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Abstract—It is known that dynamic allocation of channels
and power in a frequency/time-division multiple access system
can improve performance and achieve higher capacity. Various
algorithms have been separately proposed for dynamic channel
assignment (DCA) and power control. Moreover, integrated
dynamic channel and power allocation (DCPA) algorithms have
already been proposed based on simple power control algorithms.
In this paper, we propose a DCPA scheme based on a novel
predictive power control algorithm. The minimum interference
DCA algorithm is employed, while simple Kalman filters are
designed to provide the predicted measurements of both the
channel gains and the interference levels, which are then used to
update the power levels. Local and global stability of the network
are analyzed and extensive computer simulations are carried out
to show the improvement in performance, under the dynamics of
user arrivals and departures and user mobility. It is shown that
call droppings and call blockings are decreased while, on average,
fewer channel reassignments per call are required.

Index Terms—Cellular land mobile radio, dynamic channel al-
location, Kalman filters, power control.

I. INTRODUCTION

W ITH THE ever-increasing need for capacity in mo-
bile radio systems, optimal allocation of resources in

nonuniform and nonstationary environments has become a great
challenge. The fundamental objective is to accommodate as
many users as possible, subject to complexity and quality of
service (QoS) requirements, on a limited available bandwidth,
by controlling undesired interactions among the users. One
major interaction is the cochannel interference that every user
generates for all other users which are sharing the same channel.
Various techniques have been developed to mitigate the effects
of cochannel interference. Some of these techniques, such as
sectorization and beamforming using smart antenna arrays, try
to suppress interference, while others, such as channel assign-
ment techniques, try to avoid strong interferers.

Another well-known technique is to adaptively control the
power levels of all the users in the network. The idea is to keep
the power level for every user at its minimum required level ac-
cording to the current channel conditions. This will eliminate
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unnecessary interference to other users and will also minimize
the power consumption for the user. Various power control al-
gorithms have been proposed in the literature [1]–[12].

Our first objective in this paper is to design a distributed
predictive power control algorithm. We try to obtain accurate
enough models for the slow variations in the channel gains and
the interference powers. We then design Kalman filters for every
user to obtain the one-step predicted values for both the inter-
ference level and the user’s channel gain from its intended base
station. We try to tune the filters for a typical mobile radio envi-
ronment and then conjecture and show through simulations that
the filters are indeed robust under a broad range of parameters
such as user velocities and shadowing correlation distances. The
predicted measurements from the Kalman filters are then used
in an integrator algorithm to update the power levels.

Another approach to mitigate the cochannel interference ef-
fects and increase the capacity is to avoid strong interferers by
dynamically assigning the channels to the users. Various cen-
tralized and decentralized dynamic channel assignment (DCA)
schemes have been proposed in the literature [13]–[16].

It is believed that an aggressive DCA scheme can make a fre-
quency/time-division multiple access (FDMA/TDMA) system
aninterference-limitedsystem, where the number of active users
is mostly limited by the interference that the users cause on
each other. On the other hand, power control schemes are known
to be especially effective for interference-limited systems. This
has initiated research on integrated distributed dynamic channel
and power allocation (DCPA) schemes [17]–[20]. In [17], a
pilot-based minimum interference DCA scheme is integrated
with a fast fixed-step power control algorithm, while fast fading
and user mobility effects are neglected. In [18], three different
types of minimum interference DCA algorithms are integrated
with a slow integrator power control algorithm. Pedestrian mo-
bility along with a low power update rate are considered, and it
is again assumed that the fast-fading effects are averaged out. In
[19], a simulation study has been performed to investigate the
joint effects of some simple signal-to-interference-plus-noise
ratio (SIR)-based and signal-level-based power control algo-
rithms along with a minimum interference channel reassign-
ment scheme. Fast-fading effects are again neglected, and low
power update rates are assumed.

Most DCPA schemes, however, only consider simple power
control algorithms. Moreover, except for [18] and [19], other
results neglect such effects as dynamics of user arrival or de-
partures, user mobility, and base station handoffs. Our main ob-
jective, in this paper, is to investigate the performance of our
predictive power control algorithm when it is integrated with a
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minimum interference DCA scheme. We set up a system-level
simulation platform, similar to the ones presented in [17] and
[18], to compare our predictive DCPA scheme with the one that
uses a simple integrator power control algorithm with no pre-
diction. Dynamics of user arrivals and departures, user mobility,
and base station handoffs are all considered in this study. Slowly
varying flat Rayleigh-fading effects are also considered in the
simulations.

The organization of the paper is as follows. In Section II,
we present the system model and review some of the results in
power control and DCA. In Section III, we elaborate on our pre-
dictive power control design. We explain how simple Kalman
filters may be designed and implemented in order to obtain the
predicted measurements of both the channel gains and the in-
terference powers. We also show that the presented predictive
power control algorithm satisfies the sufficient conditions for
global stability of the network. In Section IV, we describe in de-
tail our simulation models and, in Section V, we discuss the sim-
ulation results and compare the performance of our integrated
predictive DCPA algorithm with the corresponding algorithm
which uses no prediction. We show that, for a range of traffic
loads, the number of blocked calls and dropped calls are de-
creased under our predictive DCPA scheme. Moreover, on av-
erage, fewer number of channel reassignments are required for
every call, implying a more stable network. We will provide con-
cluding remarks in Section VI.

