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Abstract—t is known that dynamic allocation of channels unnecessary interference to other users and will also minimize
and power in a frequency/time-division multiple access system the power consumption for the user. Various power control al-

can improve performance and achieve higher capacity. Various gorithms have been proposed in the literature [1]-[12].
algorithms have been separately proposed for dynamic channel

assignment (DCA) and power control. Moreover, integrated  Our first objective in this paper is to design a distributed
dynamic channel and power allocation (DCPA) algorithms have predictive power control algorithm. We try to obtain accurate
already been proposed based on simple power control algorithms. enough models for the slow variations in the channel gains and
In this paper, we propose a DCPA scheme based on a novely,q jntarference powers. We then design Kalman filters for every

predictive power control algorithm. The minimum interference . . -
DCA algorithm is employed, while simple Kalman filters are USer to obtain the one-step predicted values for both the inter-

designed to provide the predicted measurements of both the ference level and the user’s channel gain from its intended base
channel gains and the interference levels, which are then used to station. We try to tune the filters for a typical mobile radio envi-
update tlhe %Owe(; levels. Local and global Sfab'“ty of the ngtvc\j/ork ronment and then conjecture and show through simulations that
are analyzed and extensive computer simulations are carried out ' .

to show the improvement in performance, under the dynamics of the filters are 'nde‘?,d robust under _a broad range °,f parameters
user arrivals and departures and user mobility. It is shown that Such as user velocities and shadowing correlation distances. The

call droppings and call blockings are decreased while, on average, predicted measurements from the Kalman filters are then used

fewer channel reassignments per call are required. in an integrator algorithm to update the power levels.
Index Terms—Cellular land mobile radio, dynamic channel al-  Another approach to mitigate the cochannel interference ef-
location, Kalman filters, power control. fects and increase the capacity is to avoid strong interferers by
dynamically assigning the channels to the users. Various cen-
|. INTRODUCTION tralized and decentralized dynamic channel assignment (DCA)

ITH THE . . df ity i schemes have been proposed in the literature [13]-[16].
ever-increasing need for capacity in mo- -, is believed that an aggressive DCA scheme can make a fre-

.b”e radio systems, optlma_l allocation of resources Inu ncy/time-division multiple access (FDMA/TDMA) system

nonuniform and nonstationary environments has become a grea . .

L aninterference-limitegystem, where the number of active users

challenge. The fundamental objective is to accommodate .as . .

many users as possible. subiect to complexity and qualit |8fmostly limited by the interference that the users cause on
y P ’ ) P y d y%ach other. On the other hand, power control schemes are known

service (QoS) requirements, on a limited available bandW'dtto’ be especially effective for interference-limited systems. This

by controlling undesired interactions among the users. Ope_ . . . . :

S L : as initiated research on integrated distributed dynamic channel
major interaction is the cochannel interference that every user :
. . and power allocation (DCPA) schemes [17]-[20]. In [17], a

generates for all other users which are sharing the same chann o . S
. ) . ifot-based minimum interference DCA scheme is integrated
Various techniques have been developed to mitigate the effect , : : .
. : with a fast fixed-step power control algorithm, while fast fading
of cochannel interference. Some of these techniques, such_a . .
nd user mobility effects are neglected. In [18], three different

sectorization and beamforming using smart antenna arrays,%rf%s of minimum interference DCA algorithms are integrated
it

. . t
to suppress interference, while others, such as channel ass\|1§ . . )
a slow integrator power control algorithm. Pedestrian mo-

ment techniques, try to avoid strong interferers. " . . .

. . . bility along with a low power update rate are considered, and it

Another well-known technique is to adaptively control th'las again assumed that the fast-fading effects are averaged out. In
power levels of all the users in the network. The idea is to ke 9 g g i

. S . fg], a simulation study has been performed to investigate the
the power level for every user at its minimum required level ac-. : . : :
: . C o T joint effects of some simple signal-to-interference-plus-noise
cording to the current channel conditions. This will eliminate_. .
ratio (SIR)-based and signal-level-based power control algo-
rithms along with a minimum interference channel reassign-

Manuscript received August 26, 2001; revised February 18, 2002; accepfﬁtém scheme. Fast-fading effects are again neglected. and low
February 11, 2003. The editor coordinating the review of this paper and ) 9 9 9 ’

a -
proving it for publication is Y.-B. Lin. This work was supported in part by thatg)OWer update rates are assumed.
Air Force Office of Scientific Research under Grant F49620-00-1-0154. Most DCPA schemes, however, only consider simple power

K. Shoarinejad is with Innovics Wireless Inc., Los Angeles, CA 90064 US .
(e-mail: kKambiz@innovicswireless.com). Lontrol algorithms. Moreover, except for [18] and [19], other

J. L. Speyer is with the Mechanical and Aerospace Engineering Departmdi@sults neglect such effects as dynamics of user arrival or de-
University Of Qalifprnia atLos Angeles_, Los'Angeles, CA 90095-1597 USA. Partures7 user m0b|||ty, and base Sta‘[ion handoffs_ Our main Ob'
G. J. Pottie is with the Electrical Engineering Department, University of Cal-__.. . . . . .
ifornia, Los Angeles, CA 90095-1594 USA. jective, in this paper, is to investigate the performance of our

Digital Object Identifier 10.1109/TWC.2003.817418 predictive power control algorithm when it is integrated with a

1536-1276/03$17.00 © 2003 IEEE



SHOARINEJADet al: INTEGRATED PREDICTIVE POWER CONTROL AND DCA IN MOBILE RADIO SYSTEMS 977

minimum interference DCA scheme. We set up a system-levelWe abstract the system architecture, as far as modulation,
simulation platform, similar to the ones presented in [17] anobding, etc., are concerned, and consider SIR as the only mea-
[18], to compare our predictive DCPA scheme with the one thatire for QoS in the system. This is a common practice, even
uses a simple integrator power control algorithm with no préhough bit-error rate or frame-error rate are usually seen as the
diction. Dynamics of user arrivals and departures, user mobilitytimate performance measures. The reason is that, in general,
and base station handoffs are all considered in this study. Slowigher SIR will result in better bit-error-rate performance and
varying flat Rayleigh-fading effects are also considered in tig@nsidering SIR as the measure for QoS provides us with a more
simulations. convenient platform for power control design.

