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Abstract of the Dissertation

On Stochastic Decentralized Systems in

Communications and Control

by

Kambiz Shoarinejad

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2001

Professor Jason L. Speyer , Co-chair

Professor Gregory J. Pottie, Co-chair

It is known that higher eÆciency, reliability and fault tolerance can be achieved

in decentralized systems, where multiple, largely autonomous, components are

integrated. While continuous advancements in computer, communication, and

control technologies have expanded the possibilities for creating such systems,

there are still some fundamental issues in designing distributed algorithms that

achieve a prescribed level of performance. The objective of our research was to

address some of these issues with more emphasis on the control and communica-

tion aspects.

In the �rst part, we address the notion of control-oriented value of informa-

tion. Considering Linear Quadratic Gaussian (LQG) systems, we show how the

measurements can be evaluated based on their e�ect on the performance and how

information measures may be incorporated in a given performance index. Fur-

thermore, we investigate how communicating various pieces of information among

the local stations in a decentralized system may a�ect the overall performance

and speci�cally the global stability of the decentralized system.

xvii



In the second part, we consider the Witsenhausen counter-example, which is

a simple two-stage stochastic decentralized system with a non-classical informa-

tion pattern. We present various reformulations of the problem and elaborate on

the diÆculties involved in designing optimal strategies. Assuming that the two

stations communicate through a low noise channel, we show, through an asymp-

totic analysis, that the linear strategies still satisfy the necessary condition for

optimality.

In the �nal part, we focus on power control problem, which can be regarded

as a stochastic decentralized regulation problem in cellular wireless systems. We

unify the two main approaches for information-feedback distributed power con-

trol design and obtain an insightful suÆcient condition for network feasibility.

Moreover, we use a robust control framework for global stability analysis of a

power-controlled network. We then design a Kalman predictive distributed power

control algorithm. We show, through extensive system-level simulations, that un-

der the dynamics of user arrivals and departures and user mobility, signi�cant

improvement in performance can be achieved when our predictive power control

algorithm is integrated with a distributed minimum interference dynamic channel

assignment scheme.
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Preliminaries
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CHAPTER 1

Introduction

Driven by the continuous advancements and innovations in computer, commu-

nication, and control technologies, possibilities for design and implementation of

highly eÆcient and reliable engineering systems have been steadily increasing. To

achieve a high level of eÆciency, reliability, and fault tolerance, complex systems

should be designed based on decentralized structures, where multiple, largely au-

tonomous, components are integrated. At the same time, many new applications

are emerging, where inherently decentralized systems are present. Such systems

are usually composed of a large number of complex, possibly spatially distributed,

stations or agents that are interacting with each other.

The basic centrality assumption, which is prevalent among classical engineer-

ing approaches, fails to hold in such large scale systems. In fact, one of the

main characteristics of these systems is that distributed decisions must be made

based on decentralized information. In centralized systems, all control actions

(decisions) are taken by one controller (agent) in one station where all the infor-

mation is gathered, whereas in most large scale systems there are several control

stations that have access to di�erent pieces of information. These stations may

communicate with each other possibly by signaling through noisy channels. They

usually have to coordinate their strategies in order to achieve a common objec-

tive. Decentralization of information and capability of communication among

the stations make these systems drastically di�erent from centralized systems
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and pose many great challenges to the system engineers.

Decentralized systems have been addressed in a very wide range of applica-

tions. Some examples are:

� Communication Networks

� Coordinated Autonomous Vehicles

� Flexible Manufacturing Systems

� Economic Systems

� Distributed Power Systems

� Distributed Database Systems

Due to the diversity of applications, a lot of research e�ort has been devoted

to studying decentralized systems, in di�erent areas and at various levels of ab-

straction, during the past decades. This includes research in Team Theory and

Mathematical Economics, Control Theory, and Information Theory. Some at-

tempts have also been made towards developing a uni�ed theory to analyze such

systems. However, despite all these e�orts, there are still many fundamental dif-

�culties in dealing with these systems. The main objective of our research was

to address some of these diÆculties.

In Section 1.1, we explain the direction of our research and provide the outline

of this thesis. This outline serves as an extended summary and also as a guideline

on how the di�erent chapters are related. It thus helps the readers �nd their topic

of interest more easily. Then, in Section 1.2, we provide a summary of our main

contributions.

3



1.1 Thesis Outline

We introduce some of the basic concepts in decentralized systems and team theory

in Chapter 2. We start by reviewing the main components of a team problem. We

then show how a decentralized control problem may generally be formulated and

how it relates to a team problem. We review the notion of information pattern

and discuss di�erent types of information patterns and their implications for

designing decentralized control algorithms. Finally, we mention some applications

in control and communication systems. Among these applications, power control

for cellular radio systems constitutes a major focus of our research.

The �rst part of the thesis discusses the notion of the value of information

and how the transmission of information among various stations can a�ect the

performance in a decentralized control system.

The concept of the value of information was, in fact, the starting point for our

research. While the value of information for transmission is a well-established

concept in information theory, the value of information for control is still an

outstanding issue. Note that the best achievable performance in any decentralized

system is greatly a�ected by the prevailing information pattern in that system,

i.e., who knows what and when. Therefore, there is a need to �nd a measure

for evaluating a piece of information, based on how it a�ects the performance

objective. Unfortunately, such a measure would highly depend on the speci�c

structure of the performance index and obtaining a uni�ed measure seems out of

reach. Nevertheless, we decided to review some possible approaches.

We introduce the notion of the value of information in Chapter 3. We then

discuss the entropy approach to estimation and control. While this approach was

mainly proposed to explain the dual control e�ect in adaptive control algorithms,

4



it can be seen as a reasonable platform for evaluation of di�erent pieces of in-

formation for control purposes. We continue by investigating a classical Linear

Quadratic Gaussian (LQG) control problem. We explain how the e�ect of dif-

ferent measurements on the performance might be evaluated simply by looking

at their corresponding noise intensities. Finally, we propose a scheme where a

measure of information can directly be incorporated in a quadratic performance

index.

In Chapter 4 we consider a simple decentralized LQG problem where the sta-

tions are allowed to communicate di�erent pieces of information, such as their

measurements or their control values. We propose a sub-optimal approach where

the control algorithm is obtained by solving separate centralized LQG problems.

We focus on the closed-loop stability of the global system, under various commu-

nication scenarios, and show how the closed-loop system may become unstable

even when the stations communicate all their measurements.

In the second part of the thesis, we consider a two-stage stochastic decen-

tralized optimal control problem. This is based on a classical example, proposed

by Witsenhausen in 1968, where, despite the linear dynamics, a quadratic cost,

and additive and Gaussian uncertainties, the non-classical nature of the informa-

tion pattern transforms the problem into a non-convex functional optimization

problem.

In Chapter 5 we state the problem and then consider its various reformula-

tions. Namely, we will investigate the scenarios in which the two stations are

allowed to communicate through noiseless or noisy channels. We will see that

noiseless transmission of information among the stations changes the problem

into a trivial one, whereas any noise in transmission results in a non-classical

information pattern again. Finally, we review a reformulation of the problem as

5



a communications problem, where concepts from information theory are used to

obtain the optimal strategies.

In Chapter 6 we look at a very interesting special case. Namely, we assume

that the uncertainty in communication among the two stations is small. We

follow an asymptotic approach to obtain an expansion for the performance in-

dex. We then use a variational approach to obtain a necessary condition for the

asymptotically optimal strategies. Finally, we show how the linear strategies,

with slightly di�erent coeÆcients than the noiseless transmission case, satisfy the

necessary condition for asymptotic optimality.

The next part of the thesis focuses on a very speci�c application in wireless

communications. Namely, we investigate the power control problem in cellular

radio systems. In a cellular system, a single channel can be shared by multiple

users. The objective is to design a decentralized or distributed algorithm to

control the transmit power levels of the users (uplink) and the base stations

(downlink) in order to achieve the required level of quality of service for every user,

with the minimum possible power, while eliminating unnecessary interference on

other co-channel users.

In Chapter 7 we explain the problem along with the main approaches that have

been proposed in the literature. Speci�cally, we discuss Signal to Interference

plus Noise Ratio (SIR) balancing and SIR threshold approaches and try to unify

them. Moreover, we explain how the power control problem can be formulated

as a decentralized regulation problem and how the global stability of the network

may be analyzed.

We propose a novel decentralized predictive power control algorithm in Chap-

ter 8. It is shown how simple models for the slow variations in the channel gains

and interference levels may be incorporated in simple Kalman predictors. We

6



also analyze the global stability of the network, on a single channel, under our

predictive power control algorithm.

In order to compare our predictive power control algorithm with the one that

uses no prediction, under more realistic scenarios, we decided to set up a general

system-level simulation platform. This platform can be used to compare various

integrated Dynamic Channel and Power Allocation (DCPA) schemes, under the

dynamics of user arrivals and departures and user mobility.

In Chapter 9 we review Dynamic Channel Assignment (DCA) schemes and

then provide the details of our simulation platform. We then discuss our sim-

ulation results and show the improvement in performance when our predictive

power control algorithm is integrated with a minimum interference DCA scheme.

The last part of the thesis includes the concluding remarks and some directions

for future research.

1.2 Summary of Contributions

As we mentioned, the main objective of this research was to address some of the

major diÆculties in dealing with decentralized stochastic systems. We started

by looking at the concept of the value of information and then moved towards

a decentralized LQG problem. We then focused on the reformulations of a two-

stage decentralized stochastic system with a non-classical information pattern.

Finally, we investigated the power control problem as a speci�c application in

wireless communications. We addressed some similar issues that come up in

designing decentralized power control algorithms for cellular networks.

The main contributions of our research are listed below by chapter:

� Chapter 3:
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{ Proposed the concept of critical versus non-critical measurements in

an LQG control problem, based on detectability of the system.

{ Proposed a scheme to evaluate non-critical measurements in an LQG

control problem, based on their corresponding noise covariances.

{ Proposed a scheme to directly incorporate covariance-dependent infor-

mation cost into the original quadratic performance index.

� Chapter 4:

{ Proposed a sub-optimal design for a two-station decentralized LQG

problem, where the control strategies are obtained by solving separate

centralized LQG problems.

{ Analyzed the global closed-loop stability under various communication

scenarios between the stations. Namely, when the stations communi-

cate their estimates or control values, their measurements, and their

estimation residuals.

{ Showed that even when the stations communicate all their measure-

ments, the sup-optimal controllers fail to stabilize the global closed-

loop system, if the compensators have unstable dynamics.

{ Showed how communicating control values in addition to the measure-

ments can help in stabilizing the closed-loop system.

{ Showed that if the communication uncertainties are small, transmis-

sion of estimation residuals can replace transmission of measurements

and control values.

� Chapter 5:
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{ Proposed a reformulation of the Witsenhausen counter-example, where

the �rst station is allowed to send its information to the second station

through noisy channels.

{ Obtained an alternative form of the performance index. Namely, the

cost is expressed only in terms of a single strategy, using a Fisher

information term.

{ Considered the two limit cases where the transmission noise intensity

goes to zero or grows to in�nity. It is shown that the reformulated

example covers a wide range, from a classical LQG problem to Wit-

senhausen's counter-example.

� Chapter 6:

{ Considered a special case of the reformulated example in Chapter 5,

where the transmission noise intensity is small.

{ Used an asymptotic approach in order to obtain an expansion for the

cost, in terms of the small transmission noise intensity.

{ Using a variational (Hamiltonian) approach, obtained a necessary con-

dition for asymptotically optimal strategies.

{ Showed that the linear strategies, with slightly di�erent coeÆcients

than the noiseless transmission case, do indeed satisfy the necessary

condition for asymptotic optimality.

� Chapter 7:

{ Uni�ed SIR balancing and SIR threshold approaches for power control

design.
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{ Obtained an insightful suÆcient condition, based on individual channel

gains and desired SIR thresholds, for network feasibility.

{ Formulated power control as a decentralized regulation problem and

analyzed the global stability of the network.

{ Using a robust control framework, obtained a suÆcient condition for

global stability of the network in `1 � induced norm sense.

� Chapter 8:

{ Proposed simple models for the slow variations in the channel gains

and interference plus noise levels for every user.

{ Designed a predictive distributed power control algorithm, based on

simple Kalman predictors.

{ Analyzed the global stability of the network, on a single channel, under

the predictive power control algorithm.

� Chapter 9:

{ Developed a general system-level simulation platform for comparing

various Dynamic Channel and Power Allocation schemes for a Time-

Frequency Division Multiple Access system, under the dynamics of

user arrivals and departures and user mobility.

{ Simulated the integrated predictive power control and minimum inter-

ference Dynamic Channel Assignment, and compared with a simple

integrator DCPA scheme with no prediction.

{ Analyzed the simulation results and showed the improvement in per-

formance when the predictive power control algorithm is employed.
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CHAPTER 2

Team Theory, Decentralized Systems, and

Information Patterns

2.1 Introduction

Research on multi-agent decision making processes was initiated in the mathe-

matical economics and was formalized as the team theory, mainly by the work

of Marschak and Radner who developed the concepts for the theory of a �rm in

the 1950s and early 1960s [55, 61, 62]. The connections between team theory and

decentralized control theory were mostly explained in the work of Witsenhausen,

Ho and others in late 1960s and early 1970s [36, 84, 85].

Since then, new applications in many di�erent areas have emerged, where

the objective is to control a large-scale system, which is composed of multiple

interconnected and highly autonomous local stations. Our goal in this chapter is

to introduce some of the basic concepts in team theory and decentralized systems.

In Section 2.2, we de�ne a team and explain the basic components of any

team decision problem. We then introduce the notion of person-by-person opti-

mality and describe an important result for Linear Quadratic Gaussian teams.

In Section 2.3 we formulate a general decentralized control problem and explain

the connections between decentralized control theory and team theory.

Another important concept for any team or any decentralized system is infor-
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mation pattern, which determines the local information available at any station

and at any given instant of time. The information pattern can have a tremendous

e�ect on the optimal control strategies and thus on the overall performance in a

decentralized system. In Section 2.4 we explain two important classi�cations for

information patterns and discuss their implications on the control design.

To get a better feeling for the theoretical concepts, we briey review a few

speci�c applications in Sections 2.5 and 2.6. Namely, we look at the formation

ight and truck platoons as two application examples in control. Then we describe

rate-based congestion control in ATM networks and power control in cellular

wireless systems as two application examples in communications. Power control,

in fact, turns out to be a major focus of our research.

2.2 Team Theory

A team is de�ned as a group of agents or decision makers who act in a coordinated

manner, in an uncertain environment, in order to achieve a common goal. These

agents usually have access to di�erent, but correlated, information about the

underlying uncertainties. This imposes a decentralized nature on the process

of decision making. Team theory is the study of such situations with prevalent

applications in large scale systems.

There are �ve basic ingredients for any team decision problem [37, 38]:

1. A vector of random variables � =
h
�1; : : : ; �m

i
2 � , de�ned on a

probability space with a given density p (�). This vector includes all the

underlying uncertainties in the system, such as unknown initial conditions,

measurement noise, disturbances, etc. It is often called \state of the world"

or \state of the nature".
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2. A set of decision variables u =
h
u1; : : : ; un

i
2 U , which represents n

agents or decision makers. Note that there is no loss of generality in assum-

ing scalar decision variables and associating each with one agent. Vector

decision variables, or agents who make di�erent decisions at di�erent times,

can both be decomposed into more agents with scalar decision variables.

3. A set of measurements or observations z =
h
z1; : : : ; zn

i
2 Z , which

represents the information available to di�erent agents. Each observation is

generally expressed by a given vector functions zi = �i (�) ; i = 1; : : : ; n. In a

more general setting, where the order of agents' actions becomes important,

each zi could be a function of both � and u, subject to the requirements

of causality and deadlock avoidance. The �i's represent the information

pattern of the system, which will be discussed in more detail, later in this

chapter.

4. A set of strategies (control laws, decision rules)  =
h
1; : : : ; n

i
2 � ,

where each i is a mapping from the zi-space to the ui-space, to reect

the fact that each agent makes its own decision based on its own local

information.

5. A cost (or payo�) function L, which is a measurable function of u and �.

When zi = �i (�), and the strategies are given, L (u; �) = L ( (� (�)) ; �) is a well-

de�ned random variable (provided that  and � are appropriately measurable

functions). Therefore, its expectation is also well-de�ned and the team problem

is stated as follows:

min
2�

J () = min
2�

E� [L ( (� (�)) ; �)] : (2.1)

Note that J is a functional and this is, in fact, a function optimization problem

over the � space, which may have very little structure. Also note that a team
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problem is a cooperative problem in the sense that each agent is allowed to

know the strategies of all other agents beforehand. In other words, while the

observations are decentralized, the strategies are known to all agents in the team.

A necessary condition for optimality of a set of strategies  is that each strat-

egy be optimal when all other strategies are �xed. This is called person-by-person

optimality . Let �i denote the strategies of all other agents except agent i, and

assume it is �xed and known to the i-th agent. Then we have:

min
i2�i

J (i; �i) = min
i2�i

Ezi [E� [L (i; �i; �) jzi ]]

= Ezi

�
min
ui2Ui

E� [L (ui; �i; �) jzi ]
�
; (2.2)

where we have used the following fundamental lemma [56]:

min
u(:)

Ex [f (x; u(x))] = Ex

h
min
u
f(x; u)

i
: (2.3)

Note that minui2Ui E� [L (ui; �i; �) jzi ] = minui2Ui Ji (ui; zi; �i) poses a parameter

optimization problem for each agent. Person-by-person optimality is always a

necessary condition for team optimality. But it is suÆcient only if the cost

function L is convex in all the strategies. This is because convexity implies:

L (u; �) � L (u�; �) +ruL
T (u�; �) � (u� u�) : (2.4)
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Let u� denote the person-by-person optimal set of strategies. Then:

J () = E [L (u =  (z) ; �)]

� J (�) + E
�ruL

T (u�; �) � ( � �)
�

= J (�) +
nX
i=1

E

�
(i � �i )

@L

@ui

����
u�

�

= J (�) +
nX
i=1

Ezi

�
(i � �i )E�

�
@L

@ui

����
u�

���� zi
��

= J (�) +
nX
i=1

Ezi

�
(i � �i )

@

@ui
E� [L jzi ]

����
u�

�

= J (�) ; (2.5)

where we have used the fact that u� is the set of person-by-person optimal strate-

gies and hence from (2.2), we have:

@

@ui
E� [L jzi ]

����
u�
= 0: (2.6)

We can now state an important classic result in team theory:

Theorem 1. [38] In Linear Quadratic Gaussian (LQG) teams, where:

L =
1

2
uTQu+ uTS�; Q > 0; � � N (0;�) (2.7)

z = H�; (2.8)

the person-by-person optimal solution is linear in the information z and is the

unique team optimal solution.

Note that the information available for every station only depends on the

underlying uncertainties in the system. As we shall see in Section 2.4, this is

called a static information pattern.
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2.3 Decentralized Systems

Any centralized control problem involves a dynamic system that is evolving with

time according to a set of ordinary or partial di�erential or di�erence equations.

A set of control strategies must be designed so that each control input is generated

using all the information available in the system. The notions of time and of a

dynamic system are still the key characteristics of a decentralized control problem,

even though each control input in this case, is obtained by using only the local

information. This is one of the basic di�erences between a decentralized control

problem and a team decision problem. In other words, a team problem can be

seen as a time snapshot of a decentralized control system.

We now formulate a general decentralized stochastic control problem in dis-

crete time [85]. The dynamic system is governed by the following di�erence

equation:

xt+1 = ft
�
xt; u

1
t ; : : : ; u

n
t ; wt

�
; t = 0; : : : ; T; (2.9)

where xt is the global state vector of the system at time t, uit is the control input

of the i-th controller at time t, wt represents the process noise sequence, n is the

number of control stations and T is the �nal time instant. Each station has its

own observation, which is given by the following equation:

zit = git
�
xt; v

i
t

�
; i = 1; : : : ; n and t = 0; : : : ; T; (2.10)

where vit is the measurement noise sequence at the i-th station. The objective is

to design the strategies for the controllers to minimize the following cost function:

J = E
�
L
�
u10; : : : ; u

n
0 ; : : : ; u

1
T ; : : : ; u

n
T ; w0; : : : ; wT ; x0

��
: (2.11)

The controllers can use whatever information is available to them, which includes

their own observations and the information that is being communicated among
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the stations either through the noisy channels or through the system dynam-

ics. Therefore, the next stage is to determine the information available to each

controller, i.e., the information pattern of the system.

The total information available inside the system at time instant t, after all

the stations have taken their measurements, can be characterized by the following

two sets:

Zt =
�
z11 ; : : : ; z

n
1 ; : : : ; z

1
t ; : : : ; z

n
t

	
(2.12)

Ut�1 =
�
u10; : : : ; u

n
0 ; : : : ; u

1
t�1; : : : ; u

n
t�1

	
: (2.13)

The information pattern of the system can be speci�ed by assigning two infor-

mation sets Zi
t and U

i
t�1 to every station at every time instant t, where:

Zi
t � Zt i = 1; : : : ; n and t = 0; : : : ; T (2.14)

Ui
t�1 � Ut�1 : (2.15)

It is clear that when we have more than one station and we are considering only

one time step (T = 0), we indeed have a team problem.

2.4 Information Patterns

As we said earlier, the way that information is distributed in a decentralized

system greatly a�ects the performance of the controlled system. Changes in

the information pattern will produce changes in the optimal achievable cost.

Even though there are always some constraints on how the information can be

distributed in a physical system (where to put the sensors and the actuators,

what to transmit, etc.), in general, there are many possible information patterns

for a given system. Therefore, designing the optimal information patterns should

be addressed along with designing the optimal strategies, in order to get the
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best possible performance. Note that di�erent information patterns may yield

di�erent optimal strategies; thus, for a given set of constraints, carefully designing

the pattern could lead us to noticeably better performance.

In order to analyze the e�ect of information availability in a decentralized

system, we need to study two related problems. First, we need to investigate

the structure of di�erent information patterns and how they could a�ect the

optimal strategies. Second, we need to see how valuable a piece of information

could be. We want to know what would be a reasonable cost for installing a

sensor or a transmitter in order to obtain or communicate a piece of information

respectively. In other words, we need to �nd a measure of information based

on how it a�ects our performance objective. We discuss di�erent information

patterns in this section. Approaches towards �nding a measure of information

will be discussed later in Chapter 3.

2.4.1 Static versus Dynamic Patterns

As we mentioned, the information available to the agents in a team may only

depend on the underlying uncertainties in the system, i.e., z = � (�). In this case,

the information available to one agent is not a�ected by the decisions made by

other agents. We call this information pattern a static pattern. From Theorem

1, we know that the optimal set of strategies for an LQG team with a static

pattern is unique and linear in the information.

Sometimes an order may be assigned for the agents to make their decisions. In

these systems, the information available to one agent can depend on the previous

agents' decisions, in which case we have z = � (u; �), subject to some obvious

causality conditions.

In other systems, the order for the agents could even depend on the uncertain-
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ties in the system, either directly or through agents' decisions. In these systems,

which are called non-sequential systems, it may be impossible to order the agents

a priori and independently of the set of strategies. The information available

to one agent would also depend on other agents' decisions, while some condi-

tions should be imposed to prevent deadlocks, where two or more agents become

mutually dependent [73].

These information patterns are called dynamic patterns. There is no known

solution for teams with general dynamic information patterns. In general, the

information available to one agent may be insuÆcient to determine the previous

decisions of other agents, which have a�ected that information [85]. This, in a

sense, would make that piece of information less valuable.

In some cases, however, even though the pattern is dynamic, each agent knows

or can reconstruct the decisions of other agents who have a�ected its own infor-

mation. This is a special case of a dynamic pattern, which is called a partially

nested pattern [39]. For example, assume that the information available to u3 is

a�ected by u1 and not by u2. We will have a partially nested pattern if u3 knows

or can reconstruct what u1 did, regardless of whether or not it knows what u2

did. It can be shown [39] that a dynamic LQG team with a partially nested

pattern can be converted into a static LQG team and hence has a unique optimal

strategy, which is linear in the information.

Using the above characterization for information patterns, we see that in most

cases, decentralized control problems have dynamic patterns. This is because

of the presence of a dynamically evolving state vector, which is a�ecting the

information available to the controllers as time passes, while it is being a�ected

itself by the control actions.
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2.4.2 Classical versus Non-classical Patterns

There is another classi�cation for information patterns that is more applicable

to decentralized control systems. From (2.12) to (2.15), we recall that the infor-

mation pattern in a decentralized control system would be speci�ed by assigning

the information sets Zi
t and U

i
t�1 to every i-th station at every time instant t.

We say the i-th control station has perfect recall if it does not lose any infor-

mation as time passes (T = 0 is the trivial case), that is:

Zi
t � Zi

t+1 (2.16)

Ui
t�1 � Ui

t : (2.17)

An information pattern is called classical if all control stations have access to

the same information and they all have perfect recall. Otherwise, it is called a

non-classical pattern.

It is clear that in any system with a classical information pattern, all control

stations can be combined into one control station and we can deal with the system

as if it were centralized [85]. Hence all the classic results from the centralized

control theory hold for such systems. Mainly, if the system is linear and the

process noise and the measurement noise sequences are assumed to be Gaussian,

then the separation principle holds, i.e., the optimal control can be represented

as a function of the conditional density of the state:

u�t = �t (Zt;Ut�1) = �t (p (xt jZt;Ut�1 )) (2.18)

where p (xt jZt;Ut�1 ) is the conditional density of xt given the information. In

this case, we actually know that the optimal control only depends on the con-

ditional mean of xt given the information. Moreover, when the cost is also

quadratic, the certainty equivalence principle will hold as well, i.e., the opti-

mal control at time t will be obtained by replacing xt with its estimate in the
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optimal control for the corresponding deterministic system, where all the uncer-

tainties are replaced by their mean values. Also, as we know, in this LQG case,

the optimal control is indeed linear in the information.

All these properties fail to hold when the decentralized system has a general

non-classical information pattern. We now mention some special forms of non-

classical patterns, which have been studied in the literature.

One important class of such patterns is the class of k-step-delayed sharing

patterns. In these patterns, the information sets of every i-th station have the

following form:

Zi
t = Zt�k [

�
zit�k+1; : : : ; z

i
t

	
(2.19)

Ui
t�1 = Ut�k [

�
uit�k+1; : : : ; u

i
t�1

	
; (2.20)

where Zt�k and Ut�k represent the information shared by all the stations. In

other words, every station has access to other stations' information only after a

delay of k steps. This delay could represent the communication delay among the

control stations.

It is shown in [77] that the separation principle holds only if k = 1, that is,

for the one-step-delayed sharing pattern. For the LQG case with this pattern,

the optimal control is shown to be linear [63]. These results are also generalized

in [23] for the case where the cost is an exponential of a quadratic function, i.e.,

the Linear Exponential Gaussian case.

In order to give a simple qualitative explanation for these results, we look at a

system with only two stations. Figure (2.1) shows four di�erent patterns. As we

can see in �gure (2.1.a), when the delay is only one step, each station has access

to the previous control action of the other station that has a�ected its current

information. But when the delay becomes more than one step, as shown in �gure
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(a) One-Step-Delayed (b) Two-Step-Delayed

(c) One-Step-Delayed with Noise (d) One-Step-Delayed Periodic

Time

Time

Figure 2.1: Information Patterns

(2.1.b), neither station knows what the other station did during the intermediate

steps, even though that has a�ected its information through the state vector. In

other words, the one-step-delayed sharing pattern has a similar characteristics as

the partially nested patterns for teams, and this could explain why for the LQG

case, the separation principle holds and the optimal strategies are still linear in

the information.

Another situation of more practical interest is when the information is getting

corrupted by noise while being communicated among the stations. In this case,

even with only one step delay, which is shown in �gure (2.1.c), there is no known

solution for the optimal strategies. This is again because of the fact that one

station does not have access to other stations' previous control actions that have

a�ected its present information.
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More recently, a periodic sharing pattern was introduced in [58]. In this pat-

tern, the information is shared among the stations every m time steps. The

information transfer could also be delayed for k(k < m) time steps. For this

pattern, the optimal strategies are not known, even though a form of separation

principle has been derived in [58] for one-step-delayed case. A one-step-delayed

three-step-periodic pattern for two stations is shown in �gure (2.1.d).

2.5 Application Examples in Control

As we mentioned, there are many applications where the fundamental assumption

of centrality fails. Almost all of these applications are characterized by a set of

interconnected subsystems, which have access to di�erent information. There is

usually a common objective to be achieved by some type of coordination among

the local stations.

One of the most recent applications in control is coordination of a set of

autonomous vehicles. This includes many di�erent scenarios, from underwater

autonomous vehicles to robotic systems in large industrial complexes. These

systems are currently very far from full decentralization. Even though there

might be a hierarchical or a multi-level structure, all the information is usually

shared among all the stations and the strategies are designed and implemented

using centralized methods.

Some inspiration for our research came from two current projects in the School

of Engineering and Applied Science at UCLA. They represent two forms of coor-

dinated autonomous vehicle systems, namely ultra-light Unmanned Air Vehicles

(UAVs) in formation and Commercial Heavy Vehicles (CHVs) in platoons. In

this section, we provide short descriptions of these two applications.
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2.5.1 Formation Flight

Formation ight is a situation where di�erent aircraft have to coordinate in order

to achieve a common goal. Ultra-light Solar Powered UAVs, which are going to

be own in formation are being developed and tested at UCLA. Such a formation

could be used as a platform for communication stations, environmental studies,

surveillance applications, etc. The basic idea for the formation ight is that each

aircraft can take advantage of the up-wash coming o� the aircraft in front to

reduce its workload and hence save a considerable amount of energy that makes

it possible for the aircraft to stay aloft permanently, while powered only by the

sun.

In this scenario, each aircraft acts as a local station. They are at the same

altitude and their wing tips line up. They are separated longitudinally by one

wingspan (43.3 ft). There are going to be �ve planes in formation and each plane

has 12 states. Therefore the global state vector is composed of 5 sets of 12,

ordered from the leading plane to the trailing plane. The states for each aircraft

are as follows:

� x : Inertial Longitudinal Position (ft)

� y : Inertial Lateral Position (ft)

� z : Inertial Horizontal Position (ft)

� � : Body Axis Roll Angle (rad)

� � : Body Axis Pitch Angle (rad)

�  : Body Axis Yaw Angle (rad)

� u : Body Axis Velocity (x direction) (ft/s)

� v : Body Axis Velocity (y direction) (ft/s)

� w : Body Axis Velocity (z direction) (ft/s)

� p : Body Axis Roll Rate (rad/s)

� q : Body Axis Pitch Rate (rad/s)

24



� r : Body Axis Yaw Rate (rad/s)

Each aircraft has �ve controls:

� Right Aileron Deection (deg)

� Left Aileron Deection (deg)

� Right Tail Deection (deg)

� Left Tail Deection (deg)

� Thrust (lb)

Each aircraft also has its own set of sensors, such as Inertial Measurement Units

(IMUs), Global Positioning System (GPS) receivers, air data sensors, etc. This

clearly shows why information is indeed decentralized. The goal is to design

decentralized strategies to keep the aircraft in formation. Thus, we need to

investigate what information should be communicated among the planes. For ex-

ample, by measuring the phase di�erence between the carrier waves of the GPS

signals, received by di�erent aircraft, accurate relative position and velocity esti-

mates can be obtained. This requires the communication of GPS measurements

to neighboring aircraft. In general, we need to �nd the best information pattern

for the aircraft formation so that decentralized control strategies can be designed

for each aircraft in order to achieve a speci�ed level of performance.

