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ABSTRACT
The performance of a sensor network may be best judged by the
quality of application specific information return. The actual sens-
ing performance of a deployed sensor network depends on several
factors which cannot be accounted at design time, such as envi-
ronmental obstacles to sensing. We propose the use of mobility to
overcome the effect of unpredictable environmental influence and
to adapt to run time dynamics. Now, mobility with its dependencies
such as precise localization and navigation is expensive in terms of
hardware resources and energy constraints, and may not be fea-
sible in compact, densely deployed and widespread sensor nodes.
We present a method based on low complexity and low energy ac-
tuation primitives which are feasible for implementation in sensor
networks. We prove how these primitives improve the detection ca-
pabilities with theoretical analysis, extensive simulations and real
world experiments. The significant coverage advantage recurrent in
our investigation justifies our own and other parallel ongoing work
in the implementation and refinement of self-actuated systems.

Categories and Subject Descriptors
B.8 [Hardware]: Performance and Reliability; C.2.4 [Computer
Communication Networks]: Distributed Systems—distributed ap-
plications

General Terms
Algorithms, Measurement, Reliability, Experimentation

Keywords
sensor networks, coverage, actuation, environmental obstacles

1. INTRODUCTION
Several research efforts [1, 2, 3, 4, 5, 6, 7, 8] have established the

feasibility of compact, wireless and low energy devices for sensor
networks. Apart from use in defense and industrial process mon-
itoring, several other applications have been prototyped for such
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systems in education [7, 6], science [9, 10], arts and entertainment
[11] among other areas. In this work we consider the fundamen-
tal functionality used by all the above applications – sensing the
application specific phenomenon in the deployment environment.
Any given application would need a certain sensing performance,
which must be guaranteed in the face of unpredictable event dis-
tributions and the presence of static and mobile environmental ob-
stacles. Such practical considerations are critical in the design of
sensor networks due to the strong coupling of the system to its de-
ployment environs. For instance, if a network of cameras is in-
stalled for security monitoring and certain regions of the scene are
occluded by obstacles, the utility of the system to the user will im-
mediately diminish. The system designer is challenged to not only
provide the required performance within the resource constraints
of embedded sensor nodes and a limited power budget but also
ensure autonomous operation of the system in unknown environ-
ments. Environment specific customization is not desirable, as it
hinders rapid deployment.

1.1 Key Contributions
The performance problem outlined above can be alleviated with

the use of mobility. We argue that the use of mobility to overcome
sensing uncertainties is essential due to two reasons.

The first reason is providing sensor diversity. A certain node
density may be calculated for a specific sensor based on its nom-
inal range in an isotropic medium or the required granularity at
which the phenomenon is to be sensed. However, this density does
not guarantee the quality of sensing in a real environment with
anisotropic media and presence of obstacles. A prohibitively high
density would be required to guarantee performance in an unknown
and arbitrary environment. Thus, while static high density sensors
can give only probabilistic coverage performance, actuated sensors
can adapt to the specific deployment scenario and give the exact
coverage performance required.

The second reason comes from the need for adapting to the run
time dynamics of the environment. Obstacles may move in an un-
predictable manner making it necessary for the system to adjust.
Thus, the only feasible method to achieve performance guarantees
is to endow the system with a capability to auto-configure and re-
position in response to environmental peculiarities.

We show in this paper that a small range of mobility relative to
the mean obstacle size of the environment can lead to significant
improvement in coverage performance. This finding is extremely
important for sensor network design because of the specific nature
of resource constraints in the system. Mobility in a general form
has several disadvantages which make its use in sensor networks
highly impractical. Most proposed systems which do use mobil-



ity restrict it to a small subset of the nodes in the network [12,
13]. Firstly, supporting mobility requires the nodes to be capable
of accurately localizing their positions and navigating across the
deployed terrain. This requires significant resources in terms of
localization hardware, terrain sensing, motion feedback and the re-
sultant complex data processing. Secondly, even if all the resources
can be provided, the errors in the position of the node itself intro-
duce further complications in the sensing and detection algorithms.
Thirdly, large amounts of energy are required for physically mov-
ing the node on arbitrary terrain.

