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a  b  s  t  r  a  c  t

This  paper  aims  to develop  a model  for simulating  the  electric  double  layer  dynamics  in  CV measurements
while  simultaneously  accounting  for transport  phenomena  in both  the electrode  and  the  electrolyte.  It
also aims  (i)  to  identify  the  dimensionless  parameters  that  govern  the  CV  measurements,  (ii) to  provide
a  physical  interpretation  of the  shape  of CV  curves,  and  (iii)  to  investigate  the effect  of  the  electrode  elec-
trical  conductivity  on  the  predicted  double  layer  capacitance.  The  transient  double  layer  dynamics  was
simulated  using  the  modified  Poisson–Nernst–Planck  (MPNP)  model  with  a  Stern  layer  and  accounting
for  the  presence  of the  electrode.  A  dimensional  analysis  was  performed  and  four  dimensionless  numbers
governing  the  CV  measurements  were  identified.  This  study  established  that the  hump  in  CV  curves  for
electrodes  with  large  radius  of  curvature  was due  to the  saturation  of  ion  concentration  near  the  electrode
surface  before  reaching  the  maximum  potential.  It  also  demonstrates  that  CV  curves  became  symmetric
for large  ion  diffusion  coefficient  due  to  rapid  ion  transport.  This  study  confirmed  that  the  EDL  capaci-
tance  retrieved  from  CV  measurements  is  constant  for low  scan  rates  and  corresponds  to  the  capacitance
under  equilibrium  conditions.  Larger  ion  diffusion  coefficient  and  electrode  electrical  conductivity  led to
larger  EDL  capacitance  at  large  scan  rates  corresponding  to  better  charging  performance.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Cyclic voltammetry (CV) is a powerful tool in the field of elec-
trochemistry [1,2]. It has been used extensively to characterize the
performance of various electrical energy storage devices such as
electrochemical capacitors (also known as supercapacitors) [3–5],
batteries [6,7], and fuel cells [8,9]. In these applications, the charged
electrodes are typically immersed in the electrolyte solution. Elec-
tric double layers form at the electrode/electrolyte interfaces which
are accessible to ions present in the electrolyte. Fig. 1 shows a
schematic of the electric double layer structure forming near the
surface of an anode. Solvated cations of diameter a migrate and
adsorb to the electrode surface due to electrostatic forces [1,10–12].
The Stern layer is defined as the compact layer of immobile ions
strongly adsorbed to the electrode surface [1,10–12]. Note that
there are no free charges within the Stern layer [1,10,11]. Beyond
the Stern layer is the so-called diffuse layer where ions are mobile
under the coupled influence of electrostatic forces and diffusion
[1,10–12]. Fig. 1b shows the electric circuit representation of an
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electric double layer capacitance including the electrode resistance,
the Stern layer and diffuse layer capacitances in series [1,3,10,12].

CV measurements consist of imposing an electric potential at
the electrodes which varies periodically and linearly with time
[1,2]. The resulting electric current is recorded. The total charge
accumulated at the electrode surface can be found by integrat-
ing the electric current with respect to time [3,13–16]. Then, the
capacitance can be estimated as the total charge divided by the
“potential window” [3,14–17]. Capacitance is typically measured
at different scan rates to characterize the performance of energy
storage devices such as electric double layer capacitors (EDLCs)
[3–5,13–17].  The capacitance measured at low scan rates is maxi-
mum and close to the capacitance under equilibrium conditions.

Moreover, the shape of CV curves has been used extensively
to deduce the electrochemical processes involved in the charging
and discharging of EDLCs [18–22].  For example, the current ini-
tially increases when charging EDLCs from zero potential. Then,
it decreases upon further increase in the electric potential. Thus,
a “hump” is typically observed in the CV curves. Different inter-
pretations have been proposed in the literature to explain this
observation. For example, Pell et al. [23] investigated the effect
of the electrolyte concentration on the charging/discharging of
EDLCs. The electrode was  carbon foil formed using carbon powders
while the electrolyte was  tetraethylammonium tetrafluoroborate
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Fig. 1. Schematic of (a) the electric double layer structure showing the arrangement
of  solvated anions and cations near an anode/electrolyte interface and the simulated
computational domain consisting of a Stern layer and the diffuse layer and (b) the
electrode resistance along with the Stern and diffuse layer capacitances in series
[10,1,3].

(TEATFB) in propylene carbonate with concentration ranging from
0.08 to 1 mol/L. The authors observed a hump in CV curves at
low electrolyte concentration of 0.08 mol/L which was absent at
larger ones. Consequently, the authors attributed its reason to
the “electrolyte starvation”  due to limited amount of ions at low
concentrations. The same interpretation was suggested for EDLCs
with both aqueous (H2SO4) and organic (TEABF4) electrolytes with
1 mol/L concentration [24]. Moreover, the hump was  also attributed
to redox reactions at the electrode surface [4,25–34] as well as the
“difference of diffusion capability between solvated anions and cations
in the electrolyte”  [32]. Recently, Mysyk et al. [35,36] experimentally
investigated this effect for EDLCs with electrodes made of pitch-
derived and viscose-based carbons in both aqueous and organic
electrolytes. The authors systematically measured the CV curves
for these carbon electrodes featuring different specific surface area
and pore size. They observed the hump for carbon electrodes with
small pore size in electrolytes with large ion size. Thus, they spec-
ulated that the “available active surface becomes fully saturated with
ions” before reaching the maximum potential. Then, the current
began to decrease even as the potential further increased. However,
there is still no clear and definitive explanations to this observed
phenomenon. In addition, to the best of our knowledge, no stud-
ies have attempted to elucidate this question using physics-based
numerical simulations.

