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Abstract

We consider a family of unequal error protection(UEP) codes using multilevel codes

and a four-way partition of one dimensional lattice. The non-regular set partitioning com-

bined with non-uniform signal constellation yields codes with large minimum distance and

small path multiplicity. However, this is not in itself sufficient for reliable coding gain es-

timation. New code search methods are introduced for better estimation of actual coding

gain results. We present codes which permit resolution of phase ambiguities while provid-

ing gain comparable to the best previously published results.

Key words : unequal error protection code.
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1. Introduction

In broadcast systems, the channels for each customer are different. With analog trans-

mission, the result is a variable quality of reception, which depends roughly on the range

from the transmitter. In digital systems, the design usually guarantees a uniformly good

quality of service up to a given range, after which point the service rapidly deteriorates.

For example, in digital HDTV, forward error correction coding will be used to increase the

range of high quality service. However, it is possible to perform coding such that customers

may receive a lower resolution signal even when the high definition part of the signal is lost,

so that a quality of service comparable for example to NTSC can be obtained out past the

range of ordinary analog transmission. Unequal error protection (UEP) codes give more

protection to the low-rate important information, and thus are suitable for similar broadcast

systems.

Cover [8] has considered the maximum achievable capacity over broadcast channels

that may have differing capacities. Two forms of transmission (time sharing and super-

imposing) were considered, with superimposition shown to be better than time sharing in

terms of channel capacity.

Time sharing allocates time slots to different rates of transmission. In time sharing for

UEP, two or more coded modulation schemes provide different levels of error protection

for different class data in different time slots. Generalized time sharing where a code of

non-zero rate specifies the multiplexing rule has been proposed [1]. Additional important

bits can be transmitted in this scheme.

In the superimposition technique, information for all the classes is sent at the same

time. The low-rate data is recovered when the channel is not good enough to recover all

the information. Uncoded non-uniform constellations where there are several clusters (or

groups) of signal points and the inter-group distance is larger than the intra-group distance

have been considered for a simple superimposing scheme [9]. Wei has proposed a UEP

code which has
�����

rotational invariance [2] [14]. In his scheme, the rotationally invari-

ant (RI) code is used only for important data because the phase rotation does not change

the non-important data decoding results. However the non-important data coding gain is
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not satisfactory. Calderbank and Seshadri have proposed various kinds of UEP codes for

different ratios of important to less important data by using multilevel codes which can

allocate the available redundancy in a rather flexible manner [1] [3] [4]. They have used

a non-standard set partitioning as well as non-uniform signal constellations to reduce the

path multiplicity. The coding gain reduction of non-important data due to non-standard set

partitioning can be compensated by using additional coders.

We consider extensions of this work on superimposition of class 1 (important bits)

and class 2 (less important bits) data. Ordinary TCM on QAM has an innate capability

in this regard. Consider rate-1/2 TCM as an example. The squared minimum distance
�������� of the 16-state rate-1/2 convolutional code is 7 and the

�������� of the uncoded bits is

4. We can easily achieve two-level UEP by using the convolutional coder for class 1 data.

However the standard set partitioning causes a large path multiplicity which reduces the

class 1 coding gains significantly.

TCM based on PAM signalling results in convolutionally coded bits with larger
� ����	�

and much lower path multiplicity. However, this 1-D signalling scheme is not power effi-

cient. We propose to compensate for this inefficiency by locating the signal points for less

important data on another 1-D axis. In this case, a standard code search does not give us

reliable information on
� ��
�	� and corresponding path multiplicities because the code is not

geometrically uniform. New code search methods will be introduced for better estimation

of the actual coding gain. All the schemes we are considering have the same basic structure

as mentioned above.

Our schemes can have
�����

rotational immunity by using a �
� ��� RI rate-1/2 convolu-

tional code for class 1 data and then resolving the in-phase and quadrature-phase power.

Like the Wei UEP code scheme, the coders for class 2 data do not have to be RI coders.

The paper is organized as follows. In section 2, we discuss coding gain calculations.

