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The radiative properties of bubbles or particles embedded in an absorbing medium are investigated. We aim
first to determine the conditions under which absorption by the surrounding medium must be accounted for in
the calculation of the efficiency factors by comparing results from Mie theory and the far-field and near-field
approximations. Then, we relate these approximations for a single particle to the effective radiation charac-
teristics required for solving the radiative transfer in an ensemble of scatterers embedded in an absorbing
medium. The results indicate that the efficiency factors for a spherical particle can differ significantly from one
model to another, in particular for large particle size parameter and matrix absorption index. Moreover, the
effective scattering coefficient should be expressed based on the far-field approximation. Also, the choice of the
absorption efficiency factor depends on the model used for estimating the effective absorption coefficient. How-
ever, for small void fractions, absorption by the matrix dominates, and models for the absorption coefficient and
efficiency factor are unimportant. Finally, for bubbles in water, the conventional Mie theory can be used be-
tween 0.2 and 200 um except at some wavelengths at which absorption by water must be accounted for.
© 2006 Optical Society of America
OCIS codes: 290.0290, 030.5620, 260.2110, 010.0010, 290.4020.

1. INTRODUCTION

Light and radiation transfer in nonabsorbing media con-
taining particles has long been a subject of study. Appli-
cations range from combustion systems and packed or flu-
idized beds to atmospheric science and astronomy. In all
these cases, the conventional Mie theory’ that ignores the
absorption index of the continuous phase is used. How-
ever, when these scatterers are embedded in semitrans-
parent media the conventional Mie theory is no longer
valid.

Radiation transfer through semitransparent media
containing bubbles or particles is of interest in many
practical engineering applications ranging from remote
sensing of the ocean surface and fire fighting to materials
processing and colloidal systems in liquids or in the atmo-
sphere. For example, thermal emission data from the
ocean surface are used to retrieve wind speed and direc-
tion assuming a smoothly varying surface profile.>® How-
ever, under high wind conditions, the presence of break-
ing waves, foam patches, and bubbles affect the
emissivity of the ocean surface, which can lead to errors
in the retrieval of the wind speed and directions. More-
over, the cost and quality of nearly all commercial glass
products are determined by the performance of the glass
melting and delivery systems that strongly depend on
thermal radiation transfer through the glass foam layer
covering part of the molten glass.4 Light scattering by
bubbles has also been used to noninvasively monitor the
bubble dynamics in sonoluminescence.’® Finally, the per-
formance of bubble sparged photobioreactors can be
strongly affected by light scattering and/or absorption by
the bubbles and the bacteria or algae.9

Radiation transfer in heterogeneous media containing
bubbles or particles can be divided into four different re-
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gimes whether one considers a single scatterer or an en-
semble of scatterers and whether the matrix is nonab-
sorbing or absorbing at the wavelength of interest. A
detailed discussion of each regime is provided in the fol-
lowing sections. Special emphasis is given to absorbing
medium containing bubbles but unless otherwise men-
tioned, the results can be applied to absorbing spherical
particles.

2. CURRENT STATE OF KNOWLEDGE
A. Single Scatterer and Electromagnetic Wave Theory

1. Mie Theory

Mie theory1 describes the absorption and scattering of ra-
diation by a single spherical particle surrounded by a
nonabsorbing medium with arbitrary index of refraction
n. Then the absorption and scattering cross sections or ef-
ficiency factors of a particle of radius a for radiation with
wavelength \ depend on (i) the size parameter x=2ma/\,
(i1) the complex index of refraction of the particle m’'=n’
—ik’, and (iii) the complex index of refraction of the non-
absorbing surrounding medium m=n. The efficiency fac-
tors of scattering Qgﬁa(a), absorption QM (a), and extinc-

abs
tion Qg(t(a) are expressed as®
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abs(@) = Qu(@) - Q(a). 3)

Here, Re refers to the real part of the complex number
while the superscript M refers to the Mie theory. The Mie
coefficients a; and b; are expressed as'!

m' ¢} (nx)g;(m'x) — nei(nx)e;(m'x)
4= ) (4)
m' i (nx)@i(m'x) — ngi(nx) i (m'x)

. m' ¢;(nx) @/ (m'x) — ng;(nx)j(m'x) )
T m! g ¢} (m'x) - ng (nx)gim'x) |

where (p), o(p), {'(p), and ¢'(p) are the Riccati—Bessel
functions and their derivatives with respect to the argu-
ment p. Because the conventional Mie theory is valid only
for a spherical particle embedded in a nonabsorbing
medium, attempts were made to expand the theory to
an absorbing matrix based on either the far-field
approximation'?>™® or the near-field approximation.'®°