This paper aims to develop a model for simulating electric dou-
ble layer capacitors by accounting for transport phenomena in both
the electrode and the electrolyte under large potential and with
concentrated electrolyte solutions. It also aims to provide physi-
cal interpretations of CV measurements used to determine electric
double layer capacitance.

2. Background

2.1. Cyclic voltammetry

In CV measurements, the electrode surface potential is imposed
to vary periodically and linearly with time as,

 s(t) =
{
 min + vt for 2(n − 1)t0 ≤ t < (2n − 1)t0 (a)
 max − v [t − (2n  − 1)t0] for (2n − 1)t0 ≤ t < 2nt0 (b)

(1)

where v is the scan rate in V/s, n(= 1, 2, 3, . . .)  is the cycle number,
and t0 = ( max −  min)/v is half the cycle period. It represents the

time for the surface potential to vary from its minimum ( min) to
its maximum ( max) values or versa vice. Here, �  =  max −  min is
referred to as the “potential window”. The charge per unit surface
area (or surface charge density) qs accumulated at the electrode
surface during one cycle can be found by integrating the current
density js (in A/m2) at the electrode surface with respect to time as
[3,13–17,23],

qs = 1
2

∫ 2nt0

2(n−1)t0

jsdt = 1
2

∮
js
v
d (2)

Then, the capacitance per unit surface area (or specific capacitance)
can be estimated from CV measurements as [3,14–17],

Cs = qs
 max −  min

(3)

2.2. Numerical simulations of cyclic voltammetry

Numerous studies have simulated CV measurements of
electric double layers. These simulations were based on
either equivalent RC circuit models [13,37–39] or the classi-
cal Poisson–Nernst–Planck (PNP) model [2,40–42]. However, these
models suffer from severe limitations. First, the classical RC circuit
models inherently neglects ion diffusion and non-uniform ion
concentration in the electrolyte [43–46].  These models may  not be
valid for EDLCs under large electric potential and electrolyte con-
centration [43–47].  Second, the PNP model neglects the finite size
of ions and treated as point-charges [45,46,48,49]. This assumption
breaks down when either the electrolyte concentration c∞ or the
electric potential is large [46,48,49].  Therefore, the PNP model is
invalid for practical EDLCs with typical electrolyte concentration
larger than 1 mol/L and electric potential larger than 1 V. Moreover,
the effects of electrodes were typically neglected in simulating CV
measurements using the PNP model [2,40–42]. However, studies
have demonstrated that the electrode electrical conductivity
significantly affected the charging performance of EDLCs [50–54].

Efforts have been made in recent literature to account for the
effect of finite ion size in modeling ion transport in concentrated
electrolyte solutions under large electric potential [45,48,49].  For
example, Kilic et al. [48] derived a modified PNP (MPNP) model valid
for binary and symmetric electrolytes under large electrolyte con-
centration and electric potential. The authors added an excess term
in the expression of the electrochemical potential to account for the
finite ion size [45,48,49].  However, to the best of our knowledge,
no studies have simulated CV measurements for electric double
layers under large electrolyte concentrations and electric poten-
tial other than by using RC circuit models [2,13,37–41]. Given the
limitations of the latter, it is important to develop a model that
can simulate CV measurements under practical conditions and
account for the presence of the electrode in simulating the charg-
ing/discharging of EDLCs. This model will be useful to identify the
important parameters affecting the performance of EDLCs and to
elucidate the electrochemical processes involved.

This paper aims to develop a model for simulating the electric
double layer dynamics in CV measurements while simultaneously
accounting for transport phenomena in both the electrode and the
electrolyte. It also aims (i) to identify the dimensionless parame-
ters that govern the CV measurements, (ii) to provide a physical
interpretation of the shape of CV curves, and (iii) to investigate
the effect of the electrode electrical conductivity on the predicted
double layer capacitance. The dynamics of the electric double layer
forming near a planar electrode in aqueous electrolyte solutions
during CV measurements was  simulated as a function of scan rate.
A modified PNP model with a Stern layer [45,46,48,49] was  used
while simultaneously accounting for the electrode. The results were
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compared with analytical expressions for the capacitances under
equilibrium conditions.

3. Analysis

3.1. Schematics and assumptions

Fig. 1 shows the schematic of the computational domain used
to simulate a planar electrode of thickness Le immersed in an elec-
trolyte solution. The region of electrolyte solution consists of two
layers corresponding to (1) a Stern layer of thickness H near the
electrode surface and (2) a diffuse layer beyond. A time-dependent
electric potential  s(t) was prescribed at the electrode surface
(x = − Le) and was zero far away from the electrode surface (x = Li).
The electrode thickness Le and the length of the electrolyte domain
Liwere specified to be Le = 0 or 100 nm and Li = 80 nm,  respectively.
Here, the length Li corresponded to half of the distance between
the anode and the cathode. Both the electric potential and the elec-
trolyte concentration remained unchanged at the middle plane
(x = Li) when Li was much larger than the double layer thickness
[43,55–57].  Thus, it sufficed to simulate only half of the domain by
imposing zero electric potential and bulk electrolyte concentration
c∞ at x = Li. In addition, the electric double layer thickness decreases
with increasing electrolyte concentration [1,10–12,48,49].  Increas-
ing the value of Li by a factor of two was found to have no effect
(i) on the predicted specific capacitance under equilibrium condi-
tions and (ii) on the capacitance Cs and js versus  s curves retrieved
from CV simulations at low scan rates defined by Eqs. (3) and (12),
respectively. However, the values of Cs predicted at large scan rates
were found to decrease with increasing Li. In addition, the js versus
 s curves predicted at large scan rates became more asymmetric
as Li increased as discussed in Section 4.4.  These can be attributed
to the fact that the charge storage took longer as it could not follow
the fast variation in the electric potential under large scan rates
when the electrolyte domain length Li increased [43,46,55].