In contrast, node mobility operating over a limited range can fea-
sibly be provided to low cost sensor nodes deployed in large num-
bers. Several factors lead to this conclusion. First, a short linear
displacement may be executed through addition of small infrastruc-
ture in the form of linear actuators, for example. This may include
a track mechanism, permitting motion as indicated in (Figure 1).
Adding locomotion to compact nodes is feasible, as demonstrated
on Robomotes [14], also shown in Figure 1.
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Figure 1: (a) Conceptual visualization of feasible motion sup-
port in sensor nodes, (b) Robomote: a sensor node with a small
traction mechanism [14]

In addition, energy requirements for moving on a pre-designed
infrastructure are low since the node is not subjected to arbitrary
terrain navigation characteristics. Further, when the mobility is
limited to a pre-designed platform, counterbalancing weights may
be introduced to reduce the energy cost of motion due to gravita-
tional forces. Moreover, for this application, only the sensor trans-
ducer is required to be moved instead of the entire node. Accurate
localization, real time terrain feedback and complex navigation is
no longer required for the purposes of mobility as the track is de-
terministic (the application specific localization, if used remains

independent). Relative positions along the designed locomotion
track are conveniently recorded and this motion does not add to de-
tection uncertainty. Further, limited range mobility can be much
faster than unconstrained mobility due to its simplified navigation
requirements and hence reduced latency. Thus, our work presents
a practical low complexity and low resource cost method for over-
coming the effect of environmental obstacles and run time dynam-
ics.

1.2 Related work
Most works on coverage and sensing performance in sensor net-

works assume simple sensing range models and ignore the effect of
obstacles [15, 16]. Somewhat more involved sensing models were
developed in [17] but obstacles were not accounted for. Some work
has also been done on saving energy by turning off redundant nodes
while maintaining coverage and connectivity but the proposed al-
gorithms assume that coverage is not blocked due to environmental
occlusions [18, 15, 19, 20]. However, most environments do pose
obstructions in the paths of sensors and performance may be af-
fected severely by these. Our work addresses the modelling of re-
alistic environmental obstacles in sensor networks for the first time.

The problem of communication coverage in various environments
with obstacles has been widely studied in cellular communication
and more recently in sensor networks [21] but such analysis is not
applicable to sensing coverage. This is because the propagation of
phenomenon information through sensing media is very different
from radio wave propagation. Techniques to model path loss, re-
flections and diffractions for electromagnetic waves, their lognor-
mal approximations and empirically derived models [22] are not
applicable for most sensors. In particular, the image sensor stud-
ied in this work depends on direct line of sight access to the phe-
nomenon of interest, which is not the case for cellular communica-
tion.

The problem of observing and reconstructing a given scene from
images acquired by single or multiple cameras has been studied
extensively in vision research. Primarily, research has concentrated
on complete descriptions of the observable scene [23], sampling
the scene with the minimum required views to achieve a complete
description [24], planning the placement of cameras [25] and mov-
ing the camera in response to detected obstacles [26]. The vision
systems assumed are relatively free to move as required or can be
deployed at the optimal positions computed for a specific environ-
ment, which is not the case for sensor networks. In addition, the
processing and energy resource constraints are very different in
these systems compared to sensor networks. We concentrate on
systems where only a limited amount of mobility is available as
discussed above. Previous work has also considered path planning
for robots in the presence of local obstacles and tracking of mov-
ing targets in the presence of occlusions [27, 28, 29]. Again, the
robots in such systems have extensive navigational and localiza-
tion resources and are capable of moving much more freely than is
practical for sensor nodes.

The use of mobility to improve the performance of ad hoc wire-
less networks has been considered before to enhance communica-
tion capacity [30] and security [31]. Some implementations to ex-
ploit externally available motion to transfer data physically instead
of over the wireless links [13, 32, 33, 34] have been considered.
The problem of target detection by randomly moving sensor nodes
has also been looked at [35]. All of these works assume that the
mobility is random or available by some other means such a pre-
dictable path of a vehicle passing through the deployment. They do
not consider actuation built into the sensor nodes.

