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ABSTRACT OF THE DISSERTATION

Probing Techniques for Multiuser Channelswith
Power Control

by
Christopher J. Hansen
Doctor of Philosophy in Electrical Engineering
University of California, Los Angeles, 1997
Professor Gregory J. Pottie, Chair

This work investigates a set of probing techniques for multiuser radio
systems. These techniques are designed to allow radio transmitter/receiver pairsto
determine the characteristics of a communication channel they wish to use. It is
assumed that the channel is shared by multiple users that employ power control to
allow each pair to maintain a fixed signal-to-interference ratio and transmission
rate. Thegoal isto allow anew user pair to determine the maximum feasible bit rate
it can achieve and the information necessary to choose a signaling format that will
yield the maximum rate.

Three particular channel models are examined: a high symbol rate indoor
channel, amoderate symbol rate mobile radio channel, and a channel with adaptive
antenna arrays in addition to power control. The probing techniques are tailored to
give information that is appropriate for a system operating under each channel

model. The indoor channel probing algorithm gives precise results for the

xiii



maximum feasible SIR level. The mobile radio probing agorithm quickly
determines whether or not a particular channel can be used for communication at a
fixed rate. Probing with adaptive antennas gives an estimate of the SIR that can be
achieved at atarget transmitter power.

The intended applications for channel probing are future wireless systems
that are fully distributed. Until now, most distributed access algorithms have used
ad hoc techniques. Channel probing puts distributed access on a solid foundation
and alows distributed systems to employ sophisticated power and channel

allocation techniques that have been developed for centralized systems.

Xiv



Chapter 1

| ntroduction

This dissertation introduces new techniques for determining the characteristics
of communication channels that are shared by multiple users. These techniques are
grouped together under the name channel probing. Asthe name suggests, probing takes
the form of a single user transmitting a signal on a channel and measuring a response,
usually a measurement of both the received signal power and received interference
power from other users. From the response, the user is able to determine the
characteristics of the channel. Thisinformation isin turn used to determine the optimal

modul ation format and power level for communication.

1.1 Motivation for Channel Probing

Since the introduction of cellular telephone systems, researchers have been

investigating methods for increasing the capacity, or number of users per unit of



bandwidth, that the systems can handle. This research is critical, because radio
bandwidth is limited and the demand for wireless communication services is
increasing. At the same time, new wireless communication services, such as two-way
pagers, personal communication systems, navigation systems and many others are also
being developed and competing for increasingly scarce radio spectrum. This trend is
likely to continue for the foreseeable future.

The application of digital technology has brought new cellular standards, 1S-54
TDMA (time division multiple access) and 1S-95 CDMA (code division multiple
access), with large capacity gains relative to present analog systems. However, the
capacity increase has exacted its own cost: an enormous increase in complexity. This
has already lead to problems in implementing new systems and in convincing the
telecommunications community that they are viable solutions. For example, there are
no 1S-95 CDMA systems in operation in the United States as of November 1996, even
though VLSI chip setsto implement the phones have been available since 1991. There
are also very few operating TDMA systems.

The problem with these new systems is not the difficulty in implementing the
radio modem. In fact, the sophisticated VLSI circuits work extremely well. Rather, the
difficulty has been the implementation of complex control networks necessary to make
the new systems work. Unless changes are made, future systems - which will be even
more complicated - will also encounter complexity problems.

A potential solution to the complexity dilemma is to make complex multiuser



communication systems more distributed. With distributed systems, the choice of
channel, signalling format, and power can be made by each user based on its own
measurements of the multiuser channel. Recent developments [3][4][18] have
demonstrated that power control can be made completely distributed with the same
results as a centralized system. Distributed channel alocation, however, is a newer
topic, and previous attempts have used a variety of ad-hoc techniques [13][66].

The purpose of probing is to allow each user to measure its own channel
characteristics so it can apply the same type of power and channel alocation algorithm
that a centralized controller would employ. With probing, users work together to find
appropriate channel allocations that help to maximize capacity. Probing helps to
formalize a method for dynamic channel alocation. Instead of relying on ad-hoc
measures of channel congestion, the channel probe alows the user to precisely

determine the maximum communication rate it can achieve.

1.2 Overview of Dissertation Topics

The dissertation covers several different probing algorithmsthat are appropriate
for different types of multiuser channels. To begin, Chapter 2 presents background
material on channel models, dynamic channel allocation, distributed power control, and
capacity measures. Next, Chapter 3 discusses probing for channels where exact
measurements are possible. Two specific examples are discussed: a slow frequency-
hopped indoor wireless system and a multitone modulated wireline system. In each

case, the channel varies slowly compared to the rate at which the distributed algorithms



will operate. This allows precise channel estimation and channel allocation to be
performed.