To make the problem mathematically tractable, the following
assumptions were made: (1) anions and cations had the same effec-
tive diameter and diffusion coefficient which were assumed to be
constant and independent of electrolyte concentration [48,49,58],
(2) the electrolyte dielectric permittivity was constant and equals
to that of water, (3) isothermal conditions prevailed through-
out the electrode and electrolyte, (4) advection of the electrolyte
was assumed to be negligible, (5) the ions could only accumulate
at the electrode surface and could not diffuse into the elec-
trode, i.e., there was no ion insertion, and (6) the specific ion
adsorption due to non-electrostatic forces were assumed to be
negligible.

3.2. Dimensional analysis and formulation

The local electric potential  (x, t) in the electrode was governed
by the Poisson equation [59–65].  In the absence of the electric cur-
rent caused by redox reactions [assumption (5)], it is expressed as
[61–65],

∂
∂x

(
�e
∂ 
∂x

)
= 0 for − Le ≤ x < 0 (4)

where �e is the electrical conductivity of the electrode material
expressed in S/m. Moreover, the local electric potential  (x, t) and
ion concentrations ci(x, t) at time t and location x in the electrolyte
solution were computed by solving the MPNP model with a Stern
layer for large electrolyte concentration [45,46,48,49].  For binary
and symmetric electrolytes, the valency is such that z1 = − z2 = z
and the bulk ion concentration is given by c1∞ = c2∞ = c∞. Then,

assuming identical diffusion coefficient D1 = D2 = D, the MPNP
model with Stern layer can be written as [45,46,48,49],

∂

∂x

(
�0�r

∂ 

∂x

)
=

{
0 for 0 ≤ x < H (a)
eNAz(c1 − c2) for x ≥ H (b)

∂ci
∂t

= ∂

∂x

(
D
∂ci
∂x

+ ziD

RuT
Fci
∂ 

∂x
+ �Dci

2c∞ − �(c1 + c2)
∂(c1 + c2)

∂x

)
for x ≥ H (c)

(5)

where ci(x, t) is the local molar concentration of ion species “i” (i = 1,
2) while �0 and �r are the free space permittivity (�0 = 8.854 × 10−12

F/m) and the relative permittivity of the electrolyte solution,
respectively. The absolute temperature is denoted by T, e is the ele-
mentary charge (e = 1.602 × 10−19 C), NA is the Avogadro’s number
(NA = 6.022 × 1023 mol−1) while F and Ru are the Faraday con-
stant (F = eNA sA/mol) and the universal gas constant (Ru = 8.314
JK−1mol−1), respectively. The packing parameter is defined as
� = 2a3NAc∞ where a is the effective ion diameter. It represents the
ratio of the total bulk ion concentration to the maximum ion con-
centration cm = 1/NAa3 assuming a simple cubic packing [45,49,66].
Therefore, � should not be larger than unity for the model to be
physically acceptable [45,49,66].  Eqs. (5b) and (5c) reduce to the
classical Poisson–Nernst–Planck model when � = 0 [45,48,49].  Note
that in Refs. [45,48,49],  the Stern layer was accounted for via a
boundary condition relating the potential drop across the Stern
layer and the potential gradient at the Stern/diffuse layer interface.
Here, the electric potential in the Stern layer was  solved explicitly.
In fact, these two  approaches are equivalent for planar electrodes
[45,46,48,67].

Moreover, the surface electric potential  s(t) expressed by Eq.
(1) was  imposed, i.e.,

  =  s(t), at x = −Le (6a)

The electric potential and current density were continuous across
the electrode/electrolyte interface located at x = 0 nm so that [68],

 |x=0− =  |x=0+ and − �e
∂ 
∂x

∣∣
x=0− = −�0�r

∂2
 

∂x∂t

∣∣
x=0+ (6b)

Similarly, the electric potential and displacement were continuous
across the Stern/diffuse layer interface located at x = H [10,69,46],

 
∣∣
x=H− =  

∣∣
x=H+ and �0�r

∂ 
∂x

∣∣
x=H− = �0�r

∂ 
∂x

∣∣
x=H+ , (6c)

In addition, the mass flux vanishes for both ion species at the elec-
trode surface since there is no ion insertion [assumption (5)]  planar
electrodes [45,46,48,49],

D
∂ci
∂x

+ ziD

RuT
Fci
∂ 
∂x

+ �Dci
2c∞ − �(c1 + c2)

∂(c1 + c2)
∂x

= 0, at x = H

(6d)

Far away from the electrode surface, the electric potential and ion
concentration are such that,

 (x = Li, t) = 0 and ci(x = Li, t) = c∞, (6e)

Finally, the initial conditions are given by,

 (x, t = 0) = 0 and ci(x, t = 0) = c∞, for 0 ≤ x ≤ Li (6f)

Note that, when Le = 0 nm,  Eqs. (4)–(6) correspond to simulations
without accounting for the presence of the electrode.

The following scaling parameters were introduced to make the
formulation dimensionless,

 ∗ =  

 max −  min
, x∗ = x

Li
, t∗ = tD

L2
i

, c∗
i

= ci
c∞
, j∗s = js

2zeNADc∞/Li
(7)
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Then, the governing Eqs. (4)–(6) were transformed into dimension-
less form as,

∂
2
 ∗

∂x∗2
= 0 for − Le/Li ≤ x∗ < 0 (a)

RuT/zF

 max −  min

(
�D
Li

)2
∂

2
 ∗

∂x∗2
=

{
0 for 0 ≤ x∗ < H/Li (b)
1
2

(c∗
1 − c∗

2) for x∗ ≥ H/Li (c)

∂c∗
i

∂t∗
= ∂

∂x∗

(
∂c∗
i

∂x∗ + RuT/zF

 max −  min
sgn(zi)ci

∂ ∗

∂x∗ +
�c∗
i

2 − �(c∗
1 + c∗

2)