The UEP code family based on set partitioning on one-dimensional lattices will be dis-

cussed in section 3, 4 and 5. Methods to design
� � �

rotationally invariant codes are dis-

cussed in section 6. Some simulation results and concluding remarks are presented in

section 7.
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2. Coding Gain Calculations

Coding gain is a function of various factors including redundancy, constellation ex-

pansion, constellation power penalty, minimum distance and path multiplicity. The path

multiplicity ��� is the number of nearest neighbors and the normalized path multiplicity

���� is ��� per 2 dimensions. ������ ���	�
� when we use 2N dimensional signalling. Denote

by �
� the penalty due to large path multiplicity. If � �� is less than 4 we have gains due to

small path multiplicity, because ��� for uncoded QAM is 4. Using the rule of thumb that

doubling ��� causes a 0.2 dB degradation at error probability � ����� [13],

�
� � ����������� �	� ������� � (1)

Let  be the average power of the proposed scheme and let an uncoded M-QAM of average

power  "!$#%� be the reference scheme. Then the power penalty �'& can be obtained as

�(& � � �)�*�+�  
 "!$#%� (2)

Let , be the bit rate per two dimensions. The rate loss - is defined as ,�. ����� �0/ . Then the

penalty due to rate loss �
1 is 2 � � �3- . The asymptotic coding gain 4 is obtained in equation

(3).

4 � � �)�*��� � ��
�	� .5�(&6.5�
1 (3)

Where
� ����� is the minimum distance. We now turn to the distance properties of TCM.

Consider first the minimum distance property of binary convolutional codes. Let 798 be a

set of binary codewords, and :<; be the set of positive integers. Since convolutional codes

are linear, for all = �%> =@?�AB7<8 there exist ='CDAB7<8 such that = �FE =@? � ='C , where E is

bitwise modulo 2 addition and G >$H�>JI AK: ; . Then,

�ML � = �%> =@? � �ON L � =
C � � �ML � ='P > ='C � (4)

where
��L

is the Hamming distance, N L is the Hamming weight and =QP is the all-zero

codeword. Assume = � is a reference codeword,
�RL � ( STAT:
; and

�ML �KU �ML"V
, if S UXW )
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are the possible Hamming distances between = � and other codewords, and ��� � �ML � � is the

number of codewords at distance
�RL � from the reference = � . � 8 � is defined to be the set of

elements � ��L �R> ��� � �ML � � � . From the equation (4), we see that � 8 � � � 8FP for all G such that

= � AK7<8 . Thus the convolutional code has the following property [12].

Property 1 The set of distances of the code sequences generated up to some stage in

the tree, from the all zero sequence, is the same as the set of distances of the code se-

quences with respect to any other code sequence.

From property 1 we can calculate the minimum distance assuming that the all zero se-

quence is the input to the encoder. This zero-path reference code search (ZRCS) consider-

ably simplifies the search for codes with large
� ����� . Calderbank and Sloane [6], Benedetto

et al., [7] and Forney [5] investigated the conditions sufficient to ensure that a coset code

[13] is distance-invariant, so that
� ����� and path multiplicity of the code do not depend on

the transmitted code sequence. Apart for the boundary region of the constellation, ordinary

TCM based on standard set partitioning of regular lattice satisfies property 1, and we can

use ZRCS for good estimates. Otherwise, the code search is quite complex and we need to

find a new approach. For that purpose, we also derive the sufficient conditions which allow

ZRCS in TCM code search.

Let � be the set of cosets such that � ����� P > � � > � ��� > ��� � �	� , where / is the number of

cosets. Let
� � � � �%> � ? � be the squared Euclidean distance between cosets � � and � ? and the

kissing number 
 � � � > � ? � be the number of signal points in coset � ? which are at the distance
� � � �%> � ? � to coset � � . Let 7�� be a set of codewords in TCM. The codeword 
 � A�7�� is a

sequence of cosets and is expressed as 
 � � ��� � � > � � � > ��� � � , where � ��� A�� >�� A : ; . 7�� is

a homomorphic set of 7 8 and there is a one to one mapping � � � � between the codewords


 � A 7�� and = � AK7<8 , such that � � 
 � � � = � and � � � � = � � � 
 � . Every � � � ����� � / � bits

of = � are grouped to be a binary label of coset sequences in 
 � . The operation � in the set

7�� is defined as follows.


 � ��
)?���� � � � � � 
 � � E � � 
)? � �
6



The distance between codewords can be obtained as follows.

� � � 
 �%> 
)? � �
��
��� �

� � ��� ��� > � ? � � (5)

where � is larger than the largest codeword.

Unlike the binary codewords in convolutional codes, codewords in TCM may have

multiple paths when each coset has more than one member. Define � � 
 �%> 
)? � to be the

number of paths of 
 ? at the distance
� � � 
 �%> 
)? � to 
 � . Then,

� � 
 � > 
)? � �
��� ��
��� �


 � � ��� > � ? � � � (6)

Assume 
 � is a reference codeword, and
� �� ( S A :'; and

� �� U � �V
, if S U W ) is the

possible squared Euclidean distance between 
 � and any other codeword and �9� � � �� � is the

number of codeword paths at distance
� �� from the reference 
 � . ��� � � �� � can be obtained as

follows.