II. SYSTEM MODEL, DYNAMIC CHANNEL ASSIGNMENT, AND

POWER CONTROL

We consider a cellular system where the area under coverage
is divided into cells, and each cell has its own base station. All
users communicate with their assigned base stations through a
single hop. This is in contrast toad hocwireless networks where
there is no fixed infrastructure and multihop communication is
prevalent.

We focus on an FDMA/TDMA system and only consider
the cochannel interference among the users, i.e., no adjacent
channel interference is assumed. Specifically, we assume a
system-wide synchronization to the slot level so that each user
will experience interference only from the users which are
sharing exactly the same slot on the same carrier frequency.
This assumption implies that large enough guard times per
slot are assumed. We do not consider any blind slots in the
system, that is, we assume that any slot in a frame can be
used as a traffic channel. Blind slots can be avoided either by
appropriate structuring of the control channel or by assuming
that a call activity detection scheme is employed such that the
users can temporarily discontinue their transmission in their
active slots. Modifying the frame structure and considering
some slots as the blind slots should not have major effects on
our performance comparisons.

We focus on the uplink channel, i.e., the channel from mobiles
to base stations. Almost all the results and discussions, however,
could similarly be stated for the downlink channel. We assume a
fixed-power pilot (control) channel on the downlink. As we shall
see, this channel facilitates DCA and can be used by the mobiles
for initial base station assignments and base station handoffs.

We abstract the system architecture, as far as modulation,
coding, etc., are concerned, and consider SIR as the only mea-
sure for QoS in the system. This is a common practice, even
though bit-error rate or frame-error rate are usually seen as the
ultimate performance measures. The reason is that, in general,
higher SIR will result in better bit-error-rate performance and
considering SIR as the measure for QoS provides us with a more
convenient platform for power control design.

The received SIR on an assigned uplink channel for usercan
now be written as

(1)

where is the transmit power for user is the channel gain
(or attenuation) from userto its intended base station (in the
linear scale), is the channel gain from userto the intended
base station of user, and is the receiver noise intensity at the
intended base station of user. Also, is the total number of
users sharing the channel. We now review the minimum inter-
ference DCA scheme along with the main approaches for power
control.

A. DCA

Under a DCA scheme, all base stations have access to all
the channels and dynamically assign the channels to the users
based on the current traffic conditions. While DCA schemes are
clearly more complicated, they usually result in higher capacity.

We adopt a distributed minimum interference DCA scheme
[15]. In this scheme, the new users will be assigned to the idle
channels with minimum local mean interference, in the order
they arrive. It was shown in [26] that when a new user is admitted
to a power-controlled network, the optimal power level for the
new user can be written as

(2)

where is the SIR threshold that the new user wants to achieve,
is the maximum achievable SIR for the new user, and

is the local mean interference-plus-noise level at the intended
base station of the new user before it is admitted to the network.
It is now clear that the minimum interference DCA scheme does
indeed result in the minimum transmit power for the new user.

Whenever the local mean SIR for a user drops below a
given threshold while the user is transmitting at its maximum
power level, a channel reassignment attempt is triggered, and,
if possible, the user is reassigned to the idle channel, which
currently has the minimum local mean interference. Note that
this is a distributed scheme, which, in general, is not globally
optimal. Remember that any kind of global optimality in the
channel assignments can only be achieved through centralized
algorithms, which are usually impractical due to the excessive
requirements for processing and also communications among
the base stations.

Another issue is call management and admission control. As
we shall see, a network should be feasible for every user to be
able to achieve its desired SIR threshold. If no admission con-
trol is employed, a new user could potentially force the network
out if its feasibility region and, hence, result in dropping active
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calls. Therefore, an admission control mechanism is needed to
adjust the tradeoff between blocking new calls and dropping ac-
tive calls. In [21], an admission algorithm was presented for a
power controlled system, where the new users would increase
their powers only in small steps. It was shown how this scheme
could protect the quality of active links when new users arrive.
Channel probing techniques were later proposed in [22]–[24],
where a new user would try to estimate the maximum SIR level
that it can achieve by disturbing the network as little as possible.
The user will then be admitted only if its maximum achievable
SIR is above its desired threshold. Also, a channel-partitioning
scheme was presented in [25], where a combination of dynam-
ically allocated and fixed assigned channels are incorporated to
develop a rapid distributed access algorithm.

We adopt the simpler threshold-based implicit admission con-
trol scheme, presented in [18]. In this scheme, a new user with
a desired SIR threshold will be admitted only if there exists
an idle channel, on which it can achieve an SIR threshold,
which is higher than by a given protection margin. The value
of the protection margin for new users should be selected based
on the tradeoff between blocking new calls and dropping active
calls.

Moreover, a channel-reassignment attempt will be triggered
for a user if, while transmitting at the maximum power, its local
mean SIR drops below a threshold , which is lower than
by another given margin. This margin is required to avoid exces-
sive number of channel reassignments. The value of this margin
should be selected according to the tradeoff between QoS and
the average number of channel reassignments per call. Note that
for channel reassignment, it is checked whether the user can
achieve on the idle channel which currently has the minimum
interference. Since , this scheme clearly favors the ac-
tive users that are being reassigned to the new incoming users.
If a channel reassignment fails, the user stays on its old channel
and the reassignment attempt is repeated every reassignment pe-
riod (as long as and ) until the user is either
successfully reassigned or dropped from the network. Finally,
a user will be dropped from the network if its local mean SIR
drops and stays below a threshold for a given
duration.