The organization of the paper is as follows. In Section 1l, The received SIR on an assigned uplink channel forusan
we present the system model and review some of the result§ifyv be written as
power control and DCA. In Section Ill, we elaborate on our pre- o= 9iiPi 1)
dictive power control design. We explain how simple Kalman ' Zj\il.j;ﬁi giipj + M
filters may be designed and implemented in order to obtain the ] . i ) .
predicted measurements of both the channel gains and the'¥R€rep: is the transmit power for usérg;; is the channel gain
terference powers. We also show that the presented predicfgeattenuation) from userto its intended base station (in the
power control algorithm satisfies the sufficient conditions fdfn€@r scale)g;; is the channel gain from usgrto the intended
global stability of the network. In Section IV, we describe in de22S€ Station of usérands, is the receiver noise intensity at the
tail our simulation models and, in Section V, we discuss the siffiiended base station of userAlso, M is the total number of

ulation results and compare the performance of our integra tfrs Sh&r:lr;\g thhe chanlnel. W‘?hntzw review the m|ir11|ml;m Inter-
predictive DCPA algorithm with the corresponding algorith crence scheme alongwi € Mmain approaches forpower

which uses no prediction. We show that, for a range of traffi ontrol.
loads, the number of blocked calls and dropped calls are % DCA
creased under our predictive DCPA scheme. Moreover, on av-

erage, fewer number of channel reassignments are required foPnder @ DCA scheme, all base stations have access to all
the channels and dynamically assign the channels to the users

every call, implying a more stable network. We will provide con ) - :
cluding remarks in Section V1. based on the currept traffic conditions. While 'DCA schemes are
clearly more complicated, they usually result in higher capacity.

We adopt a distributed minimum interference DCA scheme

[15]. In this scheme, the new users will be assigned to the idle

channels with minimum local mean interference, in the order
We consider a cellular system where the area under coverdgey arrive. It was shown in [26] that when a new user is admitted

is divided into cells, and each cell has its own base station. Adl a power-controlled network, the optimal power level for the

users communicate with their assigned base stations throughes user can be written as

Il. SYSTEM MODEL, DYNAMIC CHANNEL ASSIGNMENT, AND
PoweRr CONTROL

single hop. This is in contrast &@ hocwireless networks where Lo n
there is no fixed infrastructure and multihop communication is Pn = G 1 — o (2)
prevalent. o Ymax

We focus on an FDMA/TDMA system and only considewherey,, is the SIR threshold that the new user wants to achieve,
the cochannel interference among the users, i.e., no adjacept, is the maximum achievable SIR for the new user, nd
channel interference is assumed. Specifically, we assumés ghe local mean interference-plus-noise level at the intended
system-wide synchronization to the slot level so that each usese station of the new user before it is admitted to the network.
will experience interference only from the users which aréis now clear that the minimum interference DCA scheme does
sharing exactly the same slot on the same carrier frequenicgleed result in the minimum transmit power for the new user.
This assumption implies that large enough guard times perWhenever the local mean SIR for a user drops below a
slot are assumed. We do not consider any blind slots in tgaren threshold while the user is transmitting at its maximum
system, that is, we assume that any slot in a frame can f@ver level, a channel reassignment attempt is triggered, and,
used as a traffic channel. Blind slots can be avoided either ibypossible, the user is reassigned to the idle channel, which
appropriate structuring of the control channel or by assumirkgrrently has the minimum local mean interference. Note that
that a call activity detection scheme is employed such that ttigs is a distributed scheme, which, in general, is not globally
users can temporarily discontinue their transmission in thaiptimal. Remember that any kind of global optimality in the
active slots. Modifying the frame structure and considerinchannel assignments can only be achieved through centralized
some slots as the blind slots should not have major effects aigorithms, which are usually impractical due to the excessive
our performance comparisons. requirements for processing and also communications among

We focus on the uplink channel, i.e., the channel from mobiléise base stations.
to base stations. Almost all the results and discussions, howeveAnother issue is call management and admission control. As
could similarly be stated for the downlink channel. We assumenge shall see, a network should be feasible for every user to be
fixed-power pilot (control) channel on the downlink. As we shakble to achieve its desired SIR threshold. If no admission con-
see, this channel facilitates DCA and can be used by the mobiled is employed, a new user could potentially force the network
for initial base station assignments and base station handoffaut if its feasibility region and, hence, result in dropping active
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calls. Therefore, an admission control mechanism is neededMmecessary and sufficeint condition for the existence of the
adjust the tradeoff between blocking new calls and dropping amptimal power levelg; that satisfy the above set of inequalities
tive calls. In [21], an admission algorithm was presented foris calledfeasibility. In other words, a network of users is called
power controlled system, where the new users would incredeasible if every user can achieve its desired SIR. It was shown
their powers only in small steps. It was shown how this scherire[4] that a network is feasible if and only if{I"(Z — I)) < 1,
could protect the quality of active links when new users arrivethere Z = [z;;] = [g:5/9:], T = diag(y,...,vym), U =
Channel probing techniques were later proposed in [22]—-[24;] = [(v:m:)/(9gi:)], I is the identity matrix, ang denotes the
where a new user would try to estimate the maximum SIR levgbectral radius of a matrix. Furthermore, under the feasibility
that it can achieve by disturbing the network as little as possibt@ndition, the following simple iterative algorithm, which could
The user will then be admitted only if its maximum achievablbe implemented in a distributed manner, would converge to the
SIR is above its desired threshold. Also, a channel-partitioniogtimal power levels:

scheme was presented in [25], where a combination of dynam-

ically allocated and fixed assigned channels are incorporated to

develop a rapid distributed access algorithm. pi(n) = i Zgijpj(n —D+n | = ﬁIi(n)
We adopt the simpler threshold-based implicit admission con- i \ 5z 9ii
trol scheme, presented in [18]. In this scheme, a new user with Vi
a desired SIR thresholg; will be admitted only if there exists =pi(n—1) ri(n) @

