation ~R−ða1Þ and
~R−ða2Þ are replaced by the more accurate R−ðωtr;1Þ
and R−ðωtr;2Þ predicted by Eq. (25). Figures 5(b) and
5(d) show the reduced reflectance R� as a function of
Y1 for the same parameters used to produce
Figs. 5(a) and 5(c), respectively. It establishes that

R� collapses onto a single curve for ωtr;1 ranging be-
tween 0.50 and 0.99. In fact, no value of R� deviates
fromthemeanvalueofR�bymorethan10%forallωtr;1.

The evolution ofR� differs significantly from ~R� pre-
dicted by the two-flux approximation and given by
Eqs. (30) and (31). However, Eq. (30) can be used if
the parameter ~α is replaced by an empirical para-
meter α, i.e.,

R� ¼ tanhðY1Þ
1=αþ ð1 − 1=αÞ tanhðY1Þ

; ð33Þ

where α was found by least-squares fitting of Monte
Carlo simulations forR�. A single value of αwas suffi-
cient to fit the results from Monte Carlo simulations
for given values of n1 and ωtr;2 and different values of
ωtr;1 and g, i.e., α ¼ αðn1;ωtr;2Þ. Predictions of the re-
duced reflectance R� as a function of Y1 by Eq. (33)
using α ¼ 1:104 are in close agreement with the more

Fig. 5. Diffuse reflectance R¼ predicted by Monte Carlo simulations as a function of Y1 and corresponding reduced reflectance R�

[Eq. (32)] for n1 ¼ 1:44 and (a), (b) ωtr;2 ¼ 0:479 and (c), (d) ωtr;2 ¼ 0:958. Predictions ofR¼ by Eqs. (33) and (34) are also shown (solid curve).
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accurate Monte Carlo simulations. Thus, the diffuse
reflectance of a two-layermedium canbe expressed as

R¼ ¼ R�½R−ðn1;ωtr;1Þ − R−ðn1;ωtr;2Þ� þ R−ðn1;ωtr;2Þ;
ð34Þ

where R− and R� are given by Eqs. (25) and (33), re-
spectively. The reconstruction of the diffuse reflec-
tance R¼ from Eq. (34) agrees well with predictions
from Monte Carlo simulations. The primary source
of disagreement lies in the 2% to 5% relative error
in R−ðωtr;1Þ and R−ðωtr;2Þ between Monte Carlo simu-
lations and predictions by Eqs. (25)–(27) for ωtr �
0:70. For example, in Fig. 5(a), for ωtr;1 ¼ 0:479, the
reduced diffuse reflectance predicted by Eq. (33) devi-
ates from Monte Carlo simulations by up to 6%. On
the other hand, for ωtr;1 ¼ 0:958, the predictions do
not deviate by more than 2%.
The above analysis was repeated for 0:50 �

ωtr;1 � 0:99, 0:70 � g1 ¼ g2 � 0:90, and 0:50 � ωtr;2 �
0:99 for different values of n1 ¼ n2. Figure 6(a) shows
the parameter 1=α found for n1 ¼ 1:44 and 0:70 �
g1 ¼ g2 � 0:90 as a function of ωtr;2. It is apparent
that 1=α varies slightly with g1 ¼ g2 and ωtr;1 for a
given ωtr;2. Figure 6(b) shows 1=α as a function of
ωtr;2 for n1 ¼ 1:00, 1.33, and 1.44, and 0:70 �
g1 ¼ g2 � 0:90. Also shown are the following approx-
imate polynomial expressions for 1=α given by

1=α ¼ Cðn1Þω2
tr;2 þDðn1Þωtr;2 þ Eðn1Þ; ð35Þ

where C, D, and E depend on n1 and are given in
Table 2 for n1 ¼ 1:00, 1.33, and 1.44.
Unlike a polynomial or other series expansion, ex-

pressingR� by Eq. (33) is well behaved in and outside
thepertinent rangeofY1. It is attractive, also, because
it can be estimated using the single semiempirical
parameter α. In other words, the diffuse reflectance
of a two-layer medium, which, a priori, depends on
eight parameters (μa;1, μs;1, L1, μa;2, μs;2, g1, g2, and
n1 ¼ n2)was reduced toa functionof only threedimen-
sionless parameters, namely, Y1, ωtr;1, and α. The
parameter αðn1;ωtr;2Þ provides intuitive insight into
the effects of the top layer on the diffuse reflectance
of the two-layermedium.DifferentiatingEq. (33)with
respect to Y1 and setting Y1 ¼ 0 yields α, i.e.,