B. Power Control

While DCA schemes achieve higher levels of capacity by
dynamically distributing the traffic across the channels, power
control techniques focus on every channel and try to mitigate
the cochannel interference by dynamically adjusting the power
levels of the cochannel users at their minimum required levels.
Therefore, one can reasonably expect that integrating power
control with DCA can achieve even higher levels of capacity,
even though the capacity gains may not be exactly additive due
to some redundancy between the two schemes [18].

A widely studied approach for power control is theSIR
thresholdapproach, presented in [4], where the objective is
for the SIR of each user in the network to be above a desired
threshold, that is

(3)

A necessary and sufficeint condition for the existence of the
optimal power levels that satisfy the above set of inequalities
is calledfeasibility. In other words, a network of users is called
feasible if every user can achieve its desired SIR. It was shown
in [4] that a network is feasible if and only if ,
where

, is the identity matrix, and denotes the
spectral radius of a matrix. Furthermore, under the feasibility
condition, the following simple iterative algorithm, which could
be implemented in a distributed manner, would converge to the
optimal power levels:

(4)

where is the total interference-plus-noise power at the re-
ceiver of the intended base station for user. Therefore, every
user only needs a measurement of its own channel gain and its
total interference plus noise in order to update its power level.
Note that depends on the power levels of the users during
the th power update period. Also, no extra delays are as-
sumed for processing and propagation. Various generalizations
of this algorithms have been presented in the literature. A unified
framework along with convergence analysis for some of these
algorithms were presented in [5].

In most of these algorithms, it is assumed that all the channel
gains stay constant for the duration of the convergence of the
algorithm. Therefore, it is implicitly assumed that the fading
rate of the channel is much slower than the power update rate.
In other words, neither the channel-gain variations due to user
mobility and fading, nor the measurement errors are taken into
account. It was recently shown in [6] that the optimal powers
obtained from the SIR balancing approach, under constant gain
assumptions, are very close to the optimal powers that minimize
the Rayleigh-fading-induced outage probability for every link.

Some researchers have tried to analyze and possibly
modify the power control algorithms to take into account the
channel-gain variations and the fading-induced measurement
errors. In [7], it was shown how the desired SIR for the users
may be scaled up to guard against the user mobility effects. In
[8], a simulation study was performed to investigate the user
mobility effects on slow integrator power control algorithm. In
[9], a modification of the distributed SIR balancing algorithm
was proposed, which was less sensitive to SIR measurement
errors. Also in [10], stochastic measurements were incorpo-
rated in the power control algorithm and it was shown that the
power levels converge, in the mean square sense, to the optimal
power levels. More recently, it was shown in [11] how a simple
Kalman filter may be designed to smooth out the interference
measurements. Also in [12], it was mentioned how a min-
imum-variance power control algorithm may be designed when
the channel-gain variations are modeled by filtered white noise
sequences. Despite all this effort toward analysis and design of
power control algorithms in nonstationary environments, most
of the results fail to provide a systematic approach.
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Fig. 1. Local power control loop, associated with a single user.

An alternative approach is to formulate the power control
problem as adecentralized regulatorproblem, where the ob-
jective is for the SIR of every user totrack a desired threshold,
while the channel gains and the interference levels are changing
with time and the SIR measurements can be erroneous. Based on
this approach, concepts and design methodologies from control
theory have already been used for the analysis of some power
control algorithms [27] and design of new algorithms [12], [28].

We first note that, in the logarithmic scale, the distributed iter-
ative algorithm in (4) is a simple unity gain integrator algorithm
in a closed-loop. Using a bar on the variables to indicate values
in decibels or decibel milliwatts (dBm), we can write

(5)

where is the power level in dBm for userfor the duration
of the th power update period and is the SIR in decibels
for the same user at the beginning of theth power update period

(6)

Moreover, is the measured local mean interference-plus-
noise power in dBm, available at the beginning of theth power
update period

(7)

The block diagram for a single loop, associated with a single
user, is shown in Fig. 1. The controller transfer function in this
case is

(8)

where is the shift operator. Therefore, the network can be seen
as a set of interconnected local loops. It should be realized that
the couplings among the local loops is through the interference
function (7), which, in general, is nonlinear. The decentralized
regulator formulation of the power control problem can now
be presented as the following:Design a set of local controllers

such that the SIR for every user tracks a desired
threshold with a certain performance while the global net-
work remains stable.

The local loops in Fig. 1 are quite general and can be mod-
ified to accommodate different modeling assumptions. For ex-
ample, extra delay blocks may be inserted in the feedback path
to model processing and propagation delays. Moreover, a satu-
ration block may be inserted in the forward path after the con-
troller to model the maximum and minimum power constraints.
Also, we have implicitly assumed a linear time invariant con-
troller by writing . However, in general, the controller
itself can be a nonlinear block, as is the case forfixed-steppower
control algorithms. Unfortunately, analysis of stability and con-
vergence of the algorithms, designed via this approach, can be
very complicated. Both local and global stability for the network
should be analyzed while feasibility of the network and its im-
plications should be addressed.

The global stability of the network implies that all the local
loops are stable, but the reverse is not necessarily true. It was
shown in [26] that as long as the network stays feasible, i.e.,
the channel-gain variations do not force the network out of its
feasibility region, a sufficient condition for global stability of
the network is

(9)

where is the transfer function from the interference
to power and the -inducednorm for the

single-input–single-output system can be obtained as

(10)

where denotes the impulse response associated with the
transfer function .