Other uses of mobility such as self-deployment [36] and energy



replenishment [12] have been studied, but these methods are not
based on low complexity actuation. The only other work, which
we are aware of, to utilize controlled mobility for enhancing sensor
coverage is [37]. However, that work aims at maintaining a uniform
node density in the event of node deaths and does not address the
issue of obstacles and sensing medium anisotropies.

1.3 Outline
In the next section, we theoretically analyze the effect of an ob-

stacle, and how a small range of mobility affects the sensing per-
formance. In section 3 we consider the advantages of mobility for
several cases conceived to model complex environments with mul-
tiple sensor deployment possibilities. Section 4 presents the obser-
vations from our experiments conducted with real sensors, both on
a laboratory test-bed and in a real world deployment. We assess
the observations from simulations and experiments in section 5 and
conclude the paper in section 6.

2. ANALYZING THE EFFECT OF
ENVIRONMENTAL OBSTACLES

We first analyze the effect of an obstacle on coverage. For the
purpose of analysis we make several abstractions which will be
removed gradually in simulations, laboratory tests and real world
experiments presented in subsequent sections. We carry out our
analysis for a sensor with line of sight coverage model, such as
a camera, for ease of exposition; the analysis can be extended to
sensors in anisotropic media, acoustic sensors in a multi-path envi-
ronment and other sensor specific coverage models.

Assume that sensors are deployed at uniform density � which
yields an inter-sensor spacing � in a regular grid deployment. Most
of the deployments stay close to the ground surface and for such
cases a two dimensional deployment is a reasonable model. Con-
sider one sensor which is responsible for covering one tile of this
grid, shown in Figure 2. Let the area for which one sensor is respon-
sible be denoted by � . For the regular grid deployment �	�
��� .
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Figure 2: Abstract obstacle model for analytical calculation of
coverage.

Consider a circular obstacle of diameter � present in this tile
which blocks the coverage of the sensor. We will assume that the
sensor is capable of limited mobility over a range which is a small
multiple of � .

Suppose the area occluded by the obstacle is ��������� ������� (shown
shaded in Figure 2). To quantify the coverage, we define the prob-
ability of mis-detection, ��� � , as

��� �!� "� #%$'&�()()* +�,�-�,/.�0 13254 � 0�687:95;=< � 7 � ; (1)

where
.�0 13254 � 0>6�? 9@? < is the probability density of the target location

within � .
We assume no design time knowledge of the target location which

leads to a uniform
.�0 13254 � 0>6�? 9@? < . For this case, ��� ���	�A������� �������CB�� .

When no obstacle is present, � is completely covered by the
sensor and hence ��� ���	D .

Now consider the case when one obstacle is present. We analyze
for one obstacle position to illustrate our point, but the analysis
can be carried out for any location of the obstacle. Consider the
position of the obstacle shown in Fig. 2 such that both the tangents
from the sensor to the obstacle circle meet the top edge of the tile.
Let E F be the angle made by the tangent to the obstacle edge with
the vertical line joining the sensor and the center of the obstacle.
Let the distance of the obstacle center from the sensor be

7
. Then,

�	�
� �HGJILK �M'N � (2)��O 0 130QP �������� ������� �
� ��R �%S'E F G �8�T R �%S'E F G 6 IVU E F < �8�W (3)

where EX�ZY@[\S^] F 6 �8B M 7_< . Next consider the case where the sen-
sor is capable of moving a small multiple of � , say

M � , along a track
along the edge of the tile. The occluded area when the camera may
use any location along its track to cover the tile is shown hashed in
the figure. This area is

��` �>a P � �������� ������� � �8�T R �%S 6 bc< G b �8�T (4)

where b � I B M U E F U E � ULdM (5)E � �eY@[\S ] F K �8B Mf T � � U 7 � N (6)d � R �%S ] F 7M � (7)

To determine the magnitude of improvement for specific values
of the model parameters, let us evaluate the gain due to mobility as
the factor, g , by which the occluded area is reduced due to mobil-
ity.

gh� � O 0 130QP �������� �������� ` �>a P � �������� ������� (8)

using the expressions derived in equations 3 and 4.
We evaluate the above equation for a sample set of parameter

values. Fig 3 shows g for �i� " DjD 9 �lk 6)mn9 M D < and the distance of
obstacle,

7 k 6 M D 9>o mj< . These values are such that the geometrical
calculations above hold; the relative values of

7:9 � and � are such
that the figure drawn above represents the situation correctly, the
calculations will change if the shapes of occluded areas differ.
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Figure 3: Calculating the advantage due to mobility for a sim-
plified obstacle model.