Chapter 4 presents a probing algorithm for systems where the channel cannot
be estimated precisely. The example is a wireless cellular system with mobility.
Channels are partitioned into power controlled and fixed assignment. Users initially
enter the system through a fixed assignment channel to guarantee access. They then
probe for a power controlled channel and use power control whenever feasible. The
goal isto balance capacity with the limits of time varying channels.

Chapter 5 explores probing for power control with adaptive antennas. The
addition of adaptive antennas makes probing much more difficult. Power control and
minimum mean square error (MM SE) adaptive antenna arrays are discussed.

Last, Chapter 6 presents concluding remarks on probing and its application to

multiuser communication systems.



Chapter 2

Background

This chapter introduces background material to lay a technical foundation for
the later chapters. It begins with an overview of wireless and wireline channels,
including adiscussion of current communications systems and the channel impairments
they encounter. Next is a review of power control and dynamic channel allocation
algorithms. These are new techniques that enhance the performance of multiuser
communication systems. The last topic discussed in this chapter is capacity and how it

ismeasured in practical systems.

2.1 Wirdess Channels

The characteristics of wireless radio channels arise from the physics of radio
propagation and vary with the operating environment. In recent years, the mobile radio

(cellular telephone) and indoor environments have been studied extensively



[28][32][37][42][48][57]. This work has led to a common statistical model that can

used to describe the nature of wireless channels.

2.1.1 Propagation Model

There are three components to the radio propagation model that correspond to
three distinct physical mechanisms. The first, path attenuation, arises from the
expansion of the electromagnetic wave front as the radio wave travels from the
transmitting antenna to the receiving antenna. In free space, the power of the received
antenna will be reduced by a factor proportional to the square of the distance between
transmitter and receiver. In mobile radio and indoor channels the attenuation can
increase at a faster rate, which is expressed as a distance exponent greater than 2. The
attenuation slope isincreased because the received signal is typically a combination of
a direct path and a low angle reflection off the ground [37]. When these signals
combine, theresulting signal attenuation is proportional to distance to the fourth power.
This effect has been observed in practice, with experimentally determined attenuation
exponents between 3 and 5 [32][42]. High attenuation exponents (greater than 4) tend
to occur both in dense urban areas and in other areas when the separation between
transmitter and receiver ismore than 40 km. Thisadditional attenuationisprimarily due
to signal scattering off objects blocking the signal path. The path attenuation does not
vary significantly within the frequency band of atypical radio system.

The second propagation characteristic is shadowing, which includes signal

attenuation caused by buildings, hills, wall partitions, or any other object that is very



large compared to the radio wavelength and blocks a line of sight path. Radio
propagation can also be enhanced by atmospheric ducting [42], a condition where the
atmosphere refracts radio waves towards the earth and improves propagation
characteristics over the horizon. The signal path improvement or attenuation is modeled
as alog-normal random variable whose variance depends on the environment. As users
move, the shadowing varies because of the blocking effect of different objects. Like
path attenuation, shadowing does not vary much over the ranges of frequencies
employed in most communication systems.

The last propagation characteristic incorporated in the model is fading, a
process caused by the combination of many different signa paths at the receiving
antenna. The common name for thisis multipath and it is modeled as either a Rayleigh
or a Rician process. Rayleigh fading occurs when there are a very large number of
roughly equal powered, independent signal paths. When the signals combine at the
receiver the voltage has a complex Gaussian distribution, as aresult of the central limit
theorem [41]. The Rayleigh distribution is the amplitude of the complex Gaussian
voltage. In terms of signal power, the square of voltage, Rayleigh fading has an
exponential distribution.

Rician fading is Rayleigh fading with one large signal component added. This
type of fading occurs when the received signal is a combination of a strong direct path
and many weaker, scattered paths. The Rician model is more accurate for many

situations, but the Rayleigh model is used more often for analysis because it is



mathematically smpler and it represents the worst case in signal fading.

Since Rayleigh and Rician fading result from the vector addition of multipath
signals, they are a strong function of the phase angles of these signals. Consequently,
small changes in frequency or distance vary the phase of the multipath signals and
change the fading level. Fading also tends to change with time due to mobility of
transmitters, receivers, or other objects in the neighborhood.

The three characteristics can be combined into one statistical expression for the
received signal power:

n

= p,cH X, X

& (2.1)

r S

where P, isthe transmitted power, C isaconstant that incorporates antenna gains and
other fixed factors, d is the distance from transmitter to receiver, n is the attenuation
exponent (usually n=4for mobile radio systems), ; is an exponentially distributed
random variable corresponding to the Rayleigh fading, and Xg is the shadowing
random variable:

0X0
X, = 101% (2.2)

where x hasaGaussian distribution, typically with standard deviation 0 = 8 decibels.
2.1.2 Cdlular Systems

The cellular concept was devel oped at Bell Laboratoriesin the 1970s as part of

the Advanced Mobile Phone System (AMPS). In this system, the coverage area is



divided into hexagonal cellsand abase station islocated at the center of each cell. Users
in agiven cell only communicate with that cell’s base station, as shown in Figure 2-1.
However, they also generate interference to nearby usersthat share the same channel. To
mitigate interference, channels are assigned to each cell according to a re-use pattern.
For example, acommon pattern isK=7, in which channelsarere-used every seven cells.