2.5.2 Vehicle Platoons

Another situation where autonomous vehicles act in a coordinated fashion is in

highway automation applications, where tightly spaced vehicle group formations

or platoons are formed. Platooning provides signi�cantly higher traÆc through-

put while also improving fuel economy. These are more important for Commer-

cial Heavy Vehicles, which usually travel on well-established commercial routes.

Figure (2.2) shows a typical scenario with the parameters involved.
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intervehicle communication

-
vf -

vl
-

xr

-

Æ
-

hvf -

s0

-

sd

s0 : minimum distance between vehicles

h : time headway (for speed-dependent spacing)

xr : vehicle separation

sd = s0 + hvf : desired vehicle separation

vl : velocity of leading vehicle

vf : velocity of following vehicle

vr = vl � vf : relative vehicle velocity

Æ = xr � sd : separation error

Figure 2.2: Parameters of a truck platoon.

Every platoon is indeed a decentralized system with each truck acting as a

local station. The objective is to regulate the relative velocity and the separation

error, which could be expressed as regulating vr+kÆ, where k is a positive design

constant. Even though highly nonlinear and detailed models for the trucks are

available [86], for the purpose of control design, a simple �rst order linear model

might be used as an approximated longitudinal truck model relating the vehicle

speed to the fuel command input.

The operation could be autonomous in the sense that each vehicle measures

only its own velocity and the relative velocity and the separation of the pre-

ceding vehicle with some uncertainty. In other words, there is no information
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transmission among the trucks. In an alternative scenario, however, intervehicle

communication would be allowed. The speci�c form of the information pattern

is again of vital importance in the performance of the platoon. For example, it

is shown in [86] that string stability cannot be achieved under the autonomous

operation when the time headway is zero, that is, when the desired spacing is

independent of vehicle speed. Furthermore, in [22], di�erent types of transmit-

ted information, such as the leader's current velocity and the leader's desired

velocity, have been compared based on their e�ect on the string stability of the

platoon. This shows the necessity of a systematic method for evaluating a piece

of information based on its e�ect on the performance of the decentralized system.

2.6 Application Examples in Communications

Decentralized systems have also found applications in communication systems

and networks. In this section, we briey review two such applications.

2.6.1 Congestion Control in ATM Networks

Asynchronous Transfer Mode (ATM) protocol has been proposed as a standard

for the next generation Broadband Integrated Services Digital Networks, which

should be capable of carrying di�erent types of traÆc such as voice, video, and

data at very high speeds, while providing the desired Quality of Service for each

of these traÆc types.

ATM networks are packet switched networks, where the data is packetized

into equal length cells. They are also connection-oriented in the sense that there

is a signaling phase before any call connection, where the users would set up a

Virtual Circuit (VC) and would inform all the intermediate nodes of their traÆc
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characteristics, service class, and required Quality of Service (QoS).

The ATM networks provide four main service categories:

� Constant Bit Rate (CBR): Constant cell rate, emulates circuit switching,

no rate control is necessary, e.g., voice.

� Variable Bit Rate (VBR): Variable cell rate possible, no rate control is

implemented. Real time VBR and non-real time VBR are considered as

two subclasses.

� Available Bit Rate (ABR): Mainly for bursty traÆc, e.g., �le transfers, No

strict QoS requirement are to be imposed by the user. However, delay and

losses are to be minimized, and rate control is therefore essential.

� Unspeci�ed Bit Rate (UBR): No QoS guarantees, no rate control, the cells

are simply dropped upon congestion.

Two main approaches have been proposed for congestion control for the ABR

service category in ATM networks:

� Credit-based Congestion Control: Regulate the number of incoming cells

using per-link, per-VC window ow control.

� Rate-based Congestion Control: Regulate the incoming cell rate, based on

the congestion status of the network.

Even though credit-based approaches can guarantee zero cell loss and usually have

lower ramp-up times, they need more accurate delay estimates. More importantly,

per-VC queueing is essential in credit-based approaches. This results in more

complicated switches. These reasons along with the pressure from the switch
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vendors �nally led the ATM Forum to adopt the rate-based approach as the

standard scheme for congestion control in ATM networks.

The basic idea is to keep the queue lengths at all nodes or at some bottleneck

nodes of the network close to some threshold values and therefore avoid both

congestion and under-utilization of the network. Control algorithms should be

designed to obtain the explicit rates for the sources, based on the available in-

formation, such as the queue length measurements. So the source nodes, each of

which can be regarded as a local station, should coordinate in order to achieve a

common objective.

Recently it was shown in [1] how a team problem and also a non-cooperative

game problem can be formulated to obtain the explicit rates for all the sources

in the network.

A continuous uid approximation is assumed for the traÆc ow. It is argued

that in today's high speed networks the bu�er sizes can be very large such that

the error in replacing the number of packets with a real number instead of an

integer is small relative to the bu�er size. Also it is assumed that there is a single

bottleneck link in the network, based on which all the performance measures are

de�ned.

Let xq(t) be the queue length at a bottleneck link. s(t) is the total available

bandwidth at that link. This available rate is assumed to be arbitrary but per-

fectly known by all the users. Also each user (source)m 2 M 4
= f1; 2; : : : ;Mg has

access to a given �xed portion of the bandwidth ams(t) where
PM

m=1 am = 1. Let

rm(t) be the controlled explicit rate of source m and let um(t)
4
= rm(t)� ams(t)

be its shifted version. Also let x(t)
4
= xq(t) � x0 be the deviation of the queue

length from its desired target value x0. The queue dynamics can then be written
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as:
dx

dt
=

MX
m=1

(rm � ams) =
MX

m=1

um (2.21)

Note that a linearized dynamics is assumed for the queue model where the end

point e�ects are neglected. This is justi�ed using the fact that the controlled

queue length will be close to its threshold value. Also note that the delays are

not taken into account.

Now, the objective is to obtain the explicit rates for all the sources, that is, the

control policies �m 2 Um, where um(t) = �m
�
t; x[0;t]

�
; m 2 M; t 2 [0;1). It is

shown that both in team formulation and in non-cooperative game formulation,

the optimal policies u�m(t) linearly depend only on the current value of x(t). This

comes from the fact that all the sources are assumed to have access to the same

information, that is, the measurement of the queue length at the bottleneck link.

2.6.2 Power Control in Cellular Wireless Systems

Another application in communications, where decentralized algorithms, in un-

certain environments, are to be designed, is power control in cellular radio sys-

tems.

In a cellular system the area under coverage is divided into cells and each cell

has its own base station. All users communicate with their assigned base stations

through a single hop. This is in contrast to ad hoc wireless networks where there

is no �xed infrastructure and multi-hop communication is prevalent.

Each mobile user acts as a local station. On every single channel, the cellular

network can then be considered as a collection of these local stations. These

co-channel mobile stations are interacting through the interference that they are

causing each other.
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The main idea is to control the transmit power levels of the users and the base

stations in order to maintain an acceptable level of quality of service for every

user, while eliminating unnecessary interference to other users in the network.

Di�erent objectives and approaches have been perceived for power control

and di�erent algorithms have been naturally obtained. The major objective in

Direct Sequence Code Division Multiple Access (CDMA) systems is to miti-

gate the multiple access interference and therefore the near-far e�ect, whereas

in Time/Frequency Division Multiple Access (TDMA-FDMA) systems the ob-

jective is mostly to control the co-channel interference. Power control will also

minimize the power consumption for the users and hence prolong their battery

life.

We decided to focus more on this application in our research. Speci�cally,

we anlayzed various approaches for power control design. We showed how power

control can be regarded as a decentralized regulator problem and then obtained

some global stability results. We also designed and simulated a decentralized

integrated predictive power control and dynamic channel assignment scheme.

We will explain the power control problem in full detail in Part IV of this

thesis.

2.7 Summary

The purpose of this chapter was to review some basic concepts in team theory and

decentralized stochastic control theory. We also introduced di�erent information

patterns and explained their characteristics and their e�ects on the control design.

We conclude that, in general, there are four basic factors, which would gen-

erate non-classical information patterns:
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� Limited memory, i.e., when some stations do not have perfect recall.

� Constraints on information transmission, i.e., when it is very costly or

maybe even impossible to communicate some information among the sta-

tions.

� Data latency, i.e., when there is a delay in transmitting the information

among the stations.

� Transmission noise, i.e., when the information is being corrupted by noise

while in transmission.

As soon as the information pattern in a decentralized control system becomes

non-classical, �nding the optimal strategies becomes very diÆcult. One basic

diÆculty comes from the fact that the cost is no longer a convex function of the

strategies and there is no guarantee that the optimal strategies are unique. Also,

linear strategies would not be optimal anymore.

We will elaborate more on these problems when we discuss a classical example

and its reformulations later in Chapter 5.

We also reviewed two application examples in control along with two applica-

tion examples in communications. The objective was to show, at least in a general

sense, how such applications can �t into the abstract platform of a decentralized

system, where multiple stations with local information are to be controlled or

coordinated to achieve some common objectives.
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Part II

Information Transmission in

Decentralized Systems
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CHAPTER 3

Information Value

3.1 Introduction

The best achievable performance in a decentralized system highly depends on the

prevailing information pattern in that system, i.e., who knows what and when.

Therefore, in order to design decentralized controllers, we should also be looking

at di�erent alternatives for distributing the information among the control sta-

tions. In the previous chapter, we discussed di�erent information patterns and

their characteristics. We saw that when one station does not have access to the

previous actions of those other stations that have a�ected its current informa-

tion, optimal strategies would be very diÆcult to �nd and, in general, are usually

unknown.

Another important factor in designing information patterns is the ability to

evaluate a piece of information based on how it a�ects the performance criterion.

In other words, we somehow need to know how valuable and how critical a piece

of information is, in order to study the feasibility of installing a sensor to get that

information or a transmitter to communicate it with other stations.

Even though there has been some e�ort towards �nding such a measure for

many years, the success is far from convincing. One reason is the fact that

evaluating information, based on its e�ect on the performance, depends heavily

on the speci�c problem at hand. The only general property for such a measure
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is that free additional information should never do harm, even though it might

well be useless [85]. But still there is no general systematic method to evaluate

a piece of information in a speci�c problem with a given performance index.

In this chapter, we will discuss di�erent approaches to �nding such a measure

for information. First, we will discuss the entropy approach to estimation and

control, where relations have been established between information theory and

estimation and control theories. Although one of the main objectives behind this

approach was to explain the dual control e�ect in adaptive controllers and how

the information about the unknown parameters could be passed to the estima-

tor through the control actions, it could also be considered as a platform for

information evaluation during the design stage. Then, we describe a proposed

measure for the value of information based on how it a�ects the cost. In Sec-

tion 3.4, we will consider a classical in�nite horizon LQG problem and we will see

how the information content of the measurements could be characterized by their

corresponding noise covariances. We will also characterize some measurements

as being critical, if they directly a�ect the detectability of the system. In the

last section, we will discuss another approach in which the information is again

characterized by the noise covariances and is directly incorporated into the cost

in order to �nd the minimum required information.

3.2 Entropy Approach to Estimation and Control

Information theory, developed mainly by Shannon [65], provides a concrete math-

ematical framework for communication systems. One of the basic notions in in-

formation theory is the notion of entropy , which is de�ned for a random variable

based on its probability distribution. It is actually a measure of the information

available in that random variable based on its average uncertainty. Mutual in-
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formation is also de�ned as a measure of information that one random variable

contains about another one [16].

Many researchers have attempted to make connections between information

theory and estimation theory [12, 24, 45, 82]; information-theoretic criteria for

estimation have been established and the connections with the classical Bayesian

approach have been shown. There have also been e�orts in linking information

theory with control theory [64, 74, 83], where alternative formulations for optimal

(stochastic) control problems have been developed based on some information-

theoretic concepts. The main motivation for this new approach was to deal with

dual control problems where the optimal control has two, often conicting, ob-

jectives, namely probing , which requires the controller to inject excitation signals

into the system in order to generate information about the unknown states or

parameters and pass it to the estimator, and regulation, which requires that the

system be excited as little as possible.

In this section, we will provide an overview of the results in the information-

theoretic approach to the estimation and control problems. Since entropy, as a

measure of information, is explicitly present in this approach, we try to explore

the idea of incorporating the information available to the controllers by using

the entropy measure in the cost, which is itself expressed as an entropy measure

in this case. Later in Section 5.6, we will also describe a decentralized control

problem, formulated as a communications problem, where information-theoretic

concepts have been used in order to derive the optimal strategies.

Let X be a random variable. Its entropy (also called di�erential entropy for

continuous random variables) is de�ned as follows:

H (X) =

Z
pX(x) log

�
1

pX(x)

�
dx = �

Z
pX(x) log pX(x)dx = E [� log pX(x)] ;

(3.1)
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where pX(x) is the Probability Density Function (pdf) for X. When the \log" is

in base 2, the entropy is measured in bits and when the base is e, it is measured

in nats. We will mostly use the latter. Entropy is a measure of uncertainty for a

random variable. In fact, for many scalar random variables, there is a one-to-one

relationship between the entropy and the variance [45]. The conditional entropy

of a random variable x, given the value for another random variable z, and their

joint entropy , are de�ned respectively as follows:

H (XjZ) = �
Z Z

pXZ(x; z) log pXjZ (xjz) dxdz = E
�� log pXjZ (xjz)

�
(3.2)

H (X;Z) = �
Z Z

pXZ(x; z) log pXZ(x; z)dxdz = E [� log pXZ(x; z)] : (3.3)

The mutual information between these two random variables is de�ned as:

I (X;Z) =

Z Z
pXZ(x; z) log

pXZ(x; z)

pX(x)pZ(z)
dxdz

= H (X)�H (XjZ) = H (Z)�H (ZjX) : (3.4)

It can be shown that conditioning always reduces entropy (i.e.,H(XjZ) � H(X)).

Therefore the mutual information is always non-negative, and it is zero if and

only if the two random variables are independent. Also we can see that it can

actually be interpreted as the reduction in the uncertainty of one random variable

caused by knowing the other. The following properties are also easy to prove [16]:

H (Z) = H (X) + E [log jJ j] ; Z = F (X); J = det

�
@fi(x)

@xj

�
(3.5)

H (X;Z) = H (X) +H (ZjX) = H (Z) +H (XjZ) (3.6)

I (X;Z) = I (Z;X) = H (X) +H (Z)�H (X;Z) : (3.7)

In the Bayesian approach to the estimation problem, a random vector x is

estimated based on an observation vector z, so that the average of a scalar cost

functional of the error C (~x), where ~x
4
= x � x̂(z), is minimized. The cost func-

tional is desired to be convex and symmetric about its minimum at ~x = 0.
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However, the estimation criterion could also be based on the error probability

density function p (~x), which is desired to be concave and symmetric about its

maximum at ~x = 0. Since \log" is a monotonically increasing function, one such

criterion could be the error entropy H( ~X) = E [� log p (~x)]. Since ~x = x� x̂(z),

the determinant of the Jacobian of the transformation from (x; z) to (~x; z) is

unity and hence from (3.5), we have:

H(X;Z) = H( ~X;Z): (3.8)

At the same time, from (3.6) and (3.7), we know:

H (X;Z) = H (Z) +H (XjZ) (3.9)

H( ~X;Z) = H( ~X) +H (Z)� I( ~X;Z): (3.10)

Hence:

H( ~X) = H (XjZ) + I( ~X;Z): (3.11)

But H (XjZ) does not depend on the estimation procedure. Therefore, minimiz-

ing the error entropy is equivalent to minimizing the mutual information between

the error and the observation, which could be considered as another information-

theoretic criterion for estimation, i.e.,

min
X̂

H( ~X)() min
X̂

I( ~X;Z): (3.12)

Also, since the mutual information is always non-negative, the error entropy is

always lower bounded by H (XjZ), which is only a function of the statistical

relationship between x and z. This lower bound could be achieved when the

mutual information between the error and the observation is zero, i.e., when the

error is statistically independent of the observation:

H( ~X) = H (XjZ), I( ~X;Z) = 0: (3.13)
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This is analogous to the Orthogonality Principle in the Bayesian approach. As we

know, for a linear Gaussian system, the Kalman Filter minimizes the mean square

error and the estimation error is uncorrelated and hence independent (because

of the Gaussian assumption) of the observations. Therefore, the Kalman Filter

is indeed minimizing the estimation error entropy and the mutual information

between the estimation error and the observations. For linear stochastic systems

with general noise processes, a lower bound on the achievable mutual information

between the estimation error and the observation is derived in [24], and it is

shown that under some reachability and observability conditions, zero mutual

information between the estimation error and the observation can be achieved by

using an aÆne �lter, only if the noises are Gaussian.

So far, we have studied an entropy approach to the estimation problem. We

shall now discuss an entropy formulation for an optimal (stochastic) control prob-

lem. As we shall see, even though these interesting connections have been estab-

lished between information theory and control and estimation theories, so far

they have not led us to a solution for a general control problem, where separation

principle fails. As we said earlier, we think of these results as a possible plat-

form to develop a systematic method for evaluating the information, mainly in a

decentralized system, where the information is distributed and some information

needs to be communicated among the stations.

The following formulation is a slightly modi�ed version of what has been

proposed in [64] for continuous-time systems and later in [74] for discrete-time

systems. Given a dynamic system and a performance index, the basic idea is to

think of the optimal control design in terms of selecting the optimal policy from a

set of admissible policies, where the uncertainty of such a selection is represented

by a probability density function.
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Consider the following deterministic dynamic system:

_x = f(x; u; t) ; x(t0) = x0; (3.14)

where x(t) 2 
x is the n-dimensional state vector. The objective is to design the

optimal control u� 2 Uad , where Uad is the set of admissible policies, in order to

minimize the following cost function:

J(u) =

Z tf

t0

L(x; u; t)dt: (3.15)

Let � 2 � be a �ctitious random variable with which Uad is parameterized, i.e.,
the control is chosen based on the value that this random variable takes. In other

words, u is now considered as a proper function of � such that the expectation

E� [J (u(�))] is well-de�ned. Then from the fundamental lemma (2.3), we have:

min
u(:)

E� [J (u(�))] = E�

h
min
u
J(u)

i
= min

u
J(u)

4
= Jmin: (3.16)

We shall now formulate minu(:)E� [J (u(�))] as an entropy minimization prob-

lem. Let p(�) be the corresponding probability density function for �. Then its

entropy can be de�ned as:

H(�) = �
Z
�

p(�) ln p(�)d�: (3.17)

Following Jaynes' Maximum Entropy Principle [44], we select p(�) in order to

maximize the above entropy, subject to:Z
�

p(�)d� = 1; (3.18)

E� [J (u(�))] = Jmin: (3.19)

Using the Lagrange multipliers �1 and �, we form the following functional:

I = H(�)� � (E[J ]� Jmin)� �1

�Z
�

p(�)d� � 1

�

= �
Z
�

(p ln p+ �Jp) d� � �1

�Z
�

p(�)d� � 1

�
+ �Jmin: (3.20)
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Maximization with respect to p(�) requires:

@I

@p(�)
=

@

@p(�)
(�p ln p� �Jp� �1p) = � ln p� 1� �J � �1 = 0 (3.21)

@2I

@p2(�)
= �1

p
< 0: (3.22)

Hence:

p(�) = exp (��� �J (u(�))) ; (3.23)

where �
4
= �1+1 and � are appropriate positive constants, which can be obtained

by substituting back into the constraints. The maximized entropy corresponding

to the above density is:

H(�) = �
Z
�

p(�) ln p(�)d� = �+ �E [J (u(�))] : (3.24)

Using (3.16), it is clear that minimizing the above entropy is equivalent to mini-

mizing our original cost. Therefore, we can state the following theorem:

Theorem 2. [64] A necessary and suÆcient condition for u� to minimize J(u)

subject to _x = f(x; u; t) ; x(t0) = x0, is that u� minimizes the entropy H(�),

where � is a �ctitious random variable that parameterizes the admissible control

policies Uad and p(�), its corresponding probability density function, is selected

according to Jaynes' principle to maximize the above entropy.

The above result can be generalized to stochastic optimal control problems.

Consider the following stochastic system:

_x(t) = f(x; u; w; t); (3.25)

z(t) = g(x; v; t); (3.26)

where x(t0) = x0 is the random initial condition with probability density function

(pdf) p(x0), w is the process noise with pdf p(w(t)) and v is the measurement
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noise with pdf p(v(t)). The cost is now given as an average value on all the

underlying uncertainties, i.e.,

Js(u) = Ex0;w;v

�Z tf

t0

L(x; u; t)dt

�
: (3.27)

A similar formulation can now be obtained simply by replacing J in the deter-

ministic problem by Js and following the same procedure, after introducing a new

�ctitious random variable.

This formulation has an interesting property. Let � denote the unknown state

or an unknown parameter in the system, which needs to be estimated, in order

to implement the optimal control. We always have:

H(�) = �
Z
�

p(�) lnp(�)d�

= �
Z
�

Z
�

p(�; �) lnp(�)d�d�

= �
Z
�

Z
�

p(�; �) ln
p(�j�)p(�)
p(�j�) d�d�

= �
Z
�

Z
�

p(�; �) lnp(�j�)d�d�

�
Z
�

Z
�

p(�; �) lnp(�)d�d�

+

Z
�

Z
�

p(�; �) lnp(�j�)d�d�
= H(�j�) +H(�)�H(�j�): (3.28)

The �rst term represents the certainty equivalent control, the second term is the

entropy corresponding to the unknown itself and the third term represents the

information that needs to be transmitted by the controller about the unknown.
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3.3 A De�nition for the Value of Information

Information-theoretic measures, such as entropy, which were mainly developed

for communication systems and information transmissions, evaluate a piece of

information only based on its probabilistic characterizations. In other words,

they only give a measure of uncertainty without considering the consequences of

getting or denying that piece of information. However, in control systems, we

are concerned not only with the probabilistic nature of the uncertainties, but

also with the impact of these uncertainties on the performance of our system. In

other words, in evaluating a piece of information, we should also consider how

that piece of information a�ects our objective. E�orts towards developing such

a theory for the value of information was originally initiated by Howard in [42].

In this context, the value of information is basically de�ned as the change in

the optimized performance index, when the information is known, relative to the

case where the access to that information is denied. The relation between this

notion and the entropy measure and how they could both be combined in order

to evaluate a piece of information are explained in [66].

Consider a decentralized system. Let zi be the information available to the

i-th station and �zi be the information available to all other stations. Also let i be

the strategy for the i-th station and �i be the strategies for all other stations. Let

� denote the underlying uncertainties in the system. The objective is to minimize

the following cost:

J = Ezi;�zi;� [L (i(zi); �i(�zi); �)] : (3.29)

We want to �nd the value of the information available at the i-th station, that

is, the value of zi based on how it a�ects our cost.

When the i-th station has access to zi, the minimum cost that could be
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achieved is the following:

J1 = min
i2�i;�i2��i

Ezi;�zi;� [L (i(zi); �i(�zi); �)] : (3.30)

On the other hand, when the access of the i-th station to zi is denied, the mini-

mum achievable cost would be:

J2 = min
ui2Ui;�i2��i

E�zi;� [L (ui; �i(�zi); �)] : (3.31)

Note that we have not eliminated the i-th station, but we have just denied its ac-

cess to its information. Therefore, its best strategy, which should be independent

of zi, is clearly a constant strategy that yields the minimum cost J2.

The value of the information zi is now de�ned as the di�erence between the

corresponding costs in these two cases, i.e.,

value of zi
4
= J2 � J1: (3.32)

Note that the above quantity is always positive. This is also clear from the

fact that knowing zi cannot increase the minimum cost, even though it may not

decrease it that much either.

Finding the value of information using this de�nition requires that we be able

to �nd the optimal strategies in both cases, when we have access to the informa-

tion and when we do not. In other words, this approach somehow addresses the

question of having or not having a sensor, when we know how to incorporate the

sensor's output in our optimal strategy.

3.4 Cost versus Information in the Classical

LQG Problem

So far, we have discussed two di�erent approaches to evaluating information

in a control system, namely the information-theoretic approach and the cost-
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dependent approach. However, none of these two approaches, at their current

stages, have led us to a systematic method for information pattern design in de-

centralized systems. Another possible approach is to characterize the information

content of a measurement simply by its corresponding noise covariance, which is

again a measure of uncertainty.

In this section, we will �rst investigate the behavior of the optimum cost

in the centralized LQG problems as the measurement noise covariances change.

By looking at an example, we will see that in this case, these noise covariances

actually provide us with a good measure for the value of an observation, i.e.,

how much should be spent on installing a speci�c sensor. As we shall see, the

concept of detectability is crucial in identifying the critical measurements in a

centralized system. Next, we will see how this approach could be generalized for

decentralized systems to obtain a value for a piece of information, which is being

communicated among the stations.

We now state the centralized Linear Quadratic Gaussian (LQG) problem [11].

Consider the following linear stochastic system:

_x(t) = Ax(t) +Bu(t) + w(t) (3.33)

z(t) = Hx(t) + v(t); (3.34)

where x(t) 2 Rn is the state vector, u(t) 2 Rm is the control vector and z(t) 2 Rr

is the measurement vector. w(t) and v(t) are the process noise and the measure-

ment noise respectively, which are assumed to be independent white Gaussian

processes with the following properties:

E [w(t)] = 0; E [v(t)] = 0; (3.35)

E

2
4
2
4 w(t)

v(t)

3
5 h wT (�) vT (�)

i35 =

2
4 W 0

0 V

3
5 Æ(t� �); (3.36)
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where W = W T � 0 and V = V T > 0.

The objective is to minimize the following quadratic cost:

J = lim
T!1

1

T
E

�Z T

0

�
xT (t)Qx(t) + uT (t)Ru(t)

�
dt

�
: (3.37)

We know that under stabilizability and detectability conditions, the optimal

control is the following:

u(t) = �Kx̂(t); K = R�1BT�; (3.38)

where � is the unique symmetric positive de�nite solution of the control algebraic

Riccati equation:

��A� AT�+�BR�1BT��Q = 0; (3.39)

and the state estimate x̂ is obtained from the following Kalman �lter:

_̂x(t) = Ax̂(t) +Bu(t) + L (z(t)�Hx̂(t)) ; (3.40)

where L = PHTV �1 and P is the unique positive de�nite solution of the �lter

algebraic Riccati equation:

AP + PAT � PHTV �1HP +W = 0: (3.41)

Using the above control, the optimum cost will be obtained as follows:

J� = tr
�
�W +KTRKP

�
= tr

�
QP + LV LT�

�
: (3.42)

As we can see, the measurement noise covariances (elements of V ) change the

gain in the Kalman �lter by changing the solution to the �lter algebraic Riccati

equation. As the noise covariance for a measurement increases, the corresponding

gain for that measurement decreases, i.e., the Kalman �lter puts less emphasis

on that measurement.
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Let us assume that the measurement noises are uncorrelated, i.e., V is diago-

nal. If we now plot the optimum cost J� versus the noise variance corresponding

to the i-th measurement, we will get a monotonically increasing function. This

plot is very helpful in evaluating a measurement based on its e�ect on our op-

timum cost. We will see that for some measurements, the optimum cost will

go to in�nity when the variance increases to in�nity. These are the measure-

ments, which we consider as critical in the sense that they render the system

undetectable if they are eliminated. However, for other measurements, we can

decide how much we should be spending on their corresponding sensors based on

how much they a�ect our optimum cost.

Consider the following system as an example:

_x(t) =

2
6664
�1 1 0

1 �1 0

1 0 1

3
7775 x(t) +

2
6664
1

0

1

3
7775 u(t) + w(t) (3.43)

2
4 z1(t)

z2(t)

3
5 =

2
4 0 1 0

1 1 1

3
5 x(t) +

2
4 v1(t)

v2(t)

3
5 : (3.44)

The system matrix has three distinct eigenvalues at 1, -2 and 0. It is easy to see

that the system is completely controllable. It is also observable if both measure-

ments are incorporated. However, if the second measurement z2 is eliminated,

then the unstable mode 1 will become unobservable, which will make the system

undetectable.

Figure (3.1) shows how the optimum cost will change if we change the corre-

sponding noise covariances on the two measurements, when an LQG controller is

applied. We can see that the cost goes to in�nity when the noise on the second

measurement becomes large.

Unfortunately, it is very diÆcult to generalize this concept to decentralized
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Figure 3.1: Optimum cost behavior versus noise intensity

systems. As we saw in the �rst chapter, the main challenge in decentralized

systems is that we do not know how to �nd the optimal controls as soon as the

information pattern becomes non-classical and it is not in a partially nested form.

Even though we may be able to identify the piece of information that needs to be

obtained or transmitted in order to have at least a partially nested pattern, this

generally does not imply that denying that piece of information would yield an

in�nite cost. For the same reason, there is no known solution for the LQG problem

for decentralized systems with general non-classical information patterns. In [70],

a decentralized formulation for the LQG problem is presented. But even though

the state estimate is obtained by combining the estimates of the local estimators,

which use the local information, the optimal control is not decentralized in the

sense that each station is allowed to use all the sensor data.

However, we may use a suboptimal approach in a decentralized LQG problem

and try to evaluate a piece of information that is being communicated among the
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stations. For simplicity, consider a linear system with only two stations:

_x(t) = Ax(t) +B1u
1(t) +B2u

2(t) + w(t) (3.45)

z1(t) = H1x(t) + v1(t) (3.46)

z2(t) = H2x(t) + v2(t): (3.47)

The original objective is to �nd u1 = u1(z1) and u2 = u2(z2)in order to minimize

the following cost:

J = lim
T!1

1

T
E

�Z T

0

�
xT (t)Qx(t) + u1

T
(t)R1u

1(t) + u2
T
(t)R2u

2(t)
�
dt

�
: (3.48)

Now assume that the two stations start communicating through an additive

white Gaussian noise channel. So the new measurements are:

z1(t)
4
=

2
4 z11(t)

z12(t)

3
5 =

2
4 H1x(t) + v1(t)

H2x(t) + v2(t) + v21(t)

3
5 (3.49)

z2(t)
4
=

2
4 z21(t)

z22(t)

3
5 =

2
4 H1x(t) + v1(t) + v12(t)

H2x(t) + v2(t)

3
5 ; (3.50)

where v12(t) and v21(t) are independent transmission noises, which are also as-

sumed to be independent of other underlying uncertainties in the system.

