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Abstract. Two difficulties in designing data-centric routes [2–5] in wire-
less sensor networks are the lack of reasonably practical data aggregation
models and the high computational complexity resulting from the cou-
pling of routing and in-network data fusion. In this paper, we study
combined routing and source coding with explicit side information in
wireless sensor networks. Our data aggregation model is built upon the
observation that in many physical situations the side information that
provides the most coding gain comes from a small number of nearby sen-
sors. Based on this model, we propose a routing strategy that separately
routes the explicit side information to achieve data compression and cost
minimization. The overall optimization problem is NP hard since it has
the minimum Steiner tree as a subproblem. We propose a suboptimal
algorithm based on maximum weight branching and the shortest path
heuristic for the Steiner tree problem. The worst case and average per-
formances of the algorithm are studied through analysis and simulation.

1 Introduction

The need to lower the communication cost in wireless sensor networks has
prompted many researchers to propose data-centric routing schemes that can
utilize in-network data fusion to reduce the transmission rate. There are two
major difficulties in designing such routes. First, the lack of reasonably practical
data aggregation models has led researchers to use overly simplified ones [2–5].
For example, these models generally assume that sensors perform the same ag-
gregation function regardless of the origin of the fused data. As a remedy, [5]
suggests looking into models in which data aggregation is not only a function
of the number of sources but also the identity of the sources. Second, the re-
sulting optimization problem is often NP hard due to the coupling of routing
and in-network data fusion [2, 4]. Hence, algorithms that find exact solutions in
polynomial time are unlikely to exist. In this paper, we try to build computa-
tionally useful models and devise heuristic algorithms for the combined routing
and source coding problem.

Most previous work has considered using trees as the underlying routing
structure [2, 4, 5] probably due to the fact that trees are the optimal solution
to the shortest path problem and have been pervasive in network routing. How-
ever, in data-centric routing, trees are not necessarily optimal. In this paper, a



simple strategy, which we call designated side information transmission (DSIT),
is proposed. This method results in a non-tree routing structure and tends to
distribute the traffic more evenly in the network. To motivate the idea and give a
preview of the paper, consider the example depicted in Fig. 1. The edges between
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Fig. 1. Three routing strategies: (a) shortest path tree; (b) optimal tree; (c) designated
side information transmission.

adjacent sensors (circles) have the weight ce = d, and the edges connecting a
sensor to the fusion center (square) have the weight ce = D. The rate at which
each sensor needs to transmit to the fusion center is R without any explicit side
information and r if explicit side information from an adjacent sensor is avail-
able. We postulate that side information from other sensors can be used to help
compress the data only when it is available at both the encoder (the sensor that
generated the data) and decoder (fusion center). Assume r ¿ R and d ¿ D.
The objective is to minimize the cost C =

∑
e cefe of routing all the data to

the fusion center, where fe is the rate at which data is transmitted across edge
e. Consider the following three strategies: (a) the shortest path tree is used; (b)
we compress data using explicit side information and optimize over all spanning
trees; (c) the data at each sensor is transmitted to an adjacent sensor to be used
as explicit side information whenever the coding gain outweighs the transmission
cost. This transmission to an adjacent sensor provides only explicit side infor-
mation and needs not be relayed to the fusion center. The routes corresponding
to the three strategies are shown in Fig. 1. Note that at least one sensor has
to transmit at rate R to the fusion center so that all the data can be correctly
recovered. The costs of the three strategies are:

Ca = 5RD

Cb = RD + 4rD + 4Rd + 6rd

Cc = RD + 4rD + 4Rd

The performance of (b) and (c) are about the same, and both are superior to
that of (a). It is also evident that (c) results in more evenly distributed traffic
than (b). This is because in DSIT, the communication to the fusion center is
separated from the explicit side information transmission, and can be routed
through any path.