∂(c∗
1 + c∗

2)

∂x∗

)
for x∗ ≥ H/Li (d)

(8)

The associated dimensionless boundary and initial conditions [Eqs.
(6)] became,

 ∗(t∗) = �3t
∗, at x∗ = −Le/Li (9a)

 ∗
∣∣
x∗=0− =  ∗

∣∣
x∗=0+ and

�e( max −  min)/Le
2zeNADc∞/Li

Le
Li

∂ ∗

∂x∗

∣∣
x∗=0− =  max −  min

RuT/zF

(
�D
Li

)2
∂

2
 ∗

∂x∗∂t∗

∣∣
x∗=0+

(9b)

 ∗
∣∣
x∗=(H/Li )

− =  ∗
∣∣
x∗=(H/Li )

+ and
∂ ∗

∂x∗

∣∣
x∗=(H/Li )

− = ∂ 
∗

∂x∗

∣∣
x∗=(H/Li )

+ , (9c)

∂c∗
i

∂x∗ + RuT/zF

 max −  min
sgn(zi)ci

∂ ∗

∂x∗ +
�c∗
i

2 − �(c∗
1 + c∗

2)

∂(c∗
1 + c∗

2)

∂x∗ , at x∗ = H/Li (9d)

 ∗(x∗ = 1, t∗) = 0 and c∗i (x
∗ = 1, t∗) = 1, (9e)

 ∗(x∗, t∗ = 0) = 0 and c∗i (x
∗, t∗ = 0) = 1, for 0 ≤ x∗ ≤ 1 (9f)

Here, four key dimensionless numbers were identified in Eqs. (8)
and (9) as

�1 = RuT/zF

 max −  min
, �2 = �D

Li
, �3 = vL2

i
/D

 max −  min
, and

�4 = �e( max −  min)/Le
2zeNADc∞/Li

(10)

where �1 represents the ratio of thermal potential (RuT/zF) and the
potential window in CV measurements. The dimensionless num-
ber �2 = �D/Li is the ratio of Debye length and the thickness of
electrolyte layer while �3 is the dimensionless scan rate. Here,
the Debye length for symmetric electrolytes is defined as �D =
(�0�rRuT/2e2z2N2

Ac∞)1/2 [1,10–12]. The dimensionless number �4
represents the ratio of the characteristic current densities in the
electrode and in the electrolyte.

Note that the thermal voltage RuT/F can also be used as a char-
acteristic potential in the electric double layers. This has been
done frequently to scale the electric potential in the electrolyte
[43–45,48,49,57,66]. However, RuT/F is not a characteristic poten-
tial in the electrodes since the governing equation for the electric
potential [Eq. (4)] is independent of temperature. By contrast,
the potential window ( max −  min) is a realistic and important
parameter in the CV measurements and thus was  used as the char-
acteristic potential in the present study. It is interesting to note
that when RuT/F is used to scale the electric potential, the asso-
ciated set of dimensionless numbers, denoted by �1

′ to �4
′, is a

combination of �1 to �4 given by Eq. (10), namely, �1
′ = 1/�1,

�2
′ = �2, �3

′ = �3/�1, and �4
′ = �1�4. Thus, both approaches

are consistent with one another and lead to the same dimensionless
numbers.

3.3. Constitutive relations

In order to solve Eqs. (8) and (9),  the electrode conductivity
�e and electrolyte properties �r, z, c∞, a and D along with the
temperature T and the surface potential  s(t) are needed. The elec-
trical conductivity of activated carbons is on the order of 10−6

to 102 S/m [50,53].  Here, the electrode electrical conductivity was
taken as �e = 10 or 0.01 S/m. The present study focuses on aque-
ous electrolyte solution at room temperature so that T = 298 K with

�r = 78.5 [70]. The effective ion diameter and diffusion coefficient
were taken as a = 0.66 nm [58] and D = 2 × 10−9 m2/s [70], respec-
tively, while the valency was  z = 1. These values correspond to
solvated ions such as K+ and Cl− in aqueous solutions [58,70]. The
electrolyte concentration was  chosen as c∞ = 1.0 mol/L correspond-
ing to typical values in actual EDLCs. In addition, the Stern layer
thickness H was  approximated as the radius of solvated ions, i.e.,
H = a/2 = 0.33 nm [1,11,12]. Moreover, in the surface electric poten-
tial  s(t) [Eq. (1)],  max was varied from 0.3 to 0.5 V while  min = 0.0
V. The case of  max = 0.5 V corresponds to a typical potential differ-
ence of 1.0 V between the anode and the cathode typical of aqueous
EDLCs.

Finally, a parametric study was carried out for scan rate v rang-
ing from 102 to 109 V/s to explore the limiting behaviors of electric
double layers. These scan rates were several orders of magnitude
larger than those encountered in CV measurements of actual EDLCs
with mesoporous electrodes which typically range from 0.001 to
200 V/s [5,18–22]. The difference was due to (i) the small electrode
thickness Le and the small electrical resistance of planar electrodes
compared with that of mesoporous electrodes and (ii) the small
electrolyte thickness Li and thus the small ionic resistance [Eq.
(14)] compared with that in actual EDLCs. A parametric study was
also carried out for other values of diffusion coefficient, namely,
D = 2 × 10−10 to 2 × 10−7 m2/s.

3.4. Method of solution and data processing

The models were solved using the commercial finite element
solver COMSOL 4.1. The capacitance under equilibrium conditions
and the capacitance retrieved from CV simulations were computed
as follows.