an idle channel, on which it can achieve an SIR threshgld,
which is higher than, by a given protection margin. The valuewherer;(n) is the total interference-plus-noise power at the re-
of the protection margin for new users should be selected baseiler of the intended base station for ugefherefore, every
on the tradeoff between blocking new calls and dropping actiuger only needs a measurement of its own channel gain and its
calls. total interference plus noise in order to update its power level.
Moreover, a channel-reassignment attempt will be triggerébte thatl;(n) depends on the power levels of the users during
for a user if, while transmitting at the maximum power, its locahe (n — 1)th power update period. Also, no extra delays are as-
mean SIR drops below a threshelg;,, which is lower tharny;  sumed for processing and propagation. Various generalizations
by another given margin. This margin is required to avoid excestthis algorithms have been presented in the literature. A unified
sive number of channel reassignments. The value of this marfiaamework along with convergence analysis for some of these
should be selected according to the tradeoff between QoS aifgbrithms were presented in [5].
the average number of channel reassignments per call. Note thah most of these algorithms, it is assumed that all the channel
for channel reassignment, it is checked whether the user ggiins stay constant for the duration of the convergence of the
achievey, on the idle channel which currently has the minimuraigorithm. Therefore, it is implicitly assumed that the fading
interference. Sincg; < Ynew, this scheme clearly favors the acrate of the channel is much slower than the power update rate.
tive users that are being reassigned to the new incoming uséfisother words, neither the channel-gain variations due to user
If a channel reassignment fails, the user stays on its old chanflbility and fading, nor the measurement errors are taken into
and the reassignment attempt is repeated every reassignmengpeount. It was recently shown in [6] that the optimal powers
riod (as long as < ymin aNdp = pmax) Until the user is either obtained from the SIR balancing approach, under constant gain
successfully reassigned or dropped from the network. Finaljssumptions, are very close to the optimal powers that minimize
a user will be dropped from the network if its local mean Slfhe Rayleigh-fading-induced outage probability for every link.
drops and stays below a threshelgd., (< ymin) for a given  Some researchers have tried to analyze and possibly

duration. modify the power control algorithms to take into account the
channel-gain variations and the fading-induced measurement
B. Power Control errors. In [7], it was shown how the desired SIR for the users

While DCA schemes achieve higher levels of capacity B2 be. scale_d up to guard against the user mopility effects. In
dynamically distributing the traffic across the channels, pow8l: & simulation study was performed to investigate the user
control techniques focus on every channel and try to mitiga‘ﬂ%Ob'“ty effects on slow integrator power control algorithm. In
the cochannel interference by dynamically adjusting the powldi» & modification of the distributed SIR balancing algorithm
levels of the cochannel users at their minimum required levef$aS Proposed, which was less sensitive to SIR measurement
Therefore, one can reasonably expect that integrating pov@&fors: Also in [10], stochastic measurements were incorpo-
control with DCA can achieve even higher levels of capaciti}‘?‘ted in the power control algorithm and it was shown that the

even though the capacity gains may not be exactly additive deVer levels converge, in the mean square sense, to the optimal
to some redundancy between the two schemes [18]. power levels. More recently, it was shown in [11] how a simple
A widely studied approach for power control is &R Kalman filter may be designed to smooth out the interference

threshold approach, presented in [4], where the objective [§€@surements. Also in [12], it was mentioned how a min-
for the SIR of each user in the network to be above a desirfgum-variance power control algorithm may be designed when

threshold, that is the channel-gain yariations are modeled by filtered white poise
sequences. Despite all this effort toward analysis and design of
o GiiDi > ®) power control algorithms in nonstationary environments, most
(2 1

Z#T; 9ijp; + i of the results fail to provide a systematic approach.
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Gii(n) i(n)

i €;(n) pi(n) pi(n—-1)  + + 7;(n)
'——;O——> Ki(qg™Y) ——| ¢! 4’0 »Q S

Fig. 1. Local power control loop, associated with a single user.

An alternative approach is to formulate the power control The local loops in Fig. 1 are quite general and can be mod-
problem as alecentralized regulatoproblem, where the ob- ified to accommodate different modeling assumptions. For ex-
jective is for the SIR of every user toack a desired threshold, ample, extra delay blocks may be inserted in the feedback path
while the channel gains and the interference levels are changiognodel processing and propagation delays. Moreover, a satu-
with time and the SIR measurements can be erroneous. Basedation block may be inserted in the forward path after the con-
this approach, concepts and design methodologies from controller to model the maximum and minimum power constraints.
theory have already been used for the analysis of some powdso, we have implicitly assumed a linear time invariant con-
control algorithms [27] and design of new algorithms [12], [28}roller by writing K;(¢~1). However, in general, the controller

We first note that, in the logarithmic scale, the distributed iteitself can be a nonlinear block, as is the casdikad-stepower
ative algorithm in (4) is a simple unity gain integrator algorithneontrol algorithms. Unfortunately, analysis of stability and con-
in a closed-loop. Using a bar on the variables to indicate valuesrgence of the algorithms, designed via this approach, can be
in decibels or decibel milliwatts (dBm), we can write very complicated. Both local and global stability for the network

should be analyzed while feasibility of the network and its im-
pi(n) = pi(n = 1) + (3 = Ti(n)) = pi(n — 1) + &(n) plications should be addressed.
(5) The global stability of the network implies that all the local
loops are stable, but the reverse is not necessarily true. It was

thﬁreﬁiﬁ") Is the p(c)jwer 'eV?' :;1 dI?m fo_r uie’rfgzlt?h_e (jjura_go? shown in [26] that as long as the network stays feasible, i.e.,
of thenth power update period am(n) is the IN GECIDEIS 41 channel-gain variations do not force the network out of its

for the same user at the beginning of tit power update period feasibility region, a sufficient condition for global stability of
7i(n) = pi(n = 1) + gi(n) — Li(n). (6) the networkis

Moreover,I;(n) is the measured local mean interference-plus- 1Gi(q™ ) lews —inducea < 1 9)
noise power in dBm, available at the beginning ofittle power

