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We present computationally efficient and accurate semiempirical models of light transfer for real-time
analysis of multilayer fluorescing media exposed to normally incident excitation light. The model ac-
counts for absorption and strong forward scattering as well as for internal reflection at the interface
between the medium and the surrounding air. The absorption and scattering coefficients are assumed
to be constant with depth; the fluorophore concentration is considered piecewise constant. The refractive
index ranges from 1.0 to 2.0, and the transport single scattering albedo between 0.50 and 0.99. First,
simple analytical expressions for local excitation fluence rate within the medium and surface fluores-
cence intensity emerging from its surface were derived from the two-flux approximation. Then, para-
meters appearing in the analytical expression previously derived were fitted to match results from
more accurate Monte Carlo simulations. A single semiempirical parameter was sufficient to relate
the diffuse reflectance of the medium at the excitation wavelength to the local excitation fluence rate
within the medium and to the surface fluorescence emission intensity. The model predictions were com-
pared with Monte Carlo simulations for local fluence rate and total surface fluorescence emission from (i)
homogeneous semi-infinite fluorescing media, (ii) media with a semi-infinite fluorescing layer beneath a
nonfluorescing layer, and (iii) media with a finite fluorescing layer embedded in a nonfluorescing semi-
infinite layer. The model predictions of the local excitation fluence rate and of the total surface fluores-
cence emission fell to within 5% of predictions by Monte Carlo simulations for single scattering
albedo greater than 0.90. The current model can be used for a wide range of applications, including
noninvasive diagnosis of biological tissue. © 2010 Optical Society of America
OCIS codes: 000.4430, 010.5620, 170.6280, 230.4170, 170.6510, 110.7050.

1. Introduction

Fluorescence is the physical phenomenon in which
light is emitted by a substance as a result of excited
electrons returning to their ground states after the
absorption of excitation light [1,2]. Fluorescing sub-
stances (fluorophores) are characterized by their
quantum yield, their fluorescence lifetime(s), and
their emission wavelengths. Emission occurs over a
wide spectral range and at wavelengths longer than

the excitation wavelength. The quantum yield is the
ratio of the number of photons emitted to the number
of photons absorbed, whereas the fluorescence life-
time is the average time the electrons spend in their
excited states [1,2]. Biological tissues contain several
endogenous fluorophores, such as nicotinamide ade-
nine dinucleotide (NAD or NADH), aromatic amino
acids such as tryptophan, and structural proteins,
such as collagen and elastin [3]. The optical proper-
ties of these fluorophores are sensitive to the envir-
onment and the metabolic state of the tissue, making
fluorescence spectroscopy a valuable tool to study the
health of biological tissues [1,2,4–6].
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Steady-state fluorescence spectroscopy has been
widely used to monitor biological tissues [1,4–11].
It consists of exposing the medium of interest to col-
limated or diffuse excitation light (typically UV) and
measuring the fluorescence intensity emerging from
the tissue surface. Fluorescence spectroscopy typi-
cally involves either emission spectra or excitation
spectra measurements. Fluorescence emission spec-
tra measurements consist of measuring the fluores-
cence intensity over a range of wavelengths for a
fixed excitation wavelength. On the other hand, ex-
citation spectra measurements consist of measuring
the fluorescence intensity at a particular wavelength
for a certain range of excitation wavelengths. Fluor-
ophores are typically present throughout biological
tissues, and the fluorescent light is absorbed and
scattered before emerging from the tissue. Thus,
measurements of fluorescence intensity detected at
the tissue surface depend on the optical properties
of both the fluorophores and the medium. Intrinsic
fluorescence is defined as the fluorescence intensity
emitted by the tissue’s fluorophores after removing
the effects of tissue scattering and absorption.

Analytical approaches to recovering intrinsic fluor-
escence spectra have been based on approximate
solutions of the radiative transfer equation, such as
the Beer–Lambert law [12], diffusion approximation
[12–14], and the two-flux approximation [15,16].
Correction factors for the boundary conditions in the
diffusion and two-flux approximations have been
developed to account for index mismatch at the
boundary between the air and the medium [17,18].
However, the diffusion approximation fails in media
when absorption is significant, and two-flux approx-
imation fails if scattering is strongly anisotropic and
weak [17,18]. Instead, semiempirical models have
been developed that combine the simplicity of ap-
proximate solutions and the accuracy of Monte Carlo
simulations [11,16,19]. Typically, the algebraic form
of an approximate solution is used along with empiri-
cal parameters provided in a lookup table obtained
fromMonte Carlo simulations. Gardner et al. [12] de-
veloped a heuristic model for the local fluence rate
and fluorescence escape function for a homogeneous,
semi-infinite medium with a specified refractive in-
dex using six semiempirical parameters expressed
as a function of the diffuse reflectance.

Intrinsic fluorescence spectroscopy has been typi-
cally performed on internal organs with the assump-
tion that they were homogeneous [4–6]. However,
this assumption may not accurately predict fluores-
cence from tissue in which fluorophore distribution is
multilayered. Such an instance can arise if the tissue
is stained with a fluorescent dye that (i) significantly
alters the fluorescence properties of a layer of tissue
but (ii) does not significantly affect tissue scattering
or absorption [20–24]. This can be modeled as a two-
layer fluorescing medium in which fluorescence is
stronger in the top layer than in the bottom. Alterna-
tively, internal malignancies, such as tumors, can be
stained intravenously with contrast agents to create

a layer of strong fluorescence within healthy tissue
that does not fluoresce significantly [25,26]. This si-
tuation can bemodeled as a three-layer medium such
that a strongly fluorescing layer representing the tu-
mor exists between two weakly fluorescing layers.
The objective of this study is to develop a simple and
accurate expression for the excitation fluence rate
and the total fluorescence emission intensity of mul-
tilayer fluorescing media. Similar to previous stu-
dies, the absorption and scattering coefficients of the
medium were assumed to be constant with depth.
However, fluorophore concentration was considered
to vary stepwise with depth to simulate fluorescence
from multilayered tissue. Furthermore, the index of
refraction of the medium was treated as a parameter
varying between 1.0 and 2.0. This model can be com-
bined with an inverse method to determine the
tissue’s intrinsic fluorescence coefficient from the
measured fluorescence emission of biological tissue.

