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In many materials processing and manufacturing situations
such as steel, aluminum, ceramics, and glass, gas bubbles can
form in liquid and solid phases. The presence of such bubbles
affects the thermophysical properties and radiation character-
istics of the two-phase system and hence the transport phe-
nomena. This paper presents a general formulation of the
radiation characteristics of semitransparent media containing
large gas bubbles (bubble radius is much larger than the
wavelength of radiation). Sample calculations for the spectral
absorption and extinction coefficients and single scattering
albedo of soda–lime silicate glass containing bubbles are
discussed. Particular attention is paid to the effect of the
volumetric void fraction and the bubble size distribution.
Results clearly show that the presence of bubbles strongly
affects the radiation characteristics of the semitransparent
media containing entrapped gas bubbles, particularly if bub-
bles, void fractions, and the spectral absorption coefficient of
the continuous phase are small.

I. Introduction

IN MANY materials processing and manufacturing situations such
as steel, aluminum, ceramics, and glass, gas bubbles can form in

liquid and solid phases. The presence of such bubbles affects the
thermophysical properties and radiation characteristics of the
two-phase system and hence the transport phenomena. In glass-
melting furnaces, for example, a large number of bubbles are
formed by chemical reactions during melting of the batch and the
thermal decomposition of refining agents. Bubbles that are large
enough rise at the surface of the glass melt while small bubbles are
trapped in the flowing molten glass. The quality of glass products
is degraded if gas bubbles and unfused silica grains remain in the
molten glass as it is being pulled from the furnace.2,3 The quality
of the glass produced is significantly affected by the flow pattern
and the temperature of the glass melt. Both depend strongly on the
heat transfer from the combustion space to the batch and to the
molten glass. The high temperatures and the oxidizing environ-
ment in the furnace make experimental measurements very diffi-
cult and unreliable. Therefore, numerical simulations constitute
appropriate alternatives for better design and control of the
glass-melting furnaces. General models for predicting the flow and
the temperature fields have been reviewed by Viskanta.14 All the
models use the Rosseland diffusion approximation for radiative
heat transfer in the molten glass. Recently, Cheong et al.4

questioned this assumption and showed that the diffusion approx-
imation for radiative transfer is not recommended when the depth
of the glass layer is less than 0.5 m. Instead, they suggested the use
of the P-1 approximation not only for shallow glass melt layers but
also for deep ones.

The analyses reported in the literature have neglected the
presence of numerous gas bubbles of different sizes in the melt that
may affect the radiation heat transfer. The presence of the bubbles
will affect the radiation characteristics of the glass melt since the
radiation is scattered by the bubbles. Approximate and rigorous
treatements of radiative transfer in glass require spectral radiation
characteristics of glass melt which contains gas bubbles. There-
fore, it is of particular interest to understand the effect of bubbles
on the radiation characteristics of the molten glass in order to
better predict radiation heat transfer in glass-melting furnaces, and
improve the glass quality and the energy efficiency of the
processes. The objective of this work is to assess the effect of the
bubble radius, the bubble size distribution, and the void fraction on
the radiation characteristics of glass containing spherical gas
bubbles with different bubble size distributions and to gain
understanding of their importance on radiative transfer in glass.

II. Analysis

Consider heat transfer within a horizontal layer of continuous
condensed phase containing bubbles as shown in Fig. 1. In general,
convection (due to the motion of bubbles), conduction, and
radiation heat transfer are present and should be considered. We
further assume that the continuous condensed phase is a solid or a
slowly moving liquid and is essentially isothermal. Then, the first
two modes of heat transfer can be safely neglected in comparison
to heat transfer by radiation. When gas bubbles are moving with
the liquid phase, a time-averaged void fraction and bubble size
distribution should be used. In addition, we assume the following:
(1) all bubbles are spherical, (2) the scattering of a single bubble
is not affected by the presence of its neighbors (independent
scattering); and (3) the radiation field within the liquid layer is
incoherent (i.e., scattering centers are randomly distributed with
zero-phase correlation). Then, radiative transfer within an absorb-
ing, emitting, and independently scattering medium is governed by
the integrodifferential equation expressed in dimensionless optical
coordinates:10,15
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Here, ŝ is the local spatial coordinate unit vector, �̂ is a
line-of-sight direction, and Ib� is Planck’s blackbody function. The
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spectral optical thickness �� and single scattering albedo �� are
defined, respectively, as
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where 
�, ��, and �� (