There has been much recent research activity on data-centric routing. In [7],
the interdependence of routing and data compression is addressed from the
viewpoint of information theory. Clustering methods have been used by some
researchers to aggregate data at the cluster head before transmitting them to
the fusion center [8,9]. Since the cluster head is responsible for data aggregation
and relaying, it consumes the most energy. Hence, dynamically electing nodes
with more residual power to be cluster heads and evenly distributing energy con-
sumption in network is a major issue in these schemes. In [3], a diffusion type
routing paradigm that attaches attribute-value pairs to data packets is proposed
to facilitate the in-network data fusion. The correlated data routing problems
studied in [2, 4] are closely related to our work. In [2], the authors give a thor-
ough comparison of data-centric and address-centric methods and a overview of
recent effort in the field. [4] casts the data-centric routing problem as an opti-
mization problem and seek solutions to it when different source coding schemes
are applied. A similar optimization problem is also the subject of [5], where a
grossly simplified data model is assumed.

The rest of the paper is organized as follows. In section 2, we present our
network flow and data rate models. In section 3, an optimization problem is
formulated out of the DSIT strategy, and a heuristic algorithm is proposed. The
average performance of the heuristic algorithm is studied through simulations in
section 4. Section 5 concludes the paper.

2 Network Models

2.1 Network flows

The sensor network is modelled as a graph G = (N , E). The node set N consists
of a set Ns of n sensors and a special node t acting as the fusion center. We
call a sensor active if it generates data. Denote by Na the set of active sensors.
Both active and non-active sensors can be relays. The edge set E represents
m communication links. Here, we assume all the links are bi-directional and
symmetric. If they are not, the network can be modelled as a directed graph,
and the derivation in this paper will apply similarly. We also assume the network
is connected so that data from any sensor can reach t. A weight ce is associated
with each edge e ∈ E . It represents the cost (e.g. power) of transmitting data at
unit rate across e. The flow fe is defined as the rate at which data is transmitted
across edge e ∈ E . Data generated by node i and terminating at node j are
denoted by f ij

e . In particular, we define f i
e = f it

e . Clearly, fe =
∑

i,j∈N f ij
e .

Supposing i, j ∈ Ns, denote by dij the minimum distance from i to j (i.e. the
sum of edge weights along the shortest path from i to j), and di the minimum
distance from i to t. The objective of our study is to minimize the total cost C
while routing all the data from active sensors to the fusion center.

C =
∑

e∈E
cefe (1)



2.2 Source coding with explicit side information

Consider the problem of sampling a distributed field using wireless sensor net-
works. The measurements at sensors are coded and transmitted back to the
fusion center, and used to reconstruct the field under some distortion constraint.
There is likely to be a great deal of redundancy in the data collected by different
sensors, since they are observing some common physical phenomenon. Denote
by Xi the data stream produced by sensor i. (We assume Xi has been quantized
and has a discrete alphabet.) Assume Xi satisfies the ergodic condition so that
the results of statistical probability theory can be applied. In this paper, we con-
sider source coding with explicit side information. In other words, only when the
side information is available at both the encoder (the senor that generates the
data) and decoder (fusion center) can it be used to compress the data. Supposing
data stream Xk is entropy-coded using X1, X2, · · · , Xk−1 as side information,
we have the following:

fk = H(Xk|X1, X2, · · · , Xk−1) (2)

Since the data rate fk to the fusion center depends on the availability of data
stream Xi, i = 1, 2, · · · , k−1 at k, there are 2k−1 possibilities. In an attempt to
simplify the data rate model and optimization, we assume that the the rate re-
duction provided by side information saturates as the number of helpers exceeds
one:

fk =

{
bk
0 no side information;

minj bkj
1 Xj is available at k, and j ∈ Hk

(3)

in which bk
0 is the rate of coding Xk without any side information; bkj

1 (bkj
1 ≤ bk

0)
is the coding rate of Xk when only Xj , j ∈ Hk is available at k; Hk is the
set of sensors whose data is correlated with sensor k’s observations and can be
used as its side information. When side information from more than one sensors
is available, the one providing the most coding gain is used. In practice, the
information on the set of helping sensors Hk and the rate reduction provided by
their data can be obtained using specially designed coding schemes (e.g. [6]). In
many physical situations, sensor measurements are highly correlated only in a
small neighborhood. In others, although a large number of sensors have similar
measurements, the reproduction fidelity constraints often permit thinning the
number of active sensors so that again only a small number of sensors have
high correlation. As a result, Hk generally comprises a small number of sensors
that are close to sensor k. The quick saturation of coding gain provided by side
information indicates when the data stream at a nearby sensor is available as side
information, the additional coding gain provided by other sensors’ observations
is negligible. Note that bkj