. whereG;(q~') is the transfer function from the interference
update period 7

I;(n) to powerp;(n — 1) and the/..-inducednorm for the
B p4(nm1) single-input—single-output system can be obtained as
I;(n) = 101log;, Zgij(n)lo o +n(n)|.  (7) .
i 1Gi(q™ e —inducea = llgills =Y _ lgi(k)]  (10)
The block diagram for a single loop, associated with a single k=0
user, is shown in Fig. 1. The controller transfer function in thihere g; denotes the impulse response associated with the
case is transfer function,.
Pig) 1 Hence, if the local loops are stable, and if the feasibility con-
Ki(g') == — = — (8) dition is not violated and (9) is satisfied for all local loops, then
Ei(q™h)  1-gq the network will be globally stable in the sense that the de-
wherey is the shift operator. Therefore, the network can be sei@tions of the power levels from their corresponding optimal
as a set of interconnected local loops. It should be realized thatues will always remain bounded. It was also shown in [12]
the couplings among the local loops is through the interferenat if the channel gains are constant and the network is fea-
function (7), which, in general, is nonlinear. The decentralizeible (i.e., a fixed optimal power vectdr* exists) and if the
regulator formulation of the power control problem can nowterference function (7) is linearized aroufid, then all small
be presented as the followinBesign a set of local controllers deviations of the power levels in the network from their corre-
K;(q~") such that the SIR for every user tracks a desired Sponding optimal values will asymptotically converge to zero if

thresholdy; with a certain performance while the global net- _ .
work remains stable., 1Gi(q7)les—induced = sup |Gi(e’*)| < 1. (11)
w
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The above condition is indeed a sufficient condition for global In order to design distributed algorithms, we need to decouple
stability of the linearized network in thig-inducednorm sense, the local loops in the network. For this purpose, the interfer-

while (9) gives a sufficient condition for global stability in theence plus noise should be modeled independently for every user.
f-.-inducednorm sense without any linearization or any con©ne approach is to treat interference plus noise simply as a

stant gain assumption. bounded disturbance for every user and design the power con-
trol algorithm based on the worst case considerations. However,
[ll. PREDICTIVE POWER CONTROL we have decided to model the interference plus noise, similar to

Our objective in this section is to show how simple modefshe channel gains, by white noise driven first-order Markov vari-

for the variations in the channel gains and the interferen(‘f’:I(teIonS on top of a constant bias. That is
levels may be used in designing simple Kalman filters that 7o 70 —.
provide predicted measurements for both the channel gains {‘(n) =1 :F 61i(n) (16)
and the interference levels while they mitigate the effects of 61(n) = adl(n — 1) + wr(n — 1) 17)
the fast-fading-induced measurement errors. ) ) ) ] )

We are assuming that the received SIR measurementV§i€r€wr is a zero-mean white Gaussian noise sequence inde-
the power command are sent back to the transmitter. In otfi§ndent ofw, but with the same variance. While this model
words, we are considerinmformation-feedbackclosed-loop MaY not exactly capture the slow variations in the interference
power control algorithms. Due to the limitations on the contrd & Power-controlled system, it can still be reasonable when
bandwidth and on the processing time information-feedbagkch slow fluctuations in the interference levels are dominated
algorithms usually run at slower power update rates. TherefoR¥, Shadow fading. Note that putting aside the changes in the
similar to DCA algorithms, they operate on the local meagliansmit power levels, due to power control, the fluctuations in
values, which are obtained through some sort of averagingtBF channel gains and interefernce levels basically result from

the measurements over some relatively long periods. the same physical phenomenon. We, therefore, use this model

in a Kalman filter to obtain the one-step predicted measurements

A. Models for Variations in Channel Gains and Interference Of the local mean interference values.
Levels Note that one shall use receiver diversity techniques to
The variations in the channel gains can be characterizce%lmbat fast fading since power co.ntr.ol algorlt_hms, n general,
. : cannot track very fast channel variations. While we will eval-
by the slowly changing shadow-fading and the fast mult-

path-fading on top of the distance loss. We consider Iog-normuaelte the simulated performance of our algorithm with higher

. . o ower update rates, we have decided to select the power update
shadowing whose spatial (or temporal) correlation is reprg

sented with a simple first-order Markov model presented eriod such that the fast multipath fluctuations are averaged
[30].

Sut while the slower shadowing fluctuations are being tracked.
The channel gain from every uséto its intended base sta-It was ;hown in [31] _that, under the fIat. Rayleigh_-fading
Lo D . assumption, when a first-order lowpass filter, or simply a
tion, in the logarithmic scale, is, therefore, modeled as moving average filter, is used to obtain the local mean values
Gii(n) = g% + 6gii(n) (12) ofthe measurements, the averaging error in decibels will have
§G:1(n) = a8gus(n — 1)+ wy(n — 1) (13) a Gaussian distribution, whose mean can be made zero by
" " g appropriate choice of the filter dc gain and whose standard
where g9 is a constant bias ang, is a zero mean white deviation depends on the shadow-fading standard deviation

Gaussian noise sequence. The constant bias accounts forafiéthe ratio of the shadowing correlation distance to the carrier

antenna gains and the distance loss in the filter. The parama¥arelengthX, /A, and the normalized measurement tifpel’,
a is obtained as wheref,, = v/ is the maximum Doppler frequency.

It is now clear that the model parameters not only depend
a=¢e X5 (14) on the environment through the values of the shadowing stan-

) _ _ ) dard deviation and the shadowing correlation distance but also
wherev is the user velocity andl is the update period. Note thatgepend on the user velocity. While one can think of imple-

vT'is the distance that the user moves during one update periggnting individuahdaptivekalman filters for each user, where
Moreover,X; is called the shadowingprrelation distanceltis  the model parameters are continuously updated based on the
the distance at which the normalized correlation decreasess{gijlable information about the user velocities, we choose to
e~'. To see this, note that the autocorrelation functionér consider a fixed model to design and implement the same filters

can be obtained as for all the users in the network. There are two main reasons for
o2 ) this. One is that for a rather broad range of user velocities, the
Rsz(m) == E[6g(m +n)og(n)] = a2 ™l = gZal™! values fora anda,,,, and as shown in [31], the averaging error

(15) variance only slightly change, and we believe that the Kalman
filters will be robust to such changes. The other reason is that
whereo,,, denotes the standard deviation of the noise sequenekile some techniques have been already proposed for user ve-
Wg. Note that given the standard deviation for shadowingnd locity estimation in mobile environments (refer to [32] and the
the value fom, the standard deviation for the driving white noiseeferences therein), most of them fail to provide accurate esti-
sequence can be obtained. mates in real time.
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B. Kalman Filter Design Now, starting from initial estimates, (0)~ andz;(0)~, the
Using a set of available measurements, corrupted witheasurement updaegjuations for the filters are expressed as
Gaussian noise, a Kalman filter recursively obtains the min- .