The optimal decentralized solution would still be a solution in which u1 is

only a function of z1 and u2 is only a function of z2. Since we currently do not

know such an optimal solution, we use a suboptimal approach, where we consider

the system as two centralized systems. In other words, we solve two centralized

LQG problems, namely for the �rst station:

min

�
J = lim

T!1

1

T
E

�Z T

0

�
xT (t)Qx(t)+u11

T
(t)R1u

1
1(t)+u

1
2
T
(t)R2u

1
2(t)
�
dt

��
)

2
4 u11(t)

u12(t)

3
5 =

2
4 �R�11 BT

1 �x̂
1(t)

�R�12 BT
2 �x̂

1(t)

3
5 ; (3.51)
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where x̂1 is the state estimate in the �rst station:

_̂x1(t) = Ax̂1(t) +B1u
1
1(t) +B2u

1
2(t) + P1H

T
�
V 1
��1 �

z1(t)�Hx̂1(t)
�

(3.52)

AP1 + P1A
T � P1H

T
�
V 1
��1

HP1 +W = 0 (3.53)

H
4
=

2
4 H1

H2

3
5 ; V 1 4

=

2
4 V1 0

0 V2 + V21

3
5 ; (3.54)

and for the second station:

min

�
J = lim

T!1

1

T
E

�Z T

0

�
xT (t)Qx(t)+u21

T
(t)R1u

2
1(t)+u

2
2
T
(t)R2u

2
2(t)
�
dt

��
)

2
4 u21(t)

u22(t)

3
5 =

2
4 �R�11 BT

1 �x̂
2(t)

�R�12 BT
2 �x̂

2(t)

3
5 ; (3.55)

where x̂2 is the state estimate in the second station:

_̂x2(t) = Ax̂2(t) +B1u
2
1(t) +B2u

2
2(t) + P2H

T
�
V 2
��1 �

z2(t)�Hx̂2(t)
�

(3.56)

AP2 + P2A
T � P2H

T
�
V 2
��1

HP2 +W = 0 (3.57)

H
4
=

2
4 H1

H2

3
5 ; V 2 4

=

2
4 V1 + V12 0

0 V2

3
5 : (3.58)

Note that only the measurement noise characteristics and the �lter are di�er-

ent in the two problems. We now apply u11 and u
2
2 as the suboptimal controls to

the system and calculate the corresponding cost:

J�s = lim
T!1

1

T
E

�Z T

0

�
xT (t)Qx(t) + u11

T
(t)R1u

1
1(t) + u22

T
(t)R2u

2
2(t)
�
dt

�
; (3.59)

Then, we investigate the behavior of this cost versus the intensity of the trans-

mission noises v12(t) and v21(t) using the same approach as for the centralized

case.

50



There is no guarantee that the decentralized algorithms, obtained through

this sub-optimal approach, could preserve the desirable properties of a centralized

LQG controller. In fact, surprisingly enough, these sub-optimal algorithms may

even fail to stabilize the global system, even when the stations are communicating

all their measurements. We will fully investigate this problem in Chapter 4.

3.5 Incorporating Information in a Quadratic Cost

In the previous section, we saw how an observation could be evaluated simply by

looking at the cost behavior versus the observation noise covariance as a measure

of uncertainty. In this section, we will use this idea to incorporate a measure for

the information cost in the original quadratic cost. In this approach, which was

originally proposed in [71], we will �rst use the results from the LQG problem to

minimize the cost with respect to the control. Then we will have a deterministic

optimization problem, where another cost needs to be minimized in order to �nd

the minimum necessary information.

Consider the following linear stochastic system:

_x(t) = Ax(t) +Bu(t) + w(t) (3.60)

z(t) = Hx(t) + v(t); (3.61)

where x(t) 2 Rn is the state vector, u(t) 2 Rm is the control vector, z(t) 2 Rr

is the measurement vector and w(t) and v(t) are again the process noise and

the measurement noise respectively, which are assumed to be independent white

Gaussian processes with the following properties:

E [w(t)] = 0; E [v(t)] = 0 (3.62)
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E

2
4
2
4 w(t)

v(t)

3
5 h wT (�) vT (�)

i35 =

2
4 W 0

0 V

3
5 Æ(t� �); (3.63)

where W = W T � 0 and V = V T > 0.

The initial condition x(t0) is assumed to be Gaussian with the mean �x0 and

the covariance P0. It is also independent of w(t) and v(t) for all t 2 [t0; tf ].

Let the noise intensity matrix V have the following form:

V = �V��1; (3.64)

where � is a diagonal matrix:

� = diag (�11; : : : ; �rr) ; 0 � �ii � 1; i = 1; : : : ; r: (3.65)

Let �V also be a diagonal matrix, where the i-th diagonal element �vii denotes the

lowest possible noise intensity for the i-th measurement. Thus, V will also be a

diagonal matrix with its diagonal elements in the following form:

vii =
�vii
�ii
; 0 � �ii � 1; i = 1; : : : ; r: (3.66)

The basic idea is to include a weighted factor of �ii's in the cost and try to

minimize with respect to them. When �ii = 1, we have vii = �vii, which represents

the most precise observation that we can make. On the other hand, �ii = 0 implies

that the i-th observation should be disregarded. The intermediate values for �ii

could be interpreted as reducing the sample rate for the i-th measurement or

simply as using a less accurate sensor for that measurement.

One way is to construct the cost as the following:

J = E

�Z tf

t0

�
xT (t)Qx(t) + uT (t)Ru(t) + qT�(t)q

�
dt

�
; (3.67)
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where q 2 Rr is a constant weighting factor, which could be considered as a

design parameter. Using the results from the �nite horizon LQG problem [11],

we �rst minimize with respect to u:

u(t) = K(t)x̂(t) = �R�1BT�(t)x̂(t) (3.68)

_̂x(t) = Ax̂(t) +Bu(t) + P (t)HT�(t) �V �1 (z(t)�Hx̂(t)) ; (3.69)

where �(t) and P (t) are the solutions of the following Riccati di�erential equa-

tions:

_�(t) = ��(t)A� AT�(t) + �(t)BR�1BT�(t)�Q; �(tf) = 0 (3.70)

_P (t) = AP (t) + P (t)AT � P (t)HT�(t) �V �1HP (t) +W; P (t0) = P0: (3.71)

This control yields the following cost:

min
u
J = tr

�
�(t0)P0 +

Z tf

t0

�
�(t)W +K(t)TRK(t)P (t)

�
dt

�
+

Z tf

t0

qT�(t)qdt:

(3.72)

We now need to minimize the above cost with respect to the elements of �

subject to the Riccati di�erential equation for P , i.e., (3.71), which actually forms

a dynamic constraint.

This is a deterministic optimization problem, where we can use the Hamilto-

nian approach. However, since the dynamic constraint is in the matrix form, we

have to use a matrix version of Pontryagin's minimum principle [3]. Based on

(3.72), we de�ne the variational Hamiltonian as:

H = tr
�
�W +KTRKP + �qqT

	
+

nX
i=1

nX
j=1

_pij�ij

= tr
n
�W +KTRKP + �qqT + _P�T

o
= tr

�
�W+KTRKP+�qqT+

�
AP+PAT�PHT��V �1HP+W

�
�T
	
(3.73)
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The multiplier functions matrix �(t) satis�es the following:

_� = �@H
@P

; � (tf ) = 0: (3.74)

Hence1:

_� = �� �A� PHT �V �1�H
�� �AT �HT �V �1�HP

�
�T �KTRK; � (tf) = 0;

(3.75)

which also shows that � is indeed symmetric, i.e., � = �T .

The optimal � has to satisfy:

@H
@�

= 0: (3.76)

However, since H is linear in �, we can not determine � in terms of P and �

from the above necessary condition. In other words, we have a singular surface in

this optimization problem, and we do not know whether it is indeed minimizing

or not.

To investigate the nature of the solution further and for simplicity, we continue

with the scalar case:

_x(t) = ax(t) + bu(t) + w(t) (3.77)

z(t) = hx(t) + v(t): (3.78)

The Hamiltonian is:

H = �W+k2Rp+�q2+�
�
2ap� �p2d+W

�
; d

4
= h2 �V �1; k

4
= R�1b�; (3.79)

where � and p are again solutions to the control and �lter Riccati di�erential

equations respectively. Then the derivative of H with respect to � is:

H�
4
=
@H
@�

= q2 � �p2d: (3.80)

1we have used: @

@X
tr fAXg = AT and tr fABg = tr fBAg
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From Pontryagin's minimum principle the Hamiltonian should now be minimized,

and therefore we have:

�� =

8>>><
>>>:

0 if H� > 0

1 if H� < 0;

0 < �s < 1 if H� = 0

(3.81)

where � and p should be obtained from the following Two Point Boundary Value

Problem (TPBVP):

_� = �@H
@p

= �2�(a� �pd)� k2R; � (tf ) = 0 (3.82)

_p = 2ap� �p2d+W; p (t0) = p0; (3.83)

and �s is the value for � on the singular arc, which should be in [0; 1]. Let ps

denote the corresponding value for the error variance p on the singular arc. The

singular arc will be characterized by setting H� and its time derivatives equal to

zero, i.e.,:

H� = q2 � �p2sd = 0; (3.84)

and:
d

dt
(H�) = �2�ap2sd� 2�psdW + k2Rp2sd = 0: (3.85)

Substituting for � from (3.84), we will see that the error variance on the singular

arc is, in fact, the non-negative root of the following equation:

dk2Rp3s � 2q2aps � 2q2W = 0: (3.86)

We get the value of �s by setting the second time derivative of H� equal to zero:

d2

dt2
(H�) = 0 =)

�s =
4a2q2p2s � 4Waq2ps � 3W 2q2 � kdb (�2a�+ b2�2R�1 �Q) p4s

2aq2dp3s � 3Wq2dp2s
: (3.87)
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Figure 3.2: A sample behavior of �

Note that for the �nite horizon case, k and hence ps are changing with time, and

we will have a singular arc only when ps is non-negative and the corresponding

�s is a value in [0; 1].

At this stage, we do not know how � will generally behave. We have simulated

a simple scalar system with di�erent values for the parameters. Almost in all

cases, � did not seem to be on the singular arc at any time. Figure (3.2) shows

how � behaves for di�erent values of the weighting q in a simple example with

the following parameters:

a = �1; b = 1; h = 1

�V = 1; W = 1; p0 = 1

Q = 1; R = 1;

t0 = 0; tf = 1; (3.88)

Figure (3.3) shows the corresponding behavior of the error variance p and its

value on the singular arc ps. Note that even though they cross each other and an

acceptable value for �s can indeed be obtained, the singular arc does not seem
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Figure 3.3: Error variance (p: solid) and its corresponding value on the singular

arc (ps: dash)

to be minimizing and � switches at most once from 1 to 0. This implies that,

depending on how expensive the measurement is (determined by the value of q),

it should be either taken with its full precision or thrown away.

3.6 Summary

In this chapter, we elaborated on one of our basic objectives, which was to develop

a systematic method in order to evaluate a piece of information in a decentralized

system. First, we discussed an information-theoretic approach to an estimation

problem and then we presented a slightly modi�ed version of a known entropy

formulation for a general control problem. As we mentioned, even though some

interesting results have been obtained from this alternative approach, they have

not yet found applications in solving a general optimal control problem. However,

since information measures are explicit in this approach, we expected that it

would lead to development of an appropriate framework for information analysis
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in control systems, especially when the information is decentralized.

We then introduced a measure of information, which basically evaluates a

piece of information directly from its e�ect on the optimal cost. As we saw, in

order to �nd the value of information based on such a measure, we would need

to know the optimal strategies with and without the access to the information.

Unfortunately, this may not always be true. One should modify this measure and

somehow incorporate it directly in the cost and try to �nd the minimum required

information.

Next, we proposed the concept of evaluating a piece of information simply

by using the covariance, as a measure of uncertainty, and looking at the behav-

ior of the optimum cost as that covariance changes. We also proposed a way

to generalize this idea to decentralized systems. However, when some speci�c

measurements in a decentralized system are corrupted with noise, changing their

covariance will not alter the information pattern. In other words, dealing with

non-classical information patterns precedes information evaluation for designing

decentralized control algorithms. This makes it diÆcult to generalize the sim-

ple de�nitions for the value of information to general decentralized systems. For

this reason, we proposed a suboptimal approach, which will be discussed in more

detail in Chapter 4.

Finally, we discussed a method to incorporate a cost for the information in

the performance index. We showed that the optimization problem may be solved

in two stages. The �rst stage is a stochastic optimization problem, the solution

to which is obtained by using the classical LQG results. The second stage is

a deterministic optimization problem, where the Hamiltonian approach can be

used. We saw that, with our proposed scheme for incorporating information cost,

the second stage of optimization turns out to be a singular optimization problem.
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One should note, however, that this is only the �rst step towards information

minimization for control. So it may not be the best scheme to such an end and

alternative approaches should be explored.
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CHAPTER 4

Decentralized LQG Problem with Noisy

Communication

4.1 Introduction

So far we have mentioned some of the diÆculties that appear in designing de-

cetralized control algorithms. In fact, even in a deterministic case, it may be

very hard to design controllers that, at least, achieve global stability, as soon as

the system has unstable �xed modes [81]. Incorporating uncertainties along with

some optimization criteria can obviously make the problem even more diÆcult.

In this chapter, we consider a decentralized Linear Quadratic Gaussian (LQG)

problem where the stations are allowed to communicate some pieces of informa-

tion. All stations are assumed to have linear dynamics while all uncertainties are

modeled as Gaussian processes. Moreover, each local controller only has access

to its own local information, which includes its own measurements and possibly

information received through communication with other stations. Such a de-

centralized nature of information generally induces a non-classical information

pattern for this class of problems. Therefore, except for some special structures,

where the information pattern is actually a classical pattern [70], the optimal

strategies are usually unknown.

Some sub-optimal approaches, however, might be proposed. One such ap-
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proach is to treat the problem as a collection of separate centralized problems. A

motivation for this approach would become clearer if we assume that each station

is allowed to communicate all its measurements through low noise communication

channels with all the other stations. Even though a huge burden of computation

and communication resources may be needed in this scenario, we would expect

the controllers to be very close to the optimal stabilizing decentralized controllers.

In the next section, we formulate a simple two-station decentralized LQG

problem. In Section 4.3, we discuss the above mentioned sub-optimal approach,

where we propose a solution based on two separate centralized problems. In

Section 4.4, we investigate the stability properties of our controllers in various

scenarios. Namely, we �rst consider the case where the stations do not commu-

nicate at all. Then, we assume that the stations can communicate their state

estimates or equivalently their control values. In these scenarios, as we shall see,

there is little justi�cation for our approach. But later, we will discuss the case

where the stations are allowed to communicate all their measurements. As we

mentioned, our approach seems very reasonable for this scenario, at least when

the transmission noise intensities are assumed to be small. However, as our main

contribution in this chapter, we will show that even in this case, our controllers

may fail to stabilize the closed-loop system. This clearly contradicts what we had

expected. In another scenario, the stations will be allowed to communicate both

their measurements and their control values. We will see how sending the controls

will help us achieve at least the closed-loop stability with our controllers. Then,

we assume that the stations communicate only their estimation residuals. We

will show that when the transmission noise intensities are small, sending estima-

tion residuals would be enough to achieve closed-loop stability in our sub-optimal

approach. In Section 4.5, we will mention how similar results may be obtained

for discrete-time systems and �nally in Section 4.6, we will provide concluding
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remarks for this chapter.

4.2 Problem Statement

Consider the following decentralized linear system with two stations:

_x(t) = Ax(t) +B1u
1(t) +B2u

2(t) + w(t) (4.1)

z1(t) = H1x(t) + v1(t) (4.2)

z2(t) = H2x(t) + v2(t); (4.3)

where x(t) 2 Rn is the global state vector, u1(t) 2 Rm1 and z1(t) 2 Rr1 are the

control and the information vectors for the �rst station and u2(t) 2 Rm2 and

z2(t) 2 Rr2 are the control and the information vectors for the second station.

The process noise and the information noise are denoted by w(t), v1(t) and v2(t)

respectively, which are all assumed to be zero mean white Gaussian with intensity

matrices W , V 1 and V 2. They are also assumed to be mutually independent and

independent of the initial state. Note that we distinguish between measurement

and information, simply because of the fact that the information vector for one

station may also include the transmitted measurements of the other station.

The original objective is to �nd u1 = u1(z1) and u2 = u2(z2) in order to

minimize the following cost:

J = lim
T!1

1

T
E

�Z T

0

�
xT (t)Qx(t) + u1

T
(t)R1u

1(t) + u2
T
(t)R2u

2(t)
�
dt

�
: (4.4)

Since the stations, in general, have access to di�erent information, we have a non-

classical information pattern. Moreover, the information pattern is not partially

nested. That is, the information available to each station is being a�ected by the

control action of the other station, while there is no way for that station to obtain

any information about those control actions. Therefore, in general, we will have
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a non-convex functional optimization problem, the solutions of which are usually

very diÆcult to obtain.

One possible sub-optimal approach is to solve two separate centralized prob-

lems. We will discuss this approach in the following sections. But there are

two points that we need to mention now. We will consider di�erent scenarios

where the stations communicate di�erent pieces of information. As we shall see,

in many cases, we are, in fact, �xing the structure of our controllers only based

on the centralized results. Even though this comes naturally out of our lack

of knowledge about the structure of the decentralized controllers, it may well

be justi�ed for the case where the stations communicate all their measurements

through low noise channels. The other point is the way that we model the trans-

mitted information. We would simply model the received information signal as

the transmitted signal plus a Gaussian transmission noise. While this model is

realistic for analog communication systems, it may not be well justi�ed when dig-

ital communication is used. Namely, in digital communication systems, the signal

is quantized, coded and sent through the channel. The channel noise may still be

assumed to be additive and Gaussian, but sophisticated modulation and coding

schemes make it diÆcult to assume a simple additive Gaussian uncertainty for the

received information signal. However, if we try to incorporate the quantization

e�ects along with the bit error probability distribution for some good coding and

modulation schemes in order to model the communication uncertainties, we will

end up with models which could still be approximated, to some degree, by simple

additive Gaussian models. Moreover, since there are already major diÆculties in

dealing with decentralized non-classical information patterns, using more com-

plex models for communication uncertainties may not seem very reasonable at

this point. Furthermore, we believe the results obtained under such a simplifying

assumption would still be helpful in giving us insight towards the real structure
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of optimal decentralized controllers.

4.3 A Sub-optimal Approach

One possible sub-optimal approach in dealing with decentralized problems is

to decompose them into several centralized problems in a reasonable fashion.

Our objectives is now to investigate such an approach and elaborate more on

some of the important properties of the controllers, under various communication

scenarios among the stations.

Consider the system (4.1) again. We would like to design the control algo-

rithms based on two centralized LQG problems. Namely, let each station pretend

that it have access to both of the controls, while it only has access to its own in-

formation. In other words, the i-th station (i = 1; 2) wants to design ui1 = ui1(z
i)

and ui2 = ui2(z
i) in order to minimize the following cost:

J = lim
T!1

1

T
E

�Z T

0

�
xT (t)Qx(t) + ui1

T
(t)R1u

i
1(t) + ui2

T
(t)R2u

i
2(t)
�
dt

�
: (4.5)

From the well-known centralized LQG results [11], the optimal controls can be

obtained as:2
4 ui1(t)

ui2(t)

3
5 =

2
4 �R�11 BT

1 �x̂
i(t)

�R�12 BT
2 �x̂

i(t)

3
5 =

2
4 �K1x̂

i(t)

�K2x̂
i(t)

3
5 i = 1; 2 ; (4.6)

where � is obtained from the control Riccati equation:

��A� AT� +�
�
B1R

�1
1 BT

1 +B2R
�1
2 BT

2

�
��Q = 0 ; (4.7)

and x̂i is the local state estimate in the i-th station:

_̂ix(t) = Ax̂i(t) +B1u
i
1(t) +B2u

i
2(t) + Li

�
zi(t)�H ix̂i(t)

�
; i = 1; 2 ; (4.8)

The estimator gain is obtained as:

Li
4
= Pi(H

i)T
�
V i
��1

; i = 1; 2 ; (4.9)
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where Pi is the solution to the corresponding �lter Riccati equation:

APi + PiA
T � Pi(H

i)T
�
V i
��1

H iPi +W = 0; i = 1; 2 : (4.10)

Note that the only di�erence in the two centralized problems comes from the fact

that the stations have access to di�erent information, i.e., from the matrix H i

and the noise intensity matrix V i.

After solving the two centralized problems, u11 and u
2
2 will be applied to the

decentralized system. Obviously, there is no reason for these controllers to be op-

timal for the decentralized system. Also they are not guaranteed to preserve any

level of performance, including even the closed-loop stability. However, in some

cases, where the stations are allowed to communicate some pieces of information

through low noise channels, we would expect the local stations to obtain very sim-

ilar controllers, which in turn, are expected to be very close to the decentralized

optimal controllers.

4.4 Closed-Loop Stability

Achieving closed-loop stability is one of the most important performance prop-

erties that we desire for our controllers. We know that the centralized LQG

controllers will always stabilize the system under some detectability and stabiliz-

ability conditions. But in general, there is no reason to guarantee closed-loop

stability if we apply the same centralized control algorithms to the decentralized

system. In this section, we will investigate the closed-loop stability properties

of our controllers in various situations, where the stations communicate di�erent

pieces of information. Note that in some cases, based on the available informa-

tion for each station, we may modify the estimators, and hence deviate a little

bit from the original centralized LQG solutions. In such cases, we will actually
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be looking at general linear estimate linear feedback structures.

In order to analyze the dynamics of the closed-loop system, we de�ne the local

estimation errors and the di�erence between the local estimates respectively as:

e1(t)
4
= x(t)� x̂1(t) (4.11)

e2(t)
4
= x(t)� x̂2(t) (4.12)

e12(t)
4
= x̂1(t)� x̂2(t): (4.13)

We can now write:

_x = Ax�B1K1x̂
1 � B2K2x̂

2 + w

= Ax�B1K1 (e12 + x� e2)�B2K2 (x� e2) + w

= (A� B1K1 �B2K2) x + (B1K1 +B2K2) e2 � B1K1e12 + w (4.14)

_e2 = Ax�B1K1x̂
1 � B2K2x̂

2 + w � Ax̂2 +B1K1x̂
2 +B2K2x̂

2

�L2

�
H2e2 � v2

�
=

�
A� L2H

2
�
e2 � B1K1e12 + w � L2v

2 (4.15)

_e12 = (A� B1K1 �B2K2) e12 + L1H
1x� L2H

2x� L1H
1x̂1

+L2H
2x̂2 + L1v

1 � L2v
2

=
�
A�B1K1 �B2K2 � L1H

1
�
e12 +

�
L1H

1 � L2H
2
�
e2

+L1v
1 � L2v

2; (4.16)
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Hence, the closed-loop system dynamics can be written as follows:2
6664

_x

_e2

_e12

3
7775 = (4.17)

2
6664
A�B1K1�B2K2 B1K1+B2K2 �B1K1

0 A�L2H
2 �B1K1

0 L1H
1�L2H

2 A�B1K1�B2K2�L1H
1

3
7775
2
6664

x

e2

e12

3
7775+

2
6664
I 0 0

I 0 �L2

0 L1 �L2

3
7775
2
6664
w

v1

v2

3
7775:

4.4.1 No Transmission

Assume that each station only has access to its own measurements, i.e., there is no

communication between the stations. In this case, the closed-loop dynamics are

in the form (4.17), where H1 andH2 are the corresponding measurement matrices

for the stations, while v1 and v2 simply denote the measurement uncertainties.

Let us assume that the stations have the same measurement characteristics.

Then it is clear from (4.17) that in order to have a stable closed-loop system,

we need to have stable feedback dynamics along with stable local estimators and

compensators. We conjecture that these stability properties are suÆcient for the

closed-loop stability, even if the stations do not have identical measurements.

But to achieve such stability properties, we need the global state to be detectable

from each local station. This condition, however, is a very strong condition for

a decentralized system. In most decentralized systems, the global state can not

be detectable from all individual stations. Moreover, even if such a strong con-

dition is satis�ed, we still do not have any good justi�cation for our sub-optimal
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approach in this case. There is really no reason to expect the two centralized

controllers to have a good performance if they are applied to the decentralized

system.

4.4.2 Control (Estimate) Transmission

In this scenario, the stations communicate only their control values. In other

words, each station has access to its own local measurements and the transmitted

control of the other station. As we have already mentioned, the communication

uncertainties are simply modeled as additive white Gaussian noises. Also all the

communications are assumed to be instantaneous, i.e., no communication delay

is assumed. Therefore, the information available to the �rst station is:

z1 = H1x + v1; u2(t) + vt2(t); (4.18)

while the second station has access to the following information:

z2 = H2x + v2; u1(t) + vt1(t); (4.19)

where vt1 and vt2 are the corresponding transmission noises. Each station now in-

corporates the received control of the other station in its local estimator. Namely,

the local estimators are:

_̂1x(t) = Ax̂1(t) +B1u1(t) +B2u2(t) +B2vt2(t) + L1

�
z1(t)�H1x̂

1(t)
�

(4.20)

_̂2x(t) = Ax̂2(t) +B1u1(t) +B1vt1(t) +B2u2(t) + L2

�
z2(t)�H2x̂

2(t)
�
; (4.21)

where:

L1
4
= P1H

T
1 V

�1
1 (4.22)

L2
4
= P2H

T
2 V

�1
2 ; (4.23)
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and P1 and P2 are still the solutions to the corresponding Riccati equations.

Note that P1 and P2 are not the local estimation error covariances anymore. The

following controls are now applied to the decentralized system:

u1(t) = �R1B
T
1 �x̂

1(t) = �K1x̂
1(t) (4.24)

u2(t) = �R2B
T
2 �x̂

2(t) = �K2x̂
2(t); (4.25)

where � is the solution to the corresponding control Riccati equation. It is

straightforward to obtain the dynamics of the closed-loop system:2
6664

_x

_e1

_e2

3
7775=

2
6664
A�B1K1 �B2K2 B1K1 B2K2

0 A� L1H1 0

0 0 A� L2H2

3
7775
2
6664
x

e1

e2

3
7775

+

2
6664
I 0 0

I �L1 0

I 0 �L2

3
7775
2
6664
w

v1

v2

3
7775�B2

2
6664

0

vt2

0

3
7775�B1

2
6664

0

0

vt1

3
7775 : (4.26)

It is clear that the closed-loop system can be stabilized if the system is stabilizable

using both stations and it is detectable from each individual station. As we

mentioned earlier, this latter condition can not be satis�ed in many decentralized

systems. Also even if the control transmission is noiseless, there is still no reason

to believe that these centralized controllers are, in any sense, close to the optimal

decentralized controllers.

Note that communicating the local estimates is actually equivalent to com-

municating the control values. This is because we have a cooperative structure.

That is, each station can be informed of the control strategy, and speci�cally

the estimator and feedback gains, of the other station a priori. Therefore, the

stations can simply calculate either the control or the estimate upon receiving

the other.
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Finally, note that we have incorporated the transmitted controls in the local

estimators in a rather straightforward manner. Whether there are better ways

to incorporate this new information can be further investigated.

4.4.3 Measurement Transmission

Assume that the stations can communicate all their measurements. In this case,

the information available to the stations can be expressed as:

z1(t)
4
=

2
4 z11(t)

z12(t)

3
5 =

2
4 H1x(t) + v1(t)

H2x(t) + v2(t) + v21(t)

3
5 4
= Hx(t) + v1(t) (4.27)

z2(t)
4
=

2
4 z21(t)

z22(t)

3
5 =

2
4 H1x(t) + v1(t) + v12(t)

H2x(t) + v2(t)

3
5 4
= Hx(t) + v2(t); (4.28)

where v12(t) and v21(t) are independent transmission noises, which are also as-

sumed to be independent of other underlying uncertainties in the system. Note

that in this scenario, both stations have the same information matrix H. There-

fore, there cannot be any decentralized �xed modes in this case.

Similar to the previous cases, we solve two separate centralized LQG problems.

For the �rst station we get:2
4 u11(t)

u12(t)

3
5 =

2
4 �R�11 BT

1 �x̂
1(t)

�R�12 BT
2 �x̂

1(t)

3
5 =

2
4 �K1x̂

1(t)

�K2x̂
1(t)

3
5 ; (4.29)

where:

_̂1x(t) = Ax̂1(t) +B1u
1
1(t) +B2u

1
2(t) + L1

�
z1(t)�Hx̂1(t)

�
(4.30)

L1
4
= P1H

T
�
V 1
��1

; AP1 + P1A
T � P1H

T
�
V 1
��1

HP1 +W = 0 (4.31)

H
4
=

2
4 H1

H2

3
5 ; V 1 4

=

2
4 V1 0

0 V2 + V21

3
5 ; (4.32)
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and for the second station:2
4 u21(t)

u22(t)

3
5 =

2
4 �R�11 BT

1 �x̂
2(t)

�R�12 BT
2 �x̂

2(t)

3
5 =

2
4 �K1x̂

2(t)

�K2x̂
2(t)

3
5 ; (4.33)

where:

_̂2x(t) = Ax̂2(t) +B1u
2
1(t) +B2u

2
2(t) + L2

�
z2(t)�Hx̂2(t)

�
(4.34)

L2
4
= P2H

T
�
V 2
��1

; AP2 + P2A
T � P2H

T
�
V 2
��1

HP2 +W = 0 (4.35)

H
4
=

2
4 H1

H2

3
5 ; V 2 4

=

2
4 V1 + V12 0

0 V2

3
5 : (4.36)

In this scenario, we have a very good justi�cation for our sub-optimal approach.

Speci�cally, if the transmissions are noiseless, the two centralized problems will

be identical. Therefore, we expect our controllers to be the optimal decentralized

controllers, which would preserve all the desired properties, including the closed-

loop stability. Furthermore, if the transmissions are noisy but the transmission

noise intensities are small, we would still expect the controllers to be close to

the optimal stabilizing decentralized controllers. In other words, we would not

expect any drastic change in the behavior of the controlled decentralized system

upon introducing some small transmission noise.

We shall now look at the closed-loop stability properties. It is easy to obtain

the following closed-loop system dynamics, which would be valid for any linear
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estimate linear feedback structure:2
6664

_x

_e2

_e12

3
7775 = (4.37)

2
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A�B1K1�B2K2 B1K1+B2K2 �B1K1

0 A�L2H �B1K1
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3
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2
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+

2
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I 0 �L2

0 L1 �L2

3
7775
2
6664
w

v1

v2

3
7775:

We notice that the closed-loop system matrix has an interesting structure. The

�rst diagonal block matrix is simply the matrix associated with the feedback

dynamics, which could be stabilized if the system is stabilizable using both control

stations. The second diagonal block matrix could also be made stable under a

simple detectability condition. That is, if the global state is detectable using both

stations. Note that this is a much weaker condition than detectability from each

individual station, which would be required if the stations did not communicate

their measurements. The third diagonal block matrix, however, is the matrix

corresponding to the compensator dynamics, which may not be stable.

This is a signi�cant result. Let us assume that the transmission noise intensi-

ties are very small. Then the estimator gains would be almost the same and the

closed-loop system matrix would be very close to a block upper-triangular matrix.

We can see that if the compensator is unstable (which might be the case in many

systems, especially those with a non-minimum phase structure), the closed-loop

system will become unstable because of the unstable dynamics governing the dif-

ference between the estimates of the two local estimators. Actually, even when
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the transmissions are noiseless, there is still an unstable subsystem corresponding

to e12. This does not comply with our initial expectation. Note that when the

transmissions are noiseless, there is no forcing input for this unstable subsystem,

but any small nonzero e12 could propagate to in�nity! Such a nonzero di�erence

between the local estimates, which could be generated from any di�erence in the

initial conditions of the local estimators, round o� errors, etc., would again induce

a non-classical information pattern.