∂R�

∂Y1
ðY1 ¼ 0;ωtr;1;ωtr;2Þ ¼ α:

Inotherwords,α isameasureofhoweffectively the top
layer optically “shields” the semi-infinite layer. For
larger α, R¼ quickly progresses from R−ðωtr;1Þ and
R−ðωtr;2Þ.
For a given ωtr;2, 1=α varies with g1 ¼ g2 up to 7%

about the quadratic fits. However, the reduced dif-
fuse reflectance R� was found to be relatively insen-
sitive to these variations. In fact, for the index
matched case (n1 ¼ n0), 1=α can be treated as a con-
stant equal to 1=α ¼ 0:656. This increases the rela-

tive error in the prediction of R¼ by Eq. (34), but
never by more than 0.1%.

5. Results and Discussion

A. Comparison of Model Predictions with Monte Carlo
Simulations

The accuracy of Eqs. (33)–(35) with values of C, D,
and E from Table 2 was assessed numerically for
10−2 � Y1 � 6, 0:50 � ωtr;1 � 0:99, and 0:50 � ωtr;2 �
0:99, 0:70 � g1 � 0:90, 0:70 � g2 � 0:90, and

Fig. 6. (a) Relationship betweenωtr;2 and 1=α determined for n1 ¼
n2 ¼ 1:44 and 0:70 � g1 ¼ g2 � 0:90. (b) Relationship betweenωtr;2

and 1=α [Eq. (35) and Table 2] for n1 ¼ n2 ¼ 1:00, 1.33, and 1.44,
and 0:70 � g1 ¼ g2 � 0:90.

Table 2. Regression Coefficients in the Expression of 1=α
Given by Eq. (35)

n1 C D E

1.00 0.529 −0:759 0.831
1.33 −0:324 −0:016 0.874
1.44 −0:569 −0:055 0.993
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n1 ¼ 1:00, 1.33 and 1.44, for values different from
those used to generate the semiempirical model.
For Y1 outside of the said range, the two-layer model
[Eqs. (25), (33), and (35)] can be replaced by the
single-layer model [Eq. (25)]. For comparison, an
additional 10,000 Monte Carlo simulations of light
transfer through the two-layer medium were
performed.
Figure 7(a) illustrates the relative error between

predictions by Eq. (34) and results from Monte Carlo
simulations as a function of the diffuse reflectance
R¼ for n1 ¼ 1:44, ωtr;1 ≥ 0:50, ωtr;2 ≥ 0:50, and
Y1 ≥ 0. Similar results were obtained for different va-
lues of n1. The relative error ranged from −15% to
17%. It is evident that, as the absolute value of R¼
decreases, the maximum relative error increases.
Figure 7(b) shows the frequency of the relative error
for n1 ¼ 1:00, 1.33, and 1.44. It is established that the
relative error is similar for each index of refraction

and is less than 20%. Quantitatively, the mean
and standard deviation of the relative error averaged
over all n1 are −0:16 and 1.72%, respectively. While
the method performs well on average, the relative er-
ror can be larger than 10%. This is caused by two fac-
tors: (i) the inaccuracy of 1=α [Eq. (35)] in describing
the two-layer system and (ii) the inaccuracy of
Eq. (25) in predicting R−ðωtrÞ. It was determined that
the effects of the latter dominate over the former and
that larger relative error occurs for small ωtr;1 and
ωtr;2. The accuracy of Eq. (25) in predicting R−ðωtrÞ
decreases for decreasing ωtr. This, in turn, increases
the relative error in Eq. (34) since R¼ is a function of
R−. In fact, the maximum relative error of R¼ pre-
dicted by Eq. (34) compared with Monte Carlo simu-
lations was less than (i) 17% for 0:50 < ωtr;1 and
0:50 < ωtr;2, (ii) 10% for 0:60 < ωtr;1 and ωtr;2 ≥ 0:60,
(iii) 4.5% for ωtr;1 and ωtr;2 ≥ 0:75, and (iv) 1.5% for
ωtr;1 and ωtr;2 ≥ 0:85.