2. Far-Field Approximation
The far-field approximation is based on the asymptotic
form of the electromagnetic (EM) field in the radiation
zone far from the scatterer. Mundy et al.'? obtained the
particle’s efficiency factors by integrating the radiative
fluxes over a large sphere whose radius r is much larger
than the particle radius a (i.e., r>a) and whose center co-
incides with that of the particle. Thus, the integrating
sphere includes both the particle and the absorbing me-
dium. The author showed that the formulas of the Mie
theory [Eqgs. (1)-(5)] and the associated computer pro-
gram must be adapted for particles in a refracting and ab-
sorbing medium having an arbitrary complex index of re-
fraction m=n—ik.'? More precisely, the following changes
must be made to Egs. (1)—(5):

(1) The variables m’ must be replaced by the complex
quantities m=m'/m;

(i1) The variables nx must be replaced by the complex
quantities X=mx;

(ii1) The coefficient 2/(n
replaced by the coefficient

2x2) in Egs. (1) and (2) must be

k2 exp[- 2kx(r/a)]

FF _
T (nZ+ kD1 + (2kx — 1)exp(2kx)]’

(6)

where the superscript FF refers to the far-field approxi-
mation.

Thus, the scattering, absorption, and extinction effi-
ciency factors are functions of the sphere radius r. They
do not represent the efficiency factors of the particle
alone.!” Indeed, when the host medium is absorbing, the
scattered wave has not only been attenuated in magni-
tude but it has also been modulated as it reaches the ra-
diation zone.?’ Thus, for an observer in the radiation
zone, the particle’s inherent efficiency factors are coupled
with the absorption by the medium in an inseparable
manner. Note also that under certain conditions, the ex-
tinction efficiency factor can be smaller than the scatter-
1ng efﬁc1ency factor. Thus, if @ (a) can be defined as
Qabs( a)= Qext(a) QFF(a) a negative absorption efficiency

sca
factor can be obtained.
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Mundy et al. 12 also defined the so-called unattenuated
scattering and extinction efficiency factors for a sphere in
an absorbing medium by setting r=a in Eq. (6), making
the coefficient C*F independent of  and equal to

k2 exp(- 2kx)

FF _
T (n2+EY)[1 + (2kx - 1)exp(2kx)]’

(7)

On the other hand, when both kx<1 and k<n, Eq. (6)
simplifies to®!
FF 2
C" = —. 8

Then, under these conditions, the coefficient CFT is also
independent of the radius r.

Alternatively, the inherent scattering and absorption
properties of the particle can be calculated when the local
Poynting vector is integrated at the scattering particle’s
surface using the so-called near-field approximation.16719

3. Near-Field Approximation

This approach is based on the information of the EM field
at the particle surface. Fu and Sun,'” Sudiarta and
Chylek,l&19 and Lebedev et al.'® derived analytical ex-
pressions for the efficiency factors of absorbing spherical
particle in an absorbing medium,’

8mk? *
Qua(a) = A1+ (2kx - 1)exp(2kx):|2 %+ DIm(B)),
9
(@) = i i (2 + 1)Im(A))
Qabs A[1 + (2kx - 1)exp(2kx)] 2 J o+ DA,
(10)
Qext( ) Qabs(a) + Qsca(a) (1 1)

where Im refers to the imaginary part of a complex value
and the superscript NF refers to the near-field approxi-
megion. The complex coefficients A; and B; are expressed
as

* %
_lejP*eim'x) ¢ (m'"x) - |dj[*¢j (m"x)¢; (m x)

A 2mm’/\

, (12)

1200 (mx) ¢ (mx) = |b! 2L (max) & (mx)
Bj=|aj|§1mx{]m;cwm|/;|§jmxgj mx. 1)

Here, the asterisk denotes the complex conjugate, and the
coefficients aJ, bJ’ , c and d are expressed as'’

m' ¢/ (mx)g;(m'x) — me;(mx) ¢j (m'x)

= (14)
m'{ (mx)g(m'x) —m(mx)g;(m’ x)’

. m' @;(mx)¢j(m'x) — mej(mx)gp;j(m'x) (15)
7T m f(mx) @) (m'x) - mgj (mx)gi(m'x)
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m' g)(max) ) (max) - m' &} (max) ¢(mx)

¢ = , : s
m' {i(mx)g;(m'x) — m{; (mx)e;(m'x)

m'{;(mx)@;(mx) —m'{j(mx) ¢} (mx)
dj=—" , — . D
m' i (mx) g;(m'x) — m(mx) g} (m'x)

Note that when the matrix is nonabsorbing, i.e., m=n, the
above defined coefficients a; and b; are identical to a; and
b; defined in Egs. (4) and (5) for the conventional Mie
theory.