4.4.4 Measurement and Control Transmission

We saw that if the stations communicate only their measurements, our sub-

optimal controllers may not be able to stabilize the closed-loop system, even

though they will yield the centralized optimal stabilizing controllers, in the limit,

when the transmission noise intensities go to zero. In this section, we will see

how transmitting the controls along with the measurements will help us stabilize

the closed-loop system, using a similar sub-optimal approach.

As in the previous case, assume that the stations transmit their measurements

through noisy channels, i.e.:

z1(t)
4
=

2
4 z11(t)

z12(t)

3
5 =

2
4 H1x(t) + v1(t)

H2x(t) + v2(t) + v21(t)

3
5 (4.38)

z2(t)
4
=

2
4 z21(t)

z22(t)

3
5 =

2
4 H1x(t) + v1(t) + v12(t)

H2x(t) + v2(t)

3
5 : (4.39)

Also assume that the stations communicate their control values. For a little

more generality, assume that the communication uncertainties on the controls

are modeled by an additive Gaussian uncertainty along with a scale-factor error.

Namely, the �rst station also has access to (I + 42)u
2(t) + vt2(t), while the

second station receives (I + 41)u
1(t) + vt1(t). Transmission noises vt1(t) and
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vt2(t) are assumed to be independent of each other and also independent of all

other uncertainties in the system.

Each station again incorporates the transmitted control of the other station

in its local estimator. That is, the estimators are constructed in the following

manner:

_̂1x(t) = Ax̂1(t) +B1u
1(t) +B2 (I +42)u

2(t) +B2vt2(t) + L1

�
z1(t)�Hx̂1(t)

�
(4.40)

_̂2x(t) = Ax̂2(t) +B1 (I +41) u
1(t) +B1vt1(t) +B2u

2(t) + L2

�
z2(t)�Hx̂2(t)

�
;

(4.41)

where:

L1
4
= P1H

T
�
V 1
��1

(4.42)

L2
4
= P2H

T
�
V 2
��1

; (4.43)

and P1 and P2 are obtained from the same Riccati equations as before. Note

that P1 and P2 are no longer the estimation error covariances. Using the same

de�nitions for the error variables e1(t) and e2(t), the closed-loop dynamics may

be written as the following:2
6664
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7775 : (4.44)

As we can see, when the scale-factor errors 41 and 42 are small, the closed-

loop system matrix is nearly block upper-triangular. The �rst diagonal block

matrix can be made stable if the system is stabilizable using both stations. The
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second and the third diagonal block matrices can also be made stable if (A;H)

is detectable.

We conclude that when the stations communicate their controls as well as their

measurements, our sub-optimal approach will at least yield a stable closed-loop

system, even if there is small scale-factor errors on the control transmissions.

4.4.5 Estimation Residuals Transmission

So far, we have seen that in order to design a set of sub-optimal stabilizing

controllers by solving two centralized problems for a two-station decentralized

system, and under some reasonable stabilizability and detectability assumptions,

the stations need to communicate both their measurements and their control

values.

In this section, we investigate the case where the stations communicate their

estimation residuals instead of their measurements and controls. In other words,

the �rst station has access to the following information:

z1 = H1x + v1;
�
z2 �H2x̂

2
�
+ vt2; (4.45)

while the information available to the second station is:

z2 = H2x + v2;
�
z1 �H1x̂

1
�
+ vt1; (4.46)

where vt1 and vt2 denote the transmission noises. In the previous cases, the linear

structure of the estimators and the controllers naturally came out of the two

centralized optimal control problems. In this case, however, we will impose a

linear structure on our estimation and control such that each station will linearly

incorporate the noisy residual of the other station, i.e., for the �rst station, we
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have:

u11 = �K1x̂
1

u12 = �K2x̂
1

_̂x1(t) =Ax̂1(t)+B1u
1
1(t)+B2u

1
2(t)+L

1
1

�
z1(t)�H1x̂

1(t)
�
+L1

2

�
z2(t)�H2x̂

2(t)
�

+L1
2vt2(t); (4.47)

while for the second station, we get:

u21 = �K1x̂
2

u22 = �K2x̂
2

_̂x2(t) =Ax̂2(t)+B1u
2
1(t)+B2u

2
2(t)+L

2
1

�
z1(t)�H1x̂

1(t)
�
+L2

2

�
z2(t)�H2x̂

2(t)
�

+L2
1vt1(t): (4.48)

The gains may now be obtained based on some optimality criteria. Note that

when the transmission noises vt1 and vt2 are zero, the local estimators will have

exactly the same structure. Therefore, we expect the estimators to have the same

gains in the noiseless transmission case, regardless of how the gains are obtained.

Also note that each station has linearly incorporated the received estimation

residual of the other station. Even though, this simpli�es the problem, it is not

necessarily the best way of incorporating this new piece of information.

Similarly to the previous cases, it is straightforward to obtain the closed-loop
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dynamics as the following:2
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As we can see, when the transmission noise intensities are small, the closed-

loop system matrix will be close to a block upper-triangular matrix, which can

easily be stabilized when the system is stabilizable using both stations and�
A;
h
HT

1 HT
2

iT�
is detectable. This shows us that in some sense, the estima-

tion residuals are more valuable than the measurements, and communicating the

residuals is enough to stabilize the system by solving two centralized problems.

4.5 Discrete-Time Case

In this section, we will sketch how a similar problem might be formulated for

discrete-time systems and how similar results could easily be obtained.

Consider the following decentralized discrete-time system with two stations:

xk+1 = Axk +B1u
1
k +B2u

2
k + wk (4.50)

z1k = H1xk + v1k (4.51)

z2k = H2xk + v2k: (4.52)
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For the in�nite-horizon problem, the original objective is again to design the

controls u1 = u1(z1) and u2 = u2(z2) in order to minimize the following quadratic

cost:

J = lim
N!1

1

2N
E

"
NX
k=0

�
xTkQxk + u1k

T
R1u

1
k + u2k

T
R2u

2
k

�#
: (4.53)

This is again a decentralized stochastic problem with a non-classical information

pattern. Hence, we do not know the optimal strategies yet. However, simi-

lar sub-optimal approaches may be considered for the discrete-time case, which

would be well justi�ed if the stations are allowed to communicate some pieces of

information.

Let us assume that the stations communicate all their measurements and

possibly their controls. By solving two local centralized problems, we get the

following controllers:

u1k = �K1Ax̂
1
k; u2k = �K2Ax̂

2
k; (4.54)

where:

K
4
=
�
R +BTSB

��1
BTS; K

4
=

2
4 K1

K2

3
5 ; R 4

=

2
4 R1 0

0 R2

3
5 ; B 4

=
h
B1 B2

i
;

(4.55)

and S is the solution to the discrete-time control Riccati equation:

S = Q + ATSA� ATSB
�
R +BTSB

��1
BTSA: (4.56)

The local estimators are constructed as follows:

x̂1k+1 = Ax̂1k+B1u
1
k+B2u

21
k +L1

�
z1k+1�H

�
Ax̂1k +B1u

1
k +B2u

21
k

��
(4.57)

x̂2k+1 = Ax̂2k+B1u
12
k +B2u

2
k+L2

�
z2k+1�H

�
Ax̂2k +B1u

12
k +B2u

2
k

��
; (4.58)

where HT 4
=
h
HT

1 HT
2

i
and the measurement vector of each station has been

augmented by the transmitted measurement of the other station. The value that
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is being incorporated for the second control in the local estimator of the �rst

station has been denoted by u21, while u12 similarly denotes the value that is

being used for the �rst control in the local estimator of the second station. These

values would actually be the transmitted controls if the stations do communicate

their controls. Otherwise, they would be obtained directly from the solutions of

the two centralized problems.

The estimator gains are obtained as:

L1
4
= P1H

T
�
HP1H

T + V 1
��1

(4.59)

L2
4
= P2H

T
�
HP2H

T + V 2
��1

; (4.60)

where P1 and P2 are the solutions to the corresponding discrete-time �lter Riccati

equations:

P1 = W + AP1A
T � AP1H

T
�
HP1H

T + V 1
��1

HP1A
T (4.61)

P2 = W + AP2A
T � AP2H

T
�
HP2H

T + V 2
��1

HP2A
T : (4.62)

In order to analyze the stability of the closed-loop system, we again de�ne

the error variables:

e1k = xk � x̂1k (4.63)

e2k = xk � x̂2k: (4.64)

Then, we have:

xk+1 = (I � B1K1 � B2K2)Axk +B1K1Ae
1
k +B2K2Ae

2
k + wk (4.65)

e1k+1 = (I � L1H)Ae1k + (I � L1H)B2

�
u2k � u21k

�
+ (I � L1H)wk

�L1v
1
k+1 (4.66)

e2k+1 = (I � L2H)Ae2k + (I � L2H)B2

�
u1k � u12k

�
+ (I � L2H)wk

�L2v
2
k+1 (4.67)
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By looking at the above equations, we can see that similar results, as in the

continuous-time case, could be obtained for the discrete-time case. Speci�cally,

if the stations do not communicate their control values, these sub-optimal con-

trollers may not be able to stabilize the system, even if the transmissions are

noiseless. But when each station transmits its current value of the control to the

other stations, the closed-loop system will be stabilized if the system is stabiliz-

able and detectable from all the stations.

4.6 Summary

A two station decentralized LQG problem was formulated, where the local con-

trollers had to be designed based on some local information in order to minimize

a single common cost. This problem generally has a non-classical information

pattern and the optimal control algorithms are often unknown. One of the �rst

possible sub-optimal approaches is to decompose the problem into separate cen-

tralized problems. In this chapter, we investigated such an approach for di�erent

communication scenarios between the stations; namely, when the stations com-

municate their control values, their measurements or both, or their estimation

residuals.

We showed that even though our approach is quite reasonable for the case

where the stations communicate all their measurements, the designed controllers

may fail to stabilize the closed-loop system as soon as the compensator is unsta-

ble. Then, we showed how this diÆculty can be removed if the stations either

communicate both their measurements and their controls or communicate their

estimation residuals.

All these results show some of the fundamental di�erences between the cen-
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tralized and the decentralized structures. In fact, a basic issue is that when there

is some strong coupling among the stations, the controllers need much more in-

formation and every station should, at least, be able to gather some information

about the control actions of other stations, whereas when the couplings among the

stations are weak, much less coordination is required. In this chapter, we showed

how communication among the stations can a�ect the overall performance and

even the closed-loop stability in a decentralized system.

In the next part of the thesis, we focus on a speci�c two-stage decentral-

ized stochastic problem. Namely, we investigate the classic counter-example of

Witsenhausen along with its di�erent reformulations. This problem, while being

simple, gives us a very insightful perspective of the diÆculties involved in design-

ing stochastic optimal control algorithms, under the decentralization constraints.
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Part III

A Decentralized Stochastic
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CHAPTER 5

A Two-Stage Decentralized Stochastic System

5.1 Introduction

So far we have emphasized how diÆcult it can be to �nd the optimal strategies

for di�erent stations in a decentralized system, as soon as it has a general non-

classical information pattern. One main diÆculty is that the information available

to one station may be insuÆcient to determine the previous actions by other

stations, which have a�ected that information. This will destroy the convexity of

the cost function with respect to the strategies, even though it may look convex

in the controls.

Non-classical patterns, however, would easily arise in many applications where

the information is distributed. This is mainly because of the fact that most of

the time, communication among the stations is far from perfect in the sense that

the information received by a station is latent and/or noisy.

In 1968, Witsenhausen provided a simple example in [84], where there are only

two stations, the underlying uncertainties are Gaussian and the cost is quadratic.

The information pattern, however, is non-classical. He established the existence

of the optimal design and by proposing a nonlinear set of strategies, showed that

no aÆne strategy could be optimal. This seemingly simple example, which is also

called Witsenhausen's counterexample, turned out to be extremely hard. It is

still outstanding after more than 30 years. This example, in fact, originated much
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research on the links between decentralized stochastic control problems and team

theory and the e�ects of di�erent information patterns on decentralized systems.

Although it is a very simple example, it shows the main diÆculties in dealing

with non-classical information patterns.

In this chapter, we will �rst state the example in its original form. We will

also give some explanations for the structure of the problem. Then, in Sections

5.3, 5.4, and 5.5, we provide various reformulations for the problem. We will �rst

reformulate the problem with a classical information pattern, for which we know

the optimal solution. This will help us appreciate more the diÆculties that arise

due to the non-classical nature of the information pattern. Next, we will focus

again on the original formulation and discuss some of the results available for

this case. As we shall see, the non-classical nature of the information pattern is

actually induced by denying a piece of information. We will then give another

formulation for the problem, where that piece of information is being transmitted

through a noisy channel. In this new formulation, we still have a non-classical

information pattern, but we believe it can be of more practical interest. We will

obtain an alternative expression for the performance index, which shows that

it may not be convex in the strategies, as soon as some uncertainty is involved

in the information transmission. We will also discuss the limit cases, where

the transmission noise intensity goes to zero or grows to in�nity. We will see

how our reformulated example covers a very wide range, from a classical LQG

problem to the Witsenhausen counter-example. Finally in Section 5.6, we will

discuss another formulation in the form of a communications problem, where

an information-theoretic approach has been used in order to �nd the optimal

strategies. Concluding remarks are provided in the �nal section.

In the next chapter, we will present an asymptotic approach to obtain the
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asymptotically optimal strategies for the case where the transmission noise in-

tensity is small.

5.2 Witsenhausen's Counter-Example

Consider a two-stage stochastic problem with the following state equations:

x1 = x0 + u1 (5.1)

x2 = x1 � u2; (5.2)

where x0 is the random initial state, which is assumed to be Gaussian with zero

mean and variance �20 . The information pattern of the system is determined by

the following output equations:

z1 = x0 (5.3)

z2 = x1 + v2 = x0 + u1 + v2; (5.4)

where v2 is the measurement noise for the second station, which is again assumed

to be a zero mean Gaussian random variable with unit variance. It is independent

from x0. The objective is to design the control strategies:

u1 = 1 (z1) (5.5)

u2 = 2 (z2) ; (5.6)

in order to minimize the following cost function:

J = E
�
k2u21 + x22

�
; (5.7)

where k2 > 0 is a given constant. Note that this is a sequential control problem

in the sense that the second station acts after the �rst station. In other words,

the order in which the stations apply their control actions does not depend on
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the uncertainties in the system. We see that the �rst controller has perfect infor-

mation but its action is costly. In contrast, the second controller has inexpensive

control but noisy information. Since the second station does not know what the

�rst station knew, we do not have perfect recall and hence we have a non-classical

pattern. Also, since the information available to the second controller is a�ected

by the action of the �rst controller, we actually have a dynamic information pat-

tern. At the same time, there is no way for the second controller to �nd out what

the �rst controller did. Therefore, the pattern is not partially nested. Note that

the objective can be written as:

min
u1;u2

J = min
1;2

E
�
k221 (x0) + (x0 + 1 (x0)� 2 (x0 + 1 (x0) + v2))

2� ; (5.8)

which shows that 1 not only enters directly in a quadratic form, but also enters

indirectly through 2. Thus, in general, we lose convexity in the functional space

(1; 2), even though J is quadratic in u1 and u2.

We can see that denying the access to z1 for the second controller imposes

a non-classical nature on the information pattern. In the next section, we will

consider the problem with a classical pattern, where the second station also has

access to z1. Then, we will come back to the original problem and discuss some

of the available results.

5.3 Formulation with a Classical Pattern:

Noiseless Transmission

Consider the state equations (5.1) and (5.2) again. Assume that z1 is transmitted

to the second station through a noiseless channel, i.e., the two stations now have
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access to the following information:

z1 = x0 + v1 (5.9)

z2 =

2
4 z1

x0 + u1 + v2

3
5 ; (5.10)

where v1 � N (0; �21) and v2 � N (0; �22) are independent measurement noises for

the �rst and second stations respectively. The objective is again to minimize the

same cost as (5.7).

Let us compare this problem with the original example. In this problem, the

�rst station also has noisy information. Since the information available to the

second station is still a�ected by u1, we still have a dynamic pattern. However,

since the second controller knows exactly what the �rst controller knew, we have

perfect recall. Hence, we indeed have a classical information pattern and this is

the basic di�erence with the original example.

Remember that a priori coordination is allowed between the controllers, i.e.,

the stations know each other's strategies beforehand. Since u2 has access to z1,

the information available to the second controller could equivalently be written

as:

z02 =

2
4 z1

x0 + u1 + v2 � 1 (z1)

3
5 =

2
4 z1

x0 + v2

3
5 : (5.11)

This converts the information pattern to a static pattern, where the information

available to the second station is not a�ected by the action of the �rst station

anymore. Since the cost is quadratic and the uncertainties are assumed to be

Gaussian, linear strategies are optimal. To obtain these optimal strategies, we

�nd the person-by-person optimal strategies, which by convexity are known be

team optimal as well (see Section 2.2).
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We guess the following strategies:

u1 = k1z1 (5.12)

u2 = k2z
0
2 = k21z1 + k22 (x0 + v2) : (5.13)

Then:

u�1 = argmin
u1

E
�
k2u21 + (u1 + x0 � k21z1 � k22 (x0 + v2))

2
�� z1�

= argmin
u1

�
k2u21 + u21 + 2u1E [x0 � k21z1 � k22 (x0 + v2)j z1]

+ E
�
(x0 � k21z1 � k22 (x0 + v2))

2
�� z1�	

= � 1

k2 + 1
E [x0 � k21z1 � k22 (x0 + v2)j z1]

= � 1

k2 + 1

�
k21 +

�20
�20 + �21

(1 + k22)

�
z1; (5.14)

where we have used:

E [x0 jz1 ] =
�20

�20 + �21
z1 (5.15)

E [v2 jz1 ] = 0; (5.16)

Similarly:

u�2 = argmin
u2

E
�
k2k21z

2
1 + (k1z1 + x0 � u2)

2
�� z02�

= E [k1z1 + x0 jz02 ]
= (k1 + l1) z1 + l2 (x0 + v2) ; (5.17)

where:

l1
4
=

�20�
2
2

�20�
2
1 + �20�

2
2 + �21�

2
2

(5.18)

l2
4
=

�20�
2
1

�20�
2
1 + �20�

2
2 + �21�

2
2

; (5.19)

and we have used:

E [z1 jz02 ] = z1 (5.20)

E [x0 jz02 ] = l1z1 + l2 (x0 + v2) ; (5.21)
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The gains k1, k21 and k22 can now be obtained from (5.14) and (5.17). When

there is no noise in the �rst station, i.e., �21 = 0, we will have:

u�1 = 0 (5.22)

u�2 = z1; (5.23)

and the corresponding minimum cost will be zero.

Therefore, when the second station has access to z1, the information pattern

is classical and we can easily obtain the optimal strategies that are linear for the

LQG case.

5.4 Formulation with a Non-classical Pattern:

No Transmission

We now go back to the original problem, where there is no transmission, and

the second station does not have access to z1. Also the observation for the �rst

station is noiseless, i.e.,:

z1 = x0 (5.24)

z2 = x1 + v2 = x0 + u1 + v2: (5.25)

As we said, this is a non-classical information pattern and we indeed have a

non-convex optimization problem.

It can be shown [38] that the person-by-person optimal strategies are still

linear:

up1 = k1z1 (5.26)

up2 = k2z2; (5.27)
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where k1 and k2 must satisfy the following set of nonlinear equations:

k1 = � 1� k2

2k2 + (1� k2)
2 (5.28)

k2 =
(1 + k1) �

2
0

(1 + k1)
2 �20 + 1

: (5.29)

Remember that person-by-person optimal strategies are no longer team optimal.

We now follow an approach proposed by Witsenhausen [84].

De�ne:

f (z1)
4
= z1 + 1 (z1) = x0 + u1 (5.30)

g (z2)
4
= 2 (z2) = u2: (5.31)

Then the cost can be expressed as:

J = E
�
k2u21 + x22

�
= E

�
k2 (z1 � f (z1))

2 + (f (z1)� g (z2))
2�

4
= J (f; g) : (5.32)

If we �x the function f , the optimal strategy g will clearly be obtained as the

conditional expectation, that is:

g� (z2) = argmin
g
J (f; g) = E [f (z1) jz2 ] : (5.33)

Substituting back in the cost, we get:

J�(f)
4
= J (f; g�)

= k2E
�
(z1 � f (z1))

2�+ E
�
(f (z1)� g� (z2))

2�
= k2E

�
(z1 � f (z1))

2�+ E
�
(f (z1))

2�� E
�
(g� (z2))

2� ; (5.34)

where we have used the orthogonality property of the conditional expectation:

E [(f (z1)� g� (z2)) g
� (z2)] = 0: (5.35)
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It is important to note the minus sign in the third term in (5.34). As we shall

see, this minus sign can actually destroy the convexity of the cost with respect

to the strategies.

The objective is now to express the cost J�(f) in terms of only one strategy

f . In doing so, we use the following lemma, which shows how g�(z2) may be

expressed in terms of information z2 and its probability density function.

Lemma 5.1. The optimal strategy g�(z2) can be expressed as:

g� (z2) = z2 +
d

dz2
ln p (z2) ; (5.36)

where p (z2) is the probability density function for the information available to the

second station.

Proof: We have:

g� (z2) =

Z
f (z1) p (z1 jz2 ) dz1

=

R
f (z1) p (z1; z2) dz1R
p (z1; z2) dz1

; (5.37)

where p (z1; z2) is the joint probability density of z1 and z2. At the same time,

we can write:

z2p (z1; z2) +
@

@z2
p (z1; z2) = z2p (z1; z2) +

@

@z2
p (z2 jz1 ) p (z1)

= z2p (z1; z2) +
@

@z2
pv2 (z2 � f (z1)) p (z1)

= z2p (z1; z2) +
@

@z2

 
1p
2�

exp�(z2 � f (z1))
2

2

!
p (z1)

= f (z1) p (z1; z2) ; (5.38)

Integrating both sides, we get:Z
f (z1) p (z1; z2) dz1 = z2p (z2) +

d

dz2
p (z2) : (5.39)
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Substituting back in (5.37), we obtain g� (z2) as follows:

g� (z2) = z2 +
d

dz2
ln p (z2) : (5.40)

}

As we shall see, when we try to express the cost in terms of only a single strategy

f , a Fisher Information term comes up in the cost. Fisher information is originally

obtained in the Cramer-Rao bound, which is a measure for the minimum error

in estimating a parameter based on the value of a random variable. However, by

introducing a location parameter, an alternative form of the Fisher information

may be de�ned for a random variable with a given distribution. This alternative

form is, in fact, related to the entropy measure (see [16], p.494). We �rst present

the de�nition for the Fisher information matrix.

De�nition 1. The Fisher information matrix for a random vector Z is de�ned

as:

If (Z)
4
= E

�rT
z ln p (z) � rz ln p (z)

�
: (5.41)

where p(z) is the probability density function for the random variable Z and rz

denotes the gradient vector with respect to z:

rz
4
=

�
@

@z1
: : :

@

@zn

�
(5.42)

where zi is the i-th component in the random vector.

We are now ready to express the cost (5.34) only in terms of f .

Theorem 3. The performance index (5.34) can be written as:

J�(f) = k2E
�
(z1 � f (z1))

2�+ 1� If (Z2) ; (5.43)

where If (Z2) is the Fisher information for Z2.
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(The subscript f indicates the fact that it actually depends on the form of the

function f , which a�ects the information available to the second station z2 and

would thus a�ect its probability density function.)

Proof: Using (5.36), we �rst obtain E
�
(g� (z2))

2�. We have:

E
�
(g� (z2))

2�=E �z22�+2E
�
z2

d

dz2
ln p (z2)

�
+E

"�
d

dz2
ln p (z2)

�2
#
: (5.44)

At the same time:

E
�
z22
�
= E

�
(f (z1) + v2)

2� = E
�
(f (z1))

2�+ 1; (5.45)

and:

E

�
z2

d

dz2
ln p (z2)

�
=

Z +1

�1

z2
d

dz2
ln (p (z2)) p (z2) dz2

= z2p (z2)j+1�1 �
Z +1

�1

p (z2) dz2 = �1; (5.46)

where we have assumed z2 has a �nite mean value and therefore the �rst term

becomes zero. The last term in (5.44) is the Fisher information term:

If (Z2) = E

"�
d

dz2
ln p (z2)

�2
#
=

Z �
d

dz2
ln p (z2)

�2

p(z2)dz2: (5.47)

Using (5.45) and (5.46) and (5.47) in (5.44) and substituting it back in (5.34),

we can express the optimum cost only in terms of the function f as:

J�(f) = k2E
�
(z1 � f (z1))

2�+ 1� If (Z2) : (5.48)

}

This shows us that in order to minimize the cost, we need to get the lowest possible

cost associated with the �rst station, while we transfer as much information as

possible to the second station through the dynamics of the system. The non-

convexity of the cost with respect to f can be seen from the above expression as
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well. It can be shown that the Fisher information term is a convex functional [15].

Therefore, 1�If (Z2) is concave and the sum of a convex and a concave functional

may not be convex.

Witsenhausen showed that the optimal solution exists, even if x0 has a general

distribution with a �nite second moment [84]. He also showed that the optimal

linear strategies have the following form:

f �l (z1) = k1z1 (5.49)

g�l (z2) = k2z2; (5.50)

where:

k2 =
�20k

2
1

1 + �20k
2
1

; (5.51)

and t
4
= �0k1 is a real root of the equation:

(t� �0)
�
t2 + 1

�2
+

t

k2
= 0: (5.52)

He then showed that if one of the strategies is restricted to be aÆne, the other

optimal strategy would also be aÆne. But then he provided the nonlinear strate-

gies that could achieve a lower cost. Namely, he showed that when k2�20 = 1 and

k ! 0, the following strategies outperform the best aÆne strategies:

fw (z1) = �0sgn (z1) (5.53)

gw (z2) = �0 tanh (�0z2) : (5.54)

The basic idea behind these nonlinear strategies is the idea of signaling. Note

that by applying u1 = �0sgn (z1) � z1, the state x1 = x0 + u1 will have a two

point distribution at ��0 and for a large �0, the measurement z2 = x1+v2 would

be a good estimate for x1 and hence the second controller can almost cancel it.

In this way, the �rst station actually signals its own information to the second

controller through the dynamics of the system.
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An information theoretic approach was later adopted in [9], where the signal-

ing level in fw (z1) was optimized from �0 to �0
p
2=�, resulting in about 10%

improvement in the cost.

Function approximation techniques have also been explored to obtain the

optimal solution. In [4] and [5], a neural network, trained by stochastic approxi-

mation techniques, was used to approximate f (z1). It was demonstrated that the

optimal f � (z1) may not be strictly piecewise, as was suggested by Witsenhausen,

but slightly sloped.

Some researchers have tried to attack the problem numerically. A discretized

version of the problem was formulated in [40], which was later shown in [59] to be

NP-complete and computationally intractable. In [19] a di�erent approach was

considered by searching directly in the strategy space using the generalized step

functions to approximate f (z1). Two main assumptions were made about the

structure of the optimal strategy f �. Namely, f �(:) was assumed to be monotone

nondecreasing and symmetric about the origin. Both of these assumptions were

also addressed in the original Witsenhausen paper [84]. This approach resulted in

about 47% improvement in the performance, compared with [9]. This sample and

search technique was further investigated and generalized in [49] and [50], where

better approximations for the optimal strategies were obtained and an additional

13% improvment in the cost was achieved.

Finally, an alternative approach to obtain the optimal strategies is the asymp-

totic approach. This approach was used in [13] for the case where �0 is small.

Using a simple polynomial expansion for f (z1) up to the �fth order in terms of

z1 (remember that z1 = x0), it was shown that all the coeÆcients, except for

the one corresponding to the �rst order term, turn out to be zero in the optimal
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strategy, i.e., the optimal strategy f will indeed be linear:

f (z1) =
k2

1 + k2

�
1 +

2�20k
4

(1 + k2)3

�
z1: (5.55)

5.5 Formulation with a Non-classical Pattern:

Noisy Transmission

As we saw in the previous sections, when the second station has access to z1,

we have a classical information pattern where, due to the quadratic nature of

the cost and the Gaussian uncertainties, the optimal strategies are linear in the

information. However, when the access of the second station to z1 is denied, we

have a non-classical information pattern, where �nding the optimal strategies is

extremely hard.

Let us now assume that the �rst station transmits z1 to the second station

through a noisy channel. In other words, the second controller has access only to

the corrupted z1. This is probably of more practical interest in di�erent applica-

tions where the information is being communicated through noisy channels. Note

that as soon as the information gets corrupted, the information pattern becomes

non-classical and all the diÆculties appear again. By receiving a noisy z1, the

second controller still can not �nd out what the �rst controller did.

In this section, we study a reformulation of the Witsenhausen's example where

a noisy transmission of z1 is allowed. We obtain a similar alternative expression

for the performance index as in (5.43). We then discuss the two limit cases where

the transmission noise intensity goes to zero or grows to in�nity. Later in the

next chapter, we follow an asymptotic approach to analyze this problem under

the assumption of a low noise transmission.

The major di�erence of this new formulation with the original Witsenhausen
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counter-example is in the information pattern. Speci�cally, the information avail-

able to the stations is now expressed as:

z1 = x0 (5.56)

z2 =

2
4 x0 + vt

x0 + u1 + v2

3
5 4
=

2
4 z21

z22

3
5 ; (5.57)

where vt � N (0; �2) is the transmission noise, which is assumed to be independent

of other uncertainties in the system. Note that the communication uncertainty

is modeled again with an additive white Gaussian noise. A simple justi�cation

for this model was presented in Section 4.2.

Using the same de�nitions for f and g, as in (5.30) and (5.31), the cost can

still be written in the form of (5.34):

J�(f)
4
= J (f; g�) = k2E

�
(z1 � f (z1))

2�+ E
�
(f (z1))

2�� E
�
(g� (z2))

2� : (5.58)

Similar to Lemma 5.1, we can prove the following lemma:

Lemma 5.2. The optimal strategy g� (z2) can be expressed as:

g� (z2) = argmin
g
J (f; g) = E [f (z1) jz2 ] = z22 +

@

@z22
ln p (z2) ; (5.59)

where p (z2) = p (z21; z22) is the probability density function for the information

available to the second station.

Proof: Similar to (5.38), we have:

z22p (z1; z2) +
@

@z22
p (z1; z2) = z22p (z1; z2)+

@

@z22
p (z2 jz1 ) p (z1)

= z22p (z1; z2)+
@

@z22
p(vt;v2)

0
@
2
4 z21

z22

3
5�
2
4 z1

f (z1)

3
5
1
A p (z1)

= z22p (z1; z2)+
@

@z22

 
1

2��
exp

 
�(z21 � z1)

2

2�2
� (z22 � f (z1))

2

2

!!
p (z1)

= f (z1) p (z1; z2) ; (5.60)
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where we have used the speci�c structure of the information available to the

second station, and the fact that vt � N (0; �2) and v2 � N (0; 1) are independent.

Then, by substituting f (z1) p (z1; z2) from (5.60) in (5.37) and integrating with

respect to z1, the expression in (5.59) is obtained.

}

The following theorem shows how the performance index in this case can be

expressed only in terms of a single function f .

Theorem 4. The performance index (5.58) can be written as:

J�(f) = k2E
�
(z1 � f (z1))

2�+ 1� If (Z2)22; (5.61)

where If (Z2)22 is, in fact, the (2; 2) element of the Fisher information matrix for

the random vector Z2.