8

+ _ A — _ A —
imum mean squared error estimates of a set of variables that Ag(n)+ = Lfg(")i + Ly(n)(yq(n) Hffg(”)i) (26)
are varying according to a given dynamic model. Kalman  #1(n)" =&1(n)” + Li(n)(yr(n) — Hgir(n)~) (27)

filters have proved to be strong estimation tools in a VeWhereaE (n)~ andé;(n)~, respectively, denote thopagated

. . . - . g i) )
ywde range .Of gpphcatlons [33]. As exgmples of apphcatlorE priori) estimates of the channel gain and the interference level
in communlcatlon_ sy_stems, K_alman filters h_ave _been us %the end of thén— 1)th power update period. Hence, at time
for C_ha_””e'. equalization [34], interference estimation for “dle., the beginning of theth power update period) th,e current
adm|35|on_|n CDMA networks [35], and for power control Iqoca'I mean measurements(n) andy; (n) are incor’porated to
packet-switched broadband TDMA networks [9]. obtain theupdateda posterior) estimates:, (n)* andi(n)*.

We propose a predictive power cqntrol algorithm, where_t he two-dimensional filter gain vectofs, and L are obtained
Kalman filters are employed to provide the one-step predicted

estimates of both the channel gains and the interference levls
. . . : ~ ~ .
for every user, which are then_ used in an integrator algorithm Ly(n) = Py(n) Hf (Hng(n) H}r + Vg) (28)
to update the power levels. Using (12) and (13) for the channel o o =
gains, we can write Li(n) = Pr(n)”Hy (HyPr(n)"Hf + Vi) (29)

Gi(n) = agu(n — 1) + (1 — a)g% + wy(n — 1). (18) WwhereV, andV; are the measurement noise covariances and
P,(n)~ andPr(n)~ are thepropagatedestimation error covari-
Similarly, using (16) and (17) for the interference levels, we caance matrices. Note that we only have scalar measurements and
write no matrix inversion is involved. At time, the covariance ma-
trices are updated as

Li(n) =ali(n—1)+ (1 —a)I? + wr(n — 1). (19)

) ) ] ) . Py(n)t = Py(n)™ — Ly(n)HyPy(n)~ (30)
The idea is to design two simple Kalman filters that use the erro- Poim)* = Prim)— — Lo(n\EL P ()~ 31
neous local mean measurements, available to every user, to esti- 1(n)" = Pr(n)” — Li(n)Hy Pr(n)". (31)

mate the constant biases in the models and provide the one-§igR; the one-step predicted estimates for the channel gain and

predicted estimates of the channel gains and the interferepGe interference level are obtained by propagating the estimates
levels. As mentioned, the same models are used for all the M9ine next power update period

biles in the network. Hence, we eliminate the indekesd:

for a simpler notation. Zg(n+1)" = Asiy(n)*t (32)
It is now appropriate to represent both models in the state- o D= = A4 + 33

space form. Define 1 (n) := g(n), z42(n) = g°, x1(n) := Fi(n+1) ri(n) (33)

I(n), andzr2(n) := I°. The state-space models for every useind the covariance matrices are propagated as

can then be obtained as

Py (n+1)" = Ang(n)"'A? + W, (34)
my(n) = Aszgln = 1) Fwy(n =1) - (20) Prn+1)" = AgPi(n) AT W (39)
Yg(n) = Hyzg(n) + vg(n) (21)
zr(n) = Aszr(n — 1) + wr(n — 1) (22) WwhereW, and W; are two-dimensional diagonal covariance
— o3y Matrices for the driving noise sequences in (20) and (22),
yr(n) gor(n) +vr(n) (23) respectively.
where Incorporating the one-step predicted estimates in the inte-

- - grator algorithm (5), the updated power level for the duration
T, = [%1] Wy = [ Wy } wy = { wr } (24) of thenth power update period can be obtained as

Tg2 Wg0 wro
A = {8 1Ia} Hy=[1 0] (25) pn)=pn—1)+HF-7r(n+1)7) (36)

where

wherew, o andwyq are two mutually independefittitious zero .

mean white Gaussian noise sequences, which are also inde-"(n +1)” =p(n — 1) + Zg1(n +1)7 —&n(n+ 1)~

pendent fromw, andw;. They are required to make the fil- =pn—1)+gn+1) — j‘(n +1)". (37

ters more robust to the uncertainties in the models. Moreover,

vy anduy are mutually independent zero mean white Gaussisiihen a call is assigned (or reassigned) to an idle channel, its
noise sequences, which are assumed to be independent frorKalinan filter estimates are initialized (or reset)igs(0)~ =
other noise sequences in the model and are used to modelahg0)~ = g(0) and;1(0)~ = £;2(0)~ = I(0), where
fast-fading-induced averaging errors and other possible uncg(®) and/(0) are the local mean channel gain and interference
tainties in the local mean measurements. Remember that all thkies available at the time of channel assignment. Also, the
variables are expressed in a logarithmic scale. error covariance matrices are initialized3g0)~ = P;(0)” =
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Gis(n) Ii(n)
KF, KF;

Gy (n+1)" * * Tin+1)-
i + é(n) pi(n) pi(n—-1) + + + A ri(n+1)”
>O | K — ¢! —————»O »O —

Fig. 2. Local power control loop with Kalman filters.

diag(o?, 02), whereo is the shadow-fading standard deviatiol€. Global Stability of the Network

(set to 8 dB in our simulations). _ When the Kalman filters are employed, the block diagram for
We pick the model parameter according to (14) and 3 single loop can be depicted as in Fig. 2. We now show that,

by considering the maximum user velocities that we expegf ihe steady-state, the Kalman filters and, therefore, the local

in our mobile environment. This makes the filter assumgqps are stable Moreover, the sufficient conditions for global

the least correlation among the local mean values in t"%‘?ability are satisfied.

consecutive power update periods and, therefore, rely morgsjyen the filter gains in (40), it is straightforward to obtain

on the measurements. As we shall explain in our simulatigRe steady-state transfer functions for the Kalman filters
details, we assume the power levels to be updated every 100 ms

for mos_t of our simulations. Also, we consider the s_hadowmg Gn+1)" j—(n 1) ¢(0.37947¢ — 0.36091)
correlation distance to be about 40 m and the maximum user—— =7 = 1570530 = 0.58909"
velocity to be 80 km/h. Using (14), we then pick= 0.95. g(n) (n) ¢" — Lor0o3g + 0.