Figure 3 shows clearly that limited range mobility reduces the
occluded area by up to an order of magnitude in the above cases.
This mobility offers a dramatic impact, therefore, on detection prob-
ability for distributed sensors with only a small resource cost addi-
tion due to adding this mobility capability.

Analytical calculation may be continued for varying positions
of the obstacle and may be extended for more than one obstacle.
However, analysis becomes intractable as the number of obstacles
grows and we resort to simulations for evaluating more complex
and representative environments.

3. LOW COMPLEXITY ACTUATION IN
SEVERAL ENVIRONMENTS

We now consider several scenarios with multiple obstacles. The
simulations essentially model a surface deployment, where the sen-
sors are mounted on objects lying on the ground, pillars or trees.
The effect of height is not accounted for in the obstacle model.
Three dimensional calculations would be needed when sensors are
observing the environment from a UAV or very high altitude.

Again, we consider sensors placed along edges of a square re-
gion, which as before models one tile of a large deployment. The
mobile sensor is assumed to be able to move a short distance along
the edge.

To model realistic obstacles, we first note than most everyday
objects have a small aspect ratio. Also, for the line of sight sensor,
it is not the exact shape of the obstacle but the angle subtended by it
at the sensor which determines the occlusion. With this reasoning,
we simulate the obstacles as circular. A notable exception to small
aspect ratio objects are walls and other forms of boundaries which
will severely limit the coverage of a sensor and we do not expect
low complexity actuation to overcome the effect of walls.

The obstacle diameter is assumed to be a random variable with
uniform distribution, between 0 and

M � 13p . The density of obstacles
is represented as number of obstacles per unit area. The obstacles
are placed uniformly randomly over a square area of size

" DjD:q " DjD .
The random coordinates may lead to overlapping obstacles causing

the formation of complex obstacle shapes. As discussed before,
we are not concerned with the exact shape of obstacle but rather
with the occlusion caused by it. The sensor is again assumed to be
capable of moving a distance � ` � p � which is a small multiple of� 13p .

Coverage is measured by evaluating the area which is visible to
the sensor compared to the free area left in the square after the area
occupied by the obstacles themselves is subtracted. The line of
sight from the sensor to every point in the free area is tested and
if there is an obstacle blocking it that point is assumed occluded.
Coverage can be calculated by counting the occluded points and
the visible points.

To suppress the effect of peculiar chance placements, for each
choice of parameter values we average our measurements over 20
runs of the simulation. One of the sample obstacle placements is
shown in Figure 4, with one sensor placed along the lower edge.
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Figure 4: Sample obstacles in deployment terrain (The small
line along the lower edge shows the track on which the sensor
moves).

For the first simulation, there is one sensor placed at the center of
the lower edge. The value of � 13p is

m
m. The obstacle density is var-

ied from
"

obstacles in the square region to
" m

obstacles. Coverage
is evaluated for three cases: when there is no mobility, when the
sensor can move � 13p to one side of the center position and when the
sensor can move

M � 13p , equally divided on both sides of the center
position. Figure 5 shows the fraction of free area covered in each
case. For each obstacle density, coverage is obtained by averaging
over 20 obstacle placements, in each of the three sensor mobility
cases.

The gains due to mobility in varying obstacle density, compared
to a static sensor are shown in Figure 6. The gain is defined as:ge� ��� � O 0 130QP ���� � ` �>a P � � (9)

The figure shows 200% to 700% gain for sensors with small mo-
bility compared to static sensors. Considering the fact that sensing
is the key functionality of a sensor network, these gains are very
significant.