� � ��) are the absorption, scattering,
and extinction coefficients, respectively. The scattering phase
function ��(ŝ,�̂	3�̂) represents the probability of scattering of
the radiation from a beam propagating in the direction �̂	 to the
direction �̂, and it is normalized such that
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Equation (1) indicates that the extinction, absorption, and scatter-
ing coefficients together with the scattering phase function and the
single scattering albedo are major parameters of the radiation
transfer. Thus, the following subsections of the paper are devoted
to characterization of the continuous phase layer with dispersed
gas bubbles and to the development of detailed models for its
effective radiation characteristics.

Let m�
d 
 n�

d � ik�
d and m�

c 
 n�
c � ik�

c be the spectral complex
indices of refraction of the dispersed phase (i.e., gas bubbles), and
of the continuous phase, respectively. The following sections
present the formulations for predicting the spectral radiation
characteristics of glass containing monodispersed and polydis-
persed bubbles.

(1) Prediction of Spectral Radiation Characteristics for
Monodispersed Bubbles

We assume here that all the bubbles entrapped in the glass melt
have a uniform radius a. Then, the effective extinction coefficients
(due to absorption and scattering) and the scattering phase function
for the layer can be expressed as7
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where Qabs(a), Qsca(a), and Qext(a) denote the absorption, scatter-
ing, and extinction efficiency factors and scattering phase function,
respectively, for a sphere of radius a, while the superscripts “d”
and “c” refer to the dispersed and the continuous phase, respec-
tively. NT is the total number of bubbles per unit volume, which
can be expressed as a function of the void fraction fv and of the
foam and continuous densities, �f and �c, respectively:
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3

4�a3 �1 �
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Moreover, for independent scattering, the phase function in a cloud
of uniform bubbles ��(�) is the same as that for a single particle
�(a,�);10 it is also the same for a bubble cloud, i.e.,

����� � ��a,�� (9)

Note that the absorption coefficient of the continuous phase 
�
c in

Eq. (5) can be calculated from the imaginary part (k�
c) of the

complex index of refraction (m�
c) as


�
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where �0 
 �/c0 
 1/(n�
c�) is the wavenumber of the wave with a

frequency � and phase velocity equal to the speed of light in a
vacuum, c0.

(2) Spectral Radiation Characteristics for Polydispersed
Bubbles

Figure 1 shows a schematic diagram of layer of continuous
condensed phase containing bubbles of different sizes. In glass
melt these bubbles may be generated during the batch fusion and
fining reactions.3 Suppose that all bubbles are spherical (in the
case of distorted bubbles one can define an equivalent sphere
which preserves the gas volume fraction) and their size (radius a)
distribution is given by the so-called modified gamma function
(Ref. 10, pp. 393–94):

n�a� � Aa� exp(�Ba�) �0 � a � �� (11)

The distribution function vanishes at a 
 0 and a 3 � and it
reaches its maximum at the bubble radius amax 
 (�/�B)1/�. The
four constants A, B, �, and � are taken to be positive and real, and
they must be determined from measurable quantities such as the
total number of bubbles per unit volume,
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and the bubble density (i.e., the total volume of bubbles per unit
volume or the bubble volume fraction) is given by
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Here, �(z) is the gamma function (
�0
� e�ttz�1 dt), and it is

tabulated by Abramowitz and Stegun.1 Note also that the constants
� and � are usually chosen to be integers.