Using this value fore and o, = 8 dB and (15), we get (41)

02 = o2 = 1.56. We choose to set? = o2 = 2.0 in
g T

the filter, again to deal with uncertainties in the models. ThE'€ Poles of the Kalman filters (i.e., the poles of the
variances for the fictitious driving noise sequeneegs and above transfer function or v_aquwalent!y _the eigenvalues  of
wro are also set to 2.0 dB Also, the standard deviations forts — AsLHj) are located inside the unit circle at
the local mean measurement errors are both set to 3.0 dB,
ie., Vg =V =9.0.

One should observe that the error covariance matrices and the
filter gains are independent of the actual measurements. TH"

can be seen from the filter equations (28)—(35). Therefore, | o o . .
oop, are inside the unit circle. Processing and propagation de-

filter gains L, and L; can, in fact, be calculated and saved . ;
priori. This can result in a significant reduction in the filter prolays (i.e., extra delay blocks in the feedback path) could result

cessing time. in instability of the local loops and, therefore, instability of the

Also note that when the filter reaches the steady-state OH_VQOIe network. However, even thO.UQh some delay compensa-
fiap schemes have been proposed in [12], information-feedback

specific channel, the steady-state filter gain vectors are equa ) .
power control algorithms, as mentioned before, usually run on
. lower power update rates, and processing and propagation de-
T T .
Ly=L;=PHy (H;PHf +V) (38) Jays are usually much lower than a power update period.

As we mentioned, stability of the local loops is necessary but
whereV, = V; = V andP is the positive-definite solution to not sufficient for global stability of the network. However, the
the followingdiscrete Riccatequation; network will indeed be globally stable in ttfg,-inducednorm

sense, if the transfer function from the interfereti¢e) to the

p— AfPA]f _ AfPH}“(HfPHT n V)‘lePA? W powe_rﬁ(n — 1) satisfies t_he norm com_jition (9). .
(39) Using (41) and from Fig. 2, it is straightforward to obtain

sp1 = 061928,  spp = 0.95125. (42)

now clear that all the local loops are stable, i.e., the poles for
the closed-loop transfer functions, associated with a single

p(n — 1 37947¢ — 0.360 91
la) = pn—1)  0.37947q —0.3609 43)
I(n) ¢ — 1.57053¢ + 0.589 09

whereW, = Wi = W. Using our selected values, we get

T 1Under the technical conditions of stabilizability and detectability, the steady-
L,=L;=L=10.37990 0.37121]". (40) state Kalman filters are always known to be stable [33].
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and, hence, we get scheme with the one that uses no prediction. Omni-directional
antennas with two branch selection diversity is assumed for the
”G(q)ng—induced ~ ||G(q)||l(x—induced =1.0. (44) base stations.

Every channel is characterized by a p@it,n), wherem

Therefore,G(q) satisfies both (9) and (11). From (9), we condenotes the carrier frequency, ani$ the index for the time slot.
clude that, as long as the network is in its feasible region, the d&e consider two carrier frequencies and eight slots per carrier.
viations of the power levels of all the users in the network fromis mentioned before, no blind slots are considered. Hence, there
their corresponding optimal values will always remain boundegre 16 available channels, all of which can potentially be used
Moreover, from (11), we conclude that if the power levels onlygs traffic channels.
slightly deviate from their optimal values, while the channel Every frame is 4.0 ms, consisting of eight slots, each with a
gains remain constant, they will asymptotically converge bagiration of 0.5 ms. It is assumed that the signal and interference
to their optimal values. This proves the global stability of thgower measurements for every user are available in every frame
network, on every channel, both i, sense and i, sense gt the end of the user’s corresponding slot. Various events might
(with a Iineari;ed interference function), when the Kalman fikhen happen every multiple number of frames.
ters are at their steady-state. _ The channel gain for every link is normalized with respect to

When multiple channels are considered and the power cqfa paqe station and mobile antenna gains and is characterized

trol algorithm is integrated with a DCA scheme, the global Stgy, 06 components: distance loss, slow or shadow fading, and

bility analysis for the network beco.mes extremely complicate%st fading. The distance loss is assumed to be inversely propor-
Average number of channel reassignments per call can be ¢; Bhal tod®, wherea is set to 4.0. For shadowing a log-normal

S|.d'ered as a measure, which can somehow show th? Ievellof tgﬁern is generateal priori. Therefore, the shadowing values
bility for the network. We show through computer simulation ||y depend on the user's location. The resolution of the

that the average number of channel reassignments per call \é’ﬂadowing grid is set to be equal to the shadowing correlation

.be significantly reduced when the Kalman filters are employ%qstanceXs, which is assumed to be 40 m. The shadowing for
in the power control algorithm.

every user is then obtained by a normalized bilinear interpola-
tion of the four closest points on the shadowing grid. A slowly
IV. SIMULATION MODEL varying flat Rayleigh fading is also assumed. This implies that

While the previous theoretical analysis helps in justifying theo line-of-sight exists and the delay spread is small compared
use of Kalman filters in power control algorithms to deal bettd¥ith the symbol duration or the inverse channel bandwidth
with the variations in the channel gains and the interferendgd, thus, only a single path with a Rayleigh distributed
levels as well as the errors in the local mean measurementgmplitude (and, hence, exponentially distributed power) can
simulation study is essential to analyze the overall performarfe@ distinguished. In fact, the Rayleigh-fading component is
when such a predictive power control algorithm is integrate@sumed to be constant for the whole duration of a single
with a DCA scheme in a relatively realistic mobile environslot (0.5 ms). Time correlation for Rayleigh fading is often
ment. We, therefore, set up a system-level simulation envirdigPresented using the Jake’s model [29], where it is expressed
ment, similar to the ones presented in [17] and [18], but oni terms of a zeroth-order Bessel function of the first kind,
smaller scale, in order to analyze the overall performance of th@ich results in a nonrational spectrum. We use a first-order
network, when our predictive power control algorithm is inteapproximation by passing a white complex Gaussian noise
grated with a distributed minimum interference DCA schem#rough a first-order filter and obtaining the squared magnitude
User arrivals and departures and user mobility are all consRf-the output Gaussian process. The time constant of the filter,
ered. In this section, we explain the details of our simulatid@r every user, is obtained by setting its 3-dB cutoff frequency
platform, and in the next section, we analyze the results. ~ equal tof,,,/4, where f.,, = v/ is the maximum Doppler