2. Background

A. Radiative Transfer Equation

The transport of excitation light in absorbing and
scattering media is governed by the steady-state ra-
diative transfer equation (RTE). The excitation in-
tensity Iλx at wavelength λx in direction ŝ and at
location r̂ satisfies the steady-state RTE expressed
as [27]

ŝ ·∇Iλxðr̂; ŝÞ ¼ −μa;λx Iλxðr̂; ŝÞ − μs;λxIλxðr̂; ŝÞ þ
μs;λx
4π

×
Z
4π
Iλxðr̂; ŝiÞΦλxðŝi; ŝÞdΩi; ð1Þ

where μa;λx and μs;λx are the linear absorption and
scattering coefficients, respectively. The scattering
phase function, denoted by Φλxðŝ; ŝiÞ, represents the
probability that radiation propagating into the ele-
mentary solid angle dΩi around incident direction
ŝi will be scattered in direction ŝ.

Moreover, a similar equation can be written for the
transport of fluorescent light at wavelength λf
emitted by fluorophores present within the medium
[27]:

ŝ ·∇Iλf ðr̂; ŝÞ ¼ −μa;λf Iλf ðr̂; ŝÞ − μs;λf Iλf ðr̂; ŝÞ þ
μs;λf
4π

×
Z
4π
Iλf ðr̂; ŝiÞΦλf ðŝi; ŝÞdΩi

þ γxf ðr̂ÞGλxðr̂Þ
4π : ð2Þ

The last term in Eq. (2) represents fluorescence emis-
sion at wavelength λf stimulated by the excitation
light at wavelength λx. The term Gλx is the excitation
fluence rate expressed as
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Gλxðr̂Þ ¼
Z
4π
Iλxðr̂; ŝÞdΩ: ð3Þ

The intrinsic fluorescence coefficient γxf ðr̂Þ is the pro-
duct of (i) the fluorophore’s molar absorption coeffi-
cient at excitation wavelength λx denoted by ϵf ;λx,
(ii) its quantum yield at excitation wavelength λx
and emission wavelength λf denoted by QYxf ðr̂Þ,
and (iii) itsmolar concentration at location r̂ in the tis-
sue denoted by Mðr̂Þ, i.e., γxf ðr̂Þ ¼ ϵf ;λxQYxf ðr̂ÞMðr̂Þ.
The fluorophore’s molar absorption coefficient ϵf ;λx
and the molar concentration M have units of
cm−1=ðmole=cm3Þ and mole=cm3, respectively, while
the quantum yield is unitless [1]. The fluorophore’s
molar absorption coefficient ϵf ;λx can be measured
in vitro for a dilute solution of the endogenous fluor-
ophore at a known concentration [1].

The Henyey–Greenstein scattering phase function
[28] has been used extensively in tissue optics
[29–31] and computer animation [32] to account for
the anisotropic nature of scattering in tissue. At ar-
bitrary wavelength λ, it is expressed as [28]

Φλðŝi; ŝÞ ¼
1 − gλ

½1þ g2λ − 2gλ cosΘ�3=2 ; ð4Þ

whereΘ is the angle between directions ŝ and ŝi, and
gλ is the so-called Henyey–Greenstein asymmetry
factor.

Light propagation in strongly scattering media can
be characterized by the transport single scattering
albedo ωtr;λ and the transport total extinction coeffi-
cient βtr;λ, respectively, defined as [27]

ωtr;λ ¼
μs;tr;λ

μs;tr;λ þ μa;λ
¼ μs;λð1 − gλÞ

μs;λð1 − gλÞ þ μa;λ
;

βtr;λ ¼ μs;λð1 − gλÞ þ μa;λ: ð5Þ
Here, μs;tr;λ ¼ μs;λð1 − gλÞ is the transport scattering
coefficient that accounts for both the magnitude
and the anisotropy of the scattering phenomen-
on [27].

B. Two-Flux Approximation of Collimated Excitation
Light Transport

Approximate solutions to the RTE are commonly
used, since explicit solutions are available only for
a limited number of cases [27,33]. The so-called two-
flux approximation is derived under the assumptions
that (i) the medium is plane parallel, (ii) light trans-
fer is one-dimensional, and (iii) the intensity is
isotropic but different in the upper and lower hemi-
spheres. Then, the RTE simplifies to a set of two
coupled linear ordinary differential equations [27,34]
originally presented by Kubelka [35]:

dFþ
λx

dz
¼ −aλxSλxF

þ
λx þ SλxF

−
λx þ S1;λxFc;λx ; ð6Þ

dF−
λx

dz
¼ −SλxF

þ
λx þ aλxSλxF

−
λx − S2;λxFc;λx ; ð7Þ

where Fc;λxðzÞ is a source term associated with the
unattenuated collimated incident light, and Fþ

λx and
F−

λx are the diffuse excitation fluxes propagating into
the positive and negative z directions, respectively.
Here, z is the depth inside the medium defined from
the medium–air interface as illustrated in Fig. 1(a).
These diffuse fluxes at arbitrary wavelength λ can be
expressed in terms of the local intensity Iλxðz; θÞ as
[34]

Fþ
λ ðzÞ ¼ 2π

Zπ=2
0

Iλðz; θÞ cos θ sin θdθ;

F−
λ ðzÞ ¼ −2π

Zπ
π=2

Iλðz; θÞ cos θ sin θdθ: ð8Þ

The polar angle θ was taken relative to the inward
surface normal as illustrated in Fig. 1(a). The coeffi-
cients Kλx and Sλx are the absorption and scattering
coefficients for diffuse fluxes, respectively, and aλx ¼ðSλx þ KλxÞ=Sλx [34,36]. Furthermore, expressions for
the backward and forward scattering coefficients for
collimated light, respectively, denoted by S1;λx and
S2;λx , have been reported in the literature [34]. Ex-
pressions for Kλx, Sλx , S1;λx , and S2;λx will be discussed
later.