Hence, if the local loops are stable, and if the feasibility con-
dition is not violated and (9) is satisfied for all local loops, then
the network will be globally stable in the sense that the de-
viations of the power levels from their corresponding optimal
values will always remain bounded. It was also shown in [12]
that if the channel gains are constant and the network is fea-
sible (i.e., a fixed optimal power vector exists) and if the
interference function (7) is linearized around, then all small
deviations of the power levels in the network from their corre-
sponding optimal values will asymptotically converge to zero if

(11)
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The above condition is indeed a sufficient condition for global
stability of the linearized network in the-inducednorm sense,
while (9) gives a sufficient condition for global stability in the

-inducednorm sense without any linearization or any con-
stant gain assumption.

III. PREDICTIVE POWER CONTROL

Our objective in this section is to show how simple models
for the variations in the channel gains and the interference
levels may be used in designing simple Kalman filters that
provide predicted measurements for both the channel gains
and the interference levels while they mitigate the effects of
the fast-fading-induced measurement errors.

We are assuming that the received SIR measurement or
the power command are sent back to the transmitter. In other
words, we are consideringinformation-feedbackclosed-loop
power control algorithms. Due to the limitations on the control
bandwidth and on the processing time, information-feedback
algorithms usually run at slower power update rates. Therefore,
similar to DCA algorithms, they operate on the local mean
values, which are obtained through some sort of averaging of
the measurements over some relatively long periods.

A. Models for Variations in Channel Gains and Interference
Levels

The variations in the channel gains can be characterized
by the slowly changing shadow-fading and the fast multi-
path-fading on top of the distance loss. We consider log-normal
shadowing whose spatial (or temporal) correlation is repre-
sented with a simple first-order Markov model presented in
[30].

The channel gain from every userto its intended base sta-
tion, in the logarithmic scale, is, therefore, modeled as

(12)

(13)

where is a constant bias and is a zero mean white
Gaussian noise sequence. The constant bias accounts for the
antenna gains and the distance loss in the filter. The parameter

is obtained as

(14)

where is the user velocity and is the update period. Note that
is the distance that the user moves during one update period.

Moreover, is called the shadowingcorrelation distance. It is
the distance at which the normalized correlation decreases to

. To see this, note that the autocorrelation function for
can be obtained as

(15)

where denotes the standard deviation of the noise sequence
. Note that given the standard deviation for shadowingand

the value for , the standard deviation for the driving white noise
sequence can be obtained.

In order to design distributed algorithms, we need to decouple
the local loops in the network. For this purpose, the interfer-
ence plus noise should be modeled independently for every user.
One approach is to treat interference plus noise simply as a
bounded disturbance for every user and design the power con-
trol algorithm based on the worst case considerations. However,
we have decided to model the interference plus noise, similar to
the channel gains, by white noise driven first-order Markov vari-
ations on top of a constant bias. That is

(16)

(17)

where is a zero-mean white Gaussian noise sequence inde-
pendent of but with the same variance. While this model
may not exactly capture the slow variations in the interference
in a power-controlled system, it can still be reasonable when
such slow fluctuations in the interference levels are dominated
by shadow fading. Note that putting aside the changes in the
transmit power levels, due to power control, the fluctuations in
the channel gains and interefernce levels basically result from
the same physical phenomenon. We, therefore, use this model
in a Kalman filter to obtain the one-step predicted measurements
of the local mean interference values.

Note that one shall use receiver diversity techniques to
combat fast fading since power control algorithms, in general,
cannot track very fast channel variations. While we will eval-
uate the simulated performance of our algorithm with higher
power update rates, we have decided to select the power update
period such that the fast multipath fluctuations are averaged
out while the slower shadowing fluctuations are being tracked.
It was shown in [31] that, under the flat Rayleigh-fading
assumption, when a first-order lowpass filter, or simply a
moving average filter, is used to obtain the local mean values
of the measurements, the averaging error in decibels will have
a Gaussian distribution, whose mean can be made zero by
appropriate choice of the filter dc gain and whose standard
deviation depends on the shadow-fading standard deviation,
and the ratio of the shadowing correlation distance to the carrier
wavelength , and the normalized measurement time ,
where is the maximum Doppler frequency.

It is now clear that the model parameters not only depend
on the environment through the values of the shadowing stan-
dard deviation and the shadowing correlation distance but also
depend on the user velocity. While one can think of imple-
menting individualadaptiveKalman filters for each user, where
the model parameters are continuously updated based on the
available information about the user velocities, we choose to
consider a fixed model to design and implement the same filters
for all the users in the network. There are two main reasons for
this. One is that for a rather broad range of user velocities, the
values for and , and as shown in [31], the averaging error
variance only slightly change, and we believe that the Kalman
filters will be robust to such changes. The other reason is that
while some techniques have been already proposed for user ve-
locity estimation in mobile environments (refer to [32] and the
references therein), most of them fail to provide accurate esti-
mates in real time.
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B. Kalman Filter Design

Using a set of available measurements, corrupted with
Gaussian noise, a Kalman filter recursively obtains the min-
imum mean squared error estimates of a set of variables that
are varying according to a given dynamic model. Kalman
filters have proved to be strong estimation tools in a very
wide range of applications [33]. As examples of applications
in communication systems, Kalman filters have been used
for channel equalization [34], interference estimation for call
admission in CDMA networks [35], and for power control in
packet-switched broadband TDMA networks [9].