Thisforces the closest interferer to be at least two cells away.

Figure2-1 Cellular Concept with Re-use Factor 7

Desired User

Under worst cast conditions, the signal-to-interference ratio (SIR) on the

desired user’s link will be fixed by the ratio of the distances R, and R;, if shadowing

and fading are neglected. The SIR, v, isthen lower bounded:

y > nicnj (2.3)



where n is the same propagation loss exponent given in Equation 2.1. Re-use factors
and associated distance ratios are given in [37].

The SIR level onachannel iscritical becauseit determinesthe transmission rate
that can be achieved. More sophisticated channel accessalgorithmsall work to maintain
an SIR level that is high enough for each user to communicate, but no higher than
necessary. The goal is to adapt to actual interference conditions rather that relying on
worst case channel alocations. In this way, capacity can be increased by reducing the

average re-use distance for channels.

2.2 Wirdine Channels

Wireline systems have many physical forms including coaxial cable,
waveguide, twisted pairs. In this work, twisted pairs in a cable bundle are studied
because this is the medium for future multiuser wireline communication systems, such
as the asymmetric digital subscriber line (ADSL) [55]. The ADSL system was
developed to alow high speed digital communication to homes over traditional
telephone wiring. The system employs very fast data rates, 6 megabits per second
(Mbps) from the telephone company central office to the home and 768 kilobits per
second (Kbps) in the reverse direction. Applications include cable television, internet

access, and videophone service.

2.2.1 Twisted Pair Cable Characteristics

Twisted pair cables have three magor channel impairments. These are

10



attenuation with distance, near end cross talk (NEXT), and far end cross talk (FEXT).

Each of theseisfrequency dependent and can be modelled as afrequency response. The

attenuation of the twisted pair channel, G,(f), is determined by the cable length and

by the presence of bridge taps at different points along its length. G,(f) can be

determined by an equivalent circuit model for transmission lines. For the resultsin the
dissertation, the frequency response models for Bellcore [5] standard loops are used.
The NEXT and FEXT terms are computed with a model based on [38]. NEXT

has a fixed frequency response:

10
K f —3/2
Gnext(f) = %}0-5 %f_o% (2.4)

The cut-off frequency for NEXT, f, is 0.772 MHz. FEXT is aso affected by the

frequency response of the disturbed twisted pair and the length of the cable, I:

10 2
Grexr(f) = B%E Efid% %l—()EGo(f) (2.5

In this equation, f, = 3.15 MHz and |, = 1000 feet. K, and K. are gamma
distributed random variables with mean and variance determined by the type of cable
[38]. The gamma distribution is similar to the Gaussian distribution in that it can be
completely determined by its mean and variance, however it has a different structurein
the tails. The gammadistribution is:

Xo

PIx< %] = % [xe-tebrix (2.6)
0
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with parameters v and 3 derived from the mean and variance with the equations:

2
V:E%E B:sz 2.7)

and the gammafunction is a generalized factorial based on Euler’'s integral:
r(v) = It"—le—tdt ,v>0 (2.8)
0
2.2.2 Wireline Signaling For mat
It is assumed that a multiple signal format such as that proposed in the ADSL
standard is used on the wireline channel. The ADSL system uses discrete multitone
transmission (DMT) [7][15]. Thismodulation format partitions the frequency spectrum
into bins that are 4.3125 KHz wide with a discrete Fourier transform. The frequency
partitioning allows each bin to be modulated separately with a constellation sizethat is
appropriate for the signal-to-interference ratio that can be achieved on the bin. In the
downstream link (from service provider to residence), there are 256 frequency bins. A
plot of typical gain, NEXT, and FEXT, between twisted pairs in a PIC cable on the
downstream path is given in Figure 2-2. Like the wireless channel, the ADSL wireline
channel becomes interference limited when the cable bundle is shared by multiple user

pairs.
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Figure 2-2 Loop Gain with Typical NEXT and FEXT Response
0

Lbop Gain - | | |
40 S ARRRERERRES ARARELRREES SRR SRR

Frequency Response (dB)

50 100 150 200 50 300
Bin Number

2.2.3 Wireline Channel Access

Current ADSL systems employ amultiple access technique that is analogous to
fixed frequency re-use in the cellular wireless system. Each user enters the system at a
fixed power level and allocates a QAM constellation for each frequency bin based on
the received signal level. The interference level is assumed to be the 1% worst case for
acongested cable [55]. In practice, however, the maximum SIR level will depend on the
specific cable characteristics and the power levels of other users on the cable. System
capacity, in terms of the average user transmission rate, can be improved by adapting to
the actual interference conditions. Section 3.4 explores the capacity improvement that

is possible with probing and dynamic power allocation.
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2.3 Multiuser Channels

From amultiuser standpoint, wireline and wireless channels are fundamentally
similar as shown in Figure 2-3 and Figure 2-4. Consequently, signalling techniques that
have been applied to wireless systems can also be applied to wireline systems. Both
systems are called multiuser because any user’s transmission will cause interference to
other users. To maximize performance, the transmitter signaling and power level must

be coordinated between every user in the system.