3.4.1. Capacitance under equilibrium conditions
The capacitance under equilibrium conditions corresponds to

the time-independent surface potential, i.e.,  s(t) =  max. Then, the
Stern and diffuse layer specific capacitances CSts and CDs are defined
by dividing the surface charge density [11,60] qs(x) = �0�rE(x) by
their respective potential difference [1,67,69]. Here, E(x) =|−  d /dx|
is the norm of the local electric field. The capacitances CSts and CDs
of planar electrodes assuming constant electrolyte properties and
accounting for the finite ion size are given by [1,49,66,67,69],

CSts = �0�r
H

(11a)

CDs = 2zeNAc∞�D
 D

√
2
�

log

[
1 + 2� sinh2

(
ze D
2kBT

)]
(11b)

where  D =  (H) is the electric potential computed at the Stern
layer/diffuse layer interface x = H. Here, it was obtained by solving
the steady-state equilibrium modified Poisson–Boltzmann (MPB)
model at surface potential  dc and electrolyte concentration c∞
[48,49,66,67].  Then, the total specific capacitance Cs under equi-
librium conditions was calculated using the series formula as
[1,67,69],

1
Cs

= 1

CSts
+ 1
CDs

(12)

Numerical convergence study was  performed as discussed in Refs.
[46,67]. The maximum mesh size was  specified to be 0.01 nm at the
electrode surface and 1 nm in the rest of the domain.

3.4.2. Simulating CV measurements
CV measurements were simulated by numerically imposing the

periodic surface electric potential given by Eq. (1).  The dimension-
less governing Eqs. (8) were solved along with the boundary and
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initial conditions given by Eqs. (9).  The corresponding transient
surface current density was estimated as [57,59,60,71–76],

j∗s (t
∗) = �4

Le
Li

∂ ∗

∂x∗
∣∣
x∗=0− = �1

(
�D
Li

)2 ∂2
 ∗

∂x∗∂t∗
∣∣
x∗=0+ (13)

Simulations of CV measurements were run for at least 5 periods
(i.e., t ≥ 10t0) to ensure the current density had reached its station-
ary and periodic states. Then, the surface charge density qs(t) was
estimated by Eq. (2) and the specific capacitance Cs was  computed
using Eq. (3).  The numerical convergence criterion was defined
such that the maximum relative difference in the retrieved value
of Cs was less than 1% when (1) reducing the mesh size by a fac-
tor five, (2) dividing the time step by five, and (3) running the
CV simulations for 5 more periods. The time step was  imposed to
be �t  ≈ t0/1000 = ( max −  min)/1000v. Note that this time step
decreased with increasing scan rate v and was several orders of
magnitude smaller than the characteristic time for diffusion L2

i
/D.

In addition, further reduction in the time step below the Debye
relaxation time �2

D/D was also found to have no effect on the pre-
dicted values of js and Cs. The mesh size was the smallest at the
electrode surface due to large potential gradient and then gradually
increased. The maximum mesh size was specified to be 0.001 nm at
the electrode surface and 1 nm in the rest of the domain. The total
number of finite elements was less than 400 for all cases simulated
in the present study.

3.4.3. Validation
The numerical tool was  validated based on three equilibrium

and transient cases reported in the literature. First, the equilibrium
electric potential profile in the diffuse layer predicted by solving the
MPB  model was validated against the exact solution for planar elec-
trodes [10,11,69] with �r = 78.5, c∞ = 0.01 and 0.001 mol/L, � = 0, and
 D = 0.1 V. Second, the computed specific capacitances for the Stern
and diffuse layers obtained from the MPB  model were validated
against Eqs. (11a) and (11b) for (i)  s = 0.1 V, c∞ = 0.01 mol/L, and
a = 0.66 nm as well as (ii)  s = 0.5 V, c∞ = 1 mol/L, and a = 0.66 nm.
Third, the transient ion concentration and electric potential pro-
files predicted by solving the PNP and MPNP models with constant
surface potential were compared with the numerical solutions
for planar electrodes reported in Ref. [48]. Comparison was  made
against the reported values of ci(x, t) and  (x, t) for a wide range of
packing parameter � and dimensionless potential (zF D/RuT) [48].
Good agreement was obtained between our results and reported
values for all cases considered.

4. Results and discussion

4.1. Dimensional analysis

Fig. 2(a) shows the predicted current density js versus surface
potential  s (js −  s curves) obtained from CV simulations for three
cases featuring different values of T, Li, a, c∞, D, v, and  max as
summarized in Table 1. However, the dimensionless numbers for
all cases were identical, namely, �1 = 19.47, �2 = 0.0038, �3 = 64,
and �4→ ∞.  Results were obtained by numerically solving the
MPNP model with a Stern layer [Eqs. (8) and (9)] without elec-
trode, i.e., Le = 0 nm.  Fig. 2(a) shows that the predicted js −  s curves

Fig. 2. Predicted (a) js versus  s curves and (b) j∗s versus  ∗
s curves from CV simu-

lations for three cases with parameters given in Table 1. Results were obtained by
numerically solving the MPNP model with a Stern layer [Eqs. (8) and (9)] without
accounting for the electrode (Le = 0 nm) with �1 = 19.47, �2 = �D/Li = 0.0038, �3 = 64,
and  �4→ ∞.

were significantly different for these three cases. However, Fig. 2(b)
demonstrates that the dimensionless j∗s −  ∗

s curves overlapped
after using the scaling parameters defined by Eq. (7).  Overall, these
results demonstrate that (i) the scaling parameters defined by Eq.
(7) and the dimensional analysis for CV simulations were valid and
(ii) the double layer charging dynamics near planar electrodes in
CV measurements was governed by four dimensionless numbers,
i.e., �1, �2, �3, and �4 given by Eq. (10).