We propose a predictive power control algorithm, where two
Kalman filters are employed to provide the one-step predicted
estimates of both the channel gains and the interference levels
for every user, which are then used in an integrator algorithm
to update the power levels. Using (12) and (13) for the channel
gains, we can write

(18)

Similarly, using (16) and (17) for the interference levels, we can
write

(19)

The idea is to design two simple Kalman filters that use the erro-
neous local mean measurements, available to every user, to esti-
mate the constant biases in the models and provide the one-step
predicted estimates of the channel gains and the interference
levels. As mentioned, the same models are used for all the mo-
biles in the network. Hence, we eliminate the indexesand
for a simpler notation.

It is now appropriate to represent both models in the state-
space form. Define

, and . The state-space models for every user
can then be obtained as

(20)

(21)

(22)

(23)

where

(24)

(25)

where and are two mutually independentfictitiouszero
mean white Gaussian noise sequences, which are also inde-
pendent from and . They are required to make the fil-
ters more robust to the uncertainties in the models. Moreover,

and are mutually independent zero mean white Gaussian
noise sequences, which are assumed to be independent from all
other noise sequences in the model and are used to model the
fast-fading-induced averaging errors and other possible uncer-
tainties in the local mean measurements. Remember that all the
variables are expressed in a logarithmic scale.

Now, starting from initial estimates and , the
measurement updateequations for the filters are expressed as

(26)

(27)

where and , respectively, denote thepropagated
(a priori) estimates of the channel gain and the interference level
at the end of the th power update period. Hence, at time
(i.e., the beginning of theth power update period), the current
local mean measurements and are incorporated to
obtain theupdated(a posteriori) estimates and .
The two-dimensional filter gain vectors and are obtained
as

(28)

(29)

where and are the measurement noise covariances and
and are thepropagatedestimation error covari-

ance matrices. Note that we only have scalar measurements and
no matrix inversion is involved. At time, the covariance ma-
trices are updated as

(30)

(31)

Now, the one-step predicted estimates for the channel gain and
the interference level are obtained by propagating the estimates
to the next power update period

(32)

(33)

and the covariance matrices are propagated as

(34)

(35)

where and are two-dimensional diagonal covariance
matrices for the driving noise sequences in (20) and (22),
respectively.

Incorporating the one-step predicted estimates in the inte-
grator algorithm (5), the updated power level for the duration
of the th power update period can be obtained as

(36)

where

(37)

When a call is assigned (or reassigned) to an idle channel, its
Kalman filter estimates are initialized (or reset) as

and , where
and are the local mean channel gain and interference

values available at the time of channel assignment. Also, the
error covariance matrices are initialized as
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Fig. 2. Local power control loop with Kalman filters.

, where is the shadow-fading standard deviation
(set to 8 dB in our simulations).

We pick the model parameter according to (14) and
by considering the maximum user velocities that we expect
in our mobile environment. This makes the filter assume
the least correlation among the local mean values in two
consecutive power update periods and, therefore, rely more
on the measurements. As we shall explain in our simulation
details, we assume the power levels to be updated every 100 ms
for most of our simulations. Also, we consider the shadowing
correlation distance to be about 40 m and the maximum user
velocity to be 80 km/h. Using (14), we then pick .
Using this value for and dB and (15), we get

. We choose to set in
the filter, again to deal with uncertainties in the models. The
variances for the fictitious driving noise sequences and

are also set to 2.0 dB. Also, the standard deviations for
the local mean measurement errors are both set to 3.0 dB,
i.e., .

One should observe that the error covariance matrices and the
filter gains are independent of the actual measurements. This
can be seen from the filter equations (28)–(35). Therefore, the
filter gains and can, in fact, be calculated and saveda
priori . This can result in a significant reduction in the filter pro-
cessing time.

Also note that when the filter reaches the steady-state on a
specific channel, the steady-state filter gain vectors are equal to

(38)

where and is the positive-definite solution to
the followingdiscrete Riccatiequation:

(39)

where . Using our selected values, we get

(40)

C. Global Stability of the Network

When the Kalman filters are employed, the block diagram for
a single loop can be depicted as in Fig. 2. We now show that,
in the steady-state, the Kalman filters and, therefore, the local
loops are stable.1 Moreover, the sufficient conditions for global
stability are satisfied.

Given the filter gains in (40), it is straightforward to obtain
the steady-state transfer functions for the Kalman filters

(41)

The poles of the Kalman filters (i.e., the poles of the
above transfer function or equivalently the eigenvalues of

) are located inside the unit circle at

(42)

It is now clear that all the local loops are stable, i.e., the poles for
all the closed-loop transfer functions, associated with a single
loop, are inside the unit circle. Processing and propagation de-
lays (i.e., extra delay blocks in the feedback path) could result
in instability of the local loops and, therefore, instability of the
whole network. However, even though some delay compensa-
tion schemes have been proposed in [12], information-feedback
power control algorithms, as mentioned before, usually run on
lower power update rates, and processing and propagation de-
lays are usually much lower than a power update period.

As we mentioned, stability of the local loops is necessary but
not sufficient for global stability of the network. However, the
network will indeed be globally stable in the -inducednorm
sense, if the transfer function from the interference to the
power satisfies the norm condition (9).