��� � � �� � � �
�	��
 �
��� ����� � �	��

� � 
 � > 
)? � (7)

��� � is defined as the set of element � � �� > ��� � � �� � � when 
 � A57�� is a reference codeword.

If ��� � is ��� P for all 
 � AK7�� , we can use ZRCS for the code search. The sufficient condi-

tions for ZRCS in TCM can be derived from equations (5,6,7), and described as follows.

For all � �%> � ? > � C > � P�A � such that � � � � ? � � C , where � P is a coset with all-zero binary

notation, if the following conditions are satisfied, we can use ZRCS.

condition 1
� � � � �%> � ? � � � � � � P > � C � .

condition 2 
 � � �%> � ? � � 
 � � P > � C � .

If there is more than one member per coset, the values of
� � � � �%> � ? � and 
 � � � > � ? � might

depend on a specific choice of members in each coset. For example, the kissing numbers

of cosets at the boundary and inside the constellation could be different. In this case, the

two conditions are quite difficult to satisfy. Standard four-way set partitioning on uniform

64-QAM constellation is illustrated in Figure 1, where condition 1 is satisfied for all the
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points but condition 2 is not satisfied for some points at the boundary of the constellation.

However, most of them satisfy both conditions and we can use ZRCS without much error.

For non-standard partitioning, we may instead use a statistical modification of ZRCS

(S-ZRCS), where the all-zero path is still used as a reference but the squared distances and

kissing numbers of cosets are varied depending on the transmitted codeword or in a ran-

dom manner. The S-ZRCS algorithm is briefly described as follows. Codes are randomly

generated and we obtain the corresponding sequences of cosets. Suppose that � � � � ? � � C ,
� � � � � > � ? ���� � � � � P > � C � and 
 � � � > � ? ���� 
 � � P > � C � . The metric / # � � C � and kissing number� � � C � of the branch labeled � C are

��� � � P > � C � and 
 � � P > � C � , respectively if � P is transmitted,

or they are
� � � � � > � ? � and 
 � � �%> � ? � if � � is transmitted. Then we obtain the possible dis-

tances and corresponding path multiplicities. In general,
� � � � � > � ? � and 
 � � � > � ? � may have

different values for different signal points in coset � � . Thus we have multiple reference

paths, even though there is a single reference sequence of cosets (all zero path) in the code

search. We choose a signal points within cosets in an equiprobable manner and assign

the corresponding values to the distance metric and kissing number. After many trials, we

obtain the possible distances and corresponding average path multiplicities. According to

simulations, several hundred trials gives good results for a 16-state trellis.

From the previously described code search, we obtain the possible squared Euclidean

distances
� �� ( SKAK:'; and

� �� U � �V
if S U W ) and corresponding average path multiplicities

���� � � �� � per 2-D. Then, the component coding gain � � , S A :'; , is defined as

� � � � �)����� � �� . ��� ���*��� �
� � �� � ���� �� � (8)

A code search finds the generator sequence which maximizes the value ���
	�� � We define

the actual coding gain 4
� as

4�� � �����������
	������� � ��� .5�(&6.5�
1 (9)

A family of multilevel UEP codes using set partitioning on one-dimensional lattices

will be considered. Uncoded 16-QAM is considered as a reference scheme in coding gain

calculations and simulations.
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3. Scheme I

We use 16-QAM and 64-QAM in both 2 and 4 dimensional signal constellations. The

coset partitioning and signal constellations are shown in Figure 2, where we can change the

in-phase distance between signal points by changing the value of I .

3.1. Two dimensional signalling scheme

Code structures using 16-QAM and 64-QAM are shown in Figure 3. There are two

schemes (scheme I-A and scheme I-B) for 16-QAM and 64-QAM. The code structure of

scheme I-A is illustrated in Figure 3 (a) and (b). Scheme I-A uses 16-state rate-1/2 TCM

for class 1 data, where the signal looks like 4-PAM or 8-PAM with 4 cosets (A, B, C and

D). The code search follows the procedure of the previous section.