Therefore, this approach eliminates the ambiguity in
the definition of the extinction efficiency factor since the
formulas depend only on the complex refraction indices
and on the particle radius. The absorption, scattering,
and extinction efficiency factors derived from the near-
field approximation have been called inherent efficiency
factors.?’ The adjectives inherent, true,20 or actual'” have
been used interchangeably.

Finally, studies based on the near-field
approximation'” ™ have shown that, in the limiting case
of spheres much larger than the wavelength of radiation
and embedded in an absorbing host medium, the spectral
extinction efficiency factor Qgg(a) approaches unity as
diffraction can be neglected.'® These results contrast with
the case of large spheres in a nonabsorbing matrix where
the Mie theory predicts that Qg/,[{t(a) approaches 2.1%!! In
addition, the scattering efficiency factor Qgg(a) of a large
sphere in an absorbing medium approaches the reflectiv-
ity of the flat interface at normal incidence.'® The conver-
gence to these asymptotic limits was found to be much
faster for strongly absorbing matrices than for weakly ab-
sorbing ones. 1718

B. Multiple Scatterers and Radiation Transfer

Several studies have been concerned with photon trans-
port in nonabsorbing media containing an ensemble of
bubbles. Common approaches include (1) the diffusion ap-
proximation, (2) the Monte Carlo (MC) method, and (3)
the radiation transfer equation (RTE).

First, radiation transfer has often been treated as a dif-
fusion process accounting for multiple scattering
events.? %6 Durian and co-workers?? 22" performed ex-
perimental, theoretical, and numerical studies on the an-
gular distribution of the diffusely transmitted and back-
scattered light through various highly scattering media of
thickness much larger than the photon transport mean
free path. The authors found very good agreement be-
tween experimental data, the diffusion model, and ran-
dom walk simulations. The diffusion approximation has
also been used to simulate transient radiation transport
in a nonabsorbing foam layer.%’z8

Moreover, when the diffusion approximation is not
valid and both diffraction and interferences can be ne-
glected then, photons can be treated as particles and MC
simulations can be performed. For example, Wong and
Mengiic?® simulated depolarization of a collimated and
polarized light through nonabsorbing foams consisting of
large spherical bubbles by using a combined MC-ray trac-
ing approach as a means to characterize the foam mor-
phology. Finally, Tancrez and Taine®® simulated radiation
transfer in porous media consisting of overlapping (i)
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opaque particles embedded in a transparent fluid (e.g.,
packed beds) or (ii) transparent spheres in an opaque
solid (e.g., open-cell foams) by using MC simulations. The
authors proposed correlations for the effective radiation
characteristics of such media.

An alternative approach consists of treating heteroge-
neous media as homogeneous and solving the RTE by us-
ing some effective radiation characteristics. The latter
can be modeled based on first principle and/or measured
experimentally. Fedorov and Viskanta®'®? proposed a
model for the effective radiation characteristics of porous
media with various bubble size distributions and porosi-
ties and solved the RTE to obtain the transmittance and
reflectance of a layer of glass foams. The analysis was per-
formed for bubbles much larger than the wavelength of
radiation in the limiting case of anomalous diffraction.'®
Their model for the radiation characteristics was dis-
cussed in detail by Pilon and Viskanta®® for various po-
rosities and bubble sizes. In brief, the following models for
the effective absorption coefficient was proposed,31

Keff = K — Wf [Q?{S,m(a) - Qﬁs’m,(a)]azfl(a)da, (18)
0

where k and k¢ are the absorption coefficients of the ma-
trix and of the two-phase medium, respectively. The
bubble size distribution is denoted by f1(e) and is defined
as the number of bubbles per unit volume having radius
between a and a+da. The efficiency factors Qg{s’m(a) and
Q}:{)S (@) are computed for a sphere of continuous phase
(m) or dispersed phase (m’), respectively. They are esti-
mated using the asymptotic formulas (see Ref. 34, p. 35)
for anomalous diffraction derived from the Mie theory for
a sphere of radius a embedded in vacuum. On the other
hand, the scattering coefficient and the scattering phase
function were modeled following the conventional expres-
sions used for particulate media with a nonparticipating
matrix,n’35

Teff = Wf Qua(@)a’fi(a)da, (19)
0

D) = — | QY (@)d(a,0)a%i(@da, (20)

OeftJ ¢

where ¢ and O refer to the scattering phase functions of
a single and of an ensemble of scatterers, respectively.
The angle between the incident and scattered radiations
is denoted by ©. Here also, le\ga(a) is calculated based on
the anomalous diffraction approximation.