1 can be about the same as or much less than bk
0

depending on source statistics. This greatly influences the route construction.
Since H(Xk) −H(Xk|Xj) = I(Xk, Xj) ≤ H(Xj), we assume bk

0 − bkj
1 ≤ bj

0.
Therefore, (bk

0 − bkj
1 )dk ≤ bj

0dk, and there is no gain in feeding back explicit
side information from t to sensors. The total cost of routing data to t can be



decomposed as the sum of Cs representing the cost of routing side information
and Ct the cost of transmitting data to t.

C =
∑

e∈E
cefe = Cs + Ct (4)

where
Cs =

∑

i,j∈Ns

∑

e∈E
cef

ij
e , Ct =

∑

i∈Ns

∑

e∈E
cef

i
e (5)

In applying source coding with explicit side information to sensor networks,
we must avoid helping loops. In other words, if Xj ’s recovery relies on Xi, then
Xj cannot be used as the side information for compressing Xi. To formalize this
requirement, define a directed network Gh that consists of all the active sensor
nodes. In addition, if Xi is used as side information for coding Xj , a directed edge
(i, j) is formed from sensor i to sensor j. Then we have the following proposition:

Proposition 1: No helping loop is formed when using source coding with
explicit side information if and only if the directed network Gh contains no
directed cycles.

The proof is straightforward, and hence omitted. It is apparent that if the
underlying routing structure is a directed acyclic network (DAG), the above
proposition is automatically satisfied. For instance, spanning trees directed to-
ward the fusion center are DAG’s, so there will be no helping loops when using
trees to route data. However, in this paper the rule of no directed cycles needs
to be enforced explicitly.

3 Designated Side Information Transmission

3.1 Problem formulation

In DSIT, we distinguish the data flow from sensor to the fusion center f i
e and

the transmission of explicit side information to other sensors f ij
e (i, j ∈ Ns).

The side information can only be provided by sensor to sensor transmissions f ij

not transmissions to the fusion center fk. With the network model defined as in
section 2, we formulate the following optimization problem.

Designated Side Information Transmission (DSIT)
GIVEN: A graph G = (N , E) with weight ce defined on each edge e ∈ E , a special
node t ∈ N acting as the fusion center, a set Hk of helping sensors and data
rate function fk as in Eq. (3) defined for each sensor k ∈ Ns = N \ {t}.
FIND: A set of routes transmitting the explicit side information among sensors
such that the total cost of routing data to the fusion center C =

∑
e∈E cefe is

minimized.

We will see in ensuing discussion that the transmission of explicit side infor-
mation has a Steiner tree problem embedded in it. Hence the overall problem
is NP hard. As a result, we will focus on building a heuristic algorithm for the
optimization.



3.2 Heuristic algorithm

The total cost can be decomposed into the cost of routing explicit side informa-
tion Cs and the cost of transmitting data to the fusion center Ct as in Eq. (4).
We first consider constructing routes from sensors to the fusion center. These
routes affect only Ct. In addition, as fk, k ∈ Na does not provide any side infor-
mation, its routing is decoupled from the data aggregation process. Hence, the
shortest path should be used to achieve the minimum Ct:

Ct =
∑

k∈Na

dkfk (6)

where dk is the minimum distance from sensor k to t, and fk is a function of
side information transmission. The design of routes for transmitting fk must take
place before that for side information transmission because the latter depends
on the distance information from the former.