In both cases, the squared minimum distance (
���

� ) of code 
 � is 11. The code search

results using S-ZRCS are given in Table 1. The class 2 data are protected by 8 dimensional

rate-3/4 punctured TCM, where one output bit of a rate-3/4 convolutional code is assigned

for each two-dimensional signal. The
� ����	� of code 
 � is

� I � .
For example, we calculate the coding gains when I � is 1. Let � and � � are asymptotic

coding gain and actual coding gain for class 1 data, respectively. � is asymptotic coding

gain for class 2 data. Let the uncoded 16-QAM be the reference scheme for calculation of

�(& and �
1 . In scheme I-A on 16-QAM, �
& = 0 and � 1 is 3.75 dB ( , � �R�����
and - =

1.25). Thus, from equations (8,9),

���
	�
��� � � � � � � � � � � � � (dB)
�

� � � � � � � � .52 ����� � �R� ��� � dB � �
� � � �)�*��� � P � .52 ����� � ������� � dB � �

For 64-QAM, � & = 6.23 dB and �
1 is -2.25 dB ( , � � �����
and - = -0.75).

���
	�
� � � � � � � � � � ��� �+2 (dB)
�

� � � � ��� ��2Q.�� � � 2
	 ������� � � � � � � dB � �
� � � �)�*�+� � P � .�� ��� 2�	 �R� ��� � �R� � � � dB � �

9



Consider another scheme (scheme I-B) which shows better performance. The code

structure is illustrated in Figure 3 (c) and (d). The difference here is that for protecting

the class 2 data, we use a 16-state rate-1/2 convolutional code which assigns one output bit

per two-dimensional signal and also a single parity check code to improve the intra-coset

distance. In this case, we assign 1 bit for class 1 data and 1.5 bits for class 2 data for 16-

QAM or 2 bits and 2.5 bits for each classes for 64-QAM. The minimum distance of class

1 data is not changed. Since the
� ��
�	� of parity check code is � I � , the minimum distance

of class 2 data,
� ��
�	� � 
 � � , is ��� 	 � � I � > � I � � . The value

� I � comes from the fact that the

minimum distance of the 16-state rate-1/2 convolutional code is 7.

For example, we calculate the coding gains when I � is 0.7. Let � be the block length

of the parity check code. For 16-QAM, �Q1 � � ��� 	T2 ��� dB ( - = 1.5 + �	��� ), and � & =

-0.71 dB. For 64-QAM, �'1 � . � ��� 	 2 ��� dB ( - = -0.5 + �	��� ), and �
& = 5.53 dB. Thus,

� � is
�R� � 29.�2 ��� dB and � is 2 � � �<.�2 ��� dB for 16-QAM. � � is � ��� .�2 ��� dB and � is

�R� � � . 2 ��� dB for 64-QAM. We may have higher coding gains for larger � . However, �

can not be arbitrary increased. Increased path multiplicity due to large � starts to degrade

the performance of class 2 code. We have found through simulation that � � � �
is good

for all the cases presented in this paper. The degradation by using � � 2 � is still less than

0.1 dB. Adding a single parity check code on the class 2 data gives us more gain.

In both schemes, we can trade-off the coding gains of the two classes by changing

the value of I , i.e. a large value of I gives more gain for class 2 data while increasing the

power penalty and thus reducing class 1 coding gain. From now on, we use scheme I-B for

class 2 data protection.

3.2. Four dimensional signalling scheme

Four dimensional set partitioning can increase
����
�	� of class 1 data. The 4-D coset

labels are given in Table 2, and the 4-D metric structures of 16-QAM and 64-QAM are il-

lustrated in Figure 4. When we use 16-QAM, only the signal points in the dashed rectangle

can be considered. For 64-QAM, the right upper triangle part and the left lower triangle

parts have the same metric structure. So we obtain the metric values for the 16 signal points
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using the upper triangle. The code search results are in Table 3. The code structure is shown

in Figure 5.

Consider 16-QAM. The
� ����	� for class 1 data is increased from 11 to 14 but the path

multiplicity is also increased by using the 4-D set partitioning. From the code search result,

��� 	�
� � � � � � � � � � � � � � (dB)
�

When I � = 0.7, � � is
��� � � . � ��� ��� dB, and � is 2 � � ��. � ��� ��� . For 64-QAM, �'1 �

. � ��� 	 � ��� ��� ( - � . ����� 	 � ��� ��� ), and

��� 	�
��� � � � � � � � � ��� � � (dB)

Then, � � is � � � � . � ��� ��� dB and � is
�R� � � . � ��� ��� . By using the the 4-D lattice, we can

increase the
� ��
�	� of the class 1 code. However, the increased path multiplicity reduces

some part of gain obtained by increased
� ��
�	� .