Proof: Using (5.59), we �rst obtain E
�
(g� (z2))

2�. We have:

E
�
z222
�
= E

�
(f (z1))

2�+ 1; (5.62)

and:

E

�
z22

@

@z22
ln p (z2)

�
=

Z Z +1

�1

z22
@

@z22
ln (p (z21; z22)) p (z21; z22) dz21dz22:

(5.63)

If we integrate by parts with respect to z22, we will get:Z +1

�1

z22
@

@z22
ln (p (z21; z22)) p (z21; z22) dz22

= z22p (z21; z22)j+1�1 �
Z +1

�1

p (z21; z22) dz22 = �p (z21) ; (5.64)

where z22 is assumed to have a �nite mean value and therefore the �rst term

becomes zero. Hence:

E

�
z22

@

@z22
ln p (z2)

�
= �1: (5.65)
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Therefore:

E
�
(g� (z2))

2� = �1 + E
�
(f (z1))

2�+ If (Z2)22 (5.66)

where:

If (Z2)22 = E

"�
@

@z22
ln p (z2)

�2
#

(5.67)

Substituting (5.66) back in (5.58), we get (5.61) as an alternative form for repre-

senting the performance index.

}

The alternative cost expression in (5.61), where a Fisher information term enters

with a negative sign, shows the possible non-convexity of the cost in terms of the

strategies. This is to emphasize the fact that any uncertainty in the communica-

tion between the stations will again result in a non-classical information pattern,

where the optimal strategies are very diÆcult to obtain.

5.5.1 Limit Cases

It is now worthwhile to consider the two limit cases where the transmission noise

intensity � becomes negligible or increases to in�nity. These limit cases show

that our reformulated example covers a very wide range, from a classical LQG

problem to the Witsenhausen counter-example.

First consider the case where no uncertainty is involved in communication

between the two stations, i.e., � = 0 and hence z21 = z1. As we saw in Section

5.4, in this case, we have perfect recall and the information pattern is classical.

In fact, we can write:

p (z2) = p (z21; z22) = p (z22 jz21 ) p (z21)

= p (z22 jz1 ) p (z1) = 1p
2�

exp

 
�(z22 � f (z1))

2

2

!
p (z1) : (5.68)
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Then, from (5.59), we will have:

g� (z2) = f (z1) = f (z21) ; (5.69)

which could directly be obtained from the original de�nition for g�, i.e.,:

g� (z2) = E [f (z1)j z2] = f (z1) ; (5.70)

because z1 is exactly known, when z2 is given. Substituting this back in (5.58),

and minimizing with respect to f , we get:

g� (z2) = f (z1) = z1; (5.71)

and hence:

1(z1) = 0 (5.72)

2(z2) = z1; (5.73)

which were previously obtained in (5.22) and (5.23).

On the other hand, when the transmission noise intensity increases to in�nity,

z21 and z22 become independent and we will have:

p (z2) = p (z21; z22) = p (z21) p (z22) : (5.74)

The Fisher information term can now be written as:

If (Z2)22 =

Z Z +1

�1

�
@

@z22
ln p (z21; z22)

�2

p (z21; z22) dz21dz22

=

Z +1

�1

�
@

@z22
ln p (z22)

�2

p (z22) dz22

= If (Z22) ; (5.75)

which is indeed the Fisher information content of z22 only. Hence:

J�(f) = k2E
�
(z1 � f (z1))

2�+ 1� If (Z22): (5.76)
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Figure 5.1: Signaling through a multidimensional noisy channel

This is the same result that was presented for the Witsenhausen counter-example

(compare with (5.43)). Intuitively, when we have in�nite transmission noise in-

tensity, we might as well deny the access to z1 for the second station, and this is

exactly the case in Witsenhausen's counter-example.

5.6 Formulation as a Communications Problem

We have been trying to emphasize the diÆculties that arise when the information

pattern is a general non-classical pattern. By studying Witsenhausen's example

and its various reformulations, we elaborated more on these diÆculties and ex-

plored some possible approaches in dealing with this class of problems.

In this section, we will discuss a similar problem, which still has a non-classical

information pattern and is formulated as a communications problem. This prob-

lem was introduced in [8], where an information-theoretic approach was used to

show that the optimal strategies are linear.
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The problem is to minimize the following cost:

J = E
�
k2u21 + su1x0 + (u2 � x0)

2� ; (5.77)

by designing the optimal strategies:

u1 = 1 (x0 + v) (5.78)

u2 = 2(z); (5.79)

where x0 � N (0; 1) and v � N (0; �2v) are independent. Each component of the

vector z is represented as:

zi = �i1 (x0 + v) + wi; �i 6= 0; (5.80)

where wi's are independent zero mean Gaussian variables with variances �
2
wi
> 0.

This problem can actually be interpreted as a communications problem, where

a noisy piece of information needs to be transmitted through a multidimensional

noisy channel (e.g., a fading channel) with minimum distortion. This is shown

in �gure (5.1). Note that the hard power constraint on the input is replaced by

the term E [k2u21] in the cost. A correlation cost sE [u1x0] is also included. The

problem is to design the optimal encoder and decoder strategies.

It is clear that the information pattern is non-classical. The decoder obviously

does not have access to the information available to the encoder, neither does it

have access to the exact encoder output. This is similar to the cases that we

discussed before. However, in this problem, the cost function does not contain

any product term between the strategies. This is di�erent from the way that the

cost was formulated in the previous cases (compare with (5.8)).

De�ne:

m
4
= E [x0 jx0 + v ] =

1

1 + �2v
(x0 + v) � N (0; �m): (5.81)

102



Then from the orthogonality principle for the conditional expectation, we can

write:

E
�
(u2 � x0)

2� = E
�
(u2 �m)2

�
+ E

�
(m� x0)

2� (5.82)

E [u1x0] = E [u1m] : (5.83)

We know that for any �xed strategy 1, the decoder strategy 2 is the conditional

mean:

u2 = 2(z) = E [x0j z] : (5.84)

Therefore, the objective of the problem could equivalently be expressed as:

minJ = min
01;2

E
h
k201

2
(m) + sm01(m) + (2(z)�m)2

i
+ C; (5.85)

where:

C
4
= E

�
(m� x0)

2� : (5.86)

The in�mum of the above cost under the constraint E
�
01

2
�
= P 2 can then be

obtained, i.e., :

JP
4
= inf

01;2;E[01
2]=P 2

J � k2P 2+inf sE [m01(m)]+inf E
�
(2(z)�m)2

�
+C: (5.87)

The second term can be obtained using Cauchy-Schwartz inequality:

inf sE [m01(m)] = �jsj�mP: (5.88)

But for the third term, information-theoretic concepts have been used. Namely,

m, z and u2 = 2(z) form a Markov chain and hence the Data Processing In-

equality [16] applies:

I (m; u2) � I (m; z) ; (5.89)
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where I(�; �) denotes the mutual information, as de�ned in (3.4). Using the max-

imum entropy principle and (3.4), the following inequalities can be proved [8]:

I (m; u2) � 1

2
log

�2m
E
�
(2(z)�m)2

� (5.90)

I (m; z) � 1

2
log
�
1 + P 2�

�
; (5.91)

where:

�
4
=
X
i

�2i
�2wi

: (5.92)

Thus, we �nally get:

JP � k2P 2 � jsj�mP +
�2m

1 + P 2�
+ 1� �2m

� k2P 2
� � jsj�mP� +

�2m
1 + P 2

� �
+ 1� �2m

4
= J�P ; (5.93)

where:

P� = argmin
P

�
k2P 2 � jsj�mP +

�2m
1 + P 2�

�
; (5.94)

which satis�es the following equation:

�
2k2P� � jsj�m

� �
1 + P 2

� �
�2

= 2P��
2
m�: (5.95)

At the same time:

J� � J�P : (5.96)

The interesting result that was obtained in [8] was that J�P is actually a tight

lower bound, which can be achieved by the following linear strategies:

u1 = �sgn(s)P��m (x0 + v) (5.97)

u2 = E [x0j z]
=

1

1 + �2v

X
i

��isgn(s)P��m
�2wi [1= (1 + �2v) + �iP 2

� �
2
m]
zi: (5.98)

Therefore, the above linear strategies are indeed optimal.
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5.7 Summary

In this chapter, we introduced a classical example, known as Witsenhausen's

counter-example, which shows some of the fundamental diÆculties in decentral-

ized stochastic control problems. We saw that there is a speci�c piece of infor-

mation that should be transmitted between the two stations in order to avoid a

non-classical information pattern. If this piece of information is denied for the

second station, the information pattern becomes non-classical and the problem

turns out to be a non-convex functional optimization problem. For the sake of

comparison, we explained the same example by allowing a noiseless transmission

and hence a classical pattern, where the optimal strategies are well-known.

Then we proposed another formulation for the example, where instead of

denying the information, we let it transmit through a Gaussian channel. We

asserted that this formulation is closer to real world applications. We followed

a similar procedure to convert this problem to an optimization over only one

strategy. We then considered the limit cases. We saw that when the transmission

noise goes to zero, we will have a classical pattern for which we know the optimal

strategies. On the other hand, as the noise power goes to in�nity, we will have

Witsenhausen's original example.

Finally, we discussed a similar problem, which was formulated as a communi-

cations problem. We explored how an information-theoretic approach was used

in order to �nd a tight lower bound for the optimal cost. We saw that the optimal

strategies for this speci�c example are indeed linear, even though the information

pattern is non-classical. It was asserted that if the cost does not contain product

terms between the decision variables or the controls, the optimal strategies will

be linear in the information.
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CHAPTER 6

Low Noise Transmission: An Asymptotic

Analysis

6.1 Introduction

So far we have shown, through a simple example, how any uncertainty in the

transmission of information between the stations in a distributed system can

make the optimal control design very complicated and even intractable. Then,

by considering the two limit cases, we showed how our example covers a very wide

range of scenarios. Namely, we saw that, for the noiseless transmission case, the

unique optimal strategies, which are linear in the information, are easily obtained,

whereas for the in�nite transmission noise intensity, the optimal strategies are still

unknown.

We mentioned, in Section 5.4, how an asymptotic approach was used in [13] for

the originalWitsenhausen problem in order to show that, when the uncertainty on

the information available to the �rst station is small (�0 is small), linear strategies

are still optimal over a large class of nonlinear strategies. Intuitively, when the

uncertainty on the information of the �rst station is small, the second station will

also be able to guess what that information was. Therefore, since the problem

is cooperative in the sense that the stations are aware of each other's strategies,

the second station can almost reconstruct the action of the �rst station and there
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is no need for any kind of signaling among the stations through the dynamics of

the system. Remember that in Witsenhausen's problem, the non-classical nature

of the information pattern is a result of the fact that the information available to

the �rst station is completely inaccessible for the second station. On the other

hand, we presented a reformulation of the problem where the �rst station was

allowed to send its information to the second station through a noisy channel,

and we showed that as soon as some communication uncertainty is introduced,

the information pattern becomes non-classical again and the diÆculties in the

control design reappear.

Now a very feasible case to investigate for our reformulated example is when

the uncertainty on the information transmission is small. In fact, when the

transmission noise intensity � is small, one would still expect a similar behavior,

as the noiseless transmission case, for the optimal strategies.

In this chapter, we consider this case, that is, we assume a small intensity for

vt. Asymptotic approaches have proved useful for obtaining a better understand-

ing of the structure of the solution for these classes of problems.

One approach would be to start with some expansions for the strategies and

try to �nd the optimal coeÆcients in the expansions. Remember that by ex-

pressing the cost in the form of (5.61), we, in fact, converted the problem into

an optimization over only one strategy f . The basic idea is now to �nd a proper

expansion for f (z1) such that an appropriate corresponding expansion for J�(f)

could be obtained, which is convex with respect to the expansion coeÆcients.

Therefore, the coeÆcients could then be determined through a simple parameter

optimization.

We know that g� (z2) = f � (z1) = z1 determines the optimal strategies for the

noiseless transmission case, i.e., when �! 0. We are still expecting a symmetric
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behavior for f � (z1) about the origin when the transmission noise is introduced.

We are also expecting f � to be a monotone nondecreasing function, which is

indeed proved to be true for the case where there is no transmission or equivalently

when �! +1 [84].

One diÆculty with this formulation, however, is that we can not say much

about the �nal form of the expansion for the cost J�(f) by investigating the

nature of the expansion for f . This is mainly because of the presence of the

complicated Fisher information term.

Therefore, a more reasonable approach is to directly �nd an appropriate ex-

pansion for the cost. This is the basis for our analysis in this chapter. This

asymptotic analysis not only gives us insight on how the optimal strategies change

as the transmission uncertainty is introduced, but also provides us with a better

sense of the complexities in the design procedure.

In Section 6.2, we obtain the �rst few terms in the expansion of the perfor-

mance index in terms of the small transmission noise intensity �. Then, in Section

6.3, we use the Hamiltonian approach in order to �nd a necessary condition for

the strategies that minimize the approximated cost. We show that the linear

strategies, with slightly di�erent coeÆcients than the corresponding coeÆcients

for the noiseless transmission case, do indeed satisfy the necessary condition. We

provide our concluding remarks in the �nal section.
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6.2 An Expansion for the Cost

Consider again the reformulated example in Section 5.5. The state equations

along with the information pattern are repeated here for reference:

x1 = x0 + u1 (6.1)

x2 = x1 � u2; (6.2)

z1 = x0 (6.3)

z2 =

2
4 x0 + vt

x0 + u1 + v2

3
5 4
=

2
4 z21

z22

3
5 ; (6.4)

Assume that the �rst station communicates with the second station through a low

noise channel. In other words, the intensity of the white Gaussian transmission

noise vt (i.e., �) is assumed to be small. In this section, we will �nd an expansion

for the cost in terms of �. For this purpose, we �rst �nd an expansion for the

probability density function of the information available to the second station,

i.e., p (z2). Then, we use (5.59) in order to �nd the corresponding expansion for

g� (z2). By substituting back in (5.58), we will obtain the expanded cost only in

terms of f .
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The probability density function for z2 can be written as follows:

p� (z2)
4
= p (z2) =

Z +1

�1

p (z22; z21; z1) dz1 (6.5)

=

Z +1

�1

p (z22jz21; z1) p (z21jz1) p (z1) dz1 (6.6)

=

Z +1

�1

p (z22jz1) p (z21jz1) p (z1) dz1 (6.7)

=

Z +1

�1

p (z22jz1) pvt (z21 � z1) p (z1) dz1 (6.8)

=

Z +1

�1

1p
2�

exp

 
�(z22 � f (z1))

2

2

!
1p
2��

exp

 
�(z21 � z1)

2

2�2

!

1p
2��0

exp

�
� z21
2�20

�
dz1; (6.9)

where for (6.7) we have used the facts that the �-�elds generated by fz21; z1g and
fz1; vtg are the same and z1, vt and v2 are mutually independent.

For small �, we now approximate ln p� (z2) by considering only the �rst three

terms of its expansion around � = 0. Namely:

ln p� (z2) ' ln p0 (z2) +
@

@�
ln p� (z2)

����
�=0

�+
@2

@�2
ln p� (z2)

����
�=0

�2: (6.10)

By making the following change of variables:

�y
4
= z1 � z21 ) �dy = dz1; (6.11)

we can write p� (z2) in the following form:

p� (z2) =

Z +1

�1

1p
2�

exp

 
�
�
z22 � �f�(y)

�2
2

!
1p
2��0

exp

 
�(z21 + �y)2

2�20

!

1p
2�

exp

�
�y

2

2

�
dy; (6.12)

where:

�f�(y)
4
= f (�y + z21) : (6.13)
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It is now clear that:

p0 (z2) =
1p
2�

exp

 
�(z22 � f (z21))

2

2

!
1p
2��0

exp

�
� z221
2�20

�
; (6.14)

and hence:

ln p0 (z2) = �(z22 � f (z21))
2

2
� z221
2�20

+ ln

�
1

2��0

�
: (6.15)

For the �rst order term, we have:

@

@�
ln p� (z2)

����
�=0

=
1

p0 (z2)

@

@�
p� (z2)

����
�=0

: (6.16)

At the same time:

@

@�
p� (z2)

����
�=0

=

Z +1

�1

@

@�

(
1p
2�
e�

(z22� �f�(y))2

2
1p
2��0

e
�
(z21+�y)

2

2�2
0

)�����
�=0

1p
2�
e�

y2

2 dy

=

Z +1

�1

1p
2�

(z22 � f (z21)) yf
0 (z21) e

�
(z22�f(z21))

2

2
1p
2��0

e
�

z221
2�20

1p
2�
e�

y2

2 dy

+

Z +1

�1

1p
2�
e�

(z22�f(z21))
2

2
1p
2��0

�
�z21
�20

�
ye
�

z221
2�2

0
1p
2�
e�

y2

2 dy

= 0: (6.17)

Therefore:
@

@�
ln p� (z2)

����
�=0

= 0: (6.18)

We could somehow expect this result. This is because we would expect the

behavior of p� (z2) only to depend on the variance of the Gaussian transmission

noise, i.e., �2. Using (6.18), we can now obtain the second order term as:

@2

@�2
ln p� (z2)

����
�=0

=
1

p0 (z2)

@2

@�2
p� (z2)

����
�=0

: (6.19)

After some tedious but straightforward manipulations, we will get:

@2

@�2
ln p� (z2)

����
�=0

= �f 02 (z21) + f 00 (z21) (z22 �f (z21)) + f 0
2
(z21) (z22 �f (z21))2

+2f 0 (z21) (z22 � f (z21))

�
�z21
�20

�
� 1

2�20
+
z221
�40
: (6.20)
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We can now obtain a second order approximation for ln p� (z2) by substituting

the corresponding terms from (6.15), (6.18) and (6.20) back into the expansion

(6.10). In the next step, we substitute the expansion for ln p� (z2) in (5.59) in

order to �nd the corresponding expansion for g� (z2). Remember that g� (z2) is

the optimal strategy for the second station assuming that the �rst station has a

�xed strategy 1 (z1) = f (z1)� z1. We have:

g� (z2) = z22 +
@

@z22
ln p (z2)

' z22 +
@

@z22
ln p0 (z2) + �2

@

@z22

�
@2

@�2
ln p� (z2)

����
�=0

�
= z22 � (z22 � f (z21))

+�2
�
f 00 (z21) + 2f 0

2
(z21) (z22 � f (z21)) + 2f 0 (z21)

�
�z21
�20

��
: (6.21)

Our goal is to get an expansion for the cost, which as we know from (5.58), can

be written as:

J�(f) = k2E
�
(z1 � f (z1))

2�+ E
�
(f (z1))

2�� E
�
(g� (z2))

2� : (6.22)

Using the expansion for g� (z2) from (6.21), we will have:

E
�
(g� (z2))

2� ' E
�
(f (z21))

2�
+2�2E

�
f (z21)

�
f 00 (z21)+ 2f 0

2
(z21) (z22 �f (z21))+2f 0 (z21)

�
�z21
�20

���
; (6.23)

where we have neglected the fourth order term in �. Substituting this expansion

back in (6.22), we will obtain the following expansion for the cost:

J�(f) = k2E
�
(z1 � f (z1))

2�+ E
�
(f (z1))

2�� E
�
(f (z21))

2�
�2�2E

�
f (z21)

�
f 00 (z21)+ 2f 0

2
(z21) (z22 �f (z21))+2f 0 (z21)

�
�z21
�20

���
: (6.24)

Note that when the transmission is noiseless, i.e., � = 0 and therefore z21 = z1,

we have:

J�(f) = k2E
�
(z1 � f (z1))

2� ; (6.25)
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and f (z1) = z1 is the obvious unique optimal solution. The above expansion,

however, is not exactly in our desired form yet. This is because the third term on

the right hand side, which is an average over z21, still depends on �. We shall now

rewrite the expansion in (6.24) by explicitly expressing the expectations based

on the corresponding probability densities:

J�(f) =

Z +1

�1

�
k2 (t� f(t))2 + f 2(t)

� 1p
2��0

e
� t2

2�2
0 dt

�
Z +1

�1

�
f 2(t) + 2�2

�
f(t)f 00(t)� 2f(t)f 0(t)

t

�20

��
1p

2� (�20 + �2)
e
� t2

2(�20+�2)dt

�
Z +1

�1

Z +1

�1

4�2f(t)f 0
2
(t) (� � f(t))

1p
2�
e�

(��f(t))2

2
1p
2��0

e
� t2

2�2
0 dtd�; (6.26)

where we have substituted p (z2) = p (z22; z21) ' p0 (z2) in the third term, since

the higher order terms would be multiplied by �2 and would then be neglected.

Now, the third term turns out to be zero, because:Z +1

�1

Z +1

�1

4�2f(t)f 0
2
(t) (� � f(t))

1p
2�
e�

(��f(t))2

2
1p
2��0

e
� t2

2�2
0 dt =Z +1

�1

4�2f(t)f 0
2
(t)

1p
2��0

e
� t2

2�2
0

�Z +1

�1

(� � f(t))
1p
2�
e�

(��f(t))2

2 d�

�
dt

= 0: (6.27)

At the same time, we can expand the probability density of z21 up to the second

order in �. It is actually straightforward to obtain:

1p
2� (�20 + �2)

e
� t2

2(�20+�2) ' 1p
2��0

e
� t2

2�20 + �2
1p
2��50

�
t2 � �20

�
e
� t2

2�20 (6.28)

Substituting (6.27) and the above expansion back in (6.26) and neglecting the

higher order terms in �, we can �nally get the following expansion for the cost:

J�(f) =

Z +1

�1

�
k2 (t� f(t))2

� 1p
2��0

e
� t2

2�20 dt

+�2
Z +1

�1

�
4f(t)f 0(t)

t

�20
� 2f(t)f 00(t) + f 2(t)

�20 � t2

�40

�
1p
2��0

e
� t2

2�20 dt

4
= J�0 + �2J�1 : (6.29)
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The objective is now to obtain the function f which minimizes the above

approximated cost. In the next section, we use a variational approach in order to

�nd a necessary condition for such a function and show how the linear strategies

still satisfy this necessary condition.

6.3 Minimizing the Approximated Cost

So far, we have obtained an expansion for the cost assuming that the transmission

noise intensity is small. We have indeed approximated the cost by including

only up to the second order term in �. We should now try to minimize this

approximated cost in order to �nd the asymptotically optimal f �. Obviously, this

strategy would be optimal only for a small transmission noise intensity. However,

it would still be very helpful for the analysis of the behavior of the optimal

strategies when we deviate a little bit from the classical information pattern by

introducing a small communication uncertainty.

We now use the Hamiltonian approach in order to �nd the necessary condi-

tions for the function f(t), which minimizes our approximated cost. For simplic-

ity, let us denote:

x1(t)
4
= f(t) (6.30)

x2(t)
4
= _x1(t) = f 0(t) (6.31)

u(t)
4
= _x2(t) = �x1(t) = f 00(t) (6.32)

p(t)
4
=

1p
2��0

e
� t2

2�20 (6.33)

The Hamiltonian is then de�ned as [11]:

H = k2 (t� x1(t))
2 p(t) + �2

�
4x1(t)x2(t)

t

�20
� 2x1(t)u(t) + x21(t)

�20 � t2

�40

�
p(t)

+�1(t)x2(t) + �2(t)u(t); (6.34)
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where �1 and �2 are the Lagrange multipliers that should satisfy:

_�1(t) = �Hx1

=

�
2k2 (t�x1(t))�4�2x2(t) t

�20
�2�2x1(t)�

2
0 � t2

�40
+2�2u(t)

�
p(t)(6.35)

_�2(t) = �Hx2

= �4�2x1(t) t
�20
p(t)� �1(t): (6.36)

But as we can see, the Hamiltonian is linear in u(t), and we actually have a

singular optimization problem. The singular surface will be characterized by

setting Hu and its derivatives with respect to t equal to zero, that is:

Hu = �2�2x1(t)p(t) + �2(t) = 0; (6.37)

and:
d

dt
Hu = �2�2 _x1(t)p(t)� 2�2x1(t) _p(t) + _�2(t) = 0: (6.38)

Substituting _p(t) = � t
�20
p(t) and also _�2 from (6.36), we will get:

d

dt
Hu = �2�2x2(t)p(t)� 2�2x1(t)

t

�20
p(t)� �1(t) = 0: (6.39)

Di�erentiating again and substituting _�1 from (6.35), we will have:

d2

dt2
Hu = �4�2u(t)p(t) + 4�2

t

�20
x2(t)p(t)� 2k2 (t� x1(t)) p(t) = 0: (6.40)

Therefore, the corresponding u(t) on the singular surface is:

u(t) = x2(t)
t

�20
� k2

2�2
(t� x1(t)) : (6.41)

Note that the �rst order generalized Legendre-Clebsch condition, which is a neces-

sary condition for u(t) to be minimizing on the singular surface, is also satis�ed,

namely:
@

@u

�
d2

dt2
Hu

�
� 0; (6.42)
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Therefore, the corresponding x1(t) and x2(t), which minimize our approximated

cost, should necessarily satisfy the following di�erential equations:

_x1(t) = x2(t) (6.43)

_x2(t) = x2(t)
t

�20
� k2

2�2
(t� x1(t)) (6.44)

Since � is assumed to be small, we may assume the following form in order to

obtain the solutions for the above di�erential equations:

x1(t) = a0(t) + �2a2(t) + �4a4(t) + : : : (6.45)

x2(t) = b0(t) + �2b2(t) + �4b4(t) + : : : (6.46)

Interestingly enough, by substituting the above x1 and x2 back into the di�erential

equations and comparing the coeÆcients of the terms with the same order in �,

we will get:

x1(t) =

"
1� 2�2

k2�20
+

�
2�2

k2�20

�2

�
�

2�2

k2�20

�3

+ : : :

#
t =

t�
1 + 2�2

k2�20

� : (6.47)

Back to our original notation, we indeed have:

f (z1) =
z1�

1 + 2�2

k2�20

� : (6.48)

As we can see, the solution is still linear with a coeÆcient which is slightly di�erent

than the corresponding coeÆcient for the noiseless transmission case. Remember

that f (z1) = z1 is the optimal solution when there is no transmission noise, and

note that for � = 0 in (6.48), we get exactly the same solution, as one would

expect. Given the above function f (z1), the corresponding g
� (z2) can easily be

obtained using (5.59). Note that it will also be linear because of the Gaussian

assumption for the underlying uncertainties.

We could somehow expect the optimal strategies to be linear from the be-

ginning. As we mentioned in Section 6.1, linear strategies were shown to be
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asymptotically optimal for the Witsenhausen example when the uncertainty on

the information available to the �rst station is small [13]. In this chapter, how-

ever, we have considered a reformulation of Witsenhausen's problem where the

�rst station sends its information to the second station through a low noise chan-

nel. These two scenario are somewhat similar. Namely, in both scenarios, the

second station can determine the information available to the �rst station fairly

accurately. Speci�cally, in the �rst scenario, the second station almost knows z1

because of its small uncertainty, while in the second scenario, it can determine

z1 from the information that is transmitted through a low noise channel.

We would also expect the optimal strategies to approach the corresponding

strategies for the noiseless transmission case as the value of z1 and, in some sense,

the signal to noise ratio increases. This does not seem to happen in the solution

(6.48). One may justify this by looking at the exponential function in the cost

(6.29). This function drives the integrand of the cost to zero exponentially fast

for large values of z1. Therefore, the structure of the cost really does not force

the optimal solution to approach f (z1) = z1 as z1 increases.

We shall now obtain the corresponding value of the cost. Substituting f(t)

from (6.48) back into the cost (6.29), we get:

J�(f) =

Z +1

�1

2
4k2

 
t� t

1 + 2�2

k2�20

!2
3
5 1p

2��0
e
� t2

2�2
0 dt

+�2
Z +1

�1

2
644 t�

1 + 2�2

k2�20

�2 t

�20
+

t2�
1 + 2�2

k2�20

�2 �20 � t2

�40

3
75 1p

2��0
e
� t2

2�20 dt

=
1�

1 + 2�2

k2�20

�2
�
2�2 +

4�4

k2�20

�

' 2�2 � 4�4

k2�20
; (6.49)
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where we have used:

Z +1

�1

t2
1p
2��0

e
� t2

2�2
0 dt = �20 (6.50)Z +1

�1

t4
1p
2��0

e
� t2

2�2
0 dt = 3�40: (6.51)

The optimal cost for the noiseless transmission case is zero. But if we use

f (z1) = z1 when the transmission is noisy, we get the following cost:

J�(f) = 2�2: (6.52)

In other words, if we �x the strategies to be the optimal strategies for the noiseless

transmission case, while we introduce a small transmission noise, the increase in

the cost will be proportional to the transmission noise intensity. However, if we

use (6.48), we can indeed improve the cost by the fourth order in �.

One should note from (6.48) and (6.49) that as the value of k2�20 increases,

the asymptotically optimal solution approaches f (z1) = z1 and the change in

the cost becomes smaller. In other words, increasing k2�20 has a similar e�ect

as decreasing the communication uncertainty. To explain this, we note from the

performance index that increasing k2 implies a more expensive control action for

the �rst station, which, in turn, results in smaller u1. This then implies that the

information available to the second station is less a�ected by the action of the

�rst station. At the same time, increasing �20 implies a higher level of uncertainty

on x0, which, incidentally, is the piece of information that is being transmitted

between the stations.

This again brings up the concept of information value and how it could be

di�erent for control and communication purposes. In fact, we know from infor-

mation theory that a higher level of uncertainty for a piece of information implies

a higher level of entropy and therefore a more valuable piece of information for
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transmission. On the other hand, however, a more uncertain piece of information

would probably be less valuable for control purposes and would have smaller ef-

fect on the control strategies. In other words, a control designer would probably

be willing to spend less on installing transmitters on the stations for communi-

cating more uncertain pieces of information. We elaborated more on this issue in

Chapter 3.

6.4 Summary

We considered a reformulation of the Witsenhausen counter-example, where the

�rst station is allowed to communicate its information with the second station.

We assumed the communication uncertainty is small, and followed an asymptotic

approach where we approximated the cost based on its expansion in terms of the

small transmission noise intensity. We showed how minimizing the approximated

cost can be seen as a singular optimization problem. We then used a variational

approach in order to �nd a necessary condition for the asymptotically optimal

strategies, and showed that some reasonable linear strategies do actually satisfy

the necessary condition. We also provided some intuitive explanations for the

behavior of those linear strategies and obtained the corresponding cost.

All the derivations and the results in this chapter clearly show some of the

diÆculties involved in dealing with decentralized systems, as soon as we deviate

a little bit from a classical, or at least a partially nested, information pattern. On

the other hand, even though we have modeled the communication uncertainty in

the simplest possible way, we have tried to emphasize the role of communication

uncertainties in generating such information patterns that are very diÆcult to

handle.

119



Finally, it should be mentioned that even though the optimization problem is

generally diÆcult for this class of systems, in some applications, one might be able

to exploit the speci�c structure of the system in order to obtain some reasonably

good sup-optimal strategies, which could yield an acceptable performance.
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Part IV

Power Control: A Stocahstic

Decentralized Problem in
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CHAPTER 7

Power Control for Cellular Wireless Systems

7.1 Introduction

The rapid growth of wireless communication systems along with the ever increas-

ing need for capacity with limited amount of resources have made the optimal

resource allocation one of the biggest challenges for system designers. Power

control for wireless systems is one such challenge, which has attracted a lot of

attention in recent years. The main idea is to control the transmit power level of

a user in a wireless system in order to maintain an acceptable level of quality of

service, while eliminating unnecessary interference to other users in the network.