Fig. 1. Schematic of the idealized liquid layer containing bubbles and the
coordinate system.
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In the present case, we also assume that all bubbles have the
same optical properties throughout the layer. This assumption is
valid even if the gas composition in the bubbles changes as the
bubbles rise and gases diffuse in and out of the bubbles. Indeed,
the absorption of radiation by the gas phase is proportional to the
bubble pressure and size whereas scattering depends mainly on the
interfacial area. The pressure inside large bubbles is relatively
small while that for small bubbles is large but the optical path is
small. Thus, whether the bubbles are small or large, the gases
contained in the bubbles have little effect on the transfer of
radiation. Furthermore, the bubble size distribution function n(a) is
assumed to be known; future work on predicting the density
function of bubbles transported by the glassmelt convective
currents and growing and shrinking due to gas diffusion will be
reported soon. Then, the effective extinction coefficients (due to
absorption and scattering) and the scattering phase function for the
medium containing bubbles can be expressed as7
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In calculating the spectral coefficients, most of the computer
time is used in evaluating the efficiency factors Qabs, Qsca, and Qext

from the Mie theory. In multidimensional and spectral radiative
transfer analysis this type of approach becomes impractical.
Therefore, it is desirable to have simple approximations for the
efficiency factors. The changes in the scattering pattern due to
changes in the bubble size should be accounted for in the
prediction of the radiation characteristics of the layer containing
bubbles. Figure 2 shows the different limiting cases in the �–�

domain where simple analytical expressions for Qabs(a), Qsca(a),
Qext(a), and �(a,�) are available in the literature. For spheres with
index of refraction close to 1, the �–� domain can be divided into
two limiting cases:13

(i) The Rayleigh–Gans scattering domain corresponds to a
near-dielectric sphere with (1) k � 0, (2) a refractive index of
refraction close to unity i.e., �m � 1� �� 1, and such that (3) the
phase lag suffered by the central ray that passes through the sphere
along a full diameter is small, i.e., � 
 2��m � 1� �� 1. Then,
reflectivity is negligible and the radiation passes through the
sphere unattenuated and unrefracted.13 The Rayleigh–Gans scat-
tering domain can itself be divided into two limiting cases namely,
� 3 0 (Rayleigh scattering) and � 3 � (“intermediate regime”).

(ii) The anomalous-diffraction domain is characterized by
� 3 � and m 3 1 corresponding to a straight transmission and
subsequent diffraction according to Huygens’ principle.13 The
anomalous-diffraction domain can also be divided into two limit-
ing cases, namely, � 3 0 (“intermediate regime”) and � 3 �
(“geometrical optics � diffraction regime”).

Note that the Rayleigh–Gans domain and the anomalous dif-
fraction domain overlap in the so-called “intermediate regime.”

The present work is concerned with relatively large bubbles and
wavelengths between 0.4 and 10 �m for which the anomalous
diffraction is valid. In this region of the �–� domain, the large gas
bubbles are relatively weak absorbers of radiation and mostly act
as the strong radiation scatterers. In this case, the approximate
analytical expressions for extinction (absorption and scattering)
efficiency factors for a weakly absorbing sphere of arbitrary size
can be used as derived by van de Hulst (see Ref. 13, p. 179),

Qext��	, m�� 2 � 4�cos �g�

�	 � �e�		 tan � g� sin ��	� g��

� 4�cos �g�

�	 �2

�cos �2g�� e�		 tan � g� cos ��	� 2g�� (18)

where �	 
 2(n � 1)� 
 2(n � 1)(2�a/�) and g 
 arctan [k/(n �
1)] are the van de Hulst’s normalized size and absorption param-
eters, respectively, such that �	d tan (g) gives the energy absorbed
along the axial ray within the sphere. Because of the assumptions
of the van de Hulst’s theory, the expression overestimates the
extinction factor for small spheres and underestimates it for larger
spheres. To correct this, Deirmendjian5 proposed to use a correc-
tion factor (1 � Di). The approach was remarkably successful in
improving accuracy of extinction coefficient defined by Eq. (18),
and the specific expressions for Di can be found in Ref. 5 (pp.
29–30). The absorption and scattering contributions to the extinc-
tion efficiency factor of a single gas bubble are given by the
following asymptotic formulas (Ref. 5, p. 35):