The simulations run on the frame level, and hence, only powigquency for the user [13].
and interference levels are simulated, and no modulation andNew calls are generated based on a Poisson process with a
coding are considered in the simulations. While we do not rgiven arrival rate),. Each call is assigned an exponentially
strict ourselves to any specific standard, we have tried to stdigtriouted holding time with a given average valiig. The
close to theglobal system for mobile communicatiof@SM) averagéerlangload per cell is then obtained & = A\, 75, /N.,
standard. whereN,. = 9 is the total number of cells. The Erlang load per

A 3 x 3 square grid of cells is assumed. The base statiog@ll effectively determines the average number of users that
are located on the cell centers and are separated by 800cauld be active in every cell at any instant of time. We have
To avoid edge effects, a ring simulation structure is assume&@nsidered various combinations of values fqrand7j, to
i.e., the statistics are only gathered from the central cell. Tragnulate the network under different traffic load conditions.
is somewhat simpler than a toroidal simulation structure and isThe new users are uniformly distributed in the area. The mo-
shown to provide more optimistic but comparable results [36jility of the user: is modeled with a constant but random speed
The other reason for our results to be somewhat optimisticids and the angld; between the velocity vector and the hori-
that only nine cells are simulated, and therefore, lower intezental axis(—= < 6, < ). The speed for every new user is
ference levels are generated. However, our simulation resudidected randomly from a triangular distribution in the range
clearly serve our purpose of comparing our predictive DCP&-80 km/h. This is preferred over a uniform distribution, as it
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SO T A minimum interference DCA scheme is employed. The local

mean channel gain and interference values for possible channel
3 ; reassignments are obtained by simple averaging of the available
- [ —User Traectory | measurements over 50 consecutive frames for every user.
P L Finally, a base station handoff attempt will be triggered if
the local mean channel gain from a neighboring base station
exceeds the corresponding value from the current base station
by a selected handoff margin of 4 dB. If the handoff attempt
fails, the user will stay with its current base station. Note that the
users are assumed to be continuously monitoring the downlink
control channels of all neighboring base stations.
‘ ; ; ; _ Initially, two power control algorithms are simulated. Specif-
100 . . . . .
1400 1500 1600 1700 1800 1900 200 ically, the simple integrator algorithm in (5) and (6) and the
X-Position (m) predictive algorithm in (36) and (37) are compared. Note that
while the propagation simulation models are tailored to indi-
vidual users, according to their different trajectories and speeds,
the same Kalman filter models and parameters are employed for
results in a smaller variance for the velocity distribution amorgy! the users in the network.
different users. The initial directicthis uniformly picked. Then, ~ After a new uset is admitted, it sets its initial power at
every 10 s, a new direction is selected from a triangular distri-
bution with the old direction as its mean. This is again preferred pi(0) = 2ali0)7 (45)
over a uniform distribution or a two-dimensional random walk, 9:i(0)~
since it makes small angle turns more probable that large ones.
The motion trajectory for a sample user is shown in Fig. 3. WhereZ;(0)~ andgi;(0)~, respectively, denote the local mean
The desired SIR threshold for all users in the network is sgfannel gain and the interference-plus-noise level, which
to 5, = 12 dB, while the minimum tolerable SIR is considere@'® available at the time of user admission. Note that this is
to be Jmin = 10 dB. Both margins for new user admission?omehow an optimistic choice, since a new user sets its initial

and user droppings are set to 2 dB. Therefore, new users WAWer as though other users will not increase their transmit

be admitted only if they can achie¥g.,, = 14 dB on the idle powers. . ) .
channel with the minimum local mean interference. Moreover. For most of the simulations, the power update rate is assumed

a user will be dropped from the network if its SIR drops beIoJ\?; be the same for all users and is setto 100 ms, that s, every user

Farop = 8 B and stays below for 4.0 consecutive seconds. Nd{gda_ltes its power level every 25 frames_. The idea s Fo _have fast
that these margins should have been expressed as percen ath fluctuations averaged out while slower variations are

of 54 and.. for every user, if the users were to have differer€ing tracked. In all simulations, a maximum transmit power
QoS requirements and, thus, different SIR thresholds. constraint at 30 dBm is imposed on all users in the network,

When a new user arrives into the network, it first starts scawf:;le;helaege'\r/:rr?t?'ie ;I(t)r?rtls iiet t?rl]zo dBrm. rive at arbitrar
ning the downlink control channel from all neighboring base tS touft' € me od_e ¢ aPs ice the u_sels arrve atr? ary
stations and measures all the local mean channel gains. It is'garants ottime according to a FoISSon arrival process, the power

sumed that this process take about 0.8 s (200 frames), whic ﬁ’g ates arr]e n :ﬁCt performastynchdro?oustlyevs\r/\ht_rough ta” it
called the initial call setup time. The new user then sends its } € users have the same power upaate rates. e Most results

In gower control assume synchronous power updates among the

quest for a channel to the base station which has the stron 8 h irol alaorithms h b d
signal. If this base station does not have any idle channels,gg?eers’ asynchronous power control aigorithms have been ad-

user will try the second best base station. This procedure irsessed in the Ilterature [5]. To have synchro.nous power Up-
]dates, one could simply force the users to arrive at instants of

calleddirect retry and will be repeated for a given number of, hich itiol f dat iod
base stations (set to three in our simulations) before the usetfrige’ which are multiples ot a common power update period.

blocked. When there are idle channels available, the base station
checks whether the user can achieyg, on the idle channel V. PERFORMANCEANALYSIS

with the minimum local mean interference. If so, the user will |n this section, we present and analyze our simulation results
be admitted and will be assigned to the idle channel with thg,d show how the predictive DCPA scheme can improve the
minimum interference. Otherwise, the user will be blocked. overall performance of the network.