Using (41) and from Fig. 2, it is straightforward to obtain

(43)

1Under the technical conditions of stabilizability and detectability, the steady-
state Kalman filters are always known to be stable [33].
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and, hence, we get

(44)

Therefore, satisfies both (9) and (11). From (9), we con-
clude that, as long as the network is in its feasible region, the de-
viations of the power levels of all the users in the network from
their corresponding optimal values will always remain bounded.
Moreover, from (11), we conclude that if the power levels only
slightly deviate from their optimal values, while the channel
gains remain constant, they will asymptotically converge back
to their optimal values. This proves the global stability of the
network, on every channel, both in sense and in sense
(with a linearized interference function), when the Kalman fil-
ters are at their steady-state.

When multiple channels are considered and the power con-
trol algorithm is integrated with a DCA scheme, the global sta-
bility analysis for the network becomes extremely complicated.
Average number of channel reassignments per call can be con-
sidered as a measure, which can somehow show the level of sta-
bility for the network. We show through computer simulations
that the average number of channel reassignments per call will
be significantly reduced when the Kalman filters are employed
in the power control algorithm.

IV. SIMULATION MODEL

While the previous theoretical analysis helps in justifying the
use of Kalman filters in power control algorithms to deal better
with the variations in the channel gains and the interference
levels as well as the errors in the local mean measurements, a
simulation study is essential to analyze the overall performance
when such a predictive power control algorithm is integrated
with a DCA scheme in a relatively realistic mobile environ-
ment. We, therefore, set up a system-level simulation environ-
ment, similar to the ones presented in [17] and [18], but on a
smaller scale, in order to analyze the overall performance of the
network, when our predictive power control algorithm is inte-
grated with a distributed minimum interference DCA scheme.
User arrivals and departures and user mobility are all consid-
ered. In this section, we explain the details of our simulation
platform, and in the next section, we analyze the results.

The simulations run on the frame level, and hence, only power
and interference levels are simulated, and no modulation and
coding are considered in the simulations. While we do not re-
strict ourselves to any specific standard, we have tried to stay
close to theglobal system for mobile communications(GSM)
standard.

A 3 3 square grid of cells is assumed. The base stations
are located on the cell centers and are separated by 800 m.
To avoid edge effects, a ring simulation structure is assumed,
i.e., the statistics are only gathered from the central cell. This
is somewhat simpler than a toroidal simulation structure and is
shown to provide more optimistic but comparable results [36].
The other reason for our results to be somewhat optimistic is
that only nine cells are simulated, and therefore, lower inter-
ference levels are generated. However, our simulation results
clearly serve our purpose of comparing our predictive DCPA

scheme with the one that uses no prediction. Omni-directional
antennas with two branch selection diversity is assumed for the
base stations.

Every channel is characterized by a pair , where
denotes the carrier frequency, andis the index for the time slot.
We consider two carrier frequencies and eight slots per carrier.
As mentioned before, no blind slots are considered. Hence, there
are 16 available channels, all of which can potentially be used
as traffic channels.

Every frame is 4.0 ms, consisting of eight slots, each with a
duration of 0.5 ms. It is assumed that the signal and interference
power measurements for every user are available in every frame
at the end of the user’s corresponding slot. Various events might
then happen every multiple number of frames.

The channel gain for every link is normalized with respect to
the base station and mobile antenna gains and is characterized
by three components: distance loss, slow or shadow fading, and
fast fading. The distance loss is assumed to be inversely propor-
tional to , where is set to 4.0. For shadowing a log-normal
pattern is generateda priori. Therefore, the shadowing values
only depend on the user’s location. The resolution of the
shadowing grid is set to be equal to the shadowing correlation
distance , which is assumed to be 40 m. The shadowing for
every user is then obtained by a normalized bilinear interpola-
tion of the four closest points on the shadowing grid. A slowly
varying flat Rayleigh fading is also assumed. This implies that
no line-of-sight exists and the delay spread is small compared
with the symbol duration or the inverse channel bandwidth
and, thus, only a single path with a Rayleigh distributed
amplitude (and, hence, exponentially distributed power) can
be distinguished. In fact, the Rayleigh-fading component is
assumed to be constant for the whole duration of a single
slot (0.5 ms). Time correlation for Rayleigh fading is often
represented using the Jake’s model [29], where it is expressed
in terms of a zeroth-order Bessel function of the first kind,
which results in a nonrational spectrum. We use a first-order
approximation by passing a white complex Gaussian noise
through a first-order filter and obtaining the squared magnitude
of the output Gaussian process. The time constant of the filter,
for every user, is obtained by setting its 3-dB cutoff frequency
equal to , where is the maximum Doppler
frequency for the user [13].

New calls are generated based on a Poisson process with a
given arrival rate . Each call is assigned an exponentially
distributed holding time with a given average value. The
averageErlang load per cell is then obtained as ,
where is the total number of cells. The Erlang load per
cell effectively determines the average number of users that
could be active in every cell at any instant of time. We have
considered various combinations of values for and to
simulate the network under different traffic load conditions.

The new users are uniformly distributed in the area. The mo-
bility of the user is modeled with a constant but random speed

and the angle between the velocity vector and the hori-
zontal axis . The speed for every new user is
selected randomly from a triangular distribution in the range
0–80 km/h. This is preferred over a uniform distribution, as it



984 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 2, NO. 5, SEPTEMBER 2003

Fig. 3. Sample user motion trajectory.

results in a smaller variance for the velocity distribution among
different users. The initial directionis uniformly picked. Then,
every 10 s, a new direction is selected from a triangular distri-
bution with the old direction as its mean. This is again preferred
over a uniform distribution or a two-dimensional random walk,
since it makes small angle turns more probable that large ones.
The motion trajectory for a sample user is shown in Fig. 3.