Qabs��	, m�� 1 �
e�2		 tan � g�

�	 tan �g�
�

e�2		 tan � g� � 1

2��	 tan �g��2
(19)

Qsca��	, m�� Qext��	, m�� Qabs��	, m� (20)

respectively.
Comparison of the absorption and scattering efficiencies gen-

erated using the approximate expressions given by Eqs. (19) and
(20) with numerical results obtained from the exact Mie theory
(Ref. 5, pp. 30–32) have demonstrated the power of this approach,
especially when the precise directional scattering pattern and
polarizing properties are not desired. Specifically, the results
obtained via the corrected van de Hulst’s formula (1 � Di)Qext are
accurate within about �0.05Qext for a wide range of sphere sizes
and indices of refraction. Note that the magnitude of the error
increases with an increase in a value of the real part (n�

d) of the
complex index of refraction for both absorbing and nonabsorbing
spheres (Ref. 5, p. 32). Of course, if the complex index of
refraction of the continuous phase (m�

c) lies within accuracy limits
of the van de Hulst’s theory, then Eq. (19) can be successfully used
for calculation of the absorption efficiency factor Qabs

c (a) of the
sphere made of the continuous phase as well.Fig. 2. Survey of the limiting cases in the �–� domain.
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III. Results and Discussion

The input parameters for the model include the spectral index of
refraction and the spectral absorption coefficient of both the
continuous and dispersed phases along with the bubble size
distribution and the total number of bubbles per unit volume NT or
the void fraction fv. Clear soda–lime silicate glass (window glass)
is used for the sample calculations, and the spectral variation of the
real (n�

c) and imaginary part (k�
c) of its refractive index (m�

c 
 n�
c

� ik�
c) are taken from the literature.11 The gas mixture contained

inside the gas bubbles is transparent to the incident radiation and
its complex index of refraction (m�

d) is assumed to be independent
of the wavelength and equal to 1.003 � i � 1.0  10�10. In this
section we review the different scattering domains for which
simple analytical expressions for the extinction efficiency factors
exist. Then, the absorption and extinction coefficients as well as
the single scattering albedo of soda–lime silicate glass containing
monodispersed and polydispersed bubbles with different size
distribution and different void fraction are calculated in the case of
anomalous diffraction (large bubbles). Finally, results giving the
apparent reflectance, transmittance and absorptance of glass layers
of different thickness are discussed.

(1) Model Validity for Glass Containing Bubbles
(A) Scattering Domains: In defining the limiting cases of the

Mie theory for which simple analytical solutions are known, we
used the qualitative criteria � �� 1 for Rayleigh–Gans scattering
and � !! 1 for anomalous diffraction. For our particular appli-
cation the different scattering regimes are delimited arbitrarily as
follows:

(i) Anomalous scattering approximation is assumed to be
valid for � 
 100. This condition leads to

a 

100�

2�
(21)

(ii) The Rayleigh–Gans scattering approximation is assumed
to be valid for � � 0.01. For the gas bubbles, this condition is
equivalent to

a �
�

400���n� � 1�2 � �k��
2 (22)

Note that unlike the index of refraction of the gas contained in the
bubbles, that of the soda–lime silicate glass depends on the
wavelength and must be accounted for in defining the scattering

domains. The Rayleigh–Gans scattering approximation can be
made when the condition expressed by Eq. (22) is valid for both
the dispersed and continuous phase.

(iii) A subdomain of the Rayleigh–Gans scattering approxi-
mation is the Rayleigh scattering assumed to be valid when � �
0.01 and � � 0.01. For the gas bubbles and glass spheres, these
conditions are expressed by Eq. (22) and

a �
�

200�
(23)

According to Eqs. (5) to (7) one needs to consider the absorp-
tion efficiency factor for both gas bubbles and the corresponding
glass spheres, and the scattering efficiency factor and the scattering
phase function for the gas bubbles in order to predict the effective
radiation characteristics of the glass slab containing bubbles.
Figure 3 indicates the theory or limiting cases to be used to predict
the extinction efficiency factors for both the glass spheres and the
gas bubbles in the wavelength-radius domain.