The unattenuated collimated flux that was neither
absorbed nor scattered at depth z follows the Beer–
Lambert law and is expressed as [27]

Fc;λxðzÞ ¼ ð1 − ρ01ÞF0;λxe
−Kc;λx z; ð9Þ

where F0;λx is the incident collimated flux and Kc;λx is
the effective extinction coefficient for the collimated
flux at the excitation wavelength λx. The specular re-
flectivity for normally incident radiation, denoted by
ρ01, is given by [27]

ρ01 ¼
�
n1 − n0

n1 þ n0

�
2
; ð10Þ

where n1 and n0 are the refractive indices of the med-
ium and surrounding air, respectively. The boundary
condition for the diffuse fluxes in the positive direc-
tion Fþ

λxð0Þ can be expressed as [34]

Fþ
λxð0Þ ¼ ρ10F−

λxð0Þ; ð11Þ

where the hemispherical–hemispherical reflectivity
ρ10 is the fraction of diffuse flux radiating from with-
in the medium reflected back into the medium due to
index mismatch and given by [37]

ρ10 ¼
Zπ=2
0

ρ00ðθiÞ sin 2θidθi: ð12Þ

The directional specular reflectivity of the interface
for the angle of incidence θi is denoted by ρ″ðθiÞ and
expressed as [27]
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ρ00ðθiÞ ¼
(

1
2

h
sin2ðθi−θtÞ
sin2ðθiþθtÞ þ

tan2ðθi−θtÞ
tan2ðθiþθtÞ

i
for θi ≤ θc

1 for θi > θc
: ð13Þ

The angle of transmittance θt is determined by
Snell’s law (i.e., n0 sin θt ¼ n1 sin θi), and θc is the cri-
tical angle defined as θc ¼ sin−1ðn0=n1Þ [27]. Since
the negative flux F−

λxðzÞ vanishes as z goes to infinity,
the following boundary condition is imposed [34]:

F−
λxðz → ∞Þ ¼ 0: ð14Þ

By solving Eqs. (6) and (7) and evaluating the inte-
gral in Eq. (3), GλxðzÞ can be expressed as [34]

GλxðzÞ ¼ 2π½Fþ
λxðzÞ þ F−

λxðzÞ þ Fc;λxðzÞ�
¼ ð1 − ρ01ÞF0;λxðk1e−bλxSλx z þ k2e−Kc;λx zÞ; ð15Þ

where bλx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
λx − 1

q
[36]. Expressions for k1 and k2

can be determined from the boundary conditions
given by Eqs. (11) and (14) as [34]

k1 ¼ 2πðaλx − bλx þ 1ÞfKc;λxðρ10S1;λx þ S2;λxÞ þ Sλx ½ðaλxρ10 − 1ÞS1;λx þ ðρ10 − aλxÞS2;λx �g
ððaλx þ bλxÞρ10 − 1ÞðK2

c;λx − b2λxS
2
λxÞ

; ð16Þ

k2 ¼ 2πfK2
c;λx þ ðS2;λx − S1;λxÞKc;λx − Sλx ½Sλxb

2
λx þ ðaλx þ 1ÞðS1;λx þ S2;λxÞ�g

K2
c;λx − b2λxS

2
λx

: ð17Þ

Unlike k1, which depends on n1 through ρ10 given by
Eq. (12), k2 is independent of n1.

C. Two-Flux Approximation of Fluorescence
Light Transport

Fluorescence light transport canbe similarly approxi-
mated by two fluxes in the positive and negative z
directions, respectively, as illustrated in Fig. 1(b).
In this case, Eq. (2) reduces to the following two
coupled ordinary differential equations [8,15]:

dFþ
λf

dz
¼ −aλf Sλf F

þ
λf þ Sλf F

−
λf þ

1
2
γxf ðzÞGλxðzÞ; ð18Þ

dF−
λf

dz
¼ −Sλf F

þ
λf þ aλf Sλf F

−
λf −

1
2
γxf ðzÞGλxðzÞ; ð19Þ

where Fþ
λf and F−

λf represent the diffuse fluxes at the
fluorescence wavelength λf propagating in the posi-

tive and negative z directions, respectively. Equations
(18) and (19) are coupled to Eqs. (6) and (7) through
the isotropic fluorescence emission source term γxf ðzÞ
GλxðzÞ. Finally, boundary conditions for Eqs. (18) and
(19) can be stated as [34]

Fþ
λf ð0Þ ¼ ρ10F−

λf ð0Þ; F−
λf ðz → ∞Þ ¼ 0: ð20Þ

Various solutions of Eqs. (18) and (19) have been pro-
posed to approximate the fluorescence signal from
slabs of finite thickness [8,15,38,39] or semi-infinite
homogeneous layers [16]. Kokhanovsky [38] derived
expressions for the excitation and fluorescence flu-
ence rates based on the two-flux approximation for
homogeneous slabs and semi-infinite media exposed
to diffuse incident irradiation. Furthermore, the
author provided relationships between the radiative
characteristics of strongly scattering slabs and the
two-flux approximation parameters. However, this
model assumed the refractive index of the medium
and its surroundings to be identical and equal to
1.0. Furthermore, the author did not compare the ac-
curacy of the two-flux approximation with a more ac-
curate solution of the radiative transfer equation and

instead suggested that the expressions derived were
“only approximately valid” [38]. Similarly, Ramos and
Lagorio [8], Shakespeare and Shakespeare [15], and
Durkin et al.[16] used the conventional two-flux ap-
proximation [35] to analyze fluorescence emission
from turbid slabs and semi-infinite media irradiated
by diffusely incident light. In each case, the medium
was assumed to be homogeneous, to contain a single
fluorophore, and to exhibit no index mismatch with
the surrounding.UnlikeKokhanovsky [38], these stu-
dies also presented inverse methods for determining
the intrinsic fluorescence coefficient ofmedia from ob-
served surface fluorescence and reflectance. These
models were able to predict the shape of the intrinsic
fluorescence spectrum of plant life [8], textiles [15],
and human tissue [16] but could not be used to esti-
mate its absolute value. Furthermore, none of these
models could be used to analyze fluorescence from
multilayer media exposed to normal incident and
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collimated excitation light featuring index mis-
matched with the surroundings and/or that exhibited
depth-dependent fluorophore concentration.