The desired SIR threshold for all users in the network is set
to dB, while the minimum tolerable SIR is considered
to be dB. Both margins for new user admissions
and user droppings are set to 2 dB. Therefore, new users will
be admitted only if they can achieve dB on the idle
channel with the minimum local mean interference. Moreover,
a user will be dropped from the network if its SIR drops below

dB and stays below for 4.0 consecutive seconds. Note
that these margins should have been expressed as percentages
of and for every user, if the users were to have different
QoS requirements and, thus, different SIR thresholds.

When a new user arrives into the network, it first starts scan-
ning the downlink control channel from all neighboring base
stations and measures all the local mean channel gains. It is as-
sumed that this process take about 0.8 s (200 frames), which is
called the initial call setup time. The new user then sends its re-
quest for a channel to the base station which has the strongest
signal. If this base station does not have any idle channels, the
user will try the second best base station. This procedure is
calleddirect retry and will be repeated for a given number of
base stations (set to three in our simulations) before the user is
blocked. When there are idle channels available, the base station
checks whether the user can achieve on the idle channel
with the minimum local mean interference. If so, the user will
be admitted and will be assigned to the idle channel with the
minimum interference. Otherwise, the user will be blocked.

We should note that nomacro diversityis considered, i.e.,
any user will only communicate with a single base station at
any instant of time. Moreover, base station assignment is con-
sidered to be separate from power control, i.e., the power levels
are obtained assuming that the users are already assigned to their
corresponding base stations. Joint base station assignment and
power control has already been proposed in the literature [37].

A minimum interference DCA scheme is employed. The local
mean channel gain and interference values for possible channel
reassignments are obtained by simple averaging of the available
measurements over 50 consecutive frames for every user.

Finally, a base station handoff attempt will be triggered if
the local mean channel gain from a neighboring base station
exceeds the corresponding value from the current base station
by a selected handoff margin of 4 dB. If the handoff attempt
fails, the user will stay with its current base station. Note that the
users are assumed to be continuously monitoring the downlink
control channels of all neighboring base stations.

Initially, two power control algorithms are simulated. Specif-
ically, the simple integrator algorithm in (5) and (6) and the
predictive algorithm in (36) and (37) are compared. Note that
while the propagation simulation models are tailored to indi-
vidual users, according to their different trajectories and speeds,
the same Kalman filter models and parameters are employed for
all the users in the network.

After a new user is admitted, it sets its initial power at

(45)

where and , respectively, denote the local mean
channel gain and the interference-plus-noise level, which
are available at the time of user admission. Note that this is
somehow an optimistic choice, since a new user sets its initial
power as though other users will not increase their transmit
powers.

For most of the simulations, the power update rate is assumed
to be the same for all users and is set to 100 ms, that is, every user
updates its power level every 25 frames. The idea is to have fast
multipath fluctuations averaged out while slower variations are
being tracked. In all simulations, a maximum transmit power
constraint at 30 dBm is imposed on all users in the network,
while the receiver noise floor is set to120 dBm.

It should be mentioned that since the users arrive at arbitrary
instants of time according to a Poisson arrival process, the power
updates are in fact performedasynchronously, even though all
the users have the same power update rates. While most results
in power control assume synchronous power updates among the
users, asynchronous power control algorithms have been ad-
dressed in the literature [5]. To have synchronous power up-
dates, one could simply force the users to arrive at instants of
time, which are multiples of a common power update period.

V. PERFORMANCEANALYSIS

In this section, we present and analyze our simulation results
and show how the predictive DCPA scheme can improve the
overall performance of the network.

For any given traffic load, we run the simulations multiple
times with different random generator seeds and every run con-
tinues until enough number of calls are dropped. The statistics
are then gathered from the central cell.

Figs. 4 and 5 show the call blocking and the call dropping re-
sponses of the network under the two DCPA schemes. It can
be seen that at 7.0 Erlang/cell, the predictive DCPA scheme
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Fig. 4. Call blocking response.

Fig. 5. Call dropping response.

achieves about 0.5% lower blocking rate and about 0.03% lower
dropping rate. Moreover, the improvement in performance in-
creases as the traffic load increases. Remember that there is al-
ways a tradeoff between blocking new calls and dropping active
calls.

Our predictive DCPA scheme also results in better target SIR
tracking. We obtain an estimate for the SIR error standard de-
viation and also estimates for the SIR cumulative distribution
functions by looking at the local mean SIR values of all the users
in the network at various random instants of time (after enough
call attempts have been made and the network has reached some
kind of steady state) during every run of the simulation. Fig. 6
shows the standard deviation for the error in the local mean
SIR for a range of traffic loads. It can be seen that the predic-
tive scheme decreases the SIR error standard deviation by about
0.3 dB at 7.0 Erlang/cell, while the improvement is about 0.7 dB
at 10.0 Erlang/cell. Furthermore, Fig. 7 shows the cumulative
distribution for the local mean SIR values in the network under
8.0 and 10.0 Erlang/cell. These figures show how the local mean
SIR values for different users are spread around the target SIR
value dB. It can be seen that the predictive DCPA
scheme results in the local mean SIR values, which are less

Fig. 6. Standard deviation for the error in the local mean SIR.