Designing routes for side information transmission is more complicated. First,
it has the minimum Steiner tree as a subproblem. This is illustrated by the
following problem instance. Given network G = (N , E), we have a subset of the
active sensors S ⊂ Na, and there is a sensor u ∈ Na \ S. Assume Hk = u if
k ∈ S, and ∅ otherwise. In addition, we assume that the rate function and edge
weights are defined such that the cost of transmitting side information from u to
any sensor in S using appropriately chosen routes is less than the cost reduction
resulting from the coding gain of side information. The optimization problem
becomes constructing a subtree that connects u and the sensors in S, which is a
minimum Steiner tree. Therefore, the overall optimization problem is NP hard.
Second, we need to ensure that no helping loop can be formed while routing the
side information. This amounts to avoiding directed cycles in Gh according to
Proposition 1.

For a moment, we ignore the Steiner tree part, and use the shortest path
to route all the side information. This leads us to construct a network Ga as
follows. Ga includes the set of active sensors Na. In addition, for each ordered
pair of nodes (i, j) ∈ Na, create a directed edge (i, j) from sensor i to j and
assign the weight wij to represent the net coding gain resulting from routing
side information from i to j.

wij =

{
(bj

0 − bji
1 )dj − dijb

i
0 i ∈ Hj

−dijb
i
0 otherwise

(7)

where bj
0, b

ji
1 and Hj are the data rates and set of helping sensors as in Eq. (3); dj

and dij are the minimum distances defined in section 2. Denote by Aa the set of
directed edges with wij > 0. A branching on the directed graph Ga = (Na,Aa)
is a set of directed edges B ⊆ Aa satisfying the conditions that no two edges in B
enter the same node, and B has no directed cycle. It is evident that a branching
on Ga represents a feasible set of routes for side information transmission. No
two directed edges in B entering the same node ensures that a sensor uses side



information from at most one helper and no directed cycle avoids the helping
loop. The problem of minimizing the total cost is equivalent to maximizing the
weight sum of the set of directed edges B that is a branching on Ga, which is the
so called maximum weight branching problem.

Maximum Weight Branching (MWB)
GIVEN: A directed graph Ga = (Na,Aa) with weight we defined on each directed
edge e ∈ Aa.
FIND: A branching B ⊆ Aa that maximizes

∑
e∈B we.

It has been shown that this problem can be solved efficiently [10]. Once the
optimal branching B is determined, we revert to using Steiner trees. Define Sk

as the set of sensors that receive side information from k based on the optimal
branching B. We use the shortest path heuristic proposed by [11] to construct
the subtree that connects k and Sk. This method has a worst case performance
ratio of 2. Our heuristic algorithm is a combination of the maximum weight
branching and the Steiner tree approximation. We state it as follows:

Designated Side Information Transmission Heuristic (DSIT Heuristic)
Given a network G = (N ,A) with edge weights and rate function properly

defined, carry out the following steps.

1. Find the shortest path from each active sensor to the fusion center. These
are the routes for transmitting data to the fusion center.

2. Construct a directed graph Ga = (Na,Aa). Na ⊆ N consists of all active
sensors, and Aa is the set of directed edges from i to j (i, j ∈ Na and i 6= j)
whose weight wij defined as in Eq. (7) is greater than zero.

3. Find the maximum weight branching on Ga. Based on the optimal branching
B, determine the set of sensors Sk that each active sensor k ∈ Na transmits
side information to.

4. Run a shortest path heuristic for the Steiner tree problem to find the subtree
that connects k and the sensors in Sk.

3.3 Performance analysis

Finding the maximum weight branching takes O(ma log na) time, where ma =
|Aa| and na = |Na|. (|S| is the number of elements in finite set S.) The shortest
path heuristic for a Steiner tree requires O(nan2) time. The actual running time
of the shortest path heuristic is in general much less because the number of
nodes involved in constructing the shortest path is often a lot fewer than n.
Regarding the performance of our heuristic algorithm compared to that of the
optimal solution, we prove the following proposition.

Proposition 2: The ratio of the cost CH resulting from our DSIT heuristic
algorithm and the minimum cost CMIN using the DSIT strategy is bounded by:

CH

CMIN
≤ M (8)



where M = max{1, maxk∈Na
|Sopt

k |}, the greater of one and the maximum num-
ber of sensors one sensor needs to transmit side information to in the optimal
solution. The bound is tight in the sense that there is a network that attains the
worst performance ratio.