Figure 2-3 Wireline Multiuser Channel

Signal —»
USerl>K X < User 2
.

FexT 4 ( NEXT

Signd —» - — -  <«— Signd ~ _ _
User3>K X X X X X < User 4

Figure 2-4 Wireless Multiuser Channel
Base station 1

= Base station 2

> o Interference
~

Signa ~
~ - >

o<
Interference _ — ~
— - \

Signal
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A general model for multiuser channels is the interference channel shown in
Figure 2-5. The model consists of N coupled transmitter-receiver pairs. Each pair
represents alink, such as user-to-base station for a cellular system, or user-to-user in a
wireline twisted pair. Each link receives interference from every other link, and from
thermal noiseinthereceiver. The (N x N) link matrix, G, isdefined by the power transfer

functions between each transmitter and each receiver. As shown in Figure 2-5, element

G refers to the gain from the transmitter on link j to the receiver on link i.

Figure 2-5 Interference Channel Model

io
G
Tx 0 00 Rx 0
Ginyo G0
Go1
Tx 1 Cu Rx 1
Go(n-1)
Gty
Tx N-1 (n-1)(n-1) Rx N-1

Nn-1 (thermal noise)

The links have signal-to-interference ratios:

15



P;G;; C i —
——forlinki = 0...N-1 (2.9
ZPJ-G”-+Ni

IE3

where P; isthe power of the transmitter on link i and N; is the power of the thermal

noise.

In most systems, the interference channel will be divided into independent sub-
channels or frequency bins. Each of these is considered to be a separate
communications channel. A link may or may not see the same interferers on each sub-
channel. The entire interference channel is characterized by a transfer function matrix
and a noise vector for each sub-channel.

There are two major differences between wireless and wireline channels. First,
the gain matrix, G, for wireless channel s tend to vary much more quickly than wireline
channels. Second, the amount of coupling between users, characterized by the off
diagonal elements of G tend to be much smaller for wireline users. These difference

affect both probing and bit alocation strategies.

2.4 Multiuser Channel Capacity

The concept of channel capacity was introduced by Shannon [50] as the
definitive upper bound on the transmission rate over a communication channel. For

Gaussian channels, it is easy to compute the capacity [17]:

C = WiogHL + %E (2.10)
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where P isthe signal power, W is the bandwidth, and N, is the noise power per unit
bandwidth. Recent developments in modulation and coding have demonstrated that it
is possible to achieve rates that approach capacity on Gaussian channels. These
methods are used in the telephone line modems we use every day.

The situation is more complicated for multiuser channels. First, for amultiuser
channel there is not a capacity number, but rather a region of achievable rates with as
many dimensions as users sharing the channel. Second, it is very difficult to compute
the capacity of multiuser channels. In fact, the capacity of the interference channel (our
system model) is unknown [17], although there has been significant progress in
determining appropriate bounds [9][10][12][26]. At the present time, however, a direct

evaluation of multiuser system performance with theoretical capacity is not possible.

2.4.1 Practical Restrictions on Signaling For mat

The alternative to comparing a multiuser signaling algorithm to theoretical
capacity is to compare new signaling algorithms to older ones. To make these
comparisons fair, a set of practical capacity measures must be used that take into
account the limitations of the signaling and detection methods used in real systems.

For wireless systems, it is assumed that some type of time and frequency
division multiple accessis employed. For frequency division multiple access (FDMA),
the spectrum is divided up into orthogonal sub-channels on different frequencies. Each
of these sub-channels is an independent interference channel. Since different sub-

channels may have different propagation characteristics, there is often a benefit in
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allowing each user to use each channel. This is accomplished with slow frequency
hopping [51].
For ADSL wireline systems, it is assumed that discrete multitone transmission
(DMT) is used. DMT divides the channel into 256 sub-channels on the downstream
path (service provider to user) and 32 sub-channels on the upstream path (user to
service provider). Every user shares every sub-channel and no time division is used.
Quadrature Amplitude Modulation (QAM) is the standard modulation format,

and the maximum number of bits per symbol is:

b = Iog%l + rZapE (2.11)

where y is the signal-to-interference (SIR) level and M gap is the gap between the
system performance (required SIR for a desired bit rate) and the theoretical minimum

SIR. In all cases it is assumed that a single user detector is employed and that the

interference appears as Gaussian noise.