B. Reflectance of Human Skin

This section focuses on diffuse reflectance spectro-
scopy of human skin as a way to demonstrate the
usefulness and accuracy of the developed model.
Optical properties of skin reported in the literature
are summarized before predicting the spectral dif-
fuse reflectance between 490 and 650nm. For these
wavelengths, the epidermis and the dermis have
large and significantly different absorption coeffi-
cients, so that human skin behaves optically as a
two-layer medium. In contrast, the epidermis is es-
sentially transparent in the near-infrared and the
scattering albedo approaches unity [51]. Then, the
present semiempirical model is no longer valid.

The optical properties of the human skin in the
visible range depend on various biological factors
and can be found in the literature [4]. The epidermis
is composed mainly of dead cells, keratinocytes,
melanocytes, and langerhans [40]. Melanocytes
synthesize melanin, the skin protein that dominates
light absorption in the epidermis (Layer 1). The
absorption coefficient of the epidermis μa;1ðλÞ can
be expressed as [52]

μa;1ðλÞ ¼ μa;melf mel þ ð1 − f melÞμa;back; ð36Þ

where f mel is the volume fraction of melanocytes in
the epidermis and μa;backðλÞ is the background ab-
sorption of human flesh given by [52,53]

μa;backðλÞ ¼ 7:84 × 108λ−3:255: ð37Þ

Furthermore, the absorption coefficient of a single
melanocyte as a function of wavelength has been ap-
proximated as [54]

μa;melðλÞ ¼ 6:60 × 1011λ−3:33: ð38Þ

Here λ is expressed in nanometers and μa;backðλÞ and
μa;melðλÞ are in cm−1.

Fig. 7. (a) Relative error between predictions by Eq. (34) and
Monte Carlo simulations for n1 ¼ n2 ¼ 1:44. (b) Histogram of
the relative error for 10,000 simulations for n1 ¼ n2 ¼ 1:00,
1.33, and 1.44.
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The absorption coefficient of the dermis (Layer 2)
is determined primarily by the absorption of blood
[55,56] and can be written as [51,57]

μa;2ðλÞ ¼ f bloodμa;bloodðλÞ þ ð1 − f bloodÞμa;backðλÞ; ð39Þ

where f blood is the volume fraction of the dermis oc-
cupied by blood. Visible light absorption by blood is
dominated by the presence of oxyhemoglobin and
deoxyhemoglobin so that μa;blood ¼ μa;oxy þ μa;deoxy.
The absorption coefficient of oxyhemoglobin is given
by [51,57]

μa;oxyðλÞ ¼ ϵoxyðλÞChemeSO2=66; 500; ð40Þ

where ϵoxy is the molar extinction coefficient of oxy-
hemoglobin [in cm−1=ðmole=literÞ] with molecular
weight of 66; 500 g=mol,Cheme is the concentration ra-
tio of hemoglobin in blood [gram=liter], and SO2 is
the oxygen saturation defined as the mass ratio of
oxyhemoglobin to total hemoglobin (0 � SO2 �
100%) [20]. Similarly, the absorption coefficient of
deoxy-hemoglobin is given by [51,57]

μa;deoxyðλÞ ¼ ϵdeoxyðλÞChemeð1 − SO2Þ=66; 500; ð41Þ

where ϵdeoxy is the molar extinction coefficient of
deoxyhemoglobin. Unlike the blood volume f blood
and oxygen saturation SO2, which may vary from lo-
cation to location and with metabolic state, the aver-
age value of Cheme ¼ 150 g=liter is typically used
[51,58,59]. Furthermore, the molar extinction coeffi-
cients of oxyhemoglobin and deoxyhemoglobin for a
wide range of wavelengths are available in the litera-
ture [51,60–63] and are reproduced in Fig. 8 in the
visible range from 450 to 700nm.