The above representation for the effective radiation character-
istics is valid only if the scattering by the ensemble of bubbles is
independent, i.e., scattering by one particle is not affected by the
presence of surrounding particles. Tien and Drolen12 presented a
scattering regime map which uses the size parameter (� 
 2�a/�)
and the volume fraction (fv) as the coordinate axis. They showed
that the dependent scattering effects may be ignored as long as fv
� 0.006 or c/� � 0.5. Assuming a cubic lattice of bubbles of
spacing p, the condition c/� � 0.5 can be expressed in terms of the
void fraction as fv � (32�/3)(a/�) 
 16�/3. Figure 4 shows the
maximum void fraction fv for independent scattering as a function
of the bubble radius a. It suggests that for bubbles larger than 1 �m
in diameter, independent scattering can be safely assumed.

From Figs. 3 and 4, one can conclude that for bubbles with a �
0.1 mm, the radiation characteristics of the glass layer can be
predicted from the anomalous diffraction theory. For bubbles less
than 1 nm in diameter, the same radiation characteristics of the

Fig. 3. Map of the scattering theories and approximations used for
determining the extinction efficiency factors of the soda–lime silicate
containing gas bubbles, i.e., Qabs, Qsca, and Qext in Eqs (5) to (7).

Fig. 4. Scattering regime map for independent and dependent scattering
due to spherical bubbles.

Table I. Major Characteristics of the Uniform Bubble
Size Distributions

Distribution a (mm)

NT (no./cm3)

fv 
 0.2 fv 
 0.4 fv 
 0.6

Uniform 1 0.2 5.97  103 1.19  104 1.79  104

Uniform 2 0.8 93.3 186.5 279.8
Uniform 3 1.6 11.7 23.3 35.0
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glass layer can be estimated from the Rayleigh–Gans scattering
theory. However, for bubbles having radii between 1 nm and 0.1
mm and/or if the void fraction is larger than 0.006, the use of the
Mie theory and/or the consideration of dependent scattering is
required for wavelengths between 0.4 and 10 �m, making the
computation of the apparent absorptance, reflectance, and trans-
mittance of the layer considerably more involved. Unfortunately,
undertaking the task of solving the Mie theory and/or accounting
for dependent scattering is beyond the scope of this work.

Therefore, only large bubbles for which the anomalous diffraction
theory and the independent scattering assumption are valid will be
considered further.

(B) Ranges of Interest: It can be shown8 that bubbles are
spherical if their radius a is small compared to the capillary length
lc (a �� lc) where the capillary length for gas bubbles surrounded
by liquid is defined as

lc � � 2�

��c � �d�g
(24)

Here, � is the surface tension (
300 mN/m), and �c (
2350 kg/m3

at around 1400 K9) and �d (
1.2 kg/m3) are the densities of the
molten glass and the air, respectively. For soda–lime silicate glass
the capillary length is about 4 mm. We assumed that bubbles are
spherical for bubble radii up to the capillary length lc/4 
 1 mm.

The spectral region where the thermal radiation is the most
important is considered. The wavelength interval from 0.4 to 10
�m is chosen since it covers nearly 88% of the thermal radiation
emitted by a blackbody at the source temperature of 5800 K and
94.5% at 1200 K. In summary, our study is restricted to the size
parameters (� 
 2�a/�) ranging from �min 
 0.0 to �max 

3.15  106 and a phase shift, � 
 2��m � 1�, that can take values
from 0 (�m � 1� �� 1 and � �� 1) to infinity (�m � 1� �� 1 and
� 3 �). The volume void fraction fv defined as the ratio of the
volume of gas to the total volume can vary between 0 and 0.74
corresponding to the maximum packing of spheres of uniform size,
provided that the assumption of dependent scattering is valid.