Proof: First, we note that Sopt
k is in general not the same as the Sk in our

heuristic algorithm. Consider the structure of an optimal solution. It can be
given by the set of sensors Sopt

k that each k ∈ Na sends explicit side information
to. The side information circulated within the group of k sensors in Sopt

k is routed
using the minimum Steiner tree. Denote by CST

k the sum of edge costs of these
Steiner trees (CST

k = 0 if Sopt
k = ∅). The data is transmitted to the fusion center

using the shortest path tree. Hence we can write the minimum cost as:

CMIN =
∑

k∈Na

fkdk +
∑

k∈Na

bk
0CST

k (9)

Instead of the Steiner tree, consider relying on a shortest path tree to route the
side information from k to the sensors in Sopt

k . Denote by CSPT
k the sum of edge

costs of such shortest path trees. The corresponding cost C ′ will be:

C ′ =
∑

k∈Na

fkdk +
∑

k∈Na

bk
0CSPT

k (10)

Since MkCST
k ≥ CSPT

k [11], where Mk = |Sopt
k |, we have

C ′

CMIN
≤ max{1, max

k∈Na

Mk} = M

On the other hand, CH is the optimal result of using the shortest path tree to
route the side information. Therefore, CH ≤ C ′. This gives rise to the bound
in Eq. (8). To show the bound is tight, we look at the example in Fig. 2. The
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Fig. 2. A problem instance that approaches the worst performance ratio: (a) sensor
network setup; (b) routes of side information transmission using DSIT heuristic; (c)
routes of side information transmission in optimal solution.

network setup is given in (a). The edge weights between sensors vk and uk



(k = 1, 2, 3) is 1. Other edges have weight δ ¿ 1. All the sensors are active with
data rate R without side information and 0 when side information is available.
Denote U = {u1, u2, u3}, and V = {v1, v2, v3}. We assume Hk = U when k ∈ V
and ∅ when k ∈ U . In Fig. 2, (b) and (c) illustrate how side information is
transmitted in DSIT heuristic and optimal solutions. Therefore, CH = 3R+3Rδ
and CMIN = R + 5Rδ. When δ → 0, the ratio CH/CMIN approaches M = 3
asymptotically. In a similar fashion, problem instances with arbitrary values of
M can be devised. Q.E.D.

The worst case scenario in the proof can be avoided by changing the heuristic
algorithm to run multiple maximum weight branching and shortest path heuristic
iterations. At each iteration, only one sensor is added to Sk, k ∈ Na. However,
this greatly increases the computational cost. Moreover, the pathological case
in the proof rarely occurs in our assumed data rate model. The value of M is
expected to be small as one’s data helps mostly nearby sensors. Also since side
information is often circulated within one’s neighborhood, using shortest paths
to approximate a Steiner tree introduces a moderate amount of error. What
we are more interested in is the average behavior of the algorithm, which is
examined through simulations in the next section.

4 Simulations

In our simulations, we place (n + 1) nodes including the fusion center and n
sensors in an nd×nd square, where nd = d√n + 1e. (Denote by dze the smallest
integer such that dze ≤ z, and bzc the largest integer such that bzc ≥ z.)
Supposing x̃i and ỹi, i = 1, · · · , n + 1, are random variables that are uniformly
distributed in [0, 1], the coordinates of node i is given by:

xi = [(i mod nd)− 1] + x̃i

yi = b(i− 1)/ndc+ ỹi

We define a transmission radius rc. If two nodes are no more than rc away from
each other, direct communication between the two nodes is allowed. Otherwise,
a relay has to be used. Denote by de the length of edge e. When de ≤ rc,
the edge weight ce is proportional to dα

e , where α = 2 is the path loss factor.
When the number of sensors increases, the network covers a larger area while
maintaining the communication range and sensor to sensor spacing. A typical
100 node network constructed in this manner is depicted in Fig. 3. The node (in
lower left corner) with a letter ”t” next to it is the fusion center.