The current study extends the two-flux approxima-
tion to absorbing, scattering, and fluorescing multi-
layer media. It extends the two-flux approximation
to accurately model (i) the local excitation fluence
rate in semi-infinite media and (ii) the fluorescence
emission frommedia in which fluorophore concentra-
tion varies stepwise with depth. Additionally, here
the illumination considered was collimated and nor-
mally incident as opposed to diffuse. Furthermore, a
single semiempirical parameter was fitted to match
our model predictions for the excitation fluence rate
and fluorescence emission with results from Monte
Carlo simulations.

D. Two-Flux Approximation Coefficients

For strongly forward scattering media, the relation-
ship between the effective absorption coefficient for
collimated light Kc;λ appearing in Eq. (9) and μa;λ,
μs;λ, and gλ can be expressed as [34,40,41]

Kc;λ ¼ μa;λ þ ð1 − g2λ Þμs;λ: ð21Þ

Furthermore, the coefficients Kλ and Sλ are propor-
tional to μa;λ and μs;λ, according to [36,42]

μa;λ ¼ ηλKλ; μs;λð1 − gλÞ ¼ χλSλ; ð22Þ

where ηλ and χλ are expressed as [36]

ηλ ¼ ðϕλ − 1Þð1 − ωtr;λÞ=ζd;λðϕλ þ 1Þ;
χλ ¼ −ωtr;λðϕλ − ϕ−1

λ Þ=ð2ζd;λÞ: ð23Þ

The function ϕλ is defined as [33]

ϕλ ¼
ζd;λ þ lnð1 − ζd;λÞ
ζd;λ − lnð1þ ζd;λÞ

; ð24Þ

where ζd;λ is the root of the characteristic equation
[33]

ωtr;λ ¼
2ζd;λ

ln½ð1þ ζd;λÞ=ð1 − ζd;λÞ�
: ð25Þ

An approximate expression for ζ2d;λ as a function of
ωtr;λ was found to be [42]

ζ2d;λ ¼
47
52

þ 31
49

ωtr;λ −
49
54

ω2
tr;λ −

17
27

ω3
tr;λ: ð26Þ

The relative difference between Eq. (26) and the ex-
act solution of Eq. (25) was determined to be less
than 1% for 0:40 < ωtr < 1:00 [42].

3. Methods

A. Model Assumptions and Geometry

In this study, biological tissue was approximated as a
semi-infinite, one-dimensional, strongly scattering
medium. It was characterized by the properties μa;λx,
μs;λx , gλx , and n1 at the excitation wavelength λx. The
incident light source was modeled as a collimated,
monochromatic, normally incident beam of infinite
radius and intensity Iλxð0; θÞ ¼ F0;λxδðθÞ. All the inter-
faces were considered smooth and optically flat.

In practice, tissue excitation is typically performed
with light between 260 and 500nm, while fluores-
cence emission is measured between 350 and 700nm
[1,7]. The ranges for optical properties considered in
this study were chosen to include those of human der-
mis in this wavelength range. Then, the asymmetry
factor gλ varies between 0.70 and 0.90 [43]. Further-
more, Fig. 2(a) shows the transport single scattering
albedo of the human dermis as a function of wave-
length between 300 and 700nm measured in vitro
as reported in the literature [43–45]. Optical charac-
teristics of the dermis below 300nm were not
available. While there is disagreement between the
values reported in various studies, the single scatter-
ingalbedo is typicallygreater than0.80.Furthermore,
tissue fluorescence emission for one-dimensional,
homogeneous, semi-infinite media has been shown
to depend onωtr;λx andωtr;λf aswell as on the transport

Fig. 1. Schematic of the geometry considered along with co-
ordinate system, boundary conditions, and optical properties for
the (a) excitation wavelength λx and (b) fluorescence emission
wavelength λf .
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extinction coefficient ratio rxf ¼ βtr;λf =βtr;λx , and not
on the individual values of βtr;λf and βtr;λx [11,19].
Figure 2(b) shows rxf as a function of λx between
300 and 700nm for λf equal to 400, 500, 600, and
700nm for the human dermis. It indicates that rxf
ranges between 0.2 and 1.0 in this wavelength range.
Thus, to simulate human dermis and a wide range of

other biological tissues such as muscles, colon, or
brain [29], we considered cases when ωtr;λx ranged
between 0.50 and 0.99, gλx between 0.70 and 0.90,
and n1 between 1.00 and 2.00.

Furthermore, it was assumed that μa;λf , μs;λf , and
gλf at the emission wavelength λf were independent
of location. Then, ωtr;λf was assumed to vary between
0.50 and 0.99, gλf between 0.70 and 0.90, and rxf be-
tween 0.20 and 5. However, the intrinsic fluorescence
coefficient γxf was assumed to vary with the optical
thickness defined as τtr;λx ¼ βtr;λxz. The intrinsic fluor-
escence coefficient was given by

γxf ðτtr;λxÞ ¼ ϵf ;λxQYxf ðτtr;λxÞMðτtr;λxÞ: ð27Þ

Figure 3 shows the three different fluorophore con-
centration profiles Mðτtr;λxÞ considered in this study.
Light regions represent the medium where Mðτtr;λxÞ¼ 0mole=cm3, while dark regions represent regions
where Mðτtr;λxÞ is constant and strictly positive.
Figure 3(a) corresponds to a two-layer medium
where the fluorophore is uniformly distributed in the
medium for τtr;λx > τtr;λx;1 below a nonfluorescing
layer. In this case, MSðτtr;λxÞ ¼ Auðτtr;λx − τtr;λx;1Þ,
where A is an arbitrary constant and uðτtr;λx −
τtr;λx;1Þ is the step function defined by

uðτtr;λx − τtr;λx;1Þ ¼
�
1 if τtr;λx ≥ τtr;λx;1
0 if τtr;λx < τtr;λx;1

: ð28Þ

Figure 3(b) depicts the concentration profile
MHðτtr;λxÞ ¼ Auðτtr;λxÞ corresponding to a homo-
geneous fluorophore distribution. Finally, Fig. 3(c)
depicts the concentration profile MLðτtr;λx;1; τtr;λx;2Þ ¼
A½uðτtr;λx − τtr;λx;1Þ − uðτtr;λx − τtr;λx;2Þ� corresponding to
a three-layer system, where the fluorophore is uni-
formly distributed in the layer between depths
τtr;λx;1 and τtr;λx;2 and surrounded by two nonfluores-
cing layers.