Di�erent objectives and approaches have been perceived for power control and

di�erent algorithms have been naturally obtained.

The major objective in Direct Sequence Code Division Multiple Access sys-

tems is to mitigate the multiple access interference and therefore the near-far

e�ect, whereas in Time/Frequency Division Multiple Access systems the objec-

tive is mostly to control the co-channel interference. Power control will also

minimize the power consumption for the users and hence prolong their battery

life.

We focus on power control algorithms that are based on Signal to Interference

plus Noise Ratio (SIR). Note that the Bit Error Rate (BER) or the Frame Error

Rate (FER) is usually considered as a measure for the Quality of Service (QoS)
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in a network. On the other hand, we may write:

P (e) =

Z
P (ejr)P (r)dr (7.1)

where P (e) is the bit error probability and r is the received SIR per bit. Now

P (ejr), which is the bit error probability for a given SIR, would depend on the

speci�c signaling scheme, i.e., modulation, coding, etc. In general, however,

higher SIR would yield better bit error performance and it is therefore common

to abstract the system architecture and consider SIR as the measure for quality

of service in order to formulate the power control objective1.

We briey mentioned, in Section 2.6.2, how power control problem can be

considered as a decentralized stochastic problem. In fact, if we consider a cellular

network on a single channel, every co-channel user acts as a local station. Such

local stations are assumed to have access to noisy measurements of their own

SIRs, while they are all coupled through the interference that they are causing

for each other.

In the next section, we introduce decision-feedback and information-feedback

algorithms as the two main categories of power control algorithms. In Section

7.3 we review the two main approaches for information-feedback power control

design, i.e., SIR balancing and SIR threshold approaches. It has been recognized

that SIR balancing could serve as a performance bound for the SIR threshold

approach if all the users in the network were to have the same desired SIR. In

other words, the optimal balanced SIR is the best SIR that all users in the network

can simultaneously achieve if no receiver noise is considered. We will elaborate

more on the relations between these two approaches and, in fact, formally show

how the two approaches can be uni�ed.

1In practice, an outer control loop may be implemented where, based on the desired quality
of service and the measured BER or FER, the target SIR is adaptively adjusted for an inner
power control loop
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Then, in Section 7.4, we focus on the feasibility condition in the SIR threshold

approach. The feasibility condition is expressed in terms of an upper bound on

the spectral radius of a matrix formed from the channel gains and the desired

SIR thresholds. In fact, it is already shown how this spectral radius can be

seen as a congestion measure for a network [32] and how it can be used for call

admission control purposes [33][80]. We will provide a suÆcient condition for

feasibility in terms of upper bounds on the individual desired SIR thresholds,

which are calculated based on the channel gains. Even though this condition is

only suÆcient and maybe conservative, it is easier to verify. It also con�rms the

intuitive result that higher SIR thresholds can be supported for the networks with

more diagonally dominant channel gain matrices, which in turn, implies weaker

couplings among the users in the network.

Finally, it has been noticed that the widely proposed distributed power con-

trol algorithm is simply an integrator algorithm in the logarithmic scale. This has

initiated a new approach for power control design where a decentralized regulator

formulation has been proposed and concepts and design methodologies from con-

trol theory have been used for the analysis of current algorithms [68] and design

of new algorithms [21][31]. We present this formulation in Section 7.5.

This approach could be speci�cally helpful if models for fading, i.e., channel

gain variations, are to be incorporated in the design. However, stability and

convergence of these algorithms cannot be veri�ed through simple techniques

such as the one presented in [87]. Therefore more complicated stability analysis

should be performed to ensure global stability of the network under these power

control algorithms. In Section 7.6, we investigate how one could analyze the

global stability of a network on a single channel.

A robust control framework was presented in [31], where a suÆcient condition
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for global stability was established using a linearized interference function. We

use a similar framework to obtain another suÆcient condition for global stability

without any interference linearization. This condition will guarantee that, under

a designed power control algorithm, the deviations of the power levels in the

network from their corresponding optimal values will always remain bounded

even when the channel gains change, as long as the variations in the channel

gains do not force the network out of its feasibility region.

The concluding remarks are provided in the last section.

7.2 Decision-Feedback versus Information-Feedback Al-

gorithms

Closed-loop power control algorithms can be considered in two categories of

decision-feedback and information-feedback algorithms [31]. In decision-feedback

algorithms, the receiver compares the measured SIR with its target value and

sends only one or two bits back to the transmitter at the end of every power

update interval to command the transmitter to increase or decrease its power

level by a �xed or adaptively adjusted step.

On the other hand, in information-feedback algorithms, a real number (e.g.,

the SIR measurement or the power command) or actually its �nely quantized

value is sent back to the transmitter. Due to the limitations on the control band-

width and on the processing time, information-feedback algorithms can run at

much slower power update rates than the decision-feedback algorithms. In other

words, it is usually unrealistic to expect that information-feedback algorithms

mitigate fast fading e�ects. This is why decision-feedback and information-

feedback algorithms have been sometimes characterized in the literature as fast
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and slow power control algorithms respectively. It should be noted, however,

that decision-feedback algorithms do not necessarily result in better overall per-

formance than information-feedback algorithms, even though they can generally

run at higher power update rates. In fact, comparing decision-feedback and

information-feedback algorithms under various scenarios can be a topic of fur-

ther research.

We decided to focus on information-feedback algorithms, that is, we assume

that the local mean SIR measurements, possibly with some uncertainty, are avail-

able at the transmitter. An equivalent scheme would be to assume that the opti-

mal transmit power is calculated at the receiver and is sent back, as a real number,

to the transmitter. In the next section, we explore the two main approaches for

designing information-feedback power control algorithms.

7.3 SIR Balancing versus SIR Threshold Approaches

An early approach to power control design was SIR balancing where the objective

was to maximize the minimum SIR of all active users in the network. It was

shown in [89] that the optimal SIR and the associated optimal powers could be

obtained by solving an eigenvalue problem. Distributed algorithms were later

presented in [29] and [90] in order to obtain the optimal powers based on the

local information of the users. These algorithms were neglecting the receiver noise

and were trying to align the power vector of the network in the direction of an

eigenvector. Therefore, they required a normalization procedure in order to avoid

drifting all powers to zero or in�nity. Unfortunately, some global information was

needed to implement such a normalization procedure and this would prevent these

algorithms from being fully distributed.
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An alternative approach was SIR threshold approach, presented in [25], where

the objective was for the SIR of each user in the network to be above a desired

threshold. It was shown how the optimal powers could be obtained through

a simple distributed algorithm. The necessary and suÆcient condition for the

existence of the optimal powers was expressed as a feasibility condition. Various

generalizations of this algorithm were later discussed in the literature. A uniform

framework along with convergence analysis (under the condition of feasibility)

for many of these algorithms were presented in [87].

In this section, we explore these two main approaches and formally show how

one can unify them. In unifying the two approaches, we provide some simpler

alternative proofs for some of the results.

Consider a cellular system where M users are sharing a single channel. This

channel could be a frequency band (FDMA), a time slot (TDMA) or even a

spreading code (CDMA). Therefore, for every desired user-base station link, there

are M � 1 interfering links. The received SIR on the uplink channel for user i

can now be written as:

ri =
giipiP

j 6=i gijpj + �i
; (7.2)

where pi is the transmit power for user i, gii is the channel gain (or attenuation)

from user i to its intended base station (in the linear scale), gij is the channel

gain from user j to the intended base station of user i and �i is the receiver noise

intensity at the intended base station of user i.

Note that even though we decide to focus on the uplink channel, a similar

model and similar results can be obtained for the downlink channel. Also note

that the above model could similarly be applied when multiple access interference

is considered in CDMA systems. In that case, we could consider a single cell

scenario where all users are communicating with the same base station and the
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interference is caused because of the cross correlations among the spreading codes.

In that case, gij's would incorporate the code cross correlations as well as channel

variations due to path loss, shadowing and fast fading. For convenience, we

only consider co-channel interference in a multiple cell scenario where users are

distributed in di�erent co-channel cells and no adjacent channel interference is

assumed. This is shown in Figure 7.1.

gii

gji

gij

gjj

i

j

Bi

Bj

Figure 7.1: Co-channel interference in a multiple cell scenario

De�ne the normalized channel gain matrix Z as:

Z = [zij]; zij =
gij
gii
: (7.3)

Note that Z is a non-negative stochastic matrix and, in general, is not symmetric.

As we shall see, theory of non-negative matrices plays an essential role in both

SIR threshold and SIR balancing approaches. Therefore, we start by reviewing

some fundamental properties of non-negative matrices [10][41], which are needed

in our analysis.

De�nition 2. A non-negative (component-wise) matrix A is called irreducible if

9k > 0 such that Ak > 0.

Lemma 7.3. A non-negative matrix is irreducible if and only if it has only one
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eigenvalue with maximum modulus and no permutations of its rows and columns

can transform it to a block triangular matrix.

Theorem 5. Let A be a non-negative irreducible matrix and let �(A) be its spec-

tral radius. Then:

1. (Perron-Frobenius) �(A) > 0 is the unique real, positive and simple eigen-

value of A, for which the associated eigenvector can be made positive.

2. �(A) = min f� j9P � 0 : �P � AP g

Theorem 6. Let A be a non-negative irreducible matrix and let �(A) be its spec-

tral radius. The following statements are equivalent:

- �(A) < 1

- All principal minors of I � A are positive (Metzler).

- (I � A)�1 =
P1

k=0A
k exists and is positive (component-wise).

- For any given non-negative vector u, there exists a non-negative vector P

such that (I � A)P � u.

Theorem 7. Let A be any non-negative matrix and let �(A) be its spectral radius.

Then:

min
i

X
j

aij � �(A) � max
i

X
j

aij; (7.4)

min
j

X
i

aij � �(A) � max
j

X
i

aij: (7.5)

Theorem 8. Let A be any non-negative matrix and let �(A) be its spectral radius.

Let ~A be any principal sub-matrix of A (i.e., any l-by-l sub-matrix formed from l

rows and the corresponding (same index) l columns of A). Then �( ~A) � �(A).

Note that positive matrices form a subset of non-negative irreducible matrices.
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We are now ready to state the SIR balancing result. Note that the normalized

channel gain matrix Z is a non-negative matrix. Moreover, as long as we are

not considering isolated clusters of users, it can reasonably be assumed to be

irreducible.

Theorem 9. (SIR Balancing [89]) If the receiver noise is neglected for all

receivers (�i = 0; 8i), then the unique maximum achievable SIR by all users is

given by:

�SB =
1

�(Z)� 1
; (7.6)

where �(Z) is the spectral radius of Z, which is also an eigenvalue for Z. The

power vector P � achieving this maximum is the eigenvector of Z associated with

�(Z).

This SIR balancing theorem is proved in [89] simply by using the results in

Theorem 5. Note that: X
j

zij =
X
j

gij
gii

> 1: (7.7)

Therefore inequality (7.4) ensures that �(Z) > 1 and thus � > 0. Note that

the above theorem only speci�es the direction of the optimal power vector. In

other words, if P � is optimal, then �P � will also be optimal for any � � 0,

e.g., P � = 0 is also an optimal power vector! This rather strange result comes

from the fact that the receiver noise has been neglected in the model. As we

shall see, SIR balancing could provide us with a performance bound in the sense

that there exists no other power vector which could yield a higher SIR than �

for all users in the network. Note that the optimal power vector P � should be

obtained in a centralized form, that is, a central processor needs to collect all the

channel gains, form the global matrix Z and calculate the optimal power vector

for the network and send back the corresponding optimal power command to
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every user. As mentioned before, distributed algorithms were presented in the

literature [29][90], but they required a normalization procedure to avoid drifting

all powers to zero or in�nity. Moreover, some global information was needed

in this normalization, which would prevent these algorithms from being fully

distributed.

On the other hand, in the SIR threshold approach, the objective is for the

SIR of every user i to be above a desired threshold i, that is:

ri =
giipiP

j 6=i gijpj + �i
� i: (7.8)

It is easy to show that the above constraints can be written in the matrix form

as:

P � �(Z � I)P + U; (7.9)

where � = diag(1; : : : ; M) and U = [ui] = [i�i
gii

] and I is the identity matrix.

The necessary and suÆcient condition for the existence of a positive power vector

P , which satis�es the above constraint, is called feasibility. In other words, a

network of users is called feasible if every user can achieve its desired SIR. The

corresponding power vector is then called a feasible power vector. It is clear that

feasibility of a network depends on all channel gains and all desired SIRs. In

SIR threshold approach, the feasibility condition is quanti�ed and the minimum

feasible power vector is obtained.

Theorem 10. (SIR Threshold) Assuming U > 0, a network of users is feasible

if and only if �(F ) < 1, where:

F
4
= �(Z � I)) fii = 0; fij =

igij
gii

; i 6= j; (7.10)

and under the feasibility condition, the optimal power vector is obtained as:

P � = (I � F )�1U: (7.11)
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The proof of the above theorem directly results from Theorem 6. Note that

F is also a non-negative irreducible matrix. The power vector P � is optimal in

the sense that for any other feasible power vector P , we have P > P �.

The above solution for P � is again a centralized solution. It was shown in [25]

that a simple iterative algorithm, which could be implemented in a distributed

manner, would converge to P �. In fact, it is clear that under the condition of

feasibility, the optimal power vector P � is the unique �xed point of the following

iterative algorithm:

P (n) = FP (n� 1) + U; (7.12)

and component-wise, we can write:

pi(n) =
i
gii

 X
j 6=i

gijpj(n� 1) + �i

!
=
i
gii
Ii(n) = pi(n� 1)

i
ri(n)

; (7.13)

where Ii(n) is the total interference plus noise power at the receiver of the intended

base station for user i. Therefore, every user only needs a measurement of its

own channel gain and its total interference plus noise in order to update its power

level. In fact, at the beginning of the n-th power update period, the local mean

channel gain gii and the local mean total interference plus noise power Ii(n) are

measured at the receiver and the new power level pi(n) is calculated and sent back

to the user. Note that Ii(n) depends on the power levels of the users during the

(n� 1)-th power update period. Also no extra delays are assumed for processing

and propagation. Moreover, the convergence is proved assuming that all the

channel gains and the desired SIRs stay constant for the duration of convergence

of the algorithm. This may not always be a reasonable assumption, especially if

fast fading is considered while low power update rates are assumed.

Now, our objective is to show how SIR balancing and SIR threshold ap-

proaches are related. In other words, we will show how the SIR balancing result
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could be obtained as a special case in the SIR threshold approach.

Theorem 11. Assume that all receivers have non-zero noise intensities and all

users in the network have the same desired threshold, i.e., �i > 0, and i = ; i =

1; 2; : : : ;M . Then the network is feasible if and only if:

 <
1

�(Z)� 1
= �SB: (7.14)

Proof: From Theorem 10 we know that a necessary and suÆcient condition

for feasibility is �(F ) < 1. Therefore:

�(F ) = �(�(Z � I)) = �((Z � I)) = (�(Z)� 1) < 1)  <
1

�(Z)� 1
; (7.15)

where we have used the fact that Z is a non-negative irreducible matrix and thus

�(Z) is itself an eigenvalue of Z and also the fact that �(Z) > 1.

}

The above theorem clearly shows how SIR balancing provides us with a perfor-

mance bound. The following theorem considers the case where no receiver noise

is included.

Theorem 12. Assume that the receiver noise intensity is zero for all receivers,

i.e., U = 0 . Then  = �SB is the only SIR threshold, which can be simultaneously

achieved by all users in the network using a positive feasible power vector.

Proof: Assuming U = 0 in (7.12), we see that the optimal power vector

satis�es P = FP . Therefore, a positive feasible power vector exists only if F has

an eigenvalue �F = 1, for which the associated eigenvector is positive. We have:

F = �(Z � I)) �F = (�Z � 1): (7.16)
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But F is a non-negative irreducible matrix. Therefore, from Theorem (5), we

know that it has a unique real positive eigenvalue for which the corresponding

eigenvector is positive. Moreover, this eigenvalue is equal to its spectral radius

�(F ). Therefore, F will have an eigenvalue at �F = 1 with an associated positive

eigenvector if:

 =
1

�(Z)� 1
= �SB: (7.17)

}

This theorem shows how the balanced SIR can be obtained as a special case in

the SIR threshold approach.

7.4 Network Feasibility

As we mentioned, a network of users is called feasible if all users can achieve

their desired SIR thresholds. We saw that if no power constraints are imposed, a

necessary and suÆcient condition for feasibility is that �(F ) < 1, where matrix

F , de�ned in (7.10), depends on all channel gains and all desired SIR thresholds.

In fact, feasibility is equivalent to existence of a positive power vector which

satis�es the constraint (7.9). Obviously, imposing power constraints results in

more stringent conditions for feasibility.

It can be very helpful if one could quantify the level of feasibility for a network.

In fact, it turns out that �(F ) is an appropriate congestion measure for a network

[32]. A network will be more congested if �(F ) is closer to one. This information

can be ultimately used for call admission control purposes.

It is clear that the feasibility level of a network will change as matrix F changes

and this can happen under various scenarios. One is when new co-channel users

are admitted into the network or some active users are dropped from the network.
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The other is when the SIR thresholds for some active users are changed either

because of changes in their quality of service requirements or simply through outer

loop control commands. An outer loop control scheme may be implemented to

adaptively change the SIR threshold for a user according to the measured values

of Bit Error Rate or Frame Error Rate. Finally, the feasibility level changes as

the channel gains vary due to user motions and fading. The latter two cases

indicate the fact that the feasibility condition of a network can change with time

even if no user arrivals or departures occur.

In this section, we �rst provide an insightful suÆcient condition for feasibility.

We then discuss how user arrival or departures could a�ect the feasibility and

the power levels of the active users in a power-controlled network.

The feasibility condition �(F ) < 1 is a global condition. Therefore, it can

be veri�ed only in a centralized manner. Moreover, it gives us little insight

about the conditions on the individual channel gains and SIR thresholds in a

feasible network. The following theorem provides us with a suÆcient condition

for feasibility.

Theorem 13. Consider a network of users with a given channel gain matrix Z

and a given SIR threshold matrix �. A suÆcient condition for feasibility is:

i <
giiP
j 6=i gij

: (7.18)

Proof: Consider matrix F as de�ned in (7.10). Clearly F is a non-negative

matrix for which: X
j

fij =
i
gii

X
j 6=i

gij: (7.19)

From (7.4), it is now clear that a suÆcient condition for �(F ) < 1 is:

i
gii

X
j 6=i

gij < 1) i <
giiP
j 6=i gij

: (7.20)
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}

Note that the above condition is only suÆcient. However, it gives us more insight

on the relative values of the individual channel gains and desired SIRs in a feasible

network. More importantly, it veri�es the intuitive fact that higher desired SIR

thresholds can be accommodated in a network with a more diagonally dominant

channel gain matrix.

As mentioned before, any change in the SIR thresholds for active users can

change the feasibility level of a network. One way to quantify the feasibility level

is to de�ne a feasibility margin or a feasibility index [35]:

De�nition 3. Consider a network with a channel gain matrix Z and an SIR

threshold matrix �. The feasibility margin fm is de�ned as:

fm
4
= minfx � 0 j x� is infeasibleg : (7.21)

The notion of feasibility margin is similar to the notion of gain margin in

stability theory. It shows how much the active users can simultaneously increase

their desired SIR thresholds before making the network infeasible. Using the

feasibility condition, one may alternatively write:

fm = min fx � 0 j�(x�(Z � I)) � 1g : (7.22)

It is then clear that:

fm =
1

�(�(Z � I))
=

1

�(F )
: (7.23)

In other words, higher �(F ) implies lower feasibility margin, which then implies

that the network is closer to becoming infeasible. One may also de�ne individual

feasibility margins as:

fmi
4
= min fx � 0 j �i = diag(1; : : : ; i�1; xi; i+1; : : : ; M) is infeasibleg :

(7.24)
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The feasibility margin for user i, fmi, shows how much user i can increase its

quality of service requirement before making the network infeasible, while other

users keep their desired SIRs constant.

While feasibility margin shows how the changes in the SIR thresholds might

a�ect the feasibility level of a network, it is also instructive to quantify the changes

in the feasibility and the power levels upon user arrivals and departures.

First, we should note that any new user arrival will decrease the feasibility

margin (i.e., increase �(F )), while any user departure will increase the feasibility

margin. This intuitive result can be formally proved using Theorem 8. Now our

objective is to quantify the e�ect of a user arrival or departure. Without any loss

of generality, we assume that user M is the user to arrive to or depart from the

network. Let Fw be the matrix F with user M in the network and Fw=o be the

matrix F without the user M . Then:

Fw =

2
4 Fw=o h1

Mh
T
2 0

3
5 ; (7.25)

where:

hT1
4
=

h
1

g1M
g11

2
g2M
g22

: : : M�1
gM�1;M

gM�1;M�1

i
; (7.26)

hT2
4
=

h
gM1

gMM

gM2

gMM
: : :

gM;M�1

gMM

i
: (7.27)

The maximum achievable SIR along with the required power level for a new user

were obtained in [80]. We obtain a more general result, which shows the changes

in the power levels of all users in a network when a new user is admitted to the

network or when an active user is dropped from the network.

Theorem 14. Consider a feasible network with M � 1 users. The maximum

achievable SIR for a new user is:

max =
1

hT2 (I � Fw=o)�1h1
: (7.28)
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Proof: For the network to be feasible after the new user arrival, we need to

have �(Fw) < 1. Equivalently, from Theorem 6, all principal minors of I � Fw

need to be positive. Since the network is assumed to be feasible before the new

user arrival, I � Fw=o already has positive principal minors and hence we only

need to have det(I � Fw) > 0. We have:

det(I � Fw) = det

2
4 I � Fw=o �h1
�MhT2 1

3
5

= det(I � Fw=o)
�
1� Mh

T
2 (I � Fw=o)

�1h1
�
> 0; (7.29)

where we have used the following result for determinants of block matrices:

det

2
4 A B

C D

3
5 = detA det(D � CA�1B) = detA det�A: (7.30)

Now since det(I � Fw=o) is positive by assumption, in order to have a feasible

network after the new user arrival, we need to have:

M <
1

hT2 (I � Fw=o)�1h1

4
= max: (7.31)

}

We shall now compare the optimal power levels of all users with and without

user M in the network. We assume that the network is feasible when user M is

present. Moreover, if a distributed iterative algorithm is to be implemented, we

assume that the channel gains stay constant for the duration of convergence of

the algorithm after user M is either admitted to the network or dropped from

the network. Using (7.11), we can write:

2
4 P �

w

p�M

3
5 =

2
4 I � Fw=o �h1
�MhT2 1

3
5
�1 2
4 U1:M�1

uM

3
5 ; (7.32)

138



where P �
w is the optimal power vector of allM � 1 users when user M is present,

p�M is the optimal power of user M , and:

UT
1:M�1

4
=
h
1

�1
g11

2
�2
g22

: : : M�1
�M�1

gM�1;M�1

i
; (7.33)

uM
4
= M

�M
gMM

: (7.34)

We use the following lemma to proceed:

Lemma 7.4. (Inverse of a block matrix)

2
4 A B

C D

3
5
�1

=

2
4 A�1 + A�1B��1

A CA�1 �A�1B��1
A

���1
A CA�1 ��1

A

3
5 ; (7.35)

where �A = D � CA�1B is called the Schur's complement of A in the block

matrix.

}

Using the above lemma, we have:

2
4 I � Fw=o �h1
�MhT2 1

3
5
�1

=

2
4 (I � Fw=o)

�1 +
M (I�Fw=o)

�1h1hT2 (I�Fw=o)
�1

1�MhT2 (I�Fw=o)
�1h1

(I�Fw=o)
�1h1

1�MhT2 (I�Fw=o)
�1h1

MhT2 (I�Fw=o)
�1

1�MhT2 (I�Fw=o)
�1h1

1
1�MhT2 (I�Fw=o)

�1h1

3
5 (7.36)

Now de�ne:

P �
w=o

4
= (I � Fw=o)

�1U1:M�1; (7.37)

IM;w=o
4
= gMMh

T
2 P

�
w=o + �M : (7.38)

Note that P �
w=o is the optimal power vector of all M � 1 users when user M is

not present in the network. Also IM;w=o is the total interference plus noise at
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the intended base station of user M before it is admitted or after it is dropped.

Using (7.32), (7.36), (7.37) and (7.38), and the de�nition for max in (7.28), it is

straightforward to show:

P �
w = P �

w=o + p�M(I � Fw=o)
�1h1; (7.39)

p�M =
IM;w=o

gMM

M
1� M

max

: (7.40)

Moreover, since:

rM =
gMMp

�
M

IM
= M ; (7.41)

we have:

IM =
IM;w=o

1� M
max

: (7.42)

where IM is the interference plus noise level at the intended base station of user

M when it is present in the network.

Interesting conclusions can be made from the above equations. Let user M

be a new user, which can be admitted to the network, that is, M < max.

The optimal power level for this new user will be directly proportional to the

interference plus noise level at its intended base station before getting into the

network. Also the optimal power level for the new user will increase as its desired

SIR gets closer to max. In fact, as M ! max, all power levels in the network

go to in�nity. Obviously, a new user will be able to achieve lower SIR levels if

any power constraints are imposed.

Equation (7.39) quanti�es the changes in the power levels of all users in the

network when a new user is admitted or when an active user is dropped. It

is clear that when a user is admitted (dropped), the increase (decrease) in the

optimal power levels of all active users is directly proportional to the optimal

power level of the new (dropped) user. Moreover, the change in the power level

of any active user linearly depends on h1, which includes all desired SIRs, all the
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channel gains from all active users to their intended base stations and all the

channel gains from the new (dropped) user to the intended base stations of all

other active users. Finally, equation (7.42) shows how the changes in the power

levels of active users translate to the change in the interference plus noise level

at the intended base station of the new (dropped) user.

7.5 Power Control as a Decentralized Regulation Problem

So far, we have discussed SIR balancing and SIR threshold as the two main ap-

proaches in power control design. While trying to unify the two approaches, we

reviewed how a simple distributed iterative algorithm (7.13) may be implemented

for power control. This algorithm is actually a simple integrator algorithm in the

logarithmic scale. This fact has recently initiated a new approach for power con-

trol design using concepts from control theory. This approach could be speci�cally

helpful if models for the channel gain variations are to be incorporated in the de-

sign. In this section, we discuss how power control can be posed as a decentralized

regulator problem.

Using a bar on the variables to indicate the values in dB, we can write the

distributed algorithm in (7.13) in logarithmic scale as:

�pi(n) = �pi(n� 1) + (�i � �ri(n))
4
= �pi(n� 1) + �ei(n); (7.43)

where �pi(n) is the power level in dBm for user i for the duration of the n-th power

update period and �ri(n) is the SIR in dB for the same user at the beginning of

the n-th power update period:

�ri(n) = �pi(n� 1) + �gii(n)� �Ii(n): (7.44)

Moreover, �Ii(n) is the local mean interference plus noise power in dBm available
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�1)
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�ri(n)+
+
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�

�

Figure 7.2: A local power control loop, associated with a single user

at the beginning of the n-th power update period:

�Ii(n) = 10 log10

 X
j 6=i

gij10
�pj(n�1)

10 + �i

!
: (7.45)

It is now easy to see that this algorithm is, in fact, a simple unity gain integrator

algorithm in a closed local loop, as shown in Figure 7.2. The controller transfer

function in this case is:

Ki(q
�1) =

�Pi(q
�1)

�Ei(q�1)
=

1

1� q�1
; (7.46)

where q is the shift operator. Therefore, the network can be seen as a set of in-

terconnected local loops, each of which is associated with a single user. It should

be realized that the couplings among the local loops is through the interference

function (7.45), which, in general, is nonlinear. The decentralized regulator for-

mulation of the power control problem can now be presented as:

� Design a set of local controllers Ki(q
�1) such that the SIR for every user,

�ri, tracks a desired threshold �i with a certain performance while the global

network remains stable.

This approach has already initiated research on using control theory concepts

for power control design [21, 31, 68]. Note that the local loops in Figure 7.2 are
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quite general and can be modi�ed to accommodate di�erent modeling assump-

tions. For example, extra delay blocks may be inserted in the feedback path to

model processing and propagation delays. In fact, one step delay is typically as-

sumed when high power update rates are considered [79]. As another example, a

saturation block may be inserted in the forward path after the controller to model

the maximum and minimum power constraints. It should also be mentioned that

we have implicitly assumed a linear time invariant controller by writing Ki(q
�1).

However, in general, the controller itself can be a nonlinear block, as is the case

for Fixed-Step power control algorithms.

This approach can potentially open a new frontier for power control design,

where advanced techniques from control theory can be used to design power

control algorithms under various constraints, while taking into account available

models for channel gain variations. Moreover, joint design of inner and outer

loop control algorithms may be facilitated in this approach. One challenge, how-

ever, is to deal with many practical implementation constraints, such as control

bandwidth limitation, computational cost, etc. The other challenge is to design

decentralized controllers. In fact, as we have seen throughout the previous parts

of this thesis, there are many fundamental open issues in designing decentralized

controllers, which have recently attracted a lot of attention in the control com-

munity. It could be very diÆcult to achieve a prescribed level of performance

while ensuring global stability of the network.

7.6 Global Stability of the Network

Our objective in this section is to address the issue of global stability. Un-

fortunately, stability and convergence of power control algorithms, designed as

decentralized regulators, cannot be veri�ed through simple techniques such as
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the one presented in [87]. A robust control framework was proposed in [31] to

obtain a suÆcient condition for global stability using a linearized interference

function. We will use a similar approach, but with a di�erent notion for stability,

and we obtain a more general suÆcient condition for global stability without any

interference linearization. We also mention how network feasibility is addressed

in this approach.

We consider a system to be stable if bounded inputs generate bounded out-

puts. In robust control terminology [18][91], we use `1 norm to quantify the size

of the signals in the system and `1-induced norms to quantify the ampli�cation

of the signals, i.e., the size of operators or transfer functions.

De�nition 4. Let x be an n-dimensional real-valued discrete signal. The `1

norm is de�ned as the maximum amplitude that any component of the signal

attains over all time, that is:

jjxjj1 4
= sup

k
max

i
jxi(k)j: (7.47)

The space of all n-dimensional real-valued discrete signals with �nite `1 norm is

denoted by `n1. Let T be an operator from one normed linear space to another.

The `1-induced norm of T is de�ned as:

jjT jj`1�induced 4
= sup

jjxjj1�1

jjTxjj1: (7.48)

De�nition 5. (Closed-Loop Stability) Consider the feedback loop in Figure 7.3.

The closed-loop system is `1-stable if jjGcl(G1; G2)jj`1�induced <1, where

Gcl(G1; G2) is the closed-loop operator:2
4 y1

y2

3
5 = Gcl(G1; G2)

2
4 u1

u2

3
5 : (7.49)
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Figure 7.3: Closed-Loop Stability

We will obtain a suÆcient global stability condition using a fundamental sta-

bility result called the Small Gain Theorem:

Theorem 15. (Small Gain Theorem) Consider the feedback loop in Figure 7.3.