2.4.2 Practical Capacity of Interference Channels

For wireless cellular systems, one performance measure is the user capacity,
which is defined as the offered load (in Erlangs) per cell that will yield a blocking
probability of 1%. The assumptions are that user arrivals are random, independent, and
uniformly distributed in space across the system. The arrival processis Poisson and the
user hold times are exponentialy distributed. Comparisons between systems assume

that the number of channels (system bandwidth) is the same.
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For wireline systems, capacity is measured with a revenue function for the
system and algorithms are compared in terms of revenue. A typical revenue function

has the form:

a -

3 NiR —aNg (2.12)

2l

where N isthe total number of users admitted to the system, N; isthe number of users
admitted at rate class i with corresponding revenue R;. N is the number of users
dropped (forced out of the system by new users) and a is the weighting factor for

dropping.

2.5 Dynamic Channel Allocation

Since the modul ation and detection methods are fixed, wirel ess system capacity
will be determined by the allocation of channels and power to users. A baseline system
isthe cellular system with fixed frequency re-use. Here channels are allocated by fixed
patterns according to worst case interference conditions. Capacity can be increased by
allocating channel s and power to usersin amore efficient manner. Thisprocessiscalled
dynamic channel allocation (DCA) because channels are all ocated to users asthey need
them.

In the fixed re-use cellular system, channel accessis determined at the cell level
and can be easily determined by the base station. If the channel is not currently in use,
then it can be allocated to a user. With DCA, the assignment of channelsto cells (and

to users) isno longer fixed. The advantage of DCA isthat it can employ an adaptive re-
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use distance for each channel. Since most users are not operating under worst case
conditionsthey can often tolerate asmaller re-use distance. Over the set of all users, the
average re-use distance is reduced. This increases the number of users per channel, a
common and important measure of system capacity.

The disadvantage of DCA is an increase in system complexity. Since channels
arenot directly allocated to cells, channel access can no longer be determined at the cell
level. Sophisticated allocation techniques require a new user to be able to determine
whether or not it is feasible to access a channel. Channel probing provides this
information and consequently, DCA and probing must work together. In general, the
probing algorithm is first applied to determine the channel characteristics. Next, a
choice of channel allocation is made based on which channel (or group of channels) can
best carry the required allocation of bits. Power control is then used to allocate the
proper transmitter power to each user so that every SIR constraint can be met at all

times.

2.6 Power Control

2.6.1 Fundamental Concepts
The objective of power control is to compute a power level for every user in

order to meet a set of SIR constraints. This problem has been explored in [69]. In the

general problem, individual userswill have usersdifferent SIR constraints. Inan N user
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system the vector of SIR constraints for the usersisy = {vyy, Yy, ..., Yny_1 andthe

vector of user transmitter powersis p = { pg, Py, .-, Py_ 4} - Defineamatrix H with

G..
off-diagonal elements (i # j) hij = —\% and diagonal elements (i = j) equal to 1.

N
Also, define a noise vector n with elements n, = M_ This term represents the
i

AWGN in the receiver scaled by the gain on the desired path and the SIR constraint.

The set of feasible solutions has the constraint:

Hp=n (2.13)
and the optimal solution (in terms of minimum power) is found when equality holds.
For agiven gain matrix G and SIR requirement set v, afeasible solution exists when:

det(H) >0 (2.14)
and all principal minorsof H are greater than zero. Under this condition, theall positive

optimal power vector is:

p* = Hn (2.15)

2.6.2 Distributed Power Control

Inalarge systemit is desirable to compute p”* in adistributed fashion. This has
been explored in [3][4][18]. In [4], the set of users is partitioned into an active group

that maintain their SIRs by a power update and a new-user group that increase their
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powers in fixed steps until they either achieve the desired SIR level or give up. The

power update equation for active usersis.

p;(n)dy,
ri(n)

pi(n+1) = (2.16)

where r;(n) isthe SIR measured by user i attime n, y; isthetarget SIR level and &

isasmall constant greater than 1. New users initiate transmission at a very low power

level and increase their powersin fixed steps:

pi(n+1) = dp;(n) (2.17)
Under this distributed algorithm, the SIRs of active userswill be maintained between y

and oy and new user SIR levels will converge to a maximum feasible SIR level as n

becomes large.

2.7 Summary

Future multiuser systems will incorporate both DCA and power control to help
maximize capacity. (The acronym DPCA is often used for the combination of power
control and dynamic channel allocation.) Recent work [65] in DPCA algorithms has
yielded very high capacity algorithms that offer significant improvements over fixed
allocation techniques. However, these algorithms require precise knowledge of the
achievable SIR level for each user. They aso require precise power control to insure
that every user can maintainits SIR level. In acomplex communication system, such as

acellular or aPCS network, it would be difficult for acentral controller to measure and
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maintain all the information necessary to implement the next generation of DPCA
algorithms. The fact that these algorithmswork best when each user employs frequency
hopping (or another method to access multiple channels) makes the implementation
problem even more difficult.