B. Monte Carlo Simulations

The RTE for excitation light given by Eq. (1) was
solved using the Monte Carlo simulation software
developed by Wang and Jacques [46,47] for light
transfer through nonemitting, absorbing, and scat-
tering media. This software was modified according
to Welch et al. [6] to solve the RTE for fluorescence
emission in the medium given by Eq. (2). The
Henyey–Greenstein scattering phase function given

Fig. 2. (a) Transport single scattering albedo as a function of
wavelength for human dermis [43–45]. (b) Ratio of extinction coef-
ficients rxf as a function of excitation wavelength λx and emission
wavelength λf equal to 400, 500, 600, and 700nm for the human
dermis [43,44].

Fig. 3. Schematic of (a) step, (b) homogeneous, and (c) layered fluorophore concentration profiles MSðτtr;λx Þ, MHðτtr;λx Þ, and MLðτtr;λx Þ,
respectively. Light gray represents the medium without fluorophore [Mðτtr;λx Þ ¼ 0mole=cm3], while dark gray represents regions with
fluorophore [Mðτtr;λx Þ ¼ Amole=cm3].
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by Eq. (4) was used to account for anisotropic scatter-
ing. The variance in the prediction of fluorescence
intensity emerging at the surface of the medium in-
creased as the transport single scattering albedo
ωtr;λf decreased, because absorption by the medium
dominated over scattering resulting in fewer back-
scattered fluorescence photons. Thus, the number
of simulated photon packets per simulation was in-
creased until the variance associated with the fluor-
escence emission fell below 1% for the most stringent
case of a semi-infinite homogeneous medium with
ωtr;λf ¼ 0:50. The variance for the most stringent case
was calculated from ten repetitions of the same simu-
lation. Each simulation required 100,000 photon
packets or less to achieve the convergence criteria.

4. Analysis

A. Semiempirical Model of Excitation Fluence

The solution to Eqs. (6) and (7) given by Eqs. (15)–
(17) has been shown to give poor estimates of the
excitation fluence rate GλxðzÞ for media with index
mismatch at the media–air boundary or when the
semi-infinite medium is weakly scattering and the
excitation source is collimated [17,48]. In the current
study, the coefficients k1 and k2 in Eq. (15) were de-
termined by fitting the local fluence rate GλxðzÞ pre-
dicted by Eq. (15) to that obtained by Monte Carlo
simulations. By rearranging Eqs. (22)–(25), the pro-
duct bλxSλxz in the first term of Eq. (15) can be rewrit-
ten as ζd;λxβtr;λxz ¼ ζd;λxτtr;λx [36,42]. Furthermore, by
taking a polynomial Taylor series expansion of Kc;λx
defined by Eq. (21) with respect to gλx about gλx ¼ 1,
the coefficient Kc;λx can be expressed approximately
as a function of βtr;λx :

Kc;λx ≈ μa;λx þ 2ð1 − gλxÞμs;λx ¼ βtr;λxð1þ ωtr;λxÞ: ð29Þ

Then, by introducing the coefficient ζc;λx ¼ ð1þ
ωtr;λxÞ, Eq. (15) can be rewritten exclusively as a func-
tion of τtr;λx :

Gλxðτtr;λxÞ ¼ ð1 − ρ01ÞF0;λxðk1e−ζd;λx τtr;λx þ k2e−ζc;λx τtr;λx Þ:
ð30Þ

Equation (30) can be further simplified by consider-
ing conservation of excitation energy. Indeed, the
amount of excitation energy absorbed by the medium
in a differential element dz is μa;λxGλxðzÞdz [27]. Thus,
the sum of the energy absorbed and the total energy
reflected by the medium must be equal to the inci-
dent excitation energy F0;λx. This can be expressed
as [27]

F0;λx ¼
Z∞
0

μa;λxGλxðzÞdzþ F0;λxðRd;λx þ ρ01Þ; ð31Þ

where the integral term represents the excitation en-
ergy absorbed throughout the medium, and F0;λxRd;λx

and F0;λxρ01 represent the energy diffusely and spec-
ularly reflected by the medium, respectively. The
quantity F0;λxðRd;λx þ ρ01Þ can be measured experi-
mentally or calculated analytically [27,42]. By sub-
stituting Eq. (30) into Eq. (31), k1 can be expressed as

k1 ¼ ζd;λx
�
1 −Rd;λx − ρ01

1 − ωtr;λx
−

k2
1þ ωtr;λx

�
: ð32Þ

Therefore, calculating Gλxðτtr;λxÞ given by Eq. (15)
for any value of ωtr;λx, βtr;λx , and n1 required the
knowledge of a single empirical fitting parameter,
namely, k2.

B. Fluorescence Emission

In this section, an expression for the fluorescence
flux emerging from the tissue and given by ð1 − ρ01Þ
F−

λf ð0Þ is developed. To do so, the local excitation flu-
ence rate given by Eq. (30) is used to solve Eqs. (18)
and (19) with various fluorophore concentration
profiles to yield

ð1 − ρ10ÞF−
λf ð0Þ ¼ ð1 − ρ10ÞF0;λxϵf ;λxQYxfATxf : ð33Þ

The quantity Txf is a dimensionless function and will
be referred to as the transfer function.

Before considering the different fluorophore con-
centration profiles depicted in Fig. 3, Eqs. (18) and
(19) were solved for an isotropic emission source of
unit intensity at an arbitrary optical depth τtr;0. This
so-called impulse response was found by replacing
γxf ðzÞGλxðzÞ with δðz − z0Þ in Eqs. (18) and (19). The
corresponding impulse transfer function Tδ

xf ðτtr;λx;0Þ
can be expressed as

Tδ
xf ðτtr;λx;0Þ ¼

ð1 − ρ10Þðaλf þ bλf þ 1Þe−ζd;λf rxf τtr;λx ;0
2ðaλf þ bλf − ρ10Þ

:

ð34Þ

Then, for any arbitrary concentration profile
Mðτtr;λxÞ, the fluorescence emission transfer function
is given by

Txf ¼
1

βtr;λx

Z∞
0

Mðτtr;λxÞGλxðτtr;λxÞTδ
xf ðτtr;λxÞdτtr;λx : ð35Þ

Evaluating Eq. (35) for the two-layer concentration
profile MSðτtr;λxÞ ¼ Auðτtr;λx − τtr;λx;1Þ [Fig. 3(a)] yields