The transport scattering coefficient of biological
media has been shown to follow a power law depen-
dence on wavelength [64]:

μs;tr ¼ Ctrλk; ð42Þ

where λ is expressed in nanometers and μs;tr in cm−1.
For both epidermis and dermis, the values of Ctr and
k were taken as 5:50 × 105 cm−1 and −1:30, respec-
tively [65]. The thickness of the epidermis on the
hand and arm ranges between 50 and 130 μm [66].
The blood volume fraction and melanocyte volume
fraction range from 0.2% to 7% and from 1% to
43%, respectively [52]. In this simulation, the epider-
mal thickness was taken as L1 ¼ 100 μm. The epider-
mis and dermis were assumed to have the same
index of refraction equal to 1.44 [24]. The blood vo-
lume and melanin concentrations were taken as
f blood ¼ 2:5% and f mel ¼ 1:0%, which are typical of
healthy, lightly pigmented human skin [52].

Figure 9 shows the diffuse reflectance of human
skin for SO2 ¼ 0 and 100% as predicted by Monte
Carlo simulations and Eqs. (33)–(35) as a function
of wavelength. For high values of SO2, i.e., for highly
oxygenated blood, the skin exhibits the absorption
peaks of oxyhemoglobin around 542 and 580nm.
For low SO2, or oxygen-depleted blood, the skin exhi-
bits the single absorption peak of deoxy-hemoglobin
near 560nm. In both cases, the semiempirical model
developed in this study agrees with Monte Carlo si-
mulations within less than 8% relative error. The re-
lative error is less than 3% for wavelengths between
525 and 600nm, where absorption by oxyhemoglobin
and deoxyhemoglobin is most distinct. Thus, the
model can be used in diffuse reflectance spectroscopy
for monitoring oxygenation and microcirculation of
skin and wounds.

Figure10shows invivodiffuse reflectancemeasure-
ments from the top of the index finger of a healthy,

Fig. 8. Spectral molar extinction coefficient of human oxyhemo-
globin and deoxyhemoglobin in the visible range (480 to 700nm)
[51].

Fig. 9. Comparisons of diffuse reflectance of skin predicted by
Monte Carlo simulations and by Eq. (34) as a function of wave-
length for f mel ¼ 1:0%, f blood ¼ 2:5%, L1 ¼ 100 μm, and SO2 ¼ 0
and 100%.
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Caucasian male subject, along with a reconstruction
of the samereflectance spectrumby thepresentmodel
[Eqs. (33)–(35) and Eqs. (36)–(42)]. The reflectance
spectrum was measured using a FDA approved
hyperspectral camera (OxyVu, HyperMed Inc.,
Burlington, Massachusetts). The reconstruction was
performed by minimizing the root mean square error
between the observed and reconstructed diffuse re-
flectance while varying f mel, f blood, SO2, and L1. The
Levenberg–Marquardt algorithm [67] was used to
perform the nonlinear fit. The best-fit parameters
found were f mel ¼ 1:03%, f blood ¼ 2:79%, and SO2 ¼
29:0% and L1 ¼ 66 μm. The SO2 value predicted by
the present method is in close agreement with the
measurement obtained with OxyVu (28%) [20].
Furthermore, the retrieved value of f mel was consis-
tentwith that of Caucasian skin [52] and the estimate
of f blood and L1 fell within the range of physiologically
realistic values [52,66].Detailed discussion of the cap-
ability and robustness of the inversemethodusing the
semiempirical model developed in this paper and ap-
plication to hyperspectral imaging of human skinwill
be reported in a subsequent publication.

6. Conclusion

A model of diffuse reflectance was developed for
nonemitting, absorbing, and scattering semi-infinite
and two-layer media. Scattering was assumed to be
strongly forward and to dominate over absorption.
First, the two-flux approximation was used to find
an approximate expression for the diffuse reflectance
of a semi-infinite medium. Then, the coefficients of
the expression were modified with numerical data
from Monte Carlo simulations, resulting in a semi-
empirical model. Predictions from the semiempirical
model agree with results from Monte Carlo simula-
tions within 10% for ωtr > 0:50. This relative error
decreases to less than 2% for ωtr > 0:70.