4. Scheme II

Using a non-uniform signal constellation may increase
� ��
�	� in TCM [10]. The code

structure of scheme II is the same as scheme I apart for those non-uniform signal con-

stellations, as illustrated in Figure 6. � is another variable we use for the trade-off of

class 1 and class 2 coding gains. Large � gives more gain for class 1 data. For example,

we set � � �R� �
and I � � � ��� . In 16-QAM signalling,

� ��
�	� is increased from 11 to 26.���
	 � � � � � � �
� � � 2 (dB) (

� �
� is 26 and ��� � � � � is 1.5). We pay a power penalty when �

and I � are larger than 1( � & = 2.43 dB). Then � � is
�R��� .�2 ��� dB and � is 2 � � � .�2 ��� dB. For

64-QAM, � & = 8.89 dB, �
1 � . � ��� 	 2 ��� dB, and ���
	 � � � � � � �
� � � � (dB) ( ��� � � � �

is 3.94). Then, � � is � ��� �9.�2 ��� dB and � is
�R� � � .�2���� dB. We have some gains from

using non-uniform signal constellations in 16-QAM signalling by increasing
� ������ without

increasing ��� .
We have also considered 4-D set-partitioning in this scheme. In this case,

� ��
�	� is

increased from 26 to 29. The coding gains are obtained as follows ( I � � � ��� , � = 2.0).

In 16-QAM, ���
	�� � � � � � �
� � � � (dB) ( � �� � � � � is 4.0) and � � � �R� � � . � ��� ��� dB. In
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64-QAM, ��� 	 � � � � � � �
� � 2 � (dB) ( ���� � � � � is 9.02) and � � � �R� � . � ��� ��� dB. We have

some gains over the 2-D scheme. However, for 64-QAM, the constellation expands too

much in the Q-phase axis, causing a major power penalty.

5. Scheme III

In the previous schemes, the coding gains for 64-QAM are not as good as for 16-QAM.

Here we trade a lower rate for important data against coding gains. The signal constellation

and coset partitioning is shown in Figure 7. The code structure for 2-D signalling is shown

in Figure 8 (a), where
� ��
�	� � � � and ��� 	 � � � � � � � 2 � � � (dB) ( ��� � � � � is 7.42). Unlike

the previous schemes, the coding for class 2 data is not only a function of I � but also

confined by the minimum distance of the parity check code, i.e.
� ��
�	� � ��� 	 � � > � I � � . Thus

the asymptotic coding gain of class 2 data is maximum when I � � � � � . If we set � as 2.0,

�(& � �R� 2 � dB and � 1 � . � ��� 	B2 ��� dB. Then, � � is � � � � . 2 ��� dB and � is 2 � � � . 2����
dB. This code structure gives good coding gains to the two data classes with reasonable

complexity (we use a 16-state rate-1/2 convolutional code for each class and a single parity

check code for class 2 data protection). Furthermore, we can trade-off the two coding gains

by changing the value of � .

We can further increase
� ��
�	� for the class 1 code by using a 4-D set partitioning. The

code structure for 4-D signalling is illustrated in Figure 8 (b). The code search result shows

that
� ������ � � �

and ��� 	 � � � ��� � �
� � � �

(dB) ( � �� � 2 � � is 330.71) and � � is � ����� . � ��� ���
dB. Unlike the previous schemes, using 4-D signalling does not give us additional coding

gain because of the big path multiplicity at the squared distance 34.

The actual coding gain of class 2 data is less than � because of path multiplicity. When

we let I � � � � � , a large ��� for the rate-1/2 convolutional code for class 2 data contributes

to the total ��� , which causes a large coding gain degradation. In a real situation, we may

use a little bit larger value of I � to reduce the path multiplicity of the class 2 coder. Using

the value of I � slightly larger than 8/7 can reduce ��� and increase the coding gain of class

2 data with the cost of a power penalty. For example, setting I � = 1.32, then there is

an additional power penalty of 0.29 dB and ��� is
�R� ���9.T2 ��� dB in the 2-D scheme and
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�R� � 2<. � ��� ��� dB in the 4-D scheme. � is
�R� � � .52 ��� dB for 2-D and

�R� � � . � ��� ��� dB for

4-D. Even though the asymptotic coding gain is reduced by 0.29 dB, the actual coding gain

of class 2 data is increased by reducing ��� .

6. Rotationally Invariant UEP.

For the previously described codes to be �
� � � rotationally invariant (RI), only the class

1 data protection code needs to be �
� � � RI by assigning bit labels for class 2 data in a � � � �

symmetric manner such that a �
� � � phase rotation does not change the decoding results of

the class 2 data. The bit labels for class 2 data with and without �
� � � phase rotation are

illustrated in Figure 9.