TS
xf ðτtr;λx;1Þ ¼

�
k1e

−ðζd;λf rxfþζd;λx Þτtr;λx ;1

ζd;λf rxf þ ζd;λx

þ k2e
−ðζd;λf rxfþζc;λx Þτtr;λx ;1

ζd;λf rxf þ ζc;λx

�Tδ
xf ð0Þ
βtr;λx

: ð36Þ

Moreover, the transfer function for a homogeneous
medium TH

xf [Fig. 3(b)] can be determined by setting
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τtr;λx;1 to zero in Eq. (36):

TH
xf ¼ TS

xf ð0Þ ¼
�

k1
ζd;λf rxf þ ζd;λx

þ k2
ζd;λf rxf þ ζc;λx

�Tδ
xf ð0Þ
βtr;λx

:

ð37Þ
Finally, the transfer function due to the three-
layer concentration profile depicted in Fig. 3(c)
and given by MLðτtr;λx;1; τtr;λx;2Þ ¼ A½uðτtr;λx−τtr;λx;1Þ −
uðτtr;λx − τtr;λx;2Þ� can be expressed as

TL
xf ðτtr;λx;1; τtr;λx;2Þ ¼ TS

xf ðτtr;λx;1Þ − TS
xf ðτtr;λx;2Þ; ð38Þ

where TS
xf ðτtr;λxÞ is defined by Eq. (36).

5. Results and Discussion

A. Local Excitation Fluence

Monte Carlo simulations were performed to calculate
the normalized excitation fluence rate Gλxðτtr;λxÞ=F0;λx
for ten values of ωtr;λx between 0.50 and 0.99 and four
values of n1 between 1.00 and 2.00. The function
Gλxðτtr;λxÞ=F0;λx was observed to be self-similar with
respect to βtr;λx , so βtr;λx was set to unity for each si-
mulation. A semi-infinite medium was simulated
with a finite numerical grid of length Lgrid in the z-
direction set to be ten times the penetration depth for
collimated light derived from diffusion theory so that
Lgrid ¼ 10ð3μa;λxβtr;λxÞ−1=2 [40]. For this grid length,
the finite slab was effectively semi-infinite, since
all the energy of the collimated beam reaching z ¼
Lgrid vanished, thus satisfying the boundary condi-
tion given by Eq. (14). The grid consisted of Nz ele-
ments of length Δz ¼ Lgrid=Nz. The number of grid
elements Nz was set to be 200 as a compromise (i)
to make Δz sufficiently small so as to capture the ef-
fects of internal reflectance on GλxðzÞ near the med-
ium’s surface and (ii) to ensure that the variance
associated with the local fluence rate obtained by
Monte Carlo simulations in each grid element was
less than 1%.

The values of parameters k1 and k2 necessary in
Eq. (30) were determined by minimizing the cost
function (CF) defined as

CF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Nz

XNz

i¼1

½GMC
λx ðiΔzÞ −GλxðiΔzÞ�2

vuut ; ð39Þ

corresponding to the root-mean-square error
between the estimate of the excitation fluence rate
predicted by Monte Carlo simulations GMC

λx ðzÞ and
GλxðzÞ predicted by Eq. (30). Figure 4 shows k1 and
k2 found by minimizing the CFas functions of the dif-
fuse reflectance Rd;λx for n1 equal to 1.33, 1.44, 1.77,
and 2.00 and ωtr;λx ranging between 0.50 and 0.99.
These quantities were plotted as functions of Rd;λx
in order to provide a simple relationship between
the diffuse reflectance Rd;λx , which can be measured
experimentally, and the local excitation fluence rate,

which cannot. The value of k1 increased with increas-
ing Rd;λx and n1, while the value of k2 decreased with
increasing Rd;λx and was approximately invariant
with n1. In fact, regardless of the value of n1, k2 could
be approximated by a linear relationship with the
logarithm of Rd;λx, namely,

k2 ≈ −0:137 log10ðRd;λxÞ − 1:357: ð40Þ

Values of k1 computed from Eqs. (32) and (40) and
those obtained by minimizing the CF agreed with
each other to within 0.1%. In addition, the indepen-
dence of k2 with respect to n1 was suggested by
Eq. (17) by virtue of the fact that k2 is independent
of ρ10. Note that Gardner et al. [12] used a similar
approach by fitting six semiempirical parameters ex-
pressed as a function of the diffuse reflectance Rd;λx .
The authors considered a semi-infinite and homoge-
neous medium with n1 ¼ 1:33 or 1.38, g ranging from
0.7 and 0.9, and ωtr between 0 and 1.0. In contrast,
Eqs. (30) and (32) predict the excitation fluence rate
for (i) any values of n1 between 1.0 and 2.0, (ii) g ran-
ging from 0.7 and 0.9, and (iii) ωtr between 0.5 and
0.99. The model depends on a single semiempirical
parameter k2 depending on only the diffuse reflec-
tance, and it ensures energy conservation.

For illustration purposes, Fig. 5(a) shows the nor-
malized excitation fluence rate Gλx=F0;λx calcu-
lated by Monte Carlo simulations and predicted by
Eqs. (30), (32), and (40) as a function of ζd;λxτtr;λx
for ωtr;λx between 0.50 and 0.99 and n1 ¼ 1:44. The
index of refraction n1 was chosen to be 1.44 to repre-
sent the human dermis in the visible range [29]. In
practice, the index of refraction of the medium under
investigation would need to be determined sepa-
rately. Furthermore, tissue is typically excited at a
wavelength where absorption is strong. Thus, the
transport single scattering albedo at the excitation
wavelength ωtr;λx was chosen to be 0.700. We also

Fig. 4. Fitting parameters k1 and k2 retrieved using Monte Carlo
simulations as a function of Rd;λx along with predictions by
Eqs. (32) and (40) for n1 between 1.33 and 2.00.
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showed the cases when the transport single scatter-
ing albedo at the emission wavelength ωtr;λf is close to
and much larger than that at the excitation wave-
length ωtr;λx .