More recently, Dombrovsky?! questioned the validity of
the above model on the basis that Eq. (18) had not been
validated and that levéa(a) was estimated by using the
complex index of refraction of the dispersed phase m’ in-
stead of the ratio m’/m. To address this issue,
Dombrovsky?! suggested using the following model for
the effective absorption and scattering coefficients using

the far-field efficiency factors,

Keft =K+ f whe(@)a’fi(a)da, (21)
0
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Ooff = wf in(a)azfl(a)da- (22)
0

Moreover, the second term on the right-hand side of Eq.
(21) is “an additional absorption of radiation by particle”
that should be positive for particles absorbing more than
the matrix (i.e., £’ >k) and negative in the contrary (e.g.,
bubbles).?! Therefore, the presence of the bubbles embed-
ded in a semitransparent matrix reduces the effective ab-
sorption coefficient of the medium, i.e., kg=<«.

Finally, two practical questions remain unanswered
and are addressed in this paper: (1) Among all the above-
mentioned theories, which one should be used to estimate
the efficiency factors of a spherical scatterer in an absorb-
ing media? (2) What would be the expressions of the as-
sociated radiation characteristics needed to solve the
RTE? The present study aims first to determine the con-
ditions under which the absorption by the surrounding
medium must be accounted for in the calculation of the ef-
ficiency factors by comparing results from Mie theory and
the far-field and the near-field approximations for specific
absorbing media and particle or bubble size parameters.
Then it relates the far-field and near-field approximations
for a single particle to models for the effective radiation
characteristics required for solving the radiative transfer
in an ensemble of scatters embedded in an absorbing me-
dium.
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3. ANALYSIS

The assumptions used in this study include (1) all par-
ticles or bubbles are spherical, (2) the scattering behavior
of a single particle or bubble is not affected by the pres-
ence of its neighbors (independent scat‘cering),36 (3) the
radiation field within the continuous phase is incoherent
(i.e., scattering centers are randomly distributed with
zero-phase correlation), and (4) each phase is homoge-
neous and has uniform optical properties. Practically, the
assumption of independent scattering by wavelength-
sized and larger particles is satisfied when the particles
are randomly positioned and separated by distances
larger than four times their radius.?”

A. Difference between Far-Field and Near-Field
Approximations

This subsection compares the results for the different ef-
ficiency factors obtained by (1) Mie theory, (2) the far-field
approximation, and (3) the near-field approximation. The
results for the Mie theory were computed based on the
code provided by Bohren and Huffman.?® The same code
was adapted for the far-field approximation following the
suggestions by Mundy et al.'? reviewed in Section 2 and
using r=a. The code was successfully validated against
the efficiency factors reported by Mundy et al. 12 and by
Dombrovsky.?! Similarly, the code for the near-field ap-
proximation was kindly provided by Sun and was vali-
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Scattering, extinction, and absorption efficiency factors as functions of size parameters for a spherical bubble (m’'=1.0) embed-
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Fig. 2. Scattering, extinction, and absorption efficiency factors as functions of size parameters for an absorbing spherical particle
(m'=1.34-0.01i/) embedded in a medium with refractive index m=1.0-ik with £=0.0, 0.001, 0.01, and 0.05.

dated against Fu and Sun’s results.!” Here, the same situ-
ations as those explored by Fu and Sun!” were
investigated. In all cases, the series in Eqgs. (1), (2), (9),
and (10) were truncated and terminated when the sum-
mation index j was equal to the integer closest to x
+4x134239

Figure 1 shows the scattering, extinction, and absorp-
tion efficiency factors as functions of the size parameter x
for a nonabsorbing bubble (m’=1) embedded in an ab-
sorbing medium of refractive index m=1.34-ik with &
equal to 0, 0.001, 0.01, and 0.05. First, for nonabsorbing
matrix (£=0), Mie theory, the far-field, and the near-field
approximations gave identical results with @,,s(a)=0 and
R.ca(@)=Qcyi(a). In addition, the extinction efficiency fac-
tor converged to 2 as the size parameter tended to infinity,
corresponding to the well-known diffraction paradox.'