Fig. 5. Effect of bubble radius on the spectral absorption, extinction
coefficients, and single scattering albedo for soda–lime silicate glass with
fv 
 0.2.

Fig. 6. Effect of void fraction on the spectral extinction coefficient and
single scattering albedo for soda–lime silicate glass containing uniform
size bubbles 1 mm in diameter.
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(2) Radiation Characteristics of the Glass
Containing Bubbles

In this section we first discuss the effect of the void fraction and
of the bubble radius on the radiation characteristics of soda-lime
silicate glass containing bubbles of uniform size. Then, polydis-
persed bubble clouds are considered and the results on the effect of
their size distribution are presented.

(A) Uniform Distribution: Effect of Bubble Radius and Void
Fraction: As a practical example, the spectral absorption and
extinction coefficients as well as the single scattering albedo have
been predicted for clear soda–lime silicate glass containing mono-
dispersed bubbles for a volumetric void fraction of 0.2. Three
different radii a were considered—0.2, 0.8, and 1.6 mm. Note that
in the limiting case when fv
 0, i.e., for dense glass, the scattering
coefficient �� and the single scattering albedo �� vanish. Table I
summarizes the simulations for monodispersed bubbles and the
corresponding number of bubbles contained per cubic centimeter
of glass.

From Fig. 5 one can see that the presence of bubbles reduces the
absorption coefficient in the spectral region of 0.4 to 4.5 �m where
the absorption coefficient of the glass is relatively small. In this
same region, the extinction coefficient is strongly affected by the
presence and the size of the bubbles. The scattering is particularly
important for smaller bubbles and the single scattering albedo is
close to unity. This indicates that the radiative transfer is domi-
nated by scattering rather than by absorption for 0.4 � � � 4.5
�m. In the spectral region 4.5 to 10 �m, however, the absorption
coefficient of the dense glass is large and the presence and the size
of the bubbles have little effect of the effective absorption
coefficient of the glass layer. In other words, the scattering
coefficient is negligible compared with the absorption coefficient
and the radiative transfer is dominated by absorption.

Moreover, the absorption coefficient decreases significantly as
the void fraction increases and can be reduced by up to one order
of magnitude for void fractions fv varying from 0.2 to 0.6 (Fig. 6).
In contrast, the extinction coefficient and the single scattering
albedo increase as the void fraction or the number of bubbles

Fig. 7. Typical bubble size distributions as summarized in Table I for
fv 
 0.2.

Fig. 8. Effect of size distribution on the spectral absorption, extinction
coefficients, and single scattering albedo of soda–lime silicate glass with
fv 
 0.2.

Table II. Parameters and Major Characteristics of the Bubble Size Distribution Functions

Distribution � � A B

fv 
 0.2 fv 
 0.6

amax (mm) NT (no./cm3) amax (mm) NT (no./cm3)

Modified gamma 1 4 1 1.59 1010 80 0.5 116.4 0.5 349.2
Modified gamma 2 4 1 6.2 107 40 1.0 14.6 1.0 43.7
Modified gamma 3 8 1 8.22 1013 80 1.0 24.7 1.0 74.1
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increase. This can be explained by the fact that increasing the void
fraction increases the number of scatterers, while the absorption by
the two-phase mixture decreases.

(B) Effect of Bubble Size Distribution: So far, the bubble
size distribution was assumed to be uniform. However, in reality
bubbles entrapped in the glass melt are of different diameters.
Sample calculations were performed for the spectral radiation