Fig. 7. Cumulative distributions for the local mean SIR.

spread around the target SIR. The improvement is again more
noticeable in higher traffic load. In fact, Fig. 8 shows how the
local mean SIR cumulative distribution function changes with
the traffic load under both schemes.

One measure that shows the level of stability of the network
is the average number of channel reassignments per call. Fig. 9
shows this number for a range of traffic loads under both DCPA
schemes. As one would expect, fewer channel reassignments
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Fig. 8. Traffic load effect on local mean SIR cumulative distribution.

Fig. 9. Average number of channel reassignments per call.

per call are, on average, required in the predictive DCPA
scheme. One reason for this is that, as shown before, the pre-
dictive scheme does indeed result in better target SIR tracking
and smoother local mean SIR behavior.

We also compare the transmit power distribution of the users
in the network under the two DCPA schemes. Fig. 10 shows an
estimate of the cumulative distribution function for the transmit

Fig. 10. Transmit power cumulative distribution at 8.0 Erlang/cell.

powers of the users in the network at the load of 8.0 Erlang/cell.
It can be seen that the two schemes perform quite similarly, as
far as transmit powers are concerned. In fact, both algorithms
result in considerable power saving, when compared with a net-
work where all the power levels are fixed at their maximum
levels. For example, at a relatively high load of 8.0 Erlang/cell,
about 50% of the users under both DCPA schemes are trans-
mitting at 0 dBm or lower power levels. It should, however, be
mentioned that our predictive DCPA algorithm seems to result
in slightly higher power levels in the network. While one may
see this as a small cost for better SIR tracking and better call
blocking and dropping responses, it should also be noted that
our predictive DCPA scheme does indeed result in higher ca-
pacity which in turn implies more active users at any instant
in time. This higher traffic explains the higher average transmit
power for the users. In fact, Fig. 11 shows how the power cu-
mulative distribution functions might change as the traffic load
on the network changes under the two DCPA schemes.

Finally, one might argue that our power update rate is too
low for the average speeds considered in our simulations. In
order to further evaluate the performance of our predictive algo-
rithm, as compared with standard fast power control schemes,
we also simulated the DCPA scheme with standard fixed-step
power control algorithm where, depending on the deviation of
the received SIR from its target value, the power of each user is
incremented or decremented by a fixed 1-dB step every single
frame (i.e., once per 4 ms). We then ran the same simulations
with our integrated predictive DCPA scheme where the power
of each user is updated every fifth frame (i.e., once every 20 ms).
Tables I and II show the call dropping and call blocking proba-
bilities for the two scenarios under two sample traffic loads. It
can be seen that the results are similar with our predictive algo-
rithm still performing slightly better. Note, however, that while
some additional computational cost is associated with our algo-
rithm, the update rate for our algorithm is taken to be five times
slower than the standard fixed-step algorithm. We do, however,
believe that clarification of the exact tradeoff between the extra
computation and the lower update rate would require further
analysis using simulations and possibly profiling the code on
specific processors.
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Fig. 11. Traffic load effect on transmit power cumulative distribution.

TABLE I
CALL DROPPINGPERCENTAGE

TABLE II
CALL BLOCKING PERCENTAGE

VI. CONCLUSION

A predictive DCPA scheme has been presented in this paper.
Simple Kalman filters were designed to obtain the predicted
estimates of the local mean channel gains and the local mean
interference-plus-noise levels. These predicted estimates were
then incorporated in an integrator algorithm to update the power
levels of all the users in the network. It was shown how generic
models may be used and filter parameters may be selected to
design the same robust filter for all users. Local stability of the
network was analyzed. Moreover, it was shown that the suffi-
cient conditions for global stability of the network were satisfied
when the Kalman filters were employed in the power control al-
gorithm. The global stability results imply that, as long as the

network stays feasible, the deviations of the power levels from
their corresponding optimal values will always remain bounded,
while the small deviations will always converge back to zero.

This predictive power control algorithm was integrated with
a minimum interference DCA scheme in an FDMA/TDMA mo-
bile radio system. A system-level simulation environment was
then developed. User arrival and departures and user mobility
along with flat Rayleigh-fading effects were all included in the
simulations. It was shown that the predictive DCPA scheme re-
sults in better call dropping and call blocking responses and
also better target SIR tracking performance for the network.
Moreover, on average, fewer channel reassignments per call are
required under the predictive DCPA scheme. We believe that
these improvements are obtained mainly because the predic-
tive algorithm takes into account at least the slow variations
of the channel gains. Also, by dealing with uncertainties in the
measurements, it effectively mitigates the fading-induced local
mean measurement errors. It was also shown that the predic-
tive DCPA scheme results in slightly higher power levels for
the users, due to the increased number of simultaneously active
users in the network.

As for future research, one may try to design adaptive al-
gorithms where the parameters of the algorithm and even the
power update rates are adaptively adjusted for individual users,
according to such information as user velocities, etc. Also, the
standard integrator algorithm may not be the best power control
algorithm. Even though constraints on complexity and compu-
tational effort are always present, other simple algorithms may
still be designed that could result in better SIR tracking, better
allocation of resources, and finally, higher levels of capacity in
highly nonuniform and nonstationary environments. Finally, an-
alyzing the behavior of any prediction filter, both in terms of
convergence and performance, under bursty interference condi-
tions, can constitute another interesting line of future research.
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