Moreover, Fig. 1 indicates that for bubbles in an ab-
sorbing matrix, the far-field efficiency factors are always
smaller than their near-field counterparts, and the differ-
ence increases as the matrix absorption index % increases.
Then, QaNbP;(a) is equal to zero while QFES(a) is negative for
all values of %, and, as a result, ngt(a) is smaller than

fg(a) and sometimes even negative. Using either ap-
proximation, both Qy..(¢) and Q.(a) decrease as k in-
creases. In addition, as the size parameter tends to infin-

ity, both Qgg(a) and Qg}z(a) converge to 1. In contrast,

Q¥ (a) and Q' (a) converge to 0.5 and 0, respectively. Fi-
nally, as k& increases, the asymptotic values are reached
for smaller size parameters.

The same comparison was performed for absorbing par-
ticles. Figure 2 shows the scattering, extinction, and ab-
sorption efficiency factors as functions of size parameter
for an absorbing particle having m’'=1.34-0.01; embed-
ded in an absorbing medium such that m=1.0-ik. Simi-
larly, Fig. 3 shows the results for a different particle and
matrix featuring m’=1.4-0.05 and m=1.2—-ik. In both
cases, k takes the values of 0.0, 0.001, 0.01, and 0.05. The
same conclusions as above can be drawn except for the
scattering efficiency factors. Indeed, as the size parameter
tends to infinity, Qé\g(a) and Qfg(a) converge to 1 for an
absorbing particle in a nonabsorbing matrix while they
both converge to zero when the matrix is absorbing. In ad-
dition, one can note that the efficiency factors are always
positive for the near-field approximation. In contrast, the
absorption and extinction efficiency factors obtained by
the far-field approximation can be negative if % is larger
than &’ as shown in Figs. 1 and 2 when £=0.05 and &’
=0.01. Note also that Qgﬁ(a) was found to be nearly inde-
pendent of the matrix absorption index k.

Furthermore, the relative differences between the far-
field and near-field approximations for the efficiency fac-
tors are shown in Fig. 4. They indicate that the relative
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difference increases as the absorption index % increases.
For a weakly absorbing matrix (£<0.001) and 1<x
<100, the predictions of the scattering efficiency factor
from the far-field approximation fall within 10% of that
from the near-field approximation under the conditions
tested. However, for small size parameters (x<1), the
relative difference in the scattering efficiency factor can
be significant. A similar trend was observed by Yang and
co-workers (see Fig. 3 in Ref. 20). This can be attributed
to the fact that (1) the scattering efficiency factor is small
(less than 0.1 for x<1) and therefore sensitive to numeri-
cal uncertainty and how the summations are performed,
and/or (2) the computation of the Riccati—Bessel functions
by forward recurrence is unstable.?® In addition, when the
absorption index of the medium is larger than that of par-
ticles, the extinction and absorption efficiency factors pre-
dicted by the far-field approximation can be negative
while those predicted by the near-field approximation are
always greater than zero. Note that (i) the relative differ-
ences in the extinction and absorption efficiency factors
can be larger than 100% when Qggs(a) and Qf;ﬂ(a) are
negative and (ii) the relative differences of the absorption
efficiency factor for bubbles (m’=1.0) are always unity
since QNE(a) is always zero.

Finally, the relative differences between Mie theory
and the near-field approximation for the efficiency factors
are shown in Fig. 5. They indicate that the relative differ-
ence in the absorption efficiency factors between Mie
theory and the near-field approximation is relatively

Vol. 23, No. 11/November 2006/J. Opt. Soc. Am. A 2789

small and less than 16%. However, there are large rela-
tive differences in the scattering and extinction efficiency
factors for matrices with large absorption index and/or for
large size parameters. Since the efficiency factors pre-
dicted by the far-field approximation are always smaller
than those predicted by the near-field approximation and
sometimes can be negative, the relative differences be-
tween Mie theory and the far-field approximation are
much larger than those shown in Fig. 5. Thus, one can see
that Mie theory deviates significantly from the near-field
and far-field approximations for matrices with large ab-
sorption indices and/or for large size parameters. Under
these conditions, the matrix absorption index cannot be
ignored in computing the efficiency factors. On the other
hand, for small values of x, the large relative difference is
due to numerical error and is unimportant for all practi-
cal purposes.

B. Application to Radiation Transfer

One of the main motivations in determining single par-
ticle efficiency factors is for radiative transfer calculations
that require both the cross sections and an accurate de-
scription of the phase matrix. Moreover, predicting radia-
tion transfer through heterogeneous media requires the
efficiency factors of the particle in the far field.2%*° Thus,
the inherent scattering efficiency factor obtained from the
near-field approximation by considering the EM field at
the particle surface cannot be used for modeling the effec-
tive scattering coefficient.?’ Indeed, it does not have the
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conventional meanings in that the corresponding cross
sections are not simply the products of these factors and
the projected area of the particle.?’