We should note that nmacro diversityis considered, i.e.,  For any given traffic load, we run the simulations multiple
any user will only communicate with a single base station #imes with different random generator seeds and every run con-
any instant of time. Moreover, base station assignment is caimues until enough number of calls are dropped. The statistics
sidered to be separate from power control, i.e., the power levalg then gathered from the central cell.
are obtained assuming that the users are already assigned to théiigs. 4 and 5 show the call blocking and the call dropping re-
corresponding base stations. Joint base station assignmentspahses of the network under the two DCPA schemes. It can
power control has already been proposed in the literature [3e seen that at 7.0 Erlang/cell, the predictive DCPA scheme

User Speed; 44.7 Km/hr
300 v

N
a
=}

Y-Position (m)

N
=3
k=

150

Fig. 3. Sample user motion trajectory.
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achieves about 0.5% lower blocking rate and about 0.03% low -
dropping rate. Moreover, the improvement in performance i1§
creases as the traffic load increases. Remember that there <8
ways a tradeoff between blocking new calls and dropping actiz
calls. '
Our predictive DCPA scheme also results in better target S~ o
tracking. We obtain an estimate for the SIR error standard c
viation and also estimates for the SIR cumulative distributic
functions by looking at the local mean SIR values of all the use
in the network at various random instants of time (after enou¢  °,
call attempts have been made and the network has reached s Local Mean SIR (dB)
kind of steady state) during every run of the simulation. Fig. 6 S
shows the standard deviation for the error in the local me&l§- 7~ Cumulative distributions for the local mean SIR.
SIR for a range of traffic loads. It can be seen that the predic-
tive scheme decreases the SIR error standard deviation by alspuead around the target SIR. The improvement is again more
0.3 dB at 7.0 Erlang/cell, while the improvement is about 0.7 dBoticeable in higher traffic load. In fact, Fig. 8 shows how the
at 10.0 Erlang/cell. Furthermore, Fig. 7 shows the cumulatiV@cal mean SIR cumulative distribution function changes with
distribution for the local mean SIR values in the network undéhe traffic load under both schemes.
8.0 and 10.0 Erlang/cell. These figures show how the local mearOne measure that shows the level of stability of the network
SIR values for different users are spread around the target $8Rhe average number of channel reassignments per call. Fig. 9
valuey; = 12 dB. It can be seen that the predictive DCPAhows this number for a range of traffic loads under both DCPA
scheme results in the local mean SIR values, which are lesshemes. As one would expect, fewer channel reassignments
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Fig. 10. Transmit power cumulative distribution at 8.0 Erlang/cell.

powers of the users in the network at the load of 8.0 Erlang/cell.
It can be seen that the two schemes perform quite similarly, as
far as transmit powers are concerned. In fact, both algorithms
result in considerable power saving, when compared with a net-
work where all the power levels are fixed at their maximum
levels. For example, at a relatively high load of 8.0 Erlang/cell,
about 50% of the users under both DCPA schemes are trans-
mitting at O dBm or lower power levels. It should, however, be
mentioned that our predictive DCPA algorithm seems to result
in slightly higher power levels in the network. While one may
see this as a small cost for better SIR tracking and better call
blocking and dropping responses, it should also be noted that
our predictive DCPA scheme does indeed result in higher ca-
pacity which in turn implies more active users at any instant
in time. This higher traffic explains the higher average transmit
power for the users. In fact, Fig. 11 shows how the power cu-
mulative distribution functions might change as the traffic load
on the network changes under the two DCPA schemes.

Finally, one might argue that our power update rate is too
low for the average speeds considered in our simulations. In
order to further evaluate the performance of our predictive algo-
rithm, as compared with standard fast power control schemes,
we also simulated the DCPA scheme with standard fixed-step
power control algorithm where, depending on the deviation of
the received SIR from its target value, the power of each user is
incremented or decremented by a fixed 1-dB step every single
frame (i.e., once per 4 ms). We then ran the same simulations
with our integrated predictive DCPA scheme where the power
of each user is updated every fifth frame (i.e., once every 20 ms).
Tables | and 1l show the call dropping and call blocking proba-
bilities for the two scenarios under two sample traffic loads. It
can be seen that the results are similar with our predictive algo-
rithm still performing slightly better. Note, however, that while

per call are, on average, required in the predictive DCP#ome additional computational cost is associated with our algo-
scheme. One reason for this is that, as shown before, the pithvm, the update rate for our algorithm is taken to be five times
dictive scheme does indeed result in better target SIR trackisigwer than the standard fixed-step algorithm. We do, however,

and smoother local mean SIR behavior.

believe that clarification of the exact tradeoff between the extra

We also compare the transmit power distribution of the usezemputation and the lower update rate would require further
in the network under the two DCPA schemes. Fig. 10 shows analysis using simulations and possibly profiling the code on
estimate of the cumulative distribution function for the transmépecific processors.
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TABLE |
CALL DROPPINGPERCENTAGE

| Fixed-Step DCPA,250 Hz | Predictive DCPA,50 Hz

8.0 Erlang/Cell 0.17% 0.16 %
9.0 Erlang/Cell 0.73 % 0.66 %
TABLE I

CALL BLOCKING PERCENTAGE

| Fixed-Step DCPA,250 Hz | Predictive DCPA,50 Hz
1.12% 0.86%
3.27% 3.15%

8.0 Erlang/Cell
9.0 Erlang/Cell

VI. CONCLUSION

-50 -40 -30 -20 -10 0 10 20 30
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network stays feasible, the deviations of the power levels from
their corresponding optimal values will always remain bounded,
while the small deviations will always converge back to zero.

This predictive power control algorithm was integrated with
aminimum interference DCA scheme in an FDMA/TDMA mo-
bile radio system. A system-level simulation environment was
then developed. User arrival and departures and user mobility
along with flat Rayleigh-fading effects were all included in the
simulations. It was shown that the predictive DCPA scheme re-
sults in better call dropping and call blocking responses and
also better target SIR tracking performance for the network.
Moreover, on average, fewer channel reassignments per call are
required under the predictive DCPA scheme. We believe that
these improvements are obtained mainly because the predic-
tive algorithm takes into account at least the slow variations
of the channel gains. Also, by dealing with uncertainties in the
measurements, it effectively mitigates the fading-induced local
mean measurement errors. It was also shown that the predic-
tive DCPA scheme results in slightly higher power levels for
the users, due to the increased number of simultaneously active
users in the network.

As for future research, one may try to design adaptive al-
gorithms where the parameters of the algorithm and even the
power update rates are adaptively adjusted for individual users,
according to such information as user velocities, etc. Also, the
standard integrator algorithm may not be the best power control
algorithm. Even though constraints on complexity and compu-
tational effort are always present, other simple algorithms may
still be designed that could result in better SIR tracking, better
allocation of resources, and finally, higher levels of capacity in
highly nonuniform and nonstationary environments. Finally, an-
alyzing the behavior of any prediction filter, both in terms of
convergence and performance, under bursty interference condi-
tions, can constitute another interesting line of future research.
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