Similarly, an approximate reflectance ~R¼ and re-
duced reflectance ~R� were derived from the two-flux
approximation of a two-layer medium. It was shown
that ~R� is a function of the two-flux optical thickness
Y1 and parameter ~α. To account for phenomena tak-
ing place at the medium/air interface, ~α was replaced
by an empirical parameter α, which was fitted to
match results from Monte Carlo simulations. There-
fore, the reflectance of the two-layermedium could be
expressed as a function of a single empirical para-
meter. The diffuse reflectance predicted by the semi-
empirical model fell within 10% of results from
Monte Carlo simulations for 0:60 < ωtr;1 and 0:60 <
ωtr;2 and the different values of n1 and τ1 considered
in this study.

Finally, the semiempirical model for two-layer
media was applied to lightly pigmented human skin
with properties taken from the literature. The model
developed in this study agrees with Monte Carlo si-
mulations within 3% relative error for wavelengths
between 480 and 650nm.

Appendix A: Nomenclature

a,b K-M dimensionless parameters
Ai,Bi Single-layer model fit coefficients
C,D,E Two-layer fit coefficients
Ctr Scattering constant in Eq. (42)

F−,Fþ Diffuse backward and forward fluxes, W=cm2 · nm
g Henyey–Greenstein asymmetry factor
I Radiation intensity, W=cm2 · sr · nm
I0 Incident radiation intensity at the slab surface, W=cm2 · sr ·

nm
Ir Intensity of reflected light, W=cm2 · sr · nm
k Scattering constant in Eq. (42)
K K-M effective absorption coefficient, 1=cm
L1 Thickness of slab layer, cm
n0 Index of refraction of the surroundings
n1;2 Index of refraction of Layers 1 and 2
N Polynomial order
q0 Radiative flux of incident beam, W=cm2 · nm
qr Backscattered radiative flux, W=cm2 · nm
r̂ Position vector, cm
R Diffuse reflectance
R� Reduced reflectance
ŝ Unit vector in a given direction
S K-M effective scattering coefficient, 1=cm

SO2 Oxygen saturation, %
Y K-M optical thickness
z Distance into the medium surface, cm

Greek symbols
α Empirical fit coefficient of the two-layer reflectance model
β Total extinction coefficient, 1=cm
η,χ Parameters defined by Eq. (15)
θ Polar angle, rad
θi Angle of incidence on interface, rad
θt Angle of transmitted radiation through interface, rad
θc Critical angle for total internal reflection, rad
ϕ Parameter defined by Eq. (17)
Φ Scattering phase function, sr−1

μ Director cosine, μ ¼ cos θ
μa Linear absorption coefficient, 1=cm
μs Linear scattering coefficient, 1=cm
μs;tr Transport scattering coefficient [¼ μsð1 − gÞ], 1=cm
ω Single-scattering albedo

Fig. 10. Experimentally measured diffuse reflectance from the
top of the index finger of a healthy, Caucasian subject along with
reconstructed reflectance predicted byEqs. (33)–(35) andEqs. (36)–
(42) with best-fit parameters f mel ¼ 1:03%, f blood ¼ 2:79%, SO2 ¼
29:0% and L1 ¼ 66 μm.
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ωtr Transport single-scattering albedo
Ω Solid angle, sr
ρ01 Specular reflectivity to normally incident light
ρ10 Hemispherical–hemispherical reflectivity

ρ00ðθiÞ Directional specular reflectivity
τtr;1 Transport optical thickness of the slab layer

Subscripts
1 Refers to layer 1
2 Refers to layer 2
λ Wavelength
¼ Refers to two-layer medium
− Refers to semi-infinite medium

back Background
deoxy Deoxyhemoglobin
d Hemispherical–hemispherical reflectance with index

matched boundary
oxy Oxyhemoglobin
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