The relative deviation between the model predic-
tions and the Monte Carlo simulation was less than
5% for all values of ζd;λxτtr;λx and for ωtr;λx > 0:90 typi-
cal of biological tissues [29]. For ωtr;λx ≤ 0:90 and
ζd;λxτtr;λx < 1, the model predictions of Gλxðτtr;λxÞ de-
viated from Monte Carlo simulations by approxi-
mately 5%. For larger values of ζd;λxτtr;λx, model
predictions and Monte Carlo simulations fell to with-
in 1% of each other for all ωtr;λx . Figure 5(b) shows the
CF for n1 between 1.33 and 2.00 and ωtr;λx between
0.50 and 0.99. The absolute root-mean-square error
was less than 4% for all values of n1 and ωtr;λx
considered.

B. Fluorescence Emission from One- and
Two-Layer Media

Figures 6(a) and 6(b) show TS
xf estimated from a

Monte Carlo simulation as a function of the transport
optical thickness of the nonfluorescing layer τtr;λx;1 as-
sociatedwith concentration profileMSðτtr;λx;1Þ forωtr;λx
equal to 0.70, rxf varying between 0.20 and 5.00, for
ωtr;λf equal to 0.750 and 0.900, respectively, and
n1 ¼ 1:44. These values are representative of biologi-
cal tissues [29]. Predictions by Eqs. (32), (36), and (40)
are also plotted for comparison. Figure 6 indicates
that TS

xf decreased with increasing τtr;λx;1. This can
be attributed to the fact that the thickness of the
top nonfluorescing layer increased. Thus, the fluores-
cence emission took place deeper inside the medium,

Fig. 5. (a) Normalized local excitation fluence rate as a function
of the optical depth ζd;λx τtr;λx predicted by Monte Carlo simulations
and Eq. (30) for ωtr;λx between 0.50 and 0.99 and n1 ¼ 1:44. (b)
Root-mean-square (CF) [Eq. (39)] error as a function of the trans-
port single scattering albedo ωtr;λx between 0.50 and 0.99 and n1

between 1.33 and 2.00.

Fig. 6. Transfer function TS
xf for step concentration profile

MSðτtr;λx ;1Þ versus the optical depth calculated by Monte Carlo si-
mulations and predicted by Eq. (36) for A ¼ 1mole=cm2,
ωtr;λx ¼ 0:70, n ¼ 1:44, rxf between 0.2 and 5.0, and ωtr;λf equal
to (a) 0.750 and (b) 0.900.
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where the excitation fluence rate GλxðzÞ was reduced
significantly. Additionally, the attenuation, or self-
absorption [1], experienced by the fluorescent light
as it traveled to the medium’s surface was larger. Si-
milarly, as the ratio of extinction coefficients rxf ¼
βtr;λf =βtr;λx increased, TS

xf decreased due to stronger
attenuation by the medium at the fluorescent wave-
length. For all cases considered, predictions by Eq.
(36) followed the trend andmagnitude of TS

xf . In addi-
tion, predictionaccuracy increasedwith increasing rxf
and ωtr;λf . This is due to the fact that the accuracy of
the two-flux approximation with the boundary condi-
tion given by Eq. (20) diminishes for optically thin
media and improves for strongly scattering media
[17]. For the sake of clarity, only results for ωtr;λx ¼

0:70 were shown. However, Fig. 6 is representative
of the accuracy of Eq. (36) in predicting TS

xf for all
the values of ωtr;λx considered in this study.

In order to compare model predictions of Txf used
in Eq. (33) andMonte Carlo simulations for the fluor-
escence emission, the relative prediction error was
defined as

EðTxf Þ ¼
����Txf − TMC

xf

TMC
xf

����; ð41Þ

where TMC
xf is the transfer function predicted by

Monte Carlo simulations. Figure 7 shows the relative
prediction error EðTS

xf Þ for concentration profile
MSðτtr;λx;1Þ as a function of ωtr;λf for ωtr;λx equal to
0.700, rxf between 0.20 and 5.00, and τtr;1 between
0 and 1.0. The relative error TS

xf was found to in-
Fig. 7. Relative error between prediction of TS

xf by Monte Carlo
simulations and predicted by Eq. (36) averaged over τtr;λx ;1 between
0 and 1 for A ¼ 1mole=cm2, ωtr;λx ¼ 0:70, n ¼ 1:44, and rxf between
0.20 and 5.00.

Fig. 8. Relative error between predictions of TH
xf by Monte Carlo

simulations and by Eq. (37) as a function of ωtr;λf averaged over
ωtr;λx between 0.50 and 1.00 for rxf between 0.20 and 5.00,
A ¼ 1mole=cm2, and n1 ¼ 1:44.

Fig. 9. Transfer function TL
xf versus the optical depth predicted

by Monte Carlo simulations and by Eq. (38) with ωtr;λx ¼ 0:700,
A ¼ 1mole=cm2, n1 ¼ 1:44, rxf between 0.20 and 5.00, and τtr;λx ;2 −
τtr;λx ;1 ¼ Lβtr;λx with L ¼ 1 cm for ωtr;λf equal to (a) 0.750 and (b)
0.900.
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crease with decreasing ωtr;λf and rxf for the same rea-
sons as those previously discussed. For example, it
was less than 5% for rxf ¼ 0:44 and ωtr;λf greater than
0.87. Furthermore, the relative error was less than
5% for all rxf if ωtr;λf was greater than 0.95.

Similar results were found for the concentration
profile MHðτtr;λxÞ when τtr;λx;1 ¼ 0. Figure 8 shows
the relative prediction error EðTH

xf Þ as a function of
ωtr;λf for ωtr;λx between 0.5 and 1.0 and rxf between
0.2 and 5.0. In this case, the relative error was less
than 5% for all values of rxf considered and for ωtr;λf
greater than 0.92. For ωtr;λf less than 0.70, the rela-
tive prediction error was larger than 10%, so these
values were not reported.