Let G1 : `n1 ! `m1 and G2 : `m1 ! `n1 be two stable operators, and assume

that the closed loop system is well-posed (i.e., for any u1; u2 2 `1, there ex-

ists a unique solution for y1; y2 2 `1). Then the closed-loop system is stable if

jjG1jj`1�inducedjjG2jj`1�induced < 1.

Note that the above theorem only states a suÆcient condition, which may be

conservative in some cases.

As we mentioned, a network of co-channel users can be seen as a nonlinearly

coupled set of local loops. In fact the global network can be depicted as in

Figure 7.4, where G(q�1) is a block diagonal closed-loop transfer function matrix

from interference �I(n) to power �P (n� 1) and �I(:) is a nonlinear operator, which

produces interference plus noise in dBm from the power levels. Note that Gi(q
�1)

is also equal to the closed-loop transfer function from �i to �ri.

We have:

�P (n� 1) = G(q�1)(�I(n)� �g(n) + �(n)); (7.50)
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Figure 7.4: The Power-Controlled Global Network

where:

�g
4
= [�g11 : : : �gMM ]

T ; (7.51)

�
4
= [�1 : : : �M ]T ; (7.52)

�I(n)
4
=

�
�I1( �P (n� 1)) : : : �IM( �P (n� 1))

�T
: (7.53)

Now assume that the network always stays feasible. Note that we are not assum-

ing channel gains to be constant. But we only assume that the time variations

of the channel gains do not push the network out of its feasibility region. There-

fore, at any instant of time, there exists an instantaneous bounded optimal power

vector �P �, which is related to the corresponding optimal interference as:

�P �(n� 1) = �I�(n)� �g(n) + �(n): (7.54)

Since we are not considering user arrival or departures, �P � will be constant as

long as the desired SIR thresholds and the channel gains remain constant. We

now consider the deviations of the power and interference levels in the network,
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Figure 7.5: The Power-Controlled Global Network in a Variational Form

at every instant of time, relative to their optimal values, that is:

� �P
4
= �P � �P �; (7.55)

��I
4
= �I � �I�: (7.56)

Using (7.50) and (7.54), we can now write:

�P (n� 1)�G(q�1) �P �(n� 1) = G(q�1)��I(n): (7.57)

Hence:

� �P (n� 1) = �P (n� 1)� �P �(n� 1)

= �P (n� 1)�G(q�1) �P �(n� 1) +
�
G(q�1)� Id

�
�P �(n� 1)

= G(q�1)��I(n) +
�
G(q�1)� Id

�
�P �(n� 1); (7.58)

where Id is the identity matrix. The network can then be shown as in Figure 7.5,

where �PI is the nonlinear operator transforming � �P to ��I. We can show that

�PI is a contractive operator in the sense that jj�PI jj`1�induced < 1. To do so,

we need to use the Mean Value Theorem [48]. We prove our result after reviewing

this theorem.
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Theorem 16. (Mean Value Theorem) Assume that f : <n ! < is a con-

tinuously di�erentiable function at every point of an open set containing the line

segment L joining two vectors x and y in <n. Then there exists a point z on L

such that:

f(y)� f(x) =
@f

@x

����
x=z

(y � x): (7.59)

Lemma 7.5.

jj�PIjj`1�induced < 1: (7.60)

Proof: Using (7.45), it is straightforward to show:

@ �Ii
@�pj

=

8<
:

0 i = j

gijpjP
k 6=i gikpk+�i

i 6= j
: (7.61)

Remember again that the variables without bar indicate values in linear scale.

From the Mean Value Theorem, we know that for every i and for every optimal

power vector �P �, there exists a power vector �~P lying on the line segment between

�P and �P � such that:

��Ii =
@ �Ii
@ �P

����
�P= �~P

� �P : (7.62)

Now using (7.61) and (7.62) and assuming jj� �P jj1 � 1, which then implies

j��pi(k)j � 1 for all i = 1; : : : ;M and k = 0; 1; : : :, we can write:

j��Ii(k)j =

�����
X
j 6=i

gij(k)~pj(k � 1)P
l 6=i gil(k)~pl(k � 1) + �i

��pj(k � 1)

����� (7.63)

�
X
j 6=i

gij(k)~pj(k � 1)P
l 6=i gil(k)~pl(k � 1) + �i

j��pj(k � 1)j (7.64)

�
X
j 6=i

gij(k)~pj(k � 1)P
l 6=i gil(k)~pl(k � 1) + �i

< 1: (7.65)

Therefore:

jj��Ijj1 = sup
k
max

i

����Ii(k)
�� < 1; (7.66)
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and hence:

jj�PIjj`1�induced = sup
jj��P jj1�1

jj��Ijj1 < 1 (7.67)

Note that jj�PI jj`1�induced = 1 if no receiver noise is considered for any of the

receivers.

}

It is clear that stability of every local loop is a necessary (but not suÆcient)

condition for global stability. We are now ready to state a suÆcient condition for

global stability of the network on a single channel.

Theorem 17. (Global Stability) Consider the network in Figure 7.5. Assume

that the network is always feasible, i.e., there always exists a bounded power vector

P � satisfying (7.54). Then the network is globally stable if for every user i:

����Gi(q
�1)
����
`1�induced

� 1: (7.68)

Proof: Since Gi(q
�1) always incorporates a delay, it is easy to see that the

operator �PIG is always strictly causal and hence the closed loop system in

Figure 7.5 is always well-posed. Moreover, the feasibility assumption guarantees

the existence of a bounded P �. Therefore, if jjGi(q
�1)jj`1�induced � 1 for every

user i, we will have jjG(q�1)jj`1�induced � 1, and using Lemma Lemma 7.5, the

global stability of the network will be established simply by invoking the Small

Gain Theorem.

}

It should be mentioned that for Single Input Single Output cases, the `1�induced
norm of the system is equal to the `1 norm of the impulse response sequence of
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the system. Therefore:

����Gi(q
�1)
����
`1�induced

= jjgijj1 =
1X
k=0

jgi(k)j ; (7.69)

where gi denotes the impulse response associated with the transfer function Gi.

The above theorem states that if the feasibility condition is not violated and if

(7.68) is satis�ed, then the deviations of the power levels of all the users in the

network from their corresponding optimal values will always remain bounded.

Even though the condition (7.68) is only suÆcient, and might be conservative

in some cases, it can still help us design new stable algorithms and analyze the

stability of current algorithms under channel gain variations. We will show this

by an example.

But �rst, we want to compare our result with the one presented in [31]. It was

shown in [31] that if the channel gains stay constant and if the network is feasible

(i.e., a constant optimal power vector exists), and if the interference function is

linearized around this optimal power vector, then a suÆcient condition for global

stability of the linearized network (in the `2 � induced norm sense) is:

����Gi(q
�1)
����
`2�induced

= sup
!

��Gi

�
ej!
��� � 1: (7.70)

This means that if the power vector of the network deviates a little bit from

the optimal power vector, and as long as all the channel gains stay constant, the

power levels will asymptotically move back to their optimal values. In contrast, in

deriving the suÆcient condition (7.68), no constant channel gain assumption was

made and no linearization was involved. However, the stability in `1 � induced

norm does not imply asymptotic convergence of the power level deviations to

zero. Instead, it implies that the deviations always remain bounded even if the

optimal power vector changes due to the variations in the channel gains. Also
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(7.68) is sometimes more conservative, since we always have:

����Gi(q
�1)
����
`2�induced

� ����Gi(q
�1)
����
`1�induced

: (7.71)

Example: Consider the integral algorithm in (7.43) with gain �, i.e.,:

�pi(k) = �pi(k � 1) + �(�i � �ri(k)); (7.72)

or in linear scale:

pi(k) = pi(k � 1)

�
i
ri(k)

��

: (7.73)

We have:

Gi(q
�1) =

q�1Ki(q
�1)

1 + q�1Ki(q�1)
=

�q�1

1� (1� �)q�1
: (7.74)

We should �rst note that for the local loops to be stable we need to have � 2 (0; 2).

It is now easy to show that for 0 � � � 1, we have:

����Gi(q
�1)
����
`2�induced

=
����Gi(q

�1)
����
`1�induced

= 1:0 ; (7.75)

and when � becomes larger than one, both induced norms start increasing. This

proves that not only do the power levels, obtained from the distributed iterative

algorithm in [25] (where � = 1 is assumed), converge to their optimal levels if

the channel gains stay constant, but also, under the channel gain variations, the

deviations of the power levels from their optimal values always remain bounded.

It is instructive to also consider the case where an additional delay is assumed

for processing and propagation, i.e., one step delay is inserted in the feedback path

in Figure 7.2. In this case:

Gi(q
�1) =

q�2Ki(q
�1)

1 + q�2Ki(q�1)
=

�q�2

1� q�1 + �q�2
: (7.76)

First note that � = 1 will result in closed-loop poles on the unit circle and

therefore instability of the local loops. The `1� induced and `2� induced norms
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Figure 7.6: `1 � induced and `2 � induced norms for Gi in the one step delayed

case

of Gi are shown in Figure 7.6. It can be seen that in order to guarantee the

bounded deviations of the power levels in the network (i.e., the global stability in

the `1 sense), we need to approximately have � < :27. Moreover, to ensure the

global stability of the linearized system in the `2 sense, we need to have � < 0:33.

These bounds on the gain are rather small and could therefore result in slow

responses to the changes in the SIR thresholds or the channel gains. However,

remember that the suÆcient conditions for global stability have been obtained

under worst case scenarios and therefore might yield conservative requirements

in some cases.

}
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7.7 Summary

We reviewed SIR balancing and SIR threshold as the two main approaches for

power control in cellular wireless systems. We then tried to unify the two ap-

proaches by formulating the SIR balancing approach as a special case in the SIR

threshold approach. We showed how the balanced SIR could be obtained as a

performance bound for a network where all the users want to achieve the same

SIR. Then we focused on the feasibility condition for a network. We obtained an

insightful suÆcient condition for feasibility, which formally showed the fact that

higher SIR levels can be supported in a network with a more diagonally dominant

channel gain matrix. We then discussed how the feasibility and the power levels

in a network change when new users are admitted to the network or active users

are dropped. We proved that the increase (decrease) in the optimal power level of

all active users in the network is linearly proportional to the optimal power level

of the new (dropped) user. Then we reviewed the decentralized regulator formu-

lation for power control problem. Using a robust control framework, we obtained

a suÆcient condition, which would guarantee that the deviations of the power

levels from their corresponding optimal values always remain bounded. We then

showed that if no extra delay is considered for processing and propagation, the

widely proposed integrator algorithm does indeed yield a globally stable network

as long as the variations of the channel gains do not force the network out of

its feasibility region. As future work, one could try to actually quantify some

bounds on the power level deviations.

Moreover, designing better power control algorithms, which can incorporate

additional information about the channel gain variations, can be a topic of further

research. In fact, in the next chapter, we propose a novel predictive power control

algorithm.
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CHAPTER 8

A Predictive Power Control Algorithm

8.1 Introduction

In most power control algorithms that have been proposed in the literature,

the channel gains are assumed to be constant for the duration of the conver-

gence of the algorithm, and therefore no fading e�ects are considered. It was

recently shown in [46] that the optimal powers obtained from the SIR balancing

approach, under constant gain assumptions, are very close to the the optimal

powers that minimize the Rayleigh fading induced outage probability for every

link. Due to the limitations on the control bandwidth and the computational

cost, information-feedback algorithms usually assume long power update periods

(in the order of few hundred milliseconds), and are designed to track only the

slow channel variations. On the other hand, fast power control algorithms have

been developed where only a single bit feedback is employed to command the

users to increase or decrease their power levels by a �xed or adaptively adjusted

step. The power update rate for these algorithms can be on the order of few

hundred hertz. Therefore, they may have some e�ect on the fast fading in the

channel.

Some researchers have tried to analyze and possibly modify the power control

algorithms to take into account the channel gain variations and the fading induced

measurement errors. In [2] it was shown how the desired SIR for the users may
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be scaled up to guard against the user mobility e�ects. In [75] a simulation

study was performed to investigate the user mobility e�ects on a slow integrator

power control algorithm. In [52] a modi�cation of the distributed SIR balancing

algorithmwas proposed, which was less sensitive to SIR measurement errors. Also

in [76] stochastic measurements were incorporated in the power control algorithm,

and it was shown that the power levels converge, in the mean square sense, to the

optimal power levels. More recently, it was shown in [51] how a simple Kalman

Filter may be designed to smooth out the interference measurements. Also in

[31] it was mentioned how a minimum-variance power control algorithm may be

designed when the channel gain variations are modeled by �ltered white noise

sequences.

Our objective in this chapter is to design a distributed predictive power con-

trol algorithm. We try to obtain accurate enough models for the slow variations

in the channel gains and the interference powers. We then design simple Kalman

�lters for every user to obtain the one-step predicted values for both the inter-

ference level and the user's channel gain from its intended base station. We try

to tune the �lters for a typical mobile radio environment and then conjecture,

and show through simulations, in the next chapter, that the �lters are indeed

robust under a broad range of parameters such as user velocities and shadowing

correlation distances. The predicted measurements from the Kalman �lters are

then incorporated in an integrator algorithm to update the power levels.

This chapter is organized as follows. In Section 8.2 we propose a �rst order

white noise driven Markov sequence on top of a constant bias to model the slow

variations in the channel gains and the interference levels. In Section 8.3 we

explain how simple Kalman �lters can be designed for optimal one-step prediction

of the channel gains and the interference levels. We also mention how the �lter
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parameters may be tuned for a typical mobile radio environment. In Section 8.4

we show that the suÆcient conditions for global stability are satis�ed when the

Kalman �lters are incorporated in the power control loops. Concluding remarks

are given in the �nal section.

8.2 Models for Channel Gain and Interference Variations

The variations in the channel gains can be characterized by the slowly changing

shadow fading and the fast multipath fading on top of the distance loss. The

�rst-order statistics of shadow fading, in the logarithmic scale, is usually rep-

resented with a Gaussian distribution, whose mean is monotonically decreasing

with the mobile to base station distance. Its standard deviation �s depends on

the environment and is reported to range from 4 to 12 dB with 8 dB as the typ-

ical value for urban macro-cellular environments (with cell radii of about 1 km

or more and base antenna heights of 30m or more) [43][72]. As for the spatial

(or temporal) correlation in shadow fading, we use the simple �rst-order Markov

model presented in [30].

The channel gain from every user i to its intended base station, in the loga-

rithmic scale, is therefore modeled as:

�gii(n) = �g0ii + Æ�gii(n) (8.1)

Æ�gii(n) = aÆ�gii(n� 1) + wg(n� 1); (8.2)

where �g0ii is a constant bias and wg is a zero mean white Gaussian noise sequence.

The constant bias accounts for the antenna gains and the distance loss in the

�lter. The parameter a is obtained as:

a = e�
vT
Xs ; (8.3)
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where v is the user velocity and T is the update period. Note that vT is the

distance that the user moves during one update period. Moreover Xs is called

the shadowing correlation distance. It is the distance at which the normalized

correlation decreases to e�1. To see this, note that the autocorrelation function

for Æ�g can be obtained as:

RÆ�g(m)
4
= E [Æ�g(m + n)Æ�g(n)] =

�2wg
1� a2

ajmj = �2sa
jmj; (8.4)

where �wg denotes the standard deviation of the noise sequence wg. Note that,

given the standard deviation for shadowing �s and the value for a, the standard

deviation for the driving white noise sequence can be obtained.

In order to design distributed algorithms, we need to decouple the local loops

in the network. For this purpose, the interference plus noise should be modeled

independently for every user. One approach is to treat interference plus noise

simply as a bounded disturbance for every user and design the power control

algorithm based on worst case considerations. However, we decide to model the

interference plus noise, similar to the channel gains, by white noise driven �rst-

order Markov variations on top of a constant bias. That is:

�Ii(n) = �I0i + Æ �Ii(n) (8.5)

Æ �Ii(n) = aÆ �Ii(n� 1) + wI(n� 1); (8.6)

where wI is a zero-mean white Gaussian noise sequence independent of wg, but

with the same variance. In fact, the same parameters are used in both models for

channel gains and interference levels. While this model may not exactly capture

the slow variations in the interference in a power-controlled system, it can still be

reasonable when such slow uctuations in the interference levels are dominated

by shadow fading. We use this model in a Kalman Filter to obtain the one-step

predicted measurements of the local mean interference values.
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The power update period should now be selected such that the fast multipath

uctuations are averaged out while the slower shadowing uctuations are being

tracked. It was shown in [27] that, under the at Rayleigh fading assumption,

when a �rst order low-pass �lter or simply a moving average �lter is used to

obtain the local mean values of the measurements, the averaging error in dB

will have a Gaussian distribution, whose mean can be made zero by appropriate

choice of the �lter DC gain and whose standard deviation depends on the shadow

fading standard deviation �s, the ratio of the shadowing correlation distance to

the carrier wavelength Xs=�, and the normalized measurement time fmT , where

fm = v=� is the maximum Doppler frequency.

It is now clear that the model parameters not only depend on the environ-

ment through the values of the shadowing standard deviation and the shadowing

correlation distance, but also depend on the user velocity. While one can think of

implementing individual adaptive Kalman �lters for each user, where the model

parameters are continuously updated based on the available information about

the user velocities, we choose to consider a �xed model to design and implement

the same �lters for all the users in the network. There are two main reasons

for this. One is that for a rather broad range of user velocities, the values for a

and �wg , and as shown in [27], the averaging error variance only slightly change

and we believe that the Kalman �lters will be robust to such changes. The other

reason is that while some techniques have been already proposed for user velocity

estimation in mobile environments (refer to [57] and the references therein), most

of them fail to provide accurate estimates in real time.
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8.3 Kalman Filter Design

Using a set of available measurements, corrupted with Gaussian noise, a Kalman

�lter recursively obtains the minimum mean squared error estimates of a set of

variables that are varying according to a given dynamic model. Kalman �lters

have proved to be strong estimation tools in a very wide range of applications [69].

As examples of applications in communication systems, Kalman �lters have been

used for channel equalization [60], interference estimation for call admission in

CDMA networks [20] and for power control in packet-switched broadband TDMA

networks [52].

We propose a predictive power control algorithm, where two Kalman �lters are

employed to provide the one-step predicted estimates of both the channel gains

and the interference levels for every user, which are then used in an integrator

algorithm to update the power levels. Using (8.1) and (8.2) for the channel gains,

we can write:

�gii(n) = a�gii(n� 1) + (1� a)�g0ii + wg(n� 1): (8.7)

Similarly, using (8.5) and (8.6) for the interference levels, we can write:

�Ii(n) = a�Ii(n� 1) + (1� a)�I0i + wI(n� 1): (8.8)

The idea is to design two simple Kalman �lters that use the erroneous local mean

measurements, available to every user, to estimate the constant biases in the

models and provide the one-step predicted estimates of the channel gains and the

interference levels. As mentioned, the same models are used for all the mobiles

in the network. Hence we eliminate the indices i and ii for a simpler notation.

It is now appropriate to represent both models in the state-space form. Let
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us de�ne:

xg1(n)
4
= �g(n); xg2(n)

4
= �g0; (8.9)

xI1(n)
4
= �I(n); xI2(n)

4
= �I0: (8.10)

The state-space models can then be obtained as:

xg(n)
4
=

2
4 xg1(n)
xg2(n)

3
5=

2
4 a 1� a

0 1

3
5
2
4 xg1(n� 1)

xg2(n� 1)

3
5+
2
4 wg(n� 1)

wg0(n� 1)

3
5 ; (8.11)

xI(n)
4
=

2
4 xI1(n)
xI2(n)

3
5=

2
4 a 1� a

0 1

3
5
2
4 xI1(n� 1)

xI2(n� 1)

3
5+
2
4 wI(n� 1)

wI0(n� 1)

3
5 : (8.12)

where wg0 and wI0 are two mutually independent �ctitious zero mean white Gaus-

sian noise sequences , which are also independent from wg and wI. They are

required to prevent the Kalman �lters from relying too much on their estimates

of �g0 and �I0 and to force them to take into account the new measurements. This

makes the �lters robust to the uncertainties in the models and enables them to

deal with the changes in �g0 (e.g., due to path loss variations) or �I0 (e.g., due to

user arrivals or departures).

The measurement equations for the �lter can now be written as:

yg(n) =
h
1 0

i 24 xg1(n)

xg2(n)

3
5 + vg(n); (8.13)

yI(n) =
h
1 0

i 24 xI1(n)

xI2(n)

3
5 + vI(n); (8.14)

where yg and yI respectively denote the measured local mean values of the channel

gain and the interference level, and vg and vI are mutually independent zero mean

white Gaussian noise sequences, which are assumed to be independent from all

other noise sequences in the model and are used to model the fast fading induced
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averaging errors and other possible uncertainties in the local mean measurements.

Remember that all the variables are expressed in a logarithmic scale. For a

simpler notation, de�ne:

Af
4
=

2
4 a 1� a

0 1

3
5 ; (8.15)

Hf
4
=

h
1 0

i
: (8.16)

Now starting from initial estimates x̂g(0)
� and x̂I(0)

�, the measurement update

equations for the �lters are expressed as:

x̂g(n)
+ = x̂g(n)

� + Lg(n)
�
yg(n)�Hf x̂g(n)

�
�
; (8.17)

x̂I(n)
+ = x̂I(n)

� + LI(n)
�
yI(n)�Hf x̂I(n)

�
�
; (8.18)

where x̂g(n)
� and x̂I(n)

� respectively denote the propagated (a priori ) estimates

of the channel gain and the interference level at the end of the (n� 1)-th power

update period. Hence, at time n (i.e., the beginning of the n-th power update

period), the current local mean measurements yg(n) and yI(n) are incorporated

to obtain the updated (a posteriori ) estimates x̂g(n)
+ and x̂I(n)

+. The two-

dimensional �lter gain vectors Lg and LI are obtained as:

Lg(n) = Pg(n)
�HT

f

�
HfPg(n)

�HT
f + Vg

��1
; (8.19)

LI(n) = PI(n)
�HT

f

�
HfPI(n)

�HT
f + VI

��1
; (8.20)

where Vg and VI are the measurement noise covariances and Pg(n)
� and PI(n)

�

are the propagated estimation error covariance matrices. Note that we only have

scalar measurements and no matrix inversion is involved. At time n, the covari-

ance matrices are updated as:

Pg(n)
+ = Pg(n)

� � Lg(n)HfPg(n)
�; (8.21)

PI(n)
+ = PI(n)

� � LI(n)HfPI(n)
�: (8.22)
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Now the one-step predicted estimates for the channel gain and the interference

level are obtained by propagating the estimates to the next power update period:

x̂g(n + 1)� = Af x̂g(n)
+; (8.23)

x̂I(n + 1)� = Af x̂I(n)
+; (8.24)

and the covariance matrices are propagated as:

Pg(n+ 1)� = AfPg(n)
+AT

f +Wg; (8.25)

PI(n+ 1)� = AfPI(n)
+AT

f +WI ; (8.26)

where Wg and WI are two-dimensional diagonal covariance matrices for the driv-

ing noise sequences in (8.11) and (8.12), respectively.

Incorporating the one-step predicted estimates in the integrator algorithm

(7.43), the updated power level for the duration of the n-th power update period

can be obtained as:

�p(n) = �p(n� 1) +
�
� � �̂r(n+ 1)�

�
; (8.27)

where:

�̂r(n+ 1)� = �p(n� 1) + x̂g1(n + 1)� � x̂I1(n+ 1)�

= �p(n� 1) + �̂g(n+ 1)� � �̂I(n+ 1)�: (8.28)

As explained in Section 9.2, when a new call arrives in the network and

is assigned to a base station (after an initial call set-up time), it is checked

whether the user can achieve the required SIR threshold for the new calls on

the idle channel which currently has the minimum interference level. If so, the

user is admitted to the network and its Kalman �lter estimates are initialized as

x̂g1(0)
� = x̂g2(0)

� = �g(0) and x̂I1(0)
� = x̂I2(0)

� = �I(0), where �g(0) and �I(0) are
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the local mean channel gain and interference values available at the time that the

user is admitted. Also the error covariance matrices are initialized as:

Pg(0)
� = PI(0)

� =

2
4 �2s 0

0 �2s

3
5 ; (8.29)

where �s is the shadow fading standard deviation (set to 8 dB in our simulations).

Moreover, when a base station hand-o� or a successful channel reassignment

occurs, the error covariance matrices are reset to their initial values and the �lter

estimates are reset to the corresponding local mean values on the new channel.

We now select the values for the �lter parameters. As mentioned before, we

implement the same �lters for all the users in the network. We pick the model

parameter a according to (8.3) and by considering the maximum user velocities

that we expect in our mobile environment. This makes the �lter assume the

least correlation among the local mean values in two consecutive power update

periods and therefore rely more on the measurements. As we shall explain in

our simulation details in the next chapter, we assume the power levels to be

updated every 100 msec. Also we consider the shadowing correlation distance

to be about 40m and the maximum user velocity to be 80 km/hr. Using (8.3),

we then pick a = 0:95. Using this value for a and �s = 8 dB and (8.4), we get

�2wg = �2wI = 1:56. We choose to set �2wg = �2wI = 2:0 in the �lter, again to deal

with uncertainties in the models. The variances for the �ctitious driving noise

sequences wg0 and wI0 are also set to 2.0 dB
2. Also the standard deviations for the

local mean measurement errors are both set to 3.0 dB, i.e., Vg = VI = 9:0. These

values are summarized in Table 8.1. It should be mentioned that one may try to

adaptively obtain estimates for these variances from the available measurements

or by looking at the �lter residuals [69]. However, due to the level of uncertainty

that we expect in the �lter models, we prefer the simpler approach of looking

at these variances as design parameters that should be tuned to get a desirable
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a Vg, VI (dB
2) Wg(1; 1), WI(1; 1) (dB

2) Wg(2; 2), WI(2; 2) (dB
2)

0.95 9.0 2.0 2.0

Table 8.1: Kalman Filter Model Parameters

performance. We will see that by using the above values for the parameters, some

global stability results are obtained while computer simulations show noticeable

improvements in the overall system performance.

Finally, we observe that the error covariance matrices and the �lter gains

are independent of the actual measurements. This can be seen from the �lter

equations (8.19)-(8.26). Therefore, the �lter gains Lg and LI can indeed be

calculated and saved a priori. Since the same �lters are used for all the mobiles

in the network, most �lter calculations should thus be repeated only every once in

a while, when updated estimates for some of the environment-related parameters

(shadowing correlation distance, etc.) become available. This can result in a

considerable reduction in the �lter processing time.

Also note that when the �lter reaches the steady-state on a speci�c channel,

the steady-state �lter gain vectors are equal to:

Lg = LI = PHT
f

�
HfPH

T
f + V

��1
; (8.30)

where Vg = VI = V and P is the positive-de�nite solution to the following discrete

Riccati equation:

P = AfPA
T
f � AfPH

T
f (HfPH

T + V )�1HfPA
T
f +W; (8.31)

where Wg =WI =W . Using the values given in Table 8.1, we get:

Lg = LI = L =
h
0:37990 0:37121

iT
: (8.32)
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8.4 Global Stability

When the Kalman �lters are employed, the block diagram for a single loop can

be depicted as in Figure 8.1. We now show that, in the steady-state, the Kalman

�lters and therefore the local loops are stable1. Moreover, the suÆcient conditions

for global stability are satis�ed.

�ei(n)
Ki(q

�1)
�pi(n) �pi(n�1)

q�1

�gii(n) �Ii(n)

++ +
+ ��(n)

�̂gii(n+1)
� �̂Ii(n+1)

�

�̂ri(n+1)
�

KFg KFI

Figure 8.1: A local power control loop with Kalman �lters

Given the �lter gains in (8.32), it is straightforward to obtain the steady-state

transfer functions for the Kalman �lters:

�̂g(n+ 1)�

�g(n)
=

�̂I(n + 1)�

�I(n)
=

q (0:37947q � 0:36091)

q2 � 1:57053q + 0:58909
(8.33)

The poles of the Kalman �lters (i.e., the poles of the above transfer function or

equivalently the eigenvalues of Af �AfLHf) are located inside the unit circle at:

sf1 = 0:61928; sf2 = 0:95125 (8.34)

It is now clear that all the local loops are stable, i.e., the poles for all the closed-

loop transfer functions, associated with a single loop, are inside the unit circle.
1Under the technical conditions of stabilizability and detectability, the steady-state Kalman

�lters are always known to be stable [69]
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Processing and propagation delays (i.e., extra delay blocks in the feedback path)

could result in instability of the local loops and therefore instability of the whole

network. However, even though some delay compensation schemes have been

proposed in [31], information-feedback power control algorithms, as mentioned

before, usually run on slower power update rates and processing and propagation

delays are usually much less than a single power update period.

As we mentioned, stability of the local loops is necessary but not suÆcient for

global stability of the network. However, the network will indeed be globally sta-

ble in the `1� induced norm sense, if the transfer function from the interference

�I(n) to the power �p(n� 1), satis�es the norm condition (7.68).

Using (8.33) and from Figure 8.1, it is straightforward to obtain:

G(q) =
�p(n� 1)
�I(n)

=
0:37947q � 0:36091

q2 � 1:57053q + 0:58909
; (8.35)

and hence we get:

jjG(q)jj`2�induced ' jjG(q)jj`1�induced = 1:0: (8.36)

Therefore G(q) satis�es both (7.68) and (7.70). From (7.68), we conclude that, as

long as the network is in its feasible region, the deviations of the power levels of

all the users in the network from their corresponding optimal values will always

remain bounded. Moreover, from (7.70), we conclude that if the power levels

only slightly deviate from their optimal values, while the channel gains remain

constant, they will asymptotically converge back to their optimal values. This

proves the global stability of the network, on every channel, both in `1 sense and

in `2 sense (with a linearized interference function), when the Kalman �lters are

at their steady-state.
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8.5 Summary

In this chapter, we introduced a novel predictive power control algorithm. We

�rst proposed simple models for the slow variations in the channel gains and the

interference levels, and then showed how simple Kalman �lters can be designed

to provide one-step predicted values for the channel gains and the interference

levels in the network. A Kalman �lter is associated with the power control loop

for every user, while the parameters of the �lter are selected to be the same

for all co-channel users. The predicted values from the Kalman �lters are then

incorporated in a distributed integrator power control algorithm. Finally, we

showed that the global stability of the network on a single channel is preserved

when the Kalman �lters are introduced in the power control loops.

In the next chapter, we will provide the simulation results which show the

improvement in performance when our predictive power control algorithm is in-

tegrated with a minimum interference dynamic channel assignment scheme.
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CHAPTER 9

Integrated Predictive Dynamic Channel and

Power Allocation

9.1 Introduction

As we have emphasized, with the steadily growing need for capacity in mobile

radio systems, optimal allocation of resources in non-uniform and non-stationary

environments has become a great challenge. The fundamental objective is to

accommodate as many users as possible, subject to complexity and Quality of

Service requirements, on a limited available bandwidth by controlling undesired

interactions among the users. One major interaction is the co-channel interference

that every user generates for all other users, which are sharing the same channel.