4.2. Effect of scan rate

Fig. 3(a) and (b) shows the numerically predicted j∗s −  ∗
s curves

from CV simulations for dimensionless scan rate �3 ranging from
0.64 to 64,000. The results were obtained by solving the MPNP
model with a Stern layer [Eqs. (8) and (9)] without the elec-
trode (Le = 0 nm). The dimensionless numbers �1, �2 and �4 were
identical to those used to produce Fig. 2(b). Fig. 3(a) and (b) demon-
strates that the magnitude of the current density j∗s increased
significantly with increasing dimensionless scan rate �3. This can

Table 1
Parameters in simulations without accounting for the electrode (Le = 0 nm or �e→ ∞) and such that �1 = 19.47, �2 = 0.0038, �3 = 64, and �4→ ∞.

T(K) Li(nm) a(nm) c∞(mol/L) D(m2/s) v(V/s)  max (V)

Case 1 298 80 0.66 1.0 2×10−9 107 0.5
Case  2 270.9 88 0.726 0.751 1.25×10−9 4.70×106 0.455
Case  3 248.3 96 0.792 0.579 2×10−10 5.79×105 0.417
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Fig. 3. Predicted j∗s versus  ∗
s curves from CV simulations for dimensionless scan rate

ranging from (a) �3 = 0.64 − 64 and (b) �3 = 640 − 64000. Results were obtained by
numerically solving the MPNP model with a Stern layer [Eqs. (8) and (9)] without
accounting for the electrode (Le = 0 nm)  with �1 = 19.47, �2 = 0.0038, and �4→ ∞.

be attributed to the fact that a fast change in the surface potential
resulted in a large local electric field and thus a large current den-
sity according to Eq. (13). In addition, a “hump” was  observed in
the j∗s −  ∗

s curve for �3 = 64 shown in Fig. 3(a). The hump disap-
peared when further increasing �3 and the j∗s −  ∗

s curve became
“leaf-like” for �3 = 640 as shown in Fig. 3(b). This is typical of EDLCs
at large scan rates corresponding to large resistance to ionic cur-
rent [4,5,30,34,77].  These trends are similar to those experimentally
observed for EDLCs made of porous carbons [4,5,30,34,77].  More-
over, the predicted j∗s became nearly linearly proportional to the
imposed surface potential  ∗

s for �3 > 6400. In these cases, the
electric double layer behaved as a pure resistor [4].

Fig. 4 shows the slope of the js −  s curves as a function of dimen-
sionless scan rate �3 ranging from 640 to 6.4 × 106. The model and
other parameters were identical to those used to produce Fig. 3(b).
It is evident that the slope of js −  s curves increased with increas-
ing �3 and gradually reached a constant plateau for �3 ≥ 6400. It
is interesting to note that this plateau corresponds to the conduc-
tance of an electrolyte solution with ionic conductivity �i (in S/m)
and thickness Li given by [72,73,78,79],

S  = �i
Li

= 1
Li

F2

RuT

2∑
i=1

z2
i Dici∞ (14)

This result confirms that the predicted electrolyte ionic conductiv-
ity was indeed equal to the theoretical value when ignoring the
electrode contribution to the resistance.

Fig. 4. Slope of the predicted js versus  s curves from CV simulations as a function of
dimensionless scan rate �3. Results were obtained by numerically solving the MPNP
model with a Stern layer [Eqs. (8) and (9)] without accounting for the electrode
(Le = 0 nm)  with �1 = 19.47, �2 = 0.0038, and �4→ ∞.

4.3. Effect of diffusion coefficient

Fig. 5(a) shows the specific capacitance Cs retrieved from CV
simulations using Eq. (3) as a function of scan rate v ranging from
102 to 109 V/s. Three values of ion diffusion coefficient were used,
i.e., D = 2 × 10−10, 2 × 10−9, or 2 × 10−8 m2/s. The model and other
parameters were identical to those used in Case 1 and summa-
rized in Table 1. Fig. 5(a) demonstrates that Cs was constant and
independent of diffusion coefficient D for scan rate v smaller than
a critical value and decreased rapidly beyond. This critical scan
rate increased with increasing ion diffusion coefficient. For scan
rates larger than a critical value, ion diffusion becomes a limiting
factor in charge storage. Note that the scan rate v in CV measure-
ments on mesoporous EDLCs typically ranged from 10−3 to 200 V/s
[5,30,34,77]. The scan rate for planar electrodes considered here
was  larger due to the small electrical resistance compared with
that of mesoporous electrodes.

Fig. 5(b) shows the specific capacitance Cs shown in Fig. 5(a) but
plotted as a function of dimensionless scan rate �3. It is evident
that all the curves now collapsed on a single line for the three dif-
ferent values of diffusion coefficient. Moreover, two regimes can be
identified in Fig. 5(b). First, for �3 < 1, ion transport is fast enough to
follow the variation in the electric potential  s(t) and the retrieved
specific capacitance Cs is independent of scan rate and ion diffu-
sion. In these cases, Cs was equal to Cs = 87.5 �F/cm2. This value was
identical to the specific capacitance under equilibrium conditions
predicted by Eqs. (11) and (12). Second, for �3 > 1, ion diffusion was
the limiting phenomenon for charge storage and Cs decreased with
increasing scan rate. Note that similar behavior was also observed
in simulating double layer charging dynamics for electrochemical
impedance spectroscopy (EIS) in our previous study [46]. However,
unlike CV simulations, the capacitance retrieved from EIS predic-
tions did not match the capacitance under equilibrium conditions
even at small frequencies [46]. This suggests that CV measure-
ments should be preferred to EIS when measuring the capacitance
of EDLCs.