The solution to the complexity problem lies in distributed algorithms. The
distributed power control algorithm mentioned above is well understood and can
achieve virtually the same accuracy as centralized power control in a wide variety of
environments. The next step isto make the entire channel allocation and user admission
process distributed and yet retain the capacity of the new DPCA algorithms. This can
be achieved with channel probing.

Channel probing assumes that each active user in a multiuser system will
employ distributed power control to maintain its SIR level. New users probe each
channel at low power to determine the maximum feasible SIR level that they can
achieve without disturbing the active users. Thisinformation isthen applied to aDPCA
algorithm. Once a channel (or set of channels) is selected, the new user admits itself
directly to the network. No centralized control is needed.

Research in channel probing consists of developing algorithms and exploring
how well they work. The algorithms discussed in the next three chapters have been
tailored for different wireless and wireline systems. In some systems it is possible to
accurately measure signal and interference power levels while in othersit is not. This

influences both the channel allocation algorithm and also the probing method. When it
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is possible to precisely measure the channel it is also possible to probe very accurately
and achieve a very well engineered system. When accurate measurements are not
possible, the probing algorithm will use a heuristic that tries to balance the goals of

rapid response and good admission decisions.
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Chapter 3

Probing Power Controlled Channels

This chapter explores the fundamental algorithm for channel probing and the
limitations on its accuracy. The emphasis is on communication systems where the
channel isvery stable relative to the symbol rate. In these systems, the gain matrix, G,
will remain constant long enough for users to estimate the important parameters and
choose a channel and power allocation. Stable channels include indoor wireless
channels and ADSL wireline channels. For these channels, it is possible to perform

precise bit alocation using the channel probing information.

3.1 Probing for Maximum Feasible SIR

In Section 2.6 the concept of afeasible set of SIR constraints was introduced.

For distributed power control to operate properly, each user must pursue an SIR

constraint, y;, that is feasible. To simplify the choice of SIR level, each user is forced
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to select alevel at admission time. It is assumed that the channel is currently occupied
by other users that are operating with distributed power control. When a user entersthe
system it is only allowed to select an SIR level that is less than the maximum feasible
level, given the other user SIR constraints. Thisway the active users on the channel are
always driving the distributed power control to a feasible solution.

The maximum feasible SIR level that a new user can obtain on a power
controlled channdl is:

G;i(P1— Po)

Ymax = a(py) —alpy) 1)

where p; and p, are two different transmitter powers, p; > p,, G;; isthe gain on the

i
signal path, and q(p;) and q(py) are interference measurements made while
transmitter power levels p; and p,. Thisresult wasfirst approximated in [27] and later
shown to be exactly truein [65].

Theinitial power level, p,, can be set to zero and the probing result still holds.
In fact, with this information, the new user can also compute r(p), its SIR level at
transmitter power p:

pGiiymax
q(o)ymax + pGii

The probing solution for r(p) isidentical to what the new user would achieve

by increasing its power according to equation (2.17) to p and then waiting for the
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distributed power control algorithm to converge completely. However, the probing
solution offers several advantages. First, probing can be performed much more quickly.
Thisisimportant if several channels must be probed to determine which is the best for
bit alocation. Second, the probing can be performed at avery low power. This prevents

excessive interference to active users if the channel turns out to be very congested.

3.2 Probing Accuracy

Theaccuracy of channel probingiscritical becauseit placesafundamental limit
on the performance of any DPCA agorithm that uses the probing results. When the
probing result is in error, the DPCA algorithm may choose the wrong channel or
allocate the wrong constellation size to a channel. This results in a loss in capacity
relative to a system where perfect measurements are possible. In a dynamic
environment, probing errors are inevitable even if the measurement technique is
optimal. This section explores the sources of probing errors and discusses waysto limit
them in practice.

Channel probing depends on both the accuracy of signal and interference
measurements and on the accuracy of the underlying channel model. It is assumed that
the channel varies extremely slowly relative to the symbol rate of the system. This
assumption is necessary in order to measure received power, received interference, and
the channel gain. If the channel varies on the order of the symbol rate, such asin alow
data rate mobile system with rapid Rayleigh fading, distributed power control is only

possible with averaging over the fading. In this case a different power control strategy
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is needed and precise channel probing is not feasible.

It is aso assumed that the channel gains vary slowly with respect to the power
control update rate of the system. This assumption is necessary to insure convergence
of the distributed power control. The resultsin Section 3.2.1 and Section 3.2.2 depend
on exact convergence. In mobile radio systems, however, shadowing and other effects
can limit the ability of the power control to track the channel. When this occurs the
effectiveness of channel probing becomes limited and a different strategy must be
employed. A method for implementing DPCA under these conditions is discussed in

Chapter 4.