Now, consider having � � � � RI class 1 coders. In 2-D codes, flipping the output bits of

the rate-1/2 convolutional code causes �
� � � rotation of the cosets by assigning two bit labels

00, 01, 10, 11 to cosets A, B, C, D, respectively. Thus using �
� � � RI rate-1/2 convolutional

codes for class 1 data protection makes both classes of the UEP code �
� �
�

rotationally

invariant. This can be applied to 4-D codes. In Table 2, a bit flip of the output label

corresponds to �
� ��� rotation of 4-D types and thus a bit flip of parity bits. For example,

consider a 4-D type signal (
� > � ) which is �
� � � rotated: we decode ( � > � ). Then the output

label is bit flipped from 00 to 11 and the parity bit is flipped from 0 to 1. In this case, we

need one more �
� � � differential coder for the parity bits. The class 2 code structure is the

same as for two dimensions. The structures of the �
� � � RI class 1 codes are illustrated in

Figure 10.

We can resolve
��� �

phase ambiguities by using the fact that the in-phase average power

 �� and the quadrature-phase average power  �� are different. At the receiver, we measure

the average power of the I and Q-phase directions and decide the polarity of the signal con-

stellation. The remaining �
� � � phase ambiguity can be resolved by using the previously

described �
� � � RI codes. The code search results for the �
� � � RI codes are in Table 4. For-

tunately, in all the schemes but II-B and III-B, the best generators have a �
� � � RI structure.

Thus we do not have to pay more to make these codes rotationally invariant. Coding gain

calculations are summarized in Table 5.
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7. Simulation Results and Conclusion

The simulation results for scheme III codes are in Figure 11. In this simulation, we

fix the value of I � to 1.32 to reduce the path multiplicity of the class 2 code. Scheme III-

B shows about 7 dB gain for class 1 data and about 2 dB gain for class 2 data at a � � ���
bit error rate. This scheme pays about 0.3 dB to have a

��� �
RI structure. Scheme III-A

having an RI structure shows about 0.4 dB less gain than scheme III-B without rotational

invariance. However, scheme III-A could be the best choice if we want to have an RI code

with less complexity.

The rotationally invariant UEP scheme proposed by Wei [2] provides good protection

for the important bits, however the less important bits may even be less reliable than in un-

coded transmission. Calderbank and Seshadri [1] suggested two approaches (generalized

time sharing and superimposing) for UEP code design and provided greater protection for

the less important bits than the Wei codes. Based on the simulation results (25% impor-

tant bits) in their paper, they have achieved about 6.5 dB gain for the important bits and

about 1.5 dB gain for the less important bits at a � � ��� bit error rate when they use time

sharing. However, when they use a superimposing scheme, the less important bits were not

protected.

We have considered a family of multilevel UEP codes based on superimposition for

the additive white Gaussian channel. Four way partitioning in a one-dimensional lattice

combined with a non-uniform signal constellation provides good coding gains for both

data classes with reasonable complexity (at most, we use a 16-state rate-1/2 convolutional

code and a single parity check code for each class of data protection). Furthermore, we can

easily make
��� �

rotationally invariant codes by using � � � � rotationally invariant rate-1/2

convolutional code and resolving in-phase and quadrature-phase power.
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Figure 1: Four way partitioning in uniform 64-QAM constellation illustrating the two con-

ditions for ZRCS.

Figure 2: Signal constellation for scheme I. (a) 16-QAM. (b) 64-QAM.

Figure 3: Code structures of scheme I using two dimensional signalling (code C1 is for

class 1 data, and code C2 block is for class 2 data). (a) Scheme I-A on 16-QAM. (b)

Scheme I-A on 64-QAM. (c) Scheme I-B on 16-QAM. (d) Scheme I-B on 64-QAM.

Figure 4: Four dimensional metric structure of scheme I-C.

Figure 5: Code structures of scheme I using four-dimensional signalling (code C1 block is

for class 1 data and code C2 block is for class 2 data). (a) Scheme I-C on 16-QAM. (b)

Scheme I-C on 64-QAM.

Figure 6: Non-uniform signal constellation for scheme II. (a) 16-QAM. (b) 64-QAM.

Figure 7: Signal constellation for scheme III. (a) 64-QAM constellation. (b) signal points

for class 2 data (the points in the rectangle have the same parity bits).

Figure 8: Code structures of scheme III (code C1 block is for class 1 data and code C2

block is for class 2 data). (a) Scheme III-A(2-D signalling). (b) Scheme III-B(4-D sig-

nalling).