Various techniques have been developed to mitigate the e�ects of co-channel

interference. Some of these techniques, such as sectorization and beamforming

using smart antenna arrays, try to suppress interference, while others such as

channel assignment techniques try to avoid strong interferers.

As we explored in the last two chapters, another technique is to adaptively

control the power levels of all the users in the network. Power control can be very

e�ective, especially when the network is interference-limited, i.e., the number of

co-channel users is mostly limited by the amount of interference that they are

causing for each other.
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At the same time, Dynamic Channel Assignment (DCA) schemes are proposed

as another approach to mitigate co-channel interference and increase capacity.

While DCA schemes add to complexity of the system, they can achieve higher

levels of capacity by adaptively redirecting the traÆc to the channels with better

conditions.

It is believed that an aggressive DCA scheme can make an FDMA/TDMA

system an interference-limited system. This fact has initiated research on in-

tegrated distributed Dynamic Channel and Power Allocation (DCPA) schemes

[14, 26, 53, 78]. In [14] a pilot based minimum interference DCA scheme is in-

tegrated with a fast �xed-step power control algorithm, while fast fading and

user mobility e�ects are neglected. In [53] three di�erent types of minimum in-

terference DCA algorithms are integrated with a slow integrator power control

algorithm. Pedestrian mobility along with a low power update rate are consid-

ered, and it is again assumed that the fast fading e�ects are averaged out. In [78]

a simulation study has been performed to investigate the joint e�ects of some

simple SIR-based and signal-level-based power control algorithms along with a

minimum interference channel reassignment scheme. Fast fading e�ects are again

neglected and low power update rates (1/(0.48 sec) corresponding to GSM mea-

surement intervals) are assumed.

We note that all the above results only consider simple power control algo-

rithms. Moreover, except for [53][78], other results neglect such e�ects as dynam-

ics of user arrival or departures, user mobility, and base station hand-o�s. Our

main objective in this chapter is to investigate the performance of our predic-

tive power control algorithm when it is integrated with a minimum interference

DCA scheme. We set up a system-level simulation platform, similar to the ones

presented in [14][53], to compare our predictive DCPA scheme with the one that
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uses a simple integrator power control algorithm with no prediction. Dynam-

ics of user arrivals and departures, user mobility and base station hand-o�s are

all considered in this study. Slowly varying at Rayleigh fading e�ects are also

considered in our simulations.

The organization of this chapter is as follows. In Section 9.2 we review Dy-

namic Channel assignment schemes. Speci�cally, we review the minimum inter-

ference scheme and mention how it results in minimum transmit powers for the

new incoming users. Then in Section 9.3 we explain all the details of our simu-

lation model. These include the propagation model, models for user arrivals and

mobility, the admission control scheme, channel reassignments and base station

hand-o�s, and the details of our DCPA scheme. In Section 9.4 we discuss the sim-

ulation results and compare the performance of our integrated predictive DCPA

algorithm with the corresponding algorithm which uses no prediction. We show

that, for a range of traÆc loads, the number of blocked calls and the number of

dropped calls are decreased under our predictive DCPA scheme. Moreover, on

average, fewer channel reassignments are required for every call, implying a more

stable network. We will provide concluding remarks in the �nal section.

9.2 Dynamic Channel Assignment (DCA)

Fixed Channel Assignment (FCA) is the traditional approach in FDMA/TDMA

systems. In this approach, by considering the worst case scenarios for the traÆc

load in the network, a pattern for a reuse cluster is selected and every base station

in the cluster is then assumed to permanently have access only to a subset of the

available channels. This is a simple conservative approach, which does not take

into account the current spatial and temporal traÆc distributions in the network.

On the other hand, in Dynamic Channel Assignment (DCA) schemes, all base
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stations have access to all the channels and dynamically assign the channels to

the users based on the current traÆc conditions. While DCA schemes are clearly

more complicated, they usually result in higher capacity. Various centralized and

decentralized DCA schemes have been proposed in the literature [17, 28, 47, 72].

We adopt the distributed minimum interference DCA scheme [28]. In this

scheme, the new users will be assigned to the idle channels with minimum local

mean interference, in the order they arrive. It was shown in Section 7.4 that

when a new user is admitted to a power-controlled network, the optimal power

level for the new user can be written as:

p�n =
In0
gnn

n
1� n

max

; (9.1)

where n is the SIR threshold that the new user wants to achieve, max is the

maximum achievable SIR for the new user and In0 is the local mean interference

plus noise level at the intended base station of the new user before it is admitted

to the network. It is now clear that the minimum interference DCA scheme does

indeed result in the minimum transmit power for the new user.

Channel reassignment schemes are required to adaptively redirect the traÆc

to the channels with better conditions. In fact, whenever the local mean SIR for a

user drops below a given threshold, while the user is transmitting at its maximum

power level, a channel reassignment attempt is triggered and, if possible, the user

is reassigned to the idle channel, which currently has the minimum local mean

interference. Note that this is a distributed scheme, since every base station only

needs to keep track of the local mean interference values on all of its own idle

channels and no communication is necessary among the base stations. In other

words, no global reassignment of all the channels in the network is considered

when a new user arrives. Therefore, the channel assignments are not globally

optimal. However, any kind of global optimality in the channel assignments can
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only be achieved through centralized algorithms, which are usually impractical

due to the excessive requirements for processing and also communication among

the base stations.

Note that integrating a minimum interference DCA scheme with a power

control algorithm can also be justi�ed by considering the fact that it results in

relatively weak coupling among the users in the network. In other words, the

channels are selected such that the channel gain matrix becomes as diagonally

dominant as possible with a distributed channel assignment scheme. As we saw

earlier, this in turn implies that higher SIR thresholds can be supported in the

network.

Another issue is call management and admission control. As we discussed in

Section 7.4, a network should be feasible for every user to be able to achieve its

desired SIR threshold. If no admission control is employed, a new user could

potentially force the network out if its feasibility region and hence result in the

more unfavorable event of dropping active calls. In [7] an admission algorithm

was presented for a power controlled system, where the new users would increase

their powers only in small steps. It was shown how this scheme could protect the

quality of active links when new users arrive. Channel probing techniques were

proposed in [6, 33, 80] where a new user would try to estimate the maximum

SIR level that it can achieve by disturbing the network as little as possible.

The user will then be admitted only if its maximum achievable SIR is above

its desired threshold. Also a channel partitioning scheme was presented in [34]

where a combination of dynamically allocated and �xed assigned channels are

incorporated to develop a rapid distributed access algorithm.

We adopt the simpler threshold-based implicit admission control scheme, pre-

sented in [53]. In this scheme, a new user with a desired SIR threshold d will
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be admitted only if there exists an idle channel, on which it can achieve an SIR

threshold new, which is higher than d by a given protection margin. The value

of the protection margin for new users should be selected based on the trade-o�

between blocking new calls and dropping active calls.

Moreover, a channel reassignment attempt will be triggered for a user if, while

transmitting at the maximum power, its local mean SIR drops below a threshold

min, which is lower than d by another given margin. This margin is required to

avoid immediate channel reassignments when new users are admitted or when the

local mean SIR's for the users temporarily drop due to user motions and fading.

The value of this margin should be selected according to the trade-o� between

quality of service and the average number of channel reassignments per call. Note

that for channel reassignment, it is checked whether the user can achieve d on

the idle channel which currently has the minimum interference. Since d < new,

this scheme clearly favors the active users, that are being reassigned, to the new

incoming users. If a channel reassignment fails, the user stays on its old channel

and the reassignment attempt is repeated every reassignment period (as long as

r < min and p = pmax) until the user is either successfully reassigned or dropped

from the network. Finally, a user will be dropped from the network if its local

mean SIR drops and stays below a threshold drop(< min) for a given duration

of time.

9.3 Simulation Model

While the theoretical analysis in Chapter 8 helps in justifying the use of Kalman

�lters in power control algorithms to deal better with the variations in the channel

gains and the interference levels, and also the errors in the local mean measure-

ments, a simulation study is essential to analyze the overall performance when

173



such a predictive power control algorithm is integrated with a DCA scheme in a

relatively realistic mobile radio environment. We therefore decided to set up a

system-level simulation environment, similar to the ones presented in [14][53] but

on a smaller scale, in order to analyze the overall performance of the network,

when our predictive power control algorithm is integrated with a distributed min-

imum interference DCA scheme. User arrivals and departures and user mobility

are all considered in this study. In this section, we explain the details of our

simulation platform, and in the next section we analyze the results.

9.3.1 Basic Assumptions

We consider a cellular system where the area under coverage is divided into cells

and each cell has its own base station. All users communicate with their assigned

base stations through a single hop. This is in contrast to ad hoc wireless networks

where there is no �xed infrastructure and multi-hop communication is prevalent.

We focus on a Frequency/Time Division Multiple Access (FDMA/TDMA)

system, where each channel is characterized by a pair (m;n) where m denotes the

carrier frequency and n denotes the time slot. We consider two carrier frequencies

and eight slots per carrier. We do not consider any blind slots in the system,

that is, we assume that any slot in a frame can be used as a traÆc channel.

Therefore, we have 16 traÆc channels in the system. Blind slots can be avoided

either by appropriate structuring of the control channel or by assuming that a

call activity detection scheme is employed such that the users can temporarily

discontinue their transmission in their active slots. Modifying the frame structure

and considering some slots as the blind slots should not have major e�ects on our

performance comparisons.

We only consider the co-channel interference among the users, i.e., no adjacent
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channel interference is assumed. Speci�cally, we assume a system-wide synchro-

nization to the slot level so that each user will experience interference only from

the users which are sharing exactly the same slot on the same carrier frequency.

This assumption implies that large enough guard times per slot are assumed.

For simplicity and to avoid complexities like Time Division or Frequency

Division Duplexing, and the uplink-downlink interference imbalance, we choose

to consider only the uplink channel, i.e., the channel from mobile stations to base

stations. We should note, however, that almost all the results and discussions

could similarly be stated for the downlink channel.

We assume a �xed-power control (pilot) channel on the downlink. As we shall

see, this channel facilitates Dynamic Channel Assignment (DCA) and can be used

by the mobiles for initial base station assignments and base station hand-o�s.

We abstract the system architecture, as far as modulation, coding, etc. are

concerned, and consider Signal to Interference plus Noise Ratio (SIR) as the only

measure for Quality of Service (QoS) in the network. This is a common practice,

even though Bit Error Rate or Frame Error Rate are usually considered as the

ultimate performance measures. The reason is that, in general, higher SIR will

result in better bit error rate performance and considering SIR as the measure for

quality of service provides us with a more convenient platform for power control

design.

While we do not restrict ourselves to any speci�c standard, we have tried to

stay close to the Global System for Mobile Communications (GSM) standard.

The system is simulated on the frame level (4.0 msec, assuming 8 slots of

0.5 msec in each frame). It is assumed that the signal and interference power

measurements for every user are available in every frame at the end of the user's

corresponding slot. Various events might then happen every multiple number of
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frames.

9.3.2 Cell Layout and Base Station Antennas

A 3x3 square grid of cells is assumed. The base stations are located on the cell

centers and are separated by 800m. To avoid edge e�ects, a ring simulation struc-

ture is assumed, i.e., the statistics are only gathered from the central cell. This is

somewhat simpler than a toroidal simulation structure and is shown to provide

more optimistic but comparable results [54]. The other reason for our results to

be somewhat optimistic is that only nine cells are simulated, and therefore lower

interference levels are generated. However, our simulation results clearly serve

our purpose of comparing our predictive DCPA scheme with the one that uses

no prediction.

Omni-directional antennas with two branch selection diversity are assumed for

the base stations. To simulate the selection diversity, two uncorrelated Rayleigh

fading components are generated for every user and the greater one is picked.

9.3.3 Propagation Model

The channel gain for every link is normalized with respect to the base station and

mobile antenna gains and is characterized by three components: distance loss,

slow or shadow fading and fast fading.

� Distance Loss

The distance loss is assumed to be inversely proportional to d�, where � is

called the propagation exponent and is set to 4.0.

� Slow or Shadow Fading
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A log-normal shadowing pattern is generated a priori. Therefore the shad-

owing values only depend on the user's location. The shadowing correlation

distance Xs is assumed to be 40m. Gaussian numbers with correlations

given by (8.4) (with a = 1=e) are generated every correlation distance on a

square grid. The shadowing for every user is then obtained by a normalized

bilinear interpolation of the four closest points of the shadowing grid. This

interpolation preserves the log-normal distribution and the variance of the

shadowing.

� Fast Fading

A slowly varying at Rayleigh fading is assumed. This implies that no

line-of-sight exists and the delay spread is small compared to the symbol

duration or inverse channel bandwidth and thus only a single path with a

Rayleigh distributed amplitude (and hence exponentially distributed power)

can be distinguished. In fact, the Rayleigh fading component is assumed

to be constant for the whole duration of a single slot (0.5 msec). Time

correlation for Rayleigh fading is often represented using the Jake's model

[43], where it is expressed in terms of a zero order Bessel function of the

�rst kind, which results in a non-rational spectrum. We use a �rst-order

approximation by passing a white complex Gaussian noise through a �rst

order �lter and obtaining the squared magnitude of the output Gaussian

process. The time constant of the �lter, for every user, is obtained by

setting its 3 dB cut-o� frequency equal to fm=4 where fm = v=� is the

maximum Doppler frequency for the user [72].

Note that even though the instantaneous channel gains for every user are di�erent

on di�erent channels, we consider the local mean values (that are used for base

station and channel assignment or reassignments) to be the same for all channels
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(including the control channel) in a base station.

9.3.4 Call Arrivals and Holding Times

New calls are generated based on a Poisson process with a given arrival rate

�a. Each call is assigned an exponentially distributed holding time with a given

average value Th. The average Erlang load per cell is then obtained as:

Ec
4
=
�aTh
Nc

; (9.2)

where Nc = 9 is the total number of cells. The Erlang load per cell e�ectively

determines the average number of users that could be active in every cell at any

instant of time. We have considered various combinations of values for �a and

Th to simulate the network under di�erent traÆc load conditions.

9.3.5 Mobility Model

The new users are uniformly distributed in the area. The mobility of the user

i is modeled with a constant but random speed vi and the angle �i between the

velocity vector and the horizontal axis (�� � �i < �). The speed for every new

user is selected randomly from a triangular distribution in the range 0-80 km/h

(i.e., with the mean 40 km/h). This is preferred over a uniform distribution, as

it results in a smaller variance for the velocity distribution among di�erent users.

The initial direction � is uniformly picked. Then every 10 sec, a new direction is

selected from a triangular distribution with the old direction as its mean. This

is again preferred over a uniform distribution or a two dimensional random walk,

since it makes small angle turns more probable that large ones. As mentioned

before, we use a ring simulation structure. Therefore, when a user wants to cross

a border of the area, it will bounce back. The motion trajectory for a sample
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Figure 9.1: A Sample User Motion Trajectory

user is shown in Figure 9.1.

9.3.6 Admission Control

As explained in Section 9.2, a simple threshold-based admission control scheme

is employed. The desired SIR threshold for all users in the network is set to

�d = 12 dB, while the minimum tolerable SIR is considered to be �min = 10

dB. Both margins for new user admissions and user droppings are set to 2 dB.

Therefore new users will be admitted only if they can achieve �new = 14 dB on

the idle channel with the minimum local mean interference. Moreover, a user

will be dropped from the network if its SIR drops below �drop = 8 dB and stays

below for four consecutive seconds. Note that these margins should have been

expressed as percentages of �d and �min for every user, if the users were to have

di�erent quality of service requirements and thus di�erent SIR thresholds.
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9.3.7 Base Station and Channel Assignments and Reassignments

When a new user arrives into the network, it �rst starts scanning the downlink

control channel from all neighboring base stations and measures all the local mean

channel gains. It is assumed that this process take about 0.8 sec (200 frames),

which is called the initial call set-up time. The new user then sends its request for

a channel to the base station which has the strongest signal. If this base station

does not have any idle channels, the user will try the second best base station.

This procedure is called Direct Retry and will be repeated for a given number of

base stations (set to 3 in our simulations) before the user is blocked. When there

are idle channels available, the base station checks whether the user can achieve

new on the idle channel with the minimum local mean interference. If so, the

user will be admitted and will be assigned to the idle channel with the minimum

interference. Otherwise, the user will be blocked.

We should note that no macro diversity is considered, i.e., any user will only

communicate with a single base station at any instant of time. Moreover, base

station assignment is considered to be separate from power control, i.e, the power

levels are obtained assuming that the users are already assigned to their corre-

sponding base stations. Joint base station assignment and power control has

already been proposed in the literature [88].

A minimum interference DCA scheme, as explained in Section 9.2, is em-

ployed. The local mean channel gain and interference values for possible channel

reassignments are obtained by simple averaging of the available measurements

over 50 consecutive frames for every user, that is, the channel reassignments for

every active user can happen every 200 msec.

Finally, a base station hand-o� attempt will be triggered if the local mean

channel gain from a neighboring base station exceeds the corresponding value
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from the current base station by a selected hand-o� margin of 4 dB. If the hand-

o� attempt fails, the user will stay with its current base station. Note that the

users are assumed to be continuously monitoring the downlink control channels

of all neighboring base stations.

9.3.8 Power Control

The simple integrator algorithm in (7.43) and (7.44) and the predictive algorithm

in (8.27) and (8.28) are simulated and compared. Note that while the propaga-

tion simulation models are tailored to the individual users, according to their

di�erent trajectories and speeds, the same Kalman �lter models and parameters

are employed for all the users in the network. After a new user i is admitted, it

sets its initial power at:

pi(0) =
dIi(0)

�

gii(0)�
; (9.3)

where Ii(0)
� and gii(0)

�, respectively, denote the local mean channel gain and

interference plus noise level, which are available at the time of user admission.

Note that this is somehow an optimistic choice, since a new user sets its initial

power as though other users will not increase their transmit powers.

The power update rate is assumed to be the same for all users and is set to

100 msec, that is, every user updates its power level every 25 frames according

to (7.43) or (8.27). Note however that a maximum transmit power constraint at

30 dBm is imposed on all users in the network, while the receiver noise oor is

set to -120 dBm.

Since the users arrive at arbitrary instants of time according to a Poisson

arrival process, the power updates are, in fact, performed asynchronously, even

though all the users have the same power update rates. While most results in

power control assume synchronous power updates among the users, asynchronous
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power control algorithms have been addressed in the literature [87]. To have

synchronous power updates, one could simply force the users to arrive at instants

of time, which are multiples of the common power update period.

In the next section we present and analyze our simulation results and show

how the predictive DCPA scheme can improve the overall performance of the

network.

9.4 Performance Analysis

Our objective in this section is to use our simulation results in order to com-

pare our predictive DCPA scheme with the one that uses a simple integrator

algorithm with no prediction, in a non-stationary mobile environment. The two

algorithms are simulated in exactly the same environment and under exactly the

same assumptions and parameter values.

We base our comparisons on four aspects of performance. First, we compare

call blocking and call dropping probabilities. Then we look at those measures that

show how good the users in the network can achieve their desired SIR thresholds.

The average number of channel reassignments per call is then compared under

the two algorithms. Finally, we look at the transmit power distributions of the

users in the network. While each of these performance measures gives us insight

on speci�c aspects of the overall network performance under the two DCPA algo-

rithms, they are all related and they all contribute to the network capacity, which

can be seen as the ultimate measure for any multi-user communication system.

For any given traÆc load, we run the simulations multiple times with di�erent

random generator seeds and every run continues until enough number of calls are

dropped. The statistics are then gathered from the central cell.
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Figure 9.2: Call Blocking Response

Figures 9.2 and 9.3 show the call blocking and the call dropping responses of

the network under the two DCPA schemes. It can be seen that at 7.0 Erlang/Cell,

the predictive DCPA scheme achieves about 0.5% lower blocking rate and about

0.03% lower dropping rate. Moreover the improvement in performance increases

as the traÆc load increases. Remember that there is always a trade-o� between

blocking new calls and dropping active calls.

The local mean SIR for a sample user is shown in Figure 9.4. It can be seen

that the predictive algorithm results in a smoother behavior for the local mean

SIR.

However, a more appropriate approach to compare the target SIR tracking

performance for the two schemes is to look at the SIR error standard deviation,

which shows how the local mean SIR values for the users are spread around the

target SIR value d = 12 dB. We obtain an estimate for the SIR error standard

deviation and also estimates for the SIR cumulative distribution functions by

183



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

7 7.5 8 8.5 9 9.5 10

Traffic Load (Erlang/Cell)

D
ro

p
p

in
g

(%
)

No Prediction

Kalman Prediction

Figure 9.3: Call Dropping Response
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Figure 9.4: The local mean SIR for a sample user moving at 44.7 km/hr
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Figure 9.5: Standard Deviation for the Error in the Local Mean SIR

looking at the local mean SIR values of all the users in the network at various

random instants of time (after enough call attempts have been made and the

network has reached some kind of steady state) during every run of the simulation.

Figure 9.5 shows the standard deviation for the error in the local mean SIR for

a range of traÆc loads. It can be seen that the predictive scheme decreases

the SIR error standard deviation by about 0.3 dB at 7.0 Erlang/Cell, while the

improvement is about 0.7 dB at 10.0 Erlang/Cell.

Figures 9.6 and 9.7 show the cumulative distribution for the local mean SIR

values in the network under two di�erent traÆc loads. It is shown that the

predictive DCPA scheme results in the local mean SIR values, which are less

spread around the target SIR. The improvement is again more noticeable in

higher traÆc loads.

In fact, Figures 9.8 and 9.9 show how the local mean SIR cumulative distri-
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0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16 18 20

Local Mean SIR (dB)

P
ro

b
.

S
IR

<
a

b
s

c
is

s
a

No Prediction

Kalman Prediction

SIR Target: 12dB
Traffic Load: 10.0 Erlang/Cell
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bution functions change with the traÆc load under both schemes.

As mentioned before, one measure that indicates the level of stability of the

network is the average number of channel reassignments per call. Figure 9.10

shows this number for a range of traÆc loads under both DCPA schemes. As one

would expect, fewer channel reassignments per call are, in average, required in

the predictive DCPA scheme. One reason for this is that, as shown before, the

predictive scheme does in fact result in better target SIR tracking and smoother

local mean SIR behavior.

Finally, we compare the transmit power distribution of the users in the net-

work under the two DCPA schemes. Figure 9.11 shows an estimate of the cumu-

lative distribution function for the transmit powers of the users in the network at

the load of 8.0 Erlang/Cell. It can be seen that the two schemes perform quite

similarly, as far as transmit powers are concerned. In fact, both algorithms result
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Figure 9.10: Average Number of Channel Reassignments per Call
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in considerable power saving, when compared with a network where all the power

levels are �xed at their maximum levels. For example, at a relatively high load

of 8.0 Erlang/Cell, about 50% of the users under both DCPA schemes are trans-

mitting at 0 dBm or lower power levels. It should however be mentioned that our

predictive DCPA algorithm seems to result in slightly higher power levels in the

network. This could presumably be because we admit more calls in the network

and thus push closer to capacity. One may also see this as a small cost for better

SIR tracking and better call blocking and dropping responses. Figures 9.12 and

9.13 show how the power cumulative distribution functions might change as the

traÆc load on the network changes.
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9.5 Summary

A predictive Dynamic Channel and Power Allocation scheme was presented in

this chapter. In fact, the predictive power control algorithm, which was presented

in Chapter 8, was integrated with a Minimum Interference Dynamic Channel

Assignment scheme in an FDMA/TDMA mobile radio system. A system-level

simulation environment was then developed. User arrival and departures and

user mobility along with at Rayleigh fading e�ects were all included in the

simulations.

It was shown that the predictive DCPA scheme results in better call dropping

and blocking responses and also better target SIR tracking performance for the

network. Moreover, in average, fewer channel reassignments per call are required

under the predictive DCPA scheme. We believe that these improvements are

obtained mainly because the predictive algorithm takes into account at least the

slow variations of the channel gains. Also by dealing with uncertainties in the

measurements, it e�ectively mitigates the fading induced local mean measurement

errors. It was shown however that the predictive DCPA scheme results in slightly

higher power levels for the users in the network.

As for future research, one may try to design adaptive algorithms where the

parameters of the algorithm and even the power update rates are adaptively

adjusted for individual users, according to such information as user velocities,

etc. Also the standard integrator algorithm may not be the best power control

algorithm. Even though constraints on complexity and computational e�ort are

always present, other simple algorithms may still be designed that could result in

better SIR tracking, better allocation of resources and ultimately higher capacity

in highly non-uniform and non-stationary environments.
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Part V

Concluding Remarks
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CHAPTER 10

Conclusions and Future Research

With tremendous growth in computer, communication, control, and network

technologies in recent years, various industrial and research institutions have

started exploring possibilities for designing large scale systems, which are com-

posed of multiple autonomous local subsystems. Decentralized systems can gen-

erally be very eÆcient and highly robust to faults and uncertainties. At the same

time, however, there are many diÆculties in designing distributed control and

coordination algorithms. Our objective in this research was to address some of

these diÆculties.

The broad range of applications for decentralized systems has inspired en-

gineers and researchers from many di�erent �elds; from economists to control

theorists and computer scientists. In this research, we mostly focused on appli-

cations in control and communication systems.

We started by reviewing some fundamental results in team theory. Team

theory was originated in mathematical economy and was one of the �rst areas

where distributed decision making was addressed. Then we looked at the general

formulation of decentralized control problems and elaborated on the relations

between a team problem and a decentralized control problem.

This led us to the concept of information patterns. In fact, we tried to ad-

dress two major problems in designing decentralized control algorithms. The
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�rst problem was to investigate how the information structure of a decentralized

system could a�ect the control strategies for the local stations. Remember that

every station only has access to its local information, which is obtained either by

local measurements or through noisy communication with other stations. The

way the information is distributed in the system can greatly a�ect the control

strategies and hence the overall performance for the global system. The second

problem was to develop reasonable schemes for evaluating a piece of information

in a decentralized system. One would like to know how valuable a piece of infor-

mation can be based on how it can a�ect the overall performance. Such schemes

for information evaluation could be essential in designing information patterns,

i.e., distributing information among the local stations. We mentioned how the

entropy approach might provide us with a convenient platform for this purpose.

We then focused on the classical Linear Quadratic Gaussian (LQG) con-

trol problems and proposed covariance-based schemes for information evaluation.

First, we showed how the optimal performance index can change with the mea-

surement noise covariances and thus how non-critical measurements (i.e., the ones

with no e�ects on the system detectability) can be evaluated simply by looking

at their corresponding noise covariances.

For future research, one should try other possible schemes. The ultimate

objective is to come up with a uni�ed framework for control-oriented information

evaluation, especially for decentralized systems. The major obstacle, however, is

that performance evaluation can be very application speci�c, and this makes it

very hard to obtain a uni�ed platform with a reasonable level of abstraction.

In the next step, we looked at a two station decentralized LQG problem. We

explored a sub-optimal approach in designing decentralized control laws. Namely,

we treated the problem as two separate centralized LQG problems. We then
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considered various cases where the two stations communicate di�erent pieces of

information. We showed that even if the stations communicate all their mea-

surements, our sub-optimal controllers may fail to stabilize the global system.

However, closed-loop stability can be achieved if the stations communicate their

control values. This problem again shows how the distribution of information in

a decentralized system can a�ect the overall performance.

One direction for possible future research is to consider other control frame-

works. For example, one can follow a robust control approach and explore the

e�ects of various pieces of information on robustness of the global system. In

other words, one could consider a simple decentralized system and investigate

whether communicating di�erent pieces of information between the stations can

increase the robustness of the global system to the uncertainties in the models of

the local stations.

To further explore the e�ects of non-classical information patterns, we studied

a seemingly simple example, proposed by Witsenhausen in 1968. It is a two stage

stochastic problem with linear dynamics, additive and Gaussian uncertainties and

a quadratic cost. We showed how the non-classical structure of the information

pattern transforms the problem into a non-convex functional optimization prob-

lem. We then proposed a reformulation of the problem, where the two station

start communicating through a noisy channel. We showed that any uncertainty

in the communication among the station can again induce a non-classical infor-

mation pattern.

We then considered a special case where the communication uncertainty is

very small. We proposed an asymptotic approach based on which we obtained

a necessary condition for the optimal strategies. We showed that the linear

strategies still satisfy the necessary condition.
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Many researchers have explored di�erent aspects of Witsenhausen's counter-

example. However, the results are still far from convincing. Working more on

this example or possibly coming up with similar examples can help in dealing

with non-classical information patterns, which seem to be the bottleneck for

decentralized optimization problems.

The next major part of our research was focused on a speci�c application

in wireless communication systems. Namely, we studied, in detail, the power

control problem for cellular radio networks. Power control has been proposed as

an e�ective scheme for co-channel or multiple access interference mitigation in

cellular systems.

This is again a decentralized stochastic problem, where every user acts as a

local station and only has access to its own set of noisy measurements. We re-

viewed SIR balancing and SIR threshold as the two main approaches for power

control design and showed how the two approaches can be uni�ed. Furthermore,

we showed how the power control problem can be posed as a decentralized regula-

tion problem. We used a robust control framework to obtain a suÆcient condition

for global stability of the network under a given power control algorithm. This

suÆcient condition would guarantee that the deviations of the power levels of the

users from their corresponding optimal values will always remain bounded. As

for future research, one could quantify some bounds on such deviations.

In order to deal with the variations in the channel gains and also the errors

in the local mean SIR measurements, we proposed a predictive power control

algorithm. We showed how simple white noise driven �rst order Markov models

may be used to model the slow variations in the channel gains and the interference

levels. Moreover, we proposed to use such models in order to design simple

Kalman �lters, which would provide us with the one-step predicted values of
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the channel gains and the interference powers. Such predicted values were then

incorporated in an integrator power control algorithm.

We used the same �lters for all the users in the network. As future research,

one can explore the possibility of implementing adaptive prediction �lters for

every individual user in the network. In other words, how any extra information,

such as user velocities, can be used in order to adaptively change the model

parameters or even the power update rate for every user.

Finally, we set up a detailed system-level simulation platform where various

integrated Dynamic Channel and Power Allocation (DCPA) schemes can be sim-

ulated and compared in relatively realistic mobile environments. We integrated

the minimum interference dynamic channel assignment scheme with our predic-

tive power control algorithm. We showed that, comparing with the corresponding

DCPA scheme with no prediction, better SIR tracking and better call dropping

and call blocking responses can be obtained. Moreover, on average, fewer channel

reassignments per call are required, implying a more stable network.

Dynamics of user arrivals and departures along with user mobility were all

considered in our simulations. In fact, our simulation platform can be very help-

ful for any future research on various DCPA schemes. Namely, many di�erent

power control algorithms, including the �xed-step algorithms, along with various

dynamic channel assignment schemes can be simulated and compared.

Finally, another possible direction for future research is to look into other

similar applications in control of networks and try to elaborate on any extend-

able results. In fact, the bottom-up analysis approach seems to be a very good

alternative approach to tackle some of the fundamental open issues in decen-

tralized stochastic systems. In other words, by focusing on speci�c applications,

one might be able to obtain useful results, which can be taken to higher levels
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of abstraction and can help in formulating a general structure for decentralized

control algorithms.

If studying this thesis makes you appreciate some of the fundamental diÆ-

culties that exist in controlling distributed networks, and encourages you to get

involved with research on this fascinating and rapidly evolving area, our goal is

achieved.
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