3.2.1 Estimation With Coherent Detection

A coherent receiver alows the probing user to make accurate measurements of
the maximum feasible SIR on the power controlled channel. The system model in
Figure 3-1 is assumed.

Automatic gain control (AGC) is employed to compensate for the transfer
function of the channel. A known probing sequence is transmitted to the receiver or, if
the SIR is high enough, a decision based loop is used to adjust the AGC. In either case,
it is assumed that the knowledge of the channel gain is perfect and gain errors will not

be introduced into the estimate of the interference power. To compute the estimate of

Ymax thetransmitter sends aprobing signal at theinitial power level. Thereceiver waits

until the interference power on the channel has settled and then begins the measurement
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of itsfirst interference power estimate, &1. The interference power is averaged over a

frame of length N and stored.

Figure 3-1 Interference Power Estimation
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The transmitter then increases its power by afactor &. Once again the receiver

walits until the interference power on the channel has settled and then it measures the
second estimate, qA2 . Thereceived signal powers are computed from the AGC settings,

yielding s; and s,. The maximum feasible SIR estimate is computed with:
Ymax = == (3.3)

To simplify the error analysis, theinverse of V.., isused. Let B = y-L  and let B be
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the estimate of B. Then,

o 1 A oA
B = 56——1)515(%_%) (34)

If the interference seen at the receiver is Gaussian, then the interference estimates and

B will be chi-square distributed [45]. Using this fact:

E[B] = B (3.5)
N 2 2
varl®) = 5 g o 59

Therefore, the estimate of B is unbiased and depends on the frame length used for the
estimates and the change in interference level between the two estimates. Since the

estimate is unbiased, the variance is the same as the mean-square error (MSE). Making

the substitution, g, = (1+¢€)q; the normalized root-mean square (RMS) error is:

Error = J %l 2(1+8)D (3.7)

The error in the estimate of the maximum feasible SIR is due to the size of the
frame used to make the estimate and the gap in interference level between two

measurements. Thisfact can be exploited to allow new usersto know how accuratetheir

estimates of y,,, Will be. After making an initial measurement of the interference

power, the new user can increase its transmitter power until it measures a change in
interference that is large enough for an accurate estimate. If, after increasing the

probing power by several decibels, the interference does not increase, the new user will
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know that any practical SIR level will be feasible.

3.2.2 Estimation Without Detection

Sometimesit is desirable to probe the channel at avery low SIR level. For alow
power probe, it might be impossible to provide carrier synchronization, symbol
synchronization, or accurate decisions. However, it is till possible to probe the channel
with a series of power measurements. It is assumed that a square law detector isused to
measure power, and the results are averaged over multiple symbols to improve the
accuracy. Since there is no symbol detector to separate the received signal from the
interference, it is necessary to provide away for the receiver to make several different
measurements. It is also assumed that the system will allow the probing user to measure
the receiver noise, desired signal plus receiver noise, and the interfering signal plus
receiver noise on separate channels or segments. This is possible if synchronization

information is made available on a setup channel.

The receiver noise is averaged over N; symbols and stored in r;. The

transmitter turns on its higher power setting and the receiver averages N, symbols and

storestheresultin r, . As before, the new user measures interference levels cfl and qu

by averaging over N, symbols. The received signal power is estimated with:

S, =r,-rg (3.8
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and the inverse of the maximum signal to interferenceratiois.

8 = Byt 39)

This is the same as equation (3.4), except that the larger signal power measurement is
used because it will have a smaller error. The estimate of the signal power is unbiased
(E[5,] = s,) and its variance is a function of the receiver noise power, g2, and the

number of symbols used in the estimate:

A 4 4
Var[§,)] = N—1320§+ N—loﬁ (3.10)

This holds true for any zero mean signal that is not correlated with the receiver noise.

To compute the statistics of the estimate B the approximation from [41] is employed:

2
E[90)] D(n,) + 9" (0,)5 (31

where n, and 02 are the mean and variance of x. The expected value of the probing

estimateis:
. 0 402 4030
E[B] OB + + ——{] (3.12)
O SNy sEN

which shows that the estimate is asymptotically unbiased. An approximation of the

RMSerror is:;

402 404 24Jo02  24)0%
rror DJ§+ Ny D+ N+ A (3.13)