Moreover, Fu and Sun'” derived the scattering, absorp-
tion, and extinction efficiency factors based on the near-
field approximation while they obtained the scattering
phase function by using the far-field approximation. This
approach appears to be conceptually inconsistent. To ad-
dress this inconsistency, Yang et al.?’ used (i) the unat-
tenuated scattering efficiency factor chg(a) using Eq. (7),
(i1) the near-field inherent absorption efficiency factor
QaNES(a) since it represents absorption by the particle
alone, and (iii) the apparent extinction efficiency factor
defined as Qx(@)= Q" (a)+QNE(a). Then Q () is larger
than the scattering efficiency factor Q% (a) since QN (a)
is always nonnegative. This definition is consistent with
the scattering phase function and asymmetry factor de-
rived by Fu and Sun'” based on the far-field scattered
waves. It also overcomes the shortcoming of the far-field
approximation, where Q' (a) and/or Q' (a) could be
negrcltive.I%15

Recently, Fu and Sun*! extended this approach by sug-
gesting that an apparent absorption efficiency factor
needs to be introduced to take into account the nonexpo-
nential decay of the near-field scattered radiation in the
absorbing matrix. This approach is referenced by the su-
perscript NE. The nonexponential absorption can be
quantified by the difference between the actual and ap-
parent scattering efficiency factors. Thus, they defined an
apparent absorption efficiency factor given by41

NE _
abs —

NF

abs T (Qé\g - QSCI; . (23)

NE
ext

abs T @sca=®ext- Thus, the extinction of incident radia-
tion remains the same as QY defined by Fu and Sun.'
Consequently, the unattenuated (i.e., r=a) far-field
scattering efficiency factor and the far-field phase func-
tion seem to be the preferred approach for radiation
transfer calculations. However, there are three alterna-
tives for the apparent absorption efficiency factor: (i) the

unattenuated absorption efficiency factor fos(a) defined

The apparent extinction efficiency factor is then @
—QNE 4 QFF —QNF
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by Mundy et al.'? with the constant CFF given by Eq. (7),
(i1) the near-field absorption efficiency factor Qabs(a) given
by Eq (10), and (iii) the absorption efficiency factor
Q\E(a) given by Eq. (23).

The absorption efficiency factor to be used to estimate
the effective absorption coefficient will depend on the
model selected [e.g., Eq (18) or Eq (21)]. In Fedorov and
Viskanta’s model,31 abs(a) and @ bs,m(a) were calculated
by using the Mie theory in the anomalous diffraction
limit. This should be reconsidered and, among the above
three alternatives, @\-(a) should be used since it is al-
ways positive and nearly independent of the absorption of
the medium. Thus, when the absorption index of the me-
dium is greater than that of the scatterer (i.e., 2>£%") then
Qabs (@) >QNE(a) and Keff< k and vice versa. Moreover,
in Dombrovskys model,?! the absorption efficiency factor
is calculated by using Qabs(a) (Ref. 21) as it depends on
the medium properties and can be negative. Thus, when
the absorption index of the medium is greater than that of
the scatterer, Q' .(a)<0 and Kefr< k; otherwise, Qabs(a)
>0 and K'eff> K.

Finally, Qabs(a) is always positive since @ - -QFF (a)
=0 and @\E(a)=0, even for bubbles. Thus, it cannot be
used in comblnation with Eq. (21). In addition, the term

Qabs (@) Q absm (@) can be negative or positive depend-

abs

Vol. 23, No. 11/November 2006/J. Opt. Soc. Am. A 2791

ing not only on the absorption index of both phases but
also on the difference in scattering efficiency factors. For
example, it could be negative for bubbles and thus also
appear to be incompatible with Eq. (18). Then, a new
model for kg conceptually compatible with the definition
of QgLEs(a) should be developed.

C. Application: Radiation Characteristics of Water
Containing Bubbles

This subsection discusses the effective radiation charac-
teristics of water containing bubbles that are predicted by
the above models. The complex index of refraction of air
bubbles is equal to unity (m’=1). The refractive and ab-
sorption indices of water n and % over the spectral range
from 0.2 to 200 um are given in the literature.*?