C. Fluorescence Emission from Three-Layer Media

Figures 9(a) and 9(b) show the transfer function TL
xf

estimated fromMonteCarlo simulations as a function
of the transport optical thickness of the top nonfluor-
escing layer τtr;λx;1 for ωtr;λx equal to 0.70, rxf between
0.20 and 5.00, and for ωtr;λf equal to 0.750 and 0.900,
respectively. In each case, the thickness of the fluor-
escing layer was arbitrarily chosen such that τtr;λx;2−
τtr;λx;1 ¼ Lβtr;λx with L ¼ 0:1 cm. Predictions by Eq.
(38) using Eqs. (32) and (40) are also plotted for com-
parison. As τtr;λx increased, the fluorescence emission
occurred deeper within themedium, and thus,TL

xf de-
creased, as was the case with TS

xf .
Figure 10 shows the relative prediction error

EðTL
xf Þ as a function of ωtr;λf for ωtr;λx between 0.50

and 1.00, and rxf between 0.20 and 5.00. Here, also,
the relative error increased with decreasing ωtr;λf and
rxf . For rxf ¼ 0:44, the prediction error was less than
5% for ωtr;f greater than 0.87. Furthermore, the pre-
diction error was typically less than 5% for all the
values of rxf greater than 0.44 and for ωtr;λf greater
than 0.97.

D. Model Limitations and Applicability

The current diffuse reflectance and fluorescence
emissionmodels are valid to semi-infinitemedia with
optically smooth surfaces illuminated byuniform, col-
limated, and normally incident light and featuring
uniform absorption and scattering coefficients and
stepwise fluorophore concentration. They can be used
to analyze reflectance measured by normal–normal
optical probes, provided that a correction factor is de-
termined to relate the normal–normal to the normal–
hemispherical reflectance and fluorescence emission.
The estimate of the fluorescence emission given by
Eq. (33) is the integral of the emitted fluorescence in-
tensity over the upper hemisphere. Similarly, the dif-
fuse reflectanceRd;λx used in Eq. (31) is the integral of
the diffusely reflected intensity over the upper hemi-
sphere. These quantities can be measured in practice
with an integrating sphere [1,29,30]. The current
model can be used in an inverse method to retrieve
the optical properties of tissues and the fluorophore
concentration.

6. Conclusion

Amodel of excitation fluence rate and surface fluores-
cence emission from turbid media was developed for
semi-infinite, absorption, and strongly forward scat-
teringmedia. Themodel accounts for indexmismatch
between themedium (n1 between 1.0 and 2.0) and the
surrounding air (n0 ¼ 1). Using the two-flux approx-
imation and invoking the energy conservation princi-
ple, the local excitation fluence rate was successfully
modeled by Eqs. (30) and (32) with a single semi-
empirical parameter, dependingonly ondiffuse reflec-
tance [Eq. (40)]. Then, the total surface fluorescence
emission was simulated for (i) homogeneous semi-
infinite media, (ii) media with a semi-infinite fluores-
cing layer underneath a nonfluorescing layer, and (iii)
mediawith a discrete fluorescing layer embedded in a
nonfluorescing semi-infinite layer. For ωtr;λf greater
than 0.90 and rxf greater than 1, model predictions
of the surface fluorescence emission were within 5%
of results by Monte Carlo simulations for all values
of ωtr;λx, βtr;λx , and n1 considered. The current model
can be used to quickly and accurately simulate the lo-
cal fluence rate and surface fluorescence emission of
biological media, such as the skin, or to analyze flu-
orescence spectroscopy data gathered from in vivo
biological samples to recover intrinsic fluorescence
spectra using an inverse method.

Nomenclature

A: fluorophore concentration, mole=cm3

a, b: two-flux dimensionless parameters
CF: cost function
Fþ, F−: diffuse forward and backward fluxes, W=cm2 · nm
F0: radiative flux of incident beam, W=cm2 · nm
g: Henyey–Greenstein asymmetry factor
G: local fluence rate, W=cm2 · nm
I: radiation intensity, W=cm2 · sr · nm
r̂: position vector, cm
k1, k2: fitting coefficients appearing in Eq. (15)

Fig. 10. Relative error between prediction of TL
xf by Monte Carlo

simulations and by Eq. (38) averaged over τtr;λx between 0 and 1 for
ωtr;λx ¼ 0:70, A ¼ 1mole=cm2, n1 ¼ 1:44, and rxf between 0.20 and
5.00.
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K : two-flux effective absorption coefficient for
diffuse light, 1=cm

Kc: two-flux effective absorption coefficient for
collimated light, 1=cm

Mðτtr;λx Þ:fluorophore molar concentration
profile, mole=cm3

n0, n1: index of refraction of the air and medium
Nz: integer value appearing in Eq. (39)
rxf : ratio of extinction coefficients, βtr;λf =βtr;λx
R: diffuse reflectance
ŝ: unit vector in a given direction
S: two-flux effective scattering coefficient for

diffuse light, 1=cm
S1;S2: two-flux backward and forward scattering coefficients for

collimated light, 1=cm
T: transfer function
QY: quantum yield
z: distance into the medium surface, cm
Δz: thickness of a single grid element used for Monte Carlo

simulations, cm

Greek Symbols

βtr: transport extinction coefficient, 1=cm
γxf : intrinsic fluorescence coefficient, 1=cm
εf : linear molar absorption coefficient of the

fluorophore, cm−1=ðmole=cm3Þ
ζd: root of characteristic Eq. (25)
ζc: linearized parameter defined by Eq. (29)
η, χ: parameters defined by Eq. (23)
θ: polar angle, rad
θi: angle of incidence on interface, rad
θt: exit angle defined in Fig. 1, rad
θc: critical angle for total internal reflection, rad
μa: linear absorption coefficient of the medium,

cm−1

μs: linear scattering coefficient, cm−1

μs;tr: transport scattering coefficient ½¼ μsðλÞ
½1 − gðλÞ��, cm−1

ρ01: specular reflectivity to normally incident light
ρ10: hemispherical-hemispherical reflectivity
ρ″ðθiÞ: directional specular reflectivity
τtr;λx ;1: transport optical thickness
ϕ: parameter defined by Eq. (24)
Φ: scattering phase function, sr−1

ω: single scattering albedo
ωtr: transport single scattering albedo
Ω: solid angle, sr

Subscripts

λf : fluorescence emission wavelength
λx: excitation wavelength

Superscripts

δ: impulse concentration profile
S: step concentration profile
H: homogeneous concentration profile
L: three-layer concentration profile
MC: Monte Carlo simulations
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