4.4. Interpretation of the hump in CV curves

Fig. 6(a) shows the predicted j∗s −  s curves from CV simula-
tions for three values of potential window, i.e., �  = 0.3, 0.4, and
0.5 V. Results were obtained by solving the MPNP model with a
Stern layer [Eqs. (8) and (9)]  without the electrode (Le = 0 nm). Other
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Fig. 5. Predicted specific capacitance Cs from CV simulations as a function of (a) scan
rate  v and (b) dimensionless scan rate �3. Results were obtained by numerically
solving the MPNP model with a Stern layer [Eqs. (8) and (9)] without accounting for
the electrode (Le = 0 nm). The diffusion coefficient D was  chosen as D = 2 × 10−10 to
2  × 10−8 m2/s while �1 = 19.47, �2 = 0.00380, and �4→ ∞.

parameters were identical to those used for Case 1 summarized in
Table 1. It is evident that j∗s reached the maximum value at about
 s = 0.2 V for all three curves and then decreased for larger surface
potential. Thus, a hump was observed around  s = 0.2 V typical of
experimental cyclic voltammetry measurements [4,28–31,35].

Here, the hump was not due to “electrolyte starvation”  as sug-
gested in Ref. [23] since the electrolyte concentration was large,
i.e., c∞ = 1 mol/L. Moreover, redox reactions were not responsible
for the observed hump, as suggested in Refs. [25–34],  since only
electrostatic phenomenon was accounted for in the present study.
Finally, we simulated symmetric electrolytes with identical ion
diameter and diffusion coefficient for both cations and anions. Thus,
the hump was not due to “difference of diffusion capability between
solvated anions and cations in the electrolyte”  as proposed in Ref.
[32].

To physically interpret the observed hump in js −  s curves,
Fig. 6(b) shows the corresponding anion concentration c2 at the
electrode surface x = 0 nm as a function of surface potential for the
same cases considered in Fig. 6(a). The maximum ion concentra-
tion cm = 1/NAa3 due to finite ion size (Section 3.2) was  also plotted
in Fig. 6(b). It is evident that the surface anion concentration c2
increased rapidly with increasing potential up to  s = 0.2 V. This
regime corresponded to the increase of current density js shown
in Fig. 6(a) where it reached a maximum at  s = 0.2 V correspond-
ing to the crest of the hump. For  s > 0.2 V, the anion concentration
asymptotically approached its maximum value cm. Then, the ion

Fig. 6. Predict (a) j∗s versus  s and (b) c2(x = 0) −  s curves determined from CV sim-
ulations for three values of potential window, i.e.,  max − min = 0.3, 0.4, and 0.5 V.
Results were obtained by numerically solving the MPNP model with a Stern layer
[Eqs. (8) and (9)] without accounting for the electrode (Le = 0 nm) for v  = 107 V/s,
D  = 2 × 10−9 m2/s, and c∞ = 1 mol/L.

accumulation near the electrode surface became slower as the
electric potential increased. This, in turn, resulted in the decrease
in the current density js (Fig. 6(a)). Overall, these results demon-
strate that the hump observed experimentally in CV curves for
EDLCs can be attributed to the saturation of ion concentration at
the electrode surface. This is expected to be valid for relatively
large pores or particles so that the effect of electrode curvature
is negligible [67,80–83].  In fact, using the equilibrium modified
Poisson–Boltzmann model, we have shown that the areal capac-
itance of spherical particles arranged in SC, FCC, and BCC structures
and larger than 100 nm was nearly identical to that of a pla-
nar electrode [83,67]. These results and interpretation appear to
support those proposed in Refs. [35,36] based on experimental
results for large electrolyte concentrations. In addition, a hump
was  also observed in the predicted js −  s curves for small elec-
trolyte concentration c∞ = 0.05 or 0.1 mol/L (not shown) but at
much smaller scan rates than those for larger concentrations. Then,
for mesoporous electrodes, the hump observed under small elec-
trolyte concentrations could be also attributed to the saturation
of ion concentration in addition to “electrolyte starvation”. How-
ever, the morphology of mesoporous electrodes can significantly
affect the charging and discharging of EDLCs [5,18–22]. There-
fore, more detailed and systematic simulations accounting for
three-dimensional electrode morphology with nanosize pores are
essential to further understand the charging performance of meso-
porous EDLCs.
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Fig. 7. Plots of (a) js versus  s and (b) qs versus dimensionless time t/2t0 predicted
from CV simulations for three values of ion diffusion coefficient, i.e., D = 2 × 10−9,
2  × 10−8, and 2 × 10−7 m2/s. Results were obtained by numerically solving the MPNP
model with a Stern layer [Eqs. (8) and (9)] without accounting for the electrode
(Le = 0 nm)  for v = 107 V/s and c∞ = 1 mol/L.

Finally, Fig. 7(a) shows the js −  s curves predicted for three dif-
ferent values of ion diffusion coefficient, i.e., D = 2 × 10−9, 2 × 10−8,
or 2 × 10−7 m2/s. The potential window was �  = 0.5 V. The model
and other parameters were identical to those used to generate
Fig. 6(a) and (b). Fig. 7(a) shows that the hump was  observed in
the js − s curve for small diffusion coefficient D = 2 × 10−9 m2/s.
However, the hump disappeared when increasing the ion diffu-
sion coefficient to D = 2 × 10−8 and 2 × 10−7 m2/s. In addition, the
js −  s curves became nearly symmetric along the line of zero cur-
rent density js = 0 A/m2. It is interesting to note that Lin et al. [21,22]
observed a similar trend for EDLCs made of TiC-derived carbons
with pore diameter ranging from 0.68 to 1.0 nm in organic elec-
trolytes. The authors attributed the symmetry of CV curves to the
reduction in “steric hindering” of ions in large pores, i.e., smaller
electrolyte ionic resistance [21,22].  Here, the symmetry in the CV
curves can be attributed to the fact that the ion transport can
respond nearly instantaneously to the variation in electric poten-
tial for large ion diffusion coefficient. This, in turn, leads to smaller
ionic resistance according to Eq. (14).