Figure 9: Signal constellation for �
� ��� RI scheme III. (a) Class 2 data bit allocation for

�
� � � RI code. (b) Received signal after �
� � � phase error.

Figure 10: Structures of �
� � � RI class 1 data protection code in scheme III. (a) 2-D sig-

nalling. (b) 4-D signalling.
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Figure 11: Simulation of scheme III in 4-D signalling( I � is 1.32) and � � ��� RI 2-D and 4-D

signalling. Block length � of parity check code is 20. (a) Uncoded 16-QAM. (b) Class

2 data protection code. (c) class 1 code (scheme III-A :
��� �

RIC on 2-D signalling). (d)

class 1 code (scheme III-B :
�����

RIC on 4-D signalling). (e) class 1 code (scheme III-B :

non-RIC on 4-D signalling).
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Table 1: Code search results using S-ZRCS in scheme I-A and I-B.

Average path multiplicity
Signal size ��� � � � � ��� � � � � ��� � � 2 � ��� � � � � ��� � � � �
16-QAM 0.13 0.50 1.82 2.03 2.78
64-QAM 0.95 2.54 7.15 9.29 9.43

Table 2: Four dimensional set partitioning.

4-D types
4-D sub-lattice parity bit 0 parity bit 1

0 (00) (AA) (CC)
1 (01) (BD) (DB)
2 (10) (AC) (CA)
3 (11) (BB) (DD)

Table 3: Code search results using S-ZRCS in scheme I-C.

Average path multiplicity
Signal size � �� � � � � � �� � � � � � �� � �
� � � �� � � � � � �� � ��� �
16-QAM 7.92 16.34 21.98 37.12 54.98
64-QAM 26.44 80.0 152.34 288.81 452.53

Table 4: Code search results of 16-state convolutional codes for class 1 data protection in
scheme I, II and III ( � � ��� RI and non-RI codes).

best code �
� � � RI-code
Scheme Generators(octal)

� ��
�	� Generators(octal)
� ��
�	�

scheme I-A,B(2-D) 23,8 11 23,8 11
scheme I-C(4-D) 23,8 14 23,8 14
scheme II-A(2-D) 23,8 26 23,8 26
scheme II-B(4-D) 34,2 29 25,13 26
scheme III-A(2-D) 23,8 26 23,8 26
scheme III-B(4-D) 34,2 29 25,13 26
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Table 5: Coding gains for the proposed UEP code family ( � is the parity check code length).

Scheme
Class 1

Coding Gain (dB)
Class 2

Coding Gain (dB)
Signal 

Constellation

16-QAM
36.36 % class 1 data

rate = 2.75

RI
code

64-QAM
42.11 % class 1 data

rate = 4.75

RI
code

k2  = 1.0
(2-D)
I-A

16-QAM
40.0 % class 1 data

rate = 2.5 - 1/L

RI
code

γ = 3.11 − 3/L

RI
code

(2-D)
I-B

k2  = 0.7

RI
code

Lγ = 3.11 − 4.5/

RI
code

64-QAM
44.44 % class 1 data

rate = 4.5 - 1.5/L

I-C

k2  = 0.7
(4-D)

16-QAM
40.0 % class 1 data

rate = 2.5 - 1/L

RI
code

64-QAM
44.44 % class 1 data

rate = 4.5 - 1/L

RI
code

16-QAM
40.0 % class 1 data
rate = 2.5 - 1.5/L

non-RI
Code

Lγ = 3.28 − 3/

non-RI
Code

∆ = 2.0
k2

III-A
(2-D)
  = 1.14

64-QAM
22.22 % class 1 data

rate = 4.5 - 1/L

RI
code

64-QAM
22.22 % class 1 data

rate = 4.5 - 1.5/L

non-RI
Code

RI
code

Γa

Γ = 6.65 
= 7.27

Γa  L= 7.47 − 4.5/
LΓ = 7.67 − 4.5/ 

Γa

LΓ = 7.69 − 4.5/ 
 L= 7.69 − 4.5/

(2-D)
k2

II-A

  = 1.5
∆ = 2.0

∆ = 2.0
k2  = 1.5

II-B
(4-D)

∆ = 2.0
k2  = 1.14

III-B
(4-D)