characteristics of glass containing different bubble size distribu-
tions but with a constant void fraction. Table II summarizes the
conditions simulated while Fig. 7 shows the corresponding bubble
density functions. The effect of the maximum radius amax and of
� are assessed while the parameter � is taken to be unity (gamma
function). Figure 8 shows the absorption and extinction coeffi-
cients and the single scattering albedo for different bubble size
distributions at a void fraction of 0.2. Figure 9 illustrates the effect
of void fraction on the radiation characteristics for the first bubble
size distribution. In general, one can see that the bubble size
distribution has a strong influence on the extinction coefficient and
single scattering albedo of glass containing bubbles but very little
on the absorption coefficient. It is interesting to note that the void
fraction seems to affect the extinction coefficient significantly for
the wavelength range of 0.4 �m � �� 4.5 �m. Indeed, increasing
in the void fraction from 0.2 to 0.6 leads to an increase of the
extinction coefficient by a factor of 3 while the relative effect of
the distribution at fv 
 0.6 is similar to that at fv 
 0.2.

IV. Concluding Remarks

This paper has presented an analysis of radiative transfer in a
semitransparent glass layer containing gas bubbles with applica-
tion to glass processing and manufacturing. The results of sample
calculations performed lead to the following conclusions:

(1) For gas bubbles smaller than 10 �m in diameter and void
fractions larger than 0.006, the Mie theory should be used and/or
considerations of dependent scattering are required.

(2) For gas bubbles larger than 0.1 mm in radius the analysis
developed for glass foams by Fedorov and Viskanta6,7 can be
extended over the entire range of void fractions (from 0 to 0.74).

(3) Even small void fractions affect the total apparent radia-
tion characteristics of the glass layer containing large bubbles. The
effect of the void fraction is even more significant for thickner
layers and where the bubble size distribution is not uniform.
Therefore, in modeling the radiative heat transfer in glass melting
furnaces one should consider the effects of gas bubbles on the
radiation characteristics of the glass melt since bubbles are always
present in industrial glass melting furnaces where they exist in
large numbers.

(4) The model could be used as a nonintrusive method for
measuring void fraction and bubble size distribution in two-phase
flows by using infrared spectroscopy and inverse methods in
spectral regions where the liquid phase is weakly absorbing.

Finally, the radiation characteristics of fused quartz containing
bubbles have been recently determined from experimental mea-
surements of spectral bidirectional transmittance and reflectance
using an inverse method.16

Fig. 9. Effect of void fraction on the spectral extinction coefficient and
single scattering albedo for soda–lime silicate glass containing gas bubbles
for modified gamma distribution function 1.
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Nomenclature

a Bubble radius
c0 Speed of light under vacuum
D Deirmendjian’s correction factor
F Azimuth-averaged scattering phase function
fv Bubble void volume fraction
g Specific gravity or van de Hulst’s absorption parameter,

arctan [k�
d/(n�

d � 1)]
I Radiation intensity
Ib Blackbody radiation intensity
I0 Incident intensity of collimated radiation
Q Efficiency factor
k Imaginary part of the complex index of refraction
l Thickness of the slab
m Complex index of refraction, n � ik
NT Total number of bubbles per unit volume
n Real part of the complex index of refraction
r Reflectivity of the interface
ŝ Spatial coordinate vector
x Local depth of the slab (Fig. 1)

Greek symbols
� Size parameter, 2�a/�
� Extinction coefficient, Eq. (7)
� Surface tension

 Absorption coefficient, Eq. (5)
� Scattering coefficient, Eq. (6) or Stefan–Boltzmann

constant
� Wavelength of the incident radiation
� Wavenumber of the incident radiation, �/c0

� Frequency of the incident radiation
�̂ Line-of-sight direction
� Single scattering albedo, ��/(
� � ��)
� Effective scattering phase function, Eq. (9)
� Scattering phase function of the single bubble
" Azimuth angle
� Density or phase shift, 2�m � 1��
�	 van de Hulst’s normalized size parameter,

2(n � 1)�
# Scattering angle
� Optical depth, $0

x(
����) dx

Subscripts
� Refers to wavelength-dependent quantity
abs Refers to absorption
c Refers to continuous phase
d Refers to dispersed phase
ext Refers to extinction
sca Refers to scattering

Superscripts
d Refers to dispersed phase (gas bubble)
c Refers to the continuous phase
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