1. Effective Scattering Coefficient

First, note that the expression for the effective scattering
coefficient proposed by Fedorov and Viskanta®! [Eq. (19)]
and by Dombrovsky®! [Eq. (22)] differ only by the choice of
the model for the scattering efficiency factor. As discussed
above, Q' (a) should be used. To simplify the problem, we
further assume that the air bubbles have the same ra-
dius. Thus, the effective scattering coefficient simplifies
as

—m'=1.0, m=1.34-Kk
~--m'=1.34-0.01i, m=1.0-ik
80 + m'=1.4-0.05i, m=1.2-ik

Relative difference (%)
|QNE(a) - QY (a)l/Ql(a)

0.1 1 10 10¢

—m=1.0, m=1.84-ik "
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factors as functions of size parameters.

Relative difference between Mie theory and near-field approximation for the scattering, extinction, and absorption efficiency
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Fig. 6. Effective scattering coefficients accounting (far-field approximation) for or neglecting (Mie theory) the matrix absorption of air
bubbles in water as functions of wavelength and bubble radius for void fractions f,=0.05, 0.4, and 0.74.

3fy

Tetr= EQSCB;(G) . (24)

Figure 6 compares the effective scattering coefficient
predicted by Eq. (24) (solid curves) with that predicted by
the Mie theory (assuming £=0) (dotted curves) as a func-
tion of wavelength for different void fractions and bubble
radii. For a given wavelength and bubble radius, the ef-
fective scattering coefficient increases with increasing
void fraction. For large wavelengths (>7 um), the effec-
tive scattering coefficient increases with increasing
bubble diameter. In addition, the relative error between
these two approaches is independent of the void fraction.
For wavelengths smaller than 2 um, the relative error is
less than 10%, while it can be larger than 50% for wave-
lengths at approximately 3, 6, 13, and 20 um correspond-
ing to peaks in the optical properties n and/or % of water.
Thus, for wavelengths beyond 2 um, neglecting absorp-
tion by water can cause large errors in the effective scat-
tering coefficient.

2. Effective Absorption Coefficient

Based on the two different models for the effective absorp-
tion coefficients proposed by Fedorov and Viskanta®! and
Dombrovsky?! and different expressions of @ ,s(a), the ef-
fective absorption coefficient accounting for the absorp-
tion by the matrix with monodispersed bubbles can be cal-
culated in two alternate ways,

3f,

Koty = K= [ Qui (@) = Qe (@], (25)
3f,

Kefrz = K+ —Qup(@), (26)
4a

where k=4wk/N is the absorption coefficient of water.
Four different bubble radii—a=0.01, 0.1, 1.0, and
10 um—and three different void fractions—f,=0.05, 0.4,
and 0.74—covering the range from bubbly flow to maxi-
mum packing of spheres of uniform size were investigated
over the spectral range from 0.2 to 200 um.
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Figure 7 compares the effective absorption coefficient
predicted by Eqs. (25) and (26) for monodispersed bubbles
of radius a=0.01 um for different void fractions. For
small void fractions, such as f,=0.05, the differences be-
tween these two models are small and the predicted effec-
tive absorption coefficient is close to the absorption coef-
ficient of water. Thus, even though QY (a) and Q'}.(a) are
significantly different, absorption by the matrix repre-
sented by « dominated the overall absorption of the com-
posite medium. In other works, k.= « for small void frac-
tion, and the model chosen for @, (a) is unimportant.
This was the case of the experimental measurements re-
ported by Baillis and co-workers*®** for fused quartz con-
taining bubbles with average radii of 0.64 mm and void
fraction of 4% in the spectral region from 1.67 to 3.5 um
where the quartz was weakly absorbing (k<10"%) and
kx<1.

However, when the void fraction increases, the differ-
ences become large (Fig. 7). Then the second term on the
right-hand sides of Egs. (25) and (26) dominates. Also,
Kefro is much smaller than k.. In addition, ks o is nega-
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tive for wavelengths at approximately 3 and 11-200 um
and void fraction of 0.74, which is physically unaccept-
able. Note that similar results have been found for other
bubble radii. Therefore, for large void fractions, the model
proposed by Dombrovsky21 may give nonphysical results.
On the other hand, «.s; was found to be always positive
even for large void fractions and various bubble radii as
illustrated in Fig. 8. Thus, the model proposed by Fedorov
and Viskanta®! using QEbF;(a) tends to give more physi-
cally acceptable results.