The next simulation studies the advantage due to mobility in
varying obstacle size. The value of � 13p varies between 5 and 20m
in a

" DjDrq " DjD area. The number of obstacles is kept fixed at 10.
Figure 7 shows the multiplicative reduction in mis-detection prob-
ability, G. The labels 1 and 2 along the x-axis refer to cases when
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Figure 5: Coverage with varying obstacle density, with and
without mobility. The error bars show the variance among 20
runs with different random obstacle placements.
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Figure 6: Actuation advantage (multiplicative reduction in
probability of mis-detection) in varying obstacle density.

the sensor is allowed to move � G �%s and
M � 13p respectively. Again,

actuation shows significant advantage, giving more than a factor of
2 improvement. The variance in the results from the 20 random
topologies, not plotted for brevity, is less than 0.05 in all cases.

The simulation results are very encouraging and verify that the
performance gains expected in simplified analysis with a single ob-
stacle are also expected with realistic scenarios having multiple ob-
stacles and varying camera mobility range. These results motivate
us to implement experimental systems which utilize actuation ca-
pability.

4. EXPERIMENTAL RESULTS
We extended our simulations with a real sensor detecting a target

in the presence of obstacles. This section describes the camera test-
bed built for this purpose and our experiments on it in two different
scenarios - a controlled laboratory environment and an outdoor en-
vironment with trees and foliage.
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Figure 7: Actuation advantage (multiplicative reduction in
probability of mis-detection) with varying obstacle size.

4.1 Laboratory Test-bed with Cameras and
Obstacles

Figure 8 shows a picture of obstacles in our laboratory test-bed,
seen from the camera location.

The sensor used on the test-bed is an Axis 2100 camera system.
[38]. The camera system is equipped with rotational articulation to
enable imaging in the entire plane of rotation.

Of course, these imager systems are line of sight sensors, but
practical considerations which have not been included in the anal-
ysis apply here. For instance, in actual field deployment, the sen-
sor angle of view may be constrained and illumination conditions
may affect detection. The effects of these phenomena were reduced
here by providing adequate lighting. Object detection was assured
at the maximum range in this experiment for conditions where line
of sight observation was allowed by obstacles.

TARGET 

Figure 8: The laboratory test-bed for testing coverage advan-
tage due to mobility.

The coordinates for obstacle placement are obtained from the ac-
tual location of trees in the Wind River forest [39]. The size of tree
stems is assumed equal for simplicity of construction. Actual tree
coordinates do not follow a uniformly random distribution due to



physiological phenomena and using actual forest tree coordinates
is expected to provide a realistic obstacle scenario. The obstacles
used here are cylinders with diameter of 1 foot. They are placed in
a 12 foot by 12 foot grid. The tree coordinates are shown in Figure
9.
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Figure 9: The coordinates of trees from Wind River forest [39]
used to place the obstacles in laboratory test-bed.

The target itself is a small cylinder of a different color than the
obstacles. The obstacles are colored brown to abstract tree stems.
A simple image processing technique is used to detect the target in
the captured image. As the lighting in the laboratory is controlled,
we can take an image of the background with no target present and
detect the target by subtracting an image taken when the target is
present from the background image. If the target is completely oc-
cluded, it is assumed not detected. If it is partially occluded, we
assume it as detected if the number of pixels visible is above a cer-
tain threshold. This threshold procedure reduces the contribution
of noise associated with the camera system by ensuring that a min-
imum portion of the target is observed in order to declare a positive
detection.

The experiment is performed as follows. First the camera is
placed at the midpoint of one edge of the square area. With the
camera stationary, the target is moved to uniformly spaced loca-
tions on the

"�M�t q "�M�t
grid. The number of locations at which the

camera is able to detect the target divided by the total number of lo-
cations at which the target was placed gives the coverage achieved
by the static sensor.

Next the camera is assumed to be able to move a distance of
two feet. Coverage is again computed using the previous target
placement procedure but now if the target can be detected by the
camera by moving along its track, the target is assumed detected.

Further, we vary the number of cameras available. One addi-
tional camera is successively added on each of the other edges.
The mis-detection probabilities are plotted in Figure 10 for vary-
ing number of cameras, both for the stationary case and the mobile
case. The mis-detection with mobility reduces significantly com-
pared to the static case, reaching an order of magnitude improve-
ment in some cases.