To justify this interpretation, Fig. 7(b) shows the correspond-
ing transient surface charge density qs(t) = �0�rEs(t) as a function
of dimensionless time t/2t0 corresponding to results shown in
Fig. 7(a). It also shows the imposed surface potential  s(t). It is
evident that the surface charge density qs(t) responded nearly
instantaneously to the surface potential  s(t) for large diffusion
coefficient D = 2 × 10−8 and 2 × 10−7 m2/s. However, there was a
lag between qs(t) and  s(t) for small ion diffusion coefficient
D = 2 × 10−9 m2/s. This confirms that the ion transport was  unable

Fig. 8. Slope of the js versus  s curves predicted from CV simulations as a function
of  dimensionless scan rate �3 for �e→ ∞,  �e = 10, and 0.01 S/m, respectively. Results
were obtained by numerically solving the MPNP model with a Stern layer [Eqs. (8)
and  (9)] accounting for the electrode with Li = 80 nm and Le = 100 nm.

to follow the fast variation of surface potential for small diffusion
coefficients. In practice, EDLC electrodes are made of mesoporous
materials. Then, a large effective ion diffusion coefficient would
be beneficial for improving the charging performance and power
density of EDLCs. Note that decreasing the electrolyte thickness Li
was  found to have the same effect on the predicted js −  s curves
(Fig. 7(a)) and on qs versus t/2t0 curves (Fig. 7(b)) as proportionally
increasing the ion diffusion coefficient (not shown). Thus, these
results justified the choices of the characteristic length Li and the
characteristic time for diffusion L2

i
/D [Eq. (7)]  in our dimensional

analysis.

4.5. Effect of the electrode

Previous simulations did not account for the electrode.
These simulations corresponded to electrode with zero thick-
ness Le = 0 nm or infinite electrical conductivity �e→ ∞.  If taking
�e = 10 S/m and Le = 100 nm,  the magnitude of the predicted j∗s was
found to decrease by a factor 2 (not shown) compared with results
obtained without electrode (Fig. 3(a)). This was due to the increase
in the overall electrical resistance of the system.

Fig. 8 shows the slope of the js −  s curves from CV simula-
tions as a function of dimensionless scan rate �3 for three cases
with or without electrode, namely, (i) �e→ ∞ S/m (or Le = 0 nm), (ii)
�e = 10 S/m and Le = 100 nm,  and (iii) �e = 0.01 S/m and Le = 100 nm.
Other parameters were identical to those used to generate Fig. 3(a).
Results for the limiting case of �e→ ∞ were taken from Fig. 4. Fig. 8
demonstrates that the slope of js −  s curve was dominated by the
electrode when its conductivity was small (e.g., �e = 0.01 S/m). For a
relatively large electrode conductivity (e.g., �e = 10 S/m), the slope
corresponded to the effective conductance of the electrode and
electrolyte in series expressed as (L/�)eff = Li/�i + Le/�e.

Finally, Fig. 9 shows the predicted specific capacitance Cs from
CV simulations as a function of dimensionless scan rate �3 for the
three cases considered in Fig. 8. Here again, the value of Cs retrieved
from CV curves was constant and equal to Cs = 87.5 �F/cm2 for
�3 smaller than a critical value which depended on �e. Then, it
was  identical to the specific capacitance under equilibrium con-
ditions predicted by Eqs. (11) and (12) and was  independent of
the electrode electrical conductivity �e. Beyond the critical dimen-
sionless scan rate �3,cr, predicted values of Cs decreased rapidly
with increasing �3. In addition, �3,cr increased significantly with
increasing electrode electrical conductivity �e. Fig. 9 established
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Fig. 9. Predicted specific capacitance from CV simulations as a function of dimen-
sionless scan rate �3 for three cases corresponding to �e→ ∞,  �e = 10, and 0.01 S/m.
Results were obtained by numerically solving the MPNP model with a Stern layer
[Eqs. (8) and (9)] accounting for the electrode with Le = 100 nm.

that the electrode electrical conductivity does not affect the dou-
ble layer capacitance retrieved from CV measurements at low scan
rates. However, it significantly affects the measured capacitance at
large scan rates which reflects the charging rate performance of
EDLCs.

5. Conclusions

This paper presented numerical simulations of cyclic voltam-
metry measurements for determining the electric double layer
capacitance near a planar electrode in aqueous electrolyte solu-
tions. For the first time, a modified Poisson–Nernst–Planck model
accounting for the Stern layer was used to simulate the transient
double layer dynamics under large electrolyte concentration and
electric potential while simultaneously accounting for the elec-
trode electrical conductivity. A dimensional analysis was  also first
performed for CV measurements based on the model. The following
conclusions can be drawn:

1. Four dimensionless numbers were identified to govern the elec-
tron and ion transport in the charging dynamics of electric
double layers for planar electrode during CV measurements,
namely,

�1 = RuT/zF

 max −  min
, �2 = �D

Li
, �3 = vL2/D

 max −  min
,

�4 = �e( max −  min)/Le
2zeNADc∞/Li

2. For electrodes with large radius of curvature, the hump observed
in CV curves was due to the saturation of ion concentration at
the electrode surface as the electric potential increased.

3. The predicted EDL capacitance from CV simulations was constant
and equal to the capacitance under equilibrium conditions for
dimensionless scan rate �3 < 1.

4. The electrode had no effect on the EDL capacitance measured at
scan rates smaller than a critical value.

The model developed here can be readily extended to simu-
late the charging/discharging of mesoporous EDLCs by accounting
for the three-dimensional electrode architecture [83,84].  In fact,
the above governing equations and boundary conditions remain
valid for mesoporous electrodes as long as continuum theory is

valid. The latter has been examined in the literature [85–88] and
is typically accepted when the pore diameter is larger than 3–5 nm
[85–88]. Then, the model can be used to identify the optimum elec-
trode architecture to achieve maximum capacitance and charging
performance.
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