Moreover, the original model proposed by Fedorov and
Viskanta®! using Qg’is(a) for monodispersed bubbles was
expressed as

3f,
Koty = K= Qabe (@) - Qe (@] (27)

Considering the relative error between weg; and e 3 de-
fined as |Kefr3— Kefr 1|/ Kefr 3 @s a function of wavelength for
different void fractions and bubble radii establishes that
for f,=0.05 the relative error is less than 2% for all wave-
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Fig. 8. Effective absorption coefficients of monodispersed air
bubbles in water as functions of wavelength predicted by Eq. (25)
for /,=0.4 and 0.74 and various bubble radii.

lengths. Increasing the void fraction results in larger rela-
tive errors. For example, for f,=0.4, the relative error can
be as high as 20% at some wavelengths, and for f,=0.74 it
may exceed 80% for some combinations of wavelengths
and bubble radii. In practice, when the wavelength is less
than 1 um, the effective absorption coefficient is small
and does not significantly affect the radiation transfer
calculations.

4. CONCLUSIONS

This paper has investigated (i) the efficiency factors of
particles and bubbles embedded in an absorbing medium
and (ii) the effective radiation characteristics of a two-
phase mixture consisting of bubbles in an absorbing me-
dium. The efficiency factors predicted by the conventional
Mie theory and the far-field and near-field approxima-
tions were compared. The best approach for the radiation

J. Yin and L. Pilon

characteristics to be used in the radiation transfer equa-
tion was clarified and the following conclusions were
drawn:

1. Ignoring the absorption index of the matrix can re-
sult in significant error on the scattering and extinction
efficiency factors predicted by the conventional Mie
theory except when the host medium is nonabsorbing or
weakly absorbing. This is particularly true if the size pa-
rameter is large. Then the near-field and far-field approxi-
mations offer alternatives that should be used.

2. The efficiency factors for a spherical particle pre-
dicted by the far-field and near-field approximations can
be significantly different. This difference increases as the
matrix absorption index increases.

3. The effective scattering coefficient o.g should be ex-
pressed as a function of the far-field scattering efficiency
factor Qcha(a).

4. The choice of the absorption efficiency factor de-
pends on the model used for estimating the effective ab-
sorption coefficient.

5. For small void fractions, absorption by the continu-
ous phase dominates, and the choices of the model for ab-
sorption coefficient and the associated absorption effi-
ciency factor are unimportant.

6. For large void fractions, the models by Fedorov and
Viskanta®' and by Dombrovsky?! differ significantly from
one another. The model proposed by Fedorov and
Viskanta®! gives physically acceptable results, while that
by Dombrovsky21 can yield a negative absorption coeffi-
cient.

7. For most wavelengths between 0.2 and 200 um, the
absorption index of water can be neglected, and the con-
ventional Mie theory for nonabsorbing media can be used.
However, at some wavelengths, neglecting the absorption
of media results in large errors in the efficiency factors
and in the associated radiation characteristics.

Finally, note that the experimental data for media with
large volume fractions of scatters and/or for matrices with
relatively large absorption indices are still needed to vali-
date the above effective radiation characteristic models.
Alternatively, the rigorous approach developed by
Mishchenko?® based on Maxwell’s equations and the con-
cept of statistical electromagnetics could be extended to
particles in an absorbing medium and compared with so-
lutions of the RTE combined with one the above effective
property models.

APPENDIX A: NOMENCLATURE

1. Variables and Functions

a = Radius of particles or bubbles.

aj,bj,c;,d; = Mie coefficients.
a;,b;,c} ,dj'» = Coefficients in Egs. (12) and (13).
C = Coefficient.
f1 = Size distribution function of particles.
f, = Volume void fraction or porosity.
Im = Imaginary part of a complex number.

Jj = Index number.
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Re
X

Absorption index of the continuous phase.
Absorption index of the scatterer.
Complex refractive index of the continu-
ous phase, m=n—ik.

Complex refractive index of the scatterer,
m'=n'-ik’.

Refractive index of the continuous phase.
Refractive index of the scatterer.
Efficiency factor.

Distance to the particle center.

Real part of a complex number.

Size parameter, 27ra/\.

2. Greek Symbols

g 99 > x

®

3. Subscripts

eff
sca
abs
ext

4. Superscripts

Absorption coefficient.

Wavelength.

Scattering coefficient.

Scattering phase function of a single
bubble.

Scattering phase function of the continuous
phase containing polydispersed bubbles.
Angle between the incident and scattered
radiations.
Riccati—-Bessel functions.
Derivatives  of  the
functions.

Riccati-Bessel

Refers to the effective properties.
Scattering.

Absorption.

Extinction.

M = Refers to the Mie theory.
FF = Refers to the far-field approximation.
NF = Refers to the near-field approximation.
NE = Refers to the nonexponential decay model
(Ref. 41).
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