4.2 Experiment in Trees and Foliage
Previous work on coverage in sensor networks [15, 16, 17] has

been based only on abstract simulations and not on measurements
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Figure 10: Probability of Mis-detection in laboratory test-bed
experiments: varying number of cameras. PoM is lower with
mobility.

with real sensors; our experiment is one of the first attempts to cor-
roborate the proposed coverage enhancement methods with real-
world measurements.

We test our findings in an environment with trees and foliage
occluding the scene. The location chosen was a forested area near
our campus, Figure 11.

TARGET 

Figure 11: Image of real world scene showing obstacles con-
sisting of trees and foliage, among which the target is to be de-
tected.

The obstacles are no longer ideal cylinders and cameras do not
operate in controlled lighting conditions. The cameras used as sen-
sors are not designed for outdoor usage and the image quality is
affected by exposure to sunshine for the long duration required for
collecting data in our experiments. This leads to some errors in
our simple image processing techniques for detecting the target.
The experimental challenges include operating from batteries away
from wall sockets and positioning the sensors on uneven terrain



instead of the levelled laboratory floor. It may be noted that the fo-
liage causes rather large occlusions and our mobility here is much
less than the mean obstacle diameter, instead of being an integral
multiple of it.

The experiment performed consists of one camera placed along
one edge. Coverage is measured over a

"�MCt q "�M�t
grid in the forest.

Detection probability is first measured when the camera is fixed
at the midpoint of the edge. Then the camera is allowed to move
two feet in one direction. Third the camera is allowed to move 2
feet in both directions. The mis-detection probabilities and gains
are tabulated in Table 1. The measurements show that mobility
even when lower than average obstacle length is able to provide
significant advantage in reducing the uncertainty of sensing.

Table 1: Mis-detection probabilities with and without motion
for real-world experimentu �%vxw3yC�=�	�C�%w PoM G (%)(relative to static case)

STATIC 0.3885 -
MOVE, 1 direction 0.2374 163.65
MOVE, 2 directions 0.1942 200.05

5. ASSESSMENT
The intuition suggested by the analytical results regarding the

benefits of limited actuation is extensively tested through simula-
tions, lab experiments and real world tests. Our study establishes a
clear advantage gained by introducing a very limited low complex-
ity and low energy motion capability.

These findings are very important for practical system design in
several situations. The cost of sensors, such as high resolution im-
agers, may be too high to deploy in the large numbers required for
complete coverage. Motion, without its dependencies of naviga-
tion, localization and terrain feedback reduces to simply providing
traction mechanisms such as a motor and possibly a track to reduce
energy consumption when moving. This kind of mobility is cheap
to provide and easy to control. Thus in situations where the latency
of motion is not a severe constraint, our method provides the de-
signer with a valuable trade-off to optimize the system design and
performance. The low complexity actuation primitives introduced
are also useful for adapting to the changing environment dynamics
such as moving obstacles and introduction of new occlusions.

This work is now being extended in two directions. One is build-
ing the obstacle detection modules which can be added to sensor
nodes to learn the presence of obstacles in the scene. This informa-
tion can then be used by the sensor node to decide its position or to
plan its motion. The second is the development of collaborative al-
gorithms for sensor nodes to optimize their positions in view of the
learnt propagation characteristics of the environment. These meth-
ods can enable a set of randomly placed nodes to customize their
positions for the specific deployment and update it as required.

6. CONCLUSIONS
We have suggested a new method to improve sensing perfor-

mance under the specific feasibility constraints of sensor networks.
Our method allows the system to work in realistic deployment sce-
narios with obstacles and changing occlusions. Apart from ana-
lytical and simulation verification, we tested our proposal on real
sensors deployed in a physical environment with abundant trees and
foliage acting as obstacles. This is the first attempt at developing

methods which work with realistic environmental models as op-
posed to previous methods which make several idealistic assump-
tions.

Future work includes exploring the exact trade-offs between the
number of mobile and static sensors in relation to various perfor-
mance and cost constraints. We also intend to study the advantages
of limited mobility for communication and other services in the
sensor network.
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