40.0 % class 1 data
rate = 2.5 - 1.5/L

16-QAM

44.44 % class 1 data
rate = 4.5 - 1/L

64-QAM

64-QAM

rate = 4.5 -1.5/L

Γa

Γ = 6.43 
= 6.85

Lγ = 2.87 − 3/

Γa

L
 L

Γ = 7.43 − 4.5/ 
= 6.89 − 4.5/

Lγ = 2.87 − 4.5/

Lγ = 3.28 − 3/

Lγ = 2.82 − 3/L
Γa /L
Γ = 6.76 − 3/ 

= 6.76 − 3

LΓ = 7.22 − 3/ 
Γa /L= 7.50 − 3

Γa

L
 L

Γ = 7.23 − 4.5/ 
= 7.00 − 4.5/

L
Γa /L
Γ = 8.33 − 3/ 

= 8.15 − 3

Γa

L
 L

Γ = 8.80 − 4.5/ 
= 8.22 − 4.5/

Γa

L
 L

Γ = 8.33 − 4.5/ 
= 7.99 − 4.5/

Lγ = 3.21 − 4.5/

Lγ = 3.21 − 4.5/

Lγ = 3.05 − 4.5/

Lγ = 3.21 − 3/

Γa = 7.23 − 3/L
LΓ = 6.62 − 3/ 

L
Γa /L
Γ = 6.38 − 3/ 

= 6.50 − 3

γ = 2.27

γ = 2.04

44.44 % class 1 data
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Figure 1: Four way partitioning in uniform 64-QAM constellation illustrating the two con-
ditions for ZRCS.
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Figure 2: Signal constellation for scheme I. (a) 16-QAM. (b) 64-QAM.
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code C1

code C2
3 bits 4 bits

8-D

2-D

2-D

class 1 
(1 bits)

class 2
(1.75 bits)

code C1

code C2
3 bits 4 bits

8-D

2-D

2-D

class 1 
(2 bits)

class 2
(2.75 bits)

2 bits

Code C1 : 16 state rate-1/2 convolutional code.
Code C2 : 16 state rate-3/4 punctured convolutional code.

dmin
2

 = 11

dmin
2

 = 4k

(a) (b)

code C1

rate-1/24-D

2-D

2-D

class 1 
(1 bits)

class 2
(1.5 bits)

code C1

rate-1/24-D

2-D

2-D

class 1 
(2 bits)

class 2
(2.5 bits)

Code C1 : 16 state rate-1/2 convolutional code.
Code C2 : 16 state rate-1/2 convolutional code.
                   single parity check code.

dmin
2

 = 11

dmin
2

 = 7k

(c) (d)

2

2

parity codeparity code

code C2

Figure 3: Code structures of scheme I using two dimensional signalling (code C1 is for
class 1 data, and code C2 block is for class 2 data). (a) Scheme I-A on 16-QAM. (b)
Scheme I-A on 64-QAM. (c) Scheme I-B on 16-QAM. (d) Scheme I-B on 64-QAM.
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Figure 4: Four dimensional metric structure of scheme I-C.
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Figure 5: Code structures of scheme I using four-dimensional signalling (code C1 block is
for class 1 data and code C2 block is for class 2 data). (a) Scheme I-C on 16-QAM. (b)
Scheme I-C on 64-QAM.
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Figure 6: Non-uniform signal constellation for scheme II. (a) 16-QAM. (b) 64-QAM.
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Figure 7: Signal constellation for scheme III. (a) 64-QAM constellation. (b) signal points
for class 2 data (the points in the rectangle have the same parity bits).
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2-D
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Code C1 : 16 state rate-1/2 convolutional code.
                   single parity check code.
Code C2 : 16 state rate-1/2 convolutional code.
                   single parity check code.
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Figure 8: Code structures of scheme III (code C1 block is for class 1 data and code C2 block
is for class 2 data). (a) Scheme III-A(2-D signalling). (b) Scheme III-B(4-D signalling).
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Bit label in the following constellation = b3 b4 b5 b6

Figure 9: Signal constellation for �
� ��� RI scheme III. (a) Class 2 data bit allocation for
�
� � � RI code. (b) Received signal after �
� � � phase error.
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Figure 10: Structures of �
� ��� RI class 1 data protection code in scheme III. (a) 2-D sig-
nalling. (b) 4-D signalling.
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Figure 11: Simulation of scheme III in 4-D signalling( I � is 1.32) and � � ��� RI 2-D and 4-D
signalling. Block length � of parity check code is 20. (a) Uncoded 16-QAM. (b) Class
2 data protection code. (c) class 1 code (scheme III-A :

��� �
RIC on 2-D signalling). (d)

class 1 code (scheme III-B :
��� �

RIC on 4-D signalling). (e) class 1 code (scheme III-B :
non-RIC on 4-D signalling).
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