In our simulation, we assume that all the sensors are active. The helping
set Hi of sensor i is defined as follows. Any pair of sensors that are no more
than rd away from one another has a probability of 0.5 to be in the helping sets
of one another. Fig. 4 shows the resulting data correlation in the network. For
simplicity, we assume the data rate function is the same for all the sensors:

fk =

{
b0 no side information
βb0 with side information

(11)
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Fig. 3. A network of 100 nodes with rc =
√

5. Two nodes are connected if direct
transmission is allowed between the two.
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Fig. 4. This graph shows the correlation of data at different sensors when rd = 1.8.
Two nodes are connected by an edge if they are in the helping set Hi of one another.

where i ∈ Na and 0 ≤ β ≤ 1. Fig. 5 shows the maximum weight branching on
the network described in Fig. 3 and 4. The graph is a forest, and hence acyclic.
The root of each tree is indicated by a circle with a cross inside, from which
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Fig. 5. A maximum weight branching on the network described in Fig. 3 and 4.

there is a simple path to any other member of the tree. Based on this rule, the
helping set Sk of each sensor k can be easily determined.

We simulate for different network sizes and change the value of β. The per-
formance of DSIT heuristic is compared to that of the shortest path tree, in
which the same compression scheme based on explicit side information is used.
Define the cost ratio µ = CDSIT /CSPT . In Fig. 6, we plot µ against the number
of nodes in the network. DSIT heuristic outperforms the shortest path tree in all
cases. In addition, we observe that as the coding gain decreases (i.e. β increases),
µ drops. This is expected considering that DSIT becomes the shortest path tree,
which is also the optimum solution, when coding gain is zero. It is also noticed
that µ increases as the number of nodes increases. This is explained by looking
at a shortest path tree solution plotted in Fig. 7. The leaf nodes of a shortest
path tree are generally far away from the fusion center while the source coding at
these nodes receives no side information from other sensors. In contrast, in DSIT
(Fig. 5), the nodes that receives zero side information (the roots of the subtrees)
are mostly near the fusion center. As the network size increases, the leaf nodes
become farther and farther away from the fusion center. Consequently, CSPT

rises faster than CDSIT .

5 Discussion and Conclusion

The DSIT strategy relies heavily on our assumed network model, in particular,
the assumptions that data streams are highly correlated only when they are from
a small group of sensors close to one another, and thus the coding gain saturates
when the number of helpers exceeds one. Therefore, this scheme may not be
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Fig. 7. The shortest path tree solution for the network described in Fig. 3 and 4.

as effective in cases that deviate from these assumptions. Nonetheless, there
are practical reasons to consider this case. First, identifying the set of sensors
that provides most coding gain and then processing side information incurs cost.
The gain of an additional helper may not be enough to outweigh these costs.



Second, using more than one helper increases the complexity of the model and
the optimization. For example, it is possible to jointly code two helpers’ data if
they are to are be used as side information at the same sensor. If more than one
helper has to be considered, we speculate that the problem can be approached
in a multiple-step procedure. At each step, the number of helpers is restricted
to at most one, and an algorithm similar to our heuristic scheme is used. This
is an area that needs further research.

The decoupling of route design for fk from side information transmission
offers greater flexibilities than strategies based on trees. Unlike a tree structure
that bundles the network flows, the transmission of fk can virtually be routed
to t through any path. As a result, traditional address-centric routing schemes
that evenly distribute the traffic load and maximize node lifetime [12, 13] can
be applied. If the optimization objective is to maximize the network lifetime,
we surmise the DSIT can take into account both the energy reserve of sensor
nodes and source correlation. In contrast, address-centric routing focuses on node
energy, and data-centric routing concentrates on source correlation only.

As we discussed in section 2, the number of sensors with highly correlated
data can be brought down in a process of thinning the number of active sensors
based on the reconstruction requirement. This pre-routing step makes in practice
our procedure a two-phase operation. First determine the set of sensors that will
participate in the fusion, then design the routes for transmitting the data to the
fusion center. Currently, the first step is generally approached from a sampling
point of view [14] trying to meet the distortion constraint, while route design
attempts to minimize the energy consumption. It is of interest to ask whether
a combined approach will yield better results. [15] is an interesting preliminary
effort on that direction.
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