Ny $5N; siNZ2 - S$NGN, - s2N2N,
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where J = 1+ 2(1—+28) and £ = ?Tz—l as in the error estimate for the coherent
€ 1

detection.
To compare the two probing methods, assume that a probing segment is used at

the beginning of each frame and it occupies 10% of the frame length. Also assume that

the signa to noise ratio (SNR) for the signal is O dB. Substituting N, = 0.9N,

52
N, = 0.IN, and g” = 1 into equation (3.13) yields:

(3.14)

fror = 2.222J +40 _266.7J +400 _2667J
N N2 N3

A plot of the estimation error in dB for the two probing techniques is given in
Figure 3-2. The top two curves show the error for achange in interference level of 0.25
dB and the lower two curves show the error for achange in interference level of 2.0 dB.
From these curves it can be seen that for N > 100 the difference between the two
probing techniques becomes small compared to the error. This implies that estimating
the channel gain without symbol detection does not introduce a significant error if N
can be made sufficiently large. For N = 107 it is possible to estimate the maximum
feasible SIR within 1.5 dB. Thus, for stable channelsit is possible to probe the power

controlled channel very accurately.
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Figure 3-2 Probing Error Due to Interference Estimation
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3.2.3 Effect of Distributed Power Control
Another source of error for channel probing is the convergence of distributed
power control. Channel probing requires precise measurements of interference from the

active users. If the interference levels are changing because of the distributed power

control algorithm, thiswill lead to errorsin the estimate of y, ., . To completely avoid

these errors, the probing user must wait for the interference level to converge
completely. Since this may not be practical, a bound on the error due to power control
convergence is derived.

From [4] we know that the distributed power control will converge whenever



there exists a feasible solution for equation (2.13). However, the rate of convergence
depends on matrix H . The distributed power control algorithm is equivalent to amatrix

update equation for the power vector:
p(k+1) = Fp(k) +n (3.15)

where

F=I-H (3.16)
and | istheN x N identity matrix. When anew user probesthe channel the active users
see a change in the background interference level and adjust their powers upward to
compensate. The interference seen by the new user isthe inner product of p(k) and a
vector of transfer functions from the active users to the new receiver,
9n = [Ono 9n1 -+ Inn—1)] T - Consequently, the interference level follows the
convergence rate of the current set of active users. When probing we may assume that
the active users have converged completely for the first interference measurement. The
new user then turns on its transmitter power and waits m steps before measuring the

second interference level. The difference in the interference measurementsis:
g,(m)—-q; = 9;[' —F"(p,-py) (3.17)

and as m becomes large, F™ —. 0 and the difference will increase uniformly to the

desired result:

9 (P2—Py) (3.18)
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Using the Holder inequality [30], the absolute error at step m can be bounded by:

rror < ||gn||°o||F||5“|| P, — p1||1 (3.19)

In many systems, the changein interference will be dominated by the changein

power of the strongest interferer. We can then make the substitution:
190l P2 = P, = COF (P —Py) (3.20)
where C isasmall constant greater than 1. Then, the normalized error is bounded by

C|F|". As m becomes large, the error can also be bounded by the spectral radius

(largest eigenvalue) of F, however thisresult isless useful for probing sincethe goal is
to keep m as small as possible.

The error result has several implications. Unlike the errors due to estimation of
interference power levels, the error dueto power control convergence cannot be reduced
by increasing the difference in transmitter power between each probing step. Also, as
active users choosetheir SIR targets closer to the maximum feasible, the norm of F will
increase, convergence will slow down, and accurate probing will take longer.

To measure the probing error in due to convergence, a 19 cell wireless system
with multiple channels and slow frequency hopping was simulated. We assumed that
interference measurements are averaged over frames long enough to make the
measurement error insignificant. Consequently, any errors due to interference
estimation are ignored. Distributed power control is used and probing users wait from

2 to 6 steps for the power control to converge before making measurements.
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The measurement procedure is as follows. A new user enters the system and
probes 23 channels at low power. It then stores those results and slowly increases its
power according to equation (2.17) for 75 steps. It then compares its current SIR level

on each channel with the probing estimates. The results are given in Figure 3-3.

Figure 3-3 Probing Error from Power Control Convergence
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The probability of a probing error greater than 2 dB is plotted as a function of
the number of steps, m. For m> 5 the error rate no longer decreases, indicating that
additional convergence time does not improve the probing estimate significantly. Since
error due to power control convergence must decrease with increasing iterations, the

residual error is not due to power control convergence. Therefore, we conclude that the
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convergence error isnegligiblefor m>5.

3.2.4 Effect of User Dynamics
The last probing error we investigate is the effect of user dynamics, the entry
and exit of users from the system during probing. There are several specific errors that

fall into this category. For example, two or more users may probe the channel at the

same time causing inaccurate estimates of y ..., or, auser might exit the system while

anew user ismaking interference measurements. In the latter case, the interference may
actually drop during probing which leads to a completely erroneous result. In general,
errors of thistype can be reduced or eliminated if probing can be done quickly relative
to the dynamics of the system. Of course, any probing result will be out of date once an
active user leaves the system. However, if probing is used as part of an admission
control procedure, active userswill be ableto maintain the SIR levelsand bit allocations
they determine from probing.

To measure the probing error due to user dynamics, the smulation program
described in Section 3.2.3 is used. The new user waits m = 5 iterations after probing
to eliminate convergence errors. The resulting probing error is then assumed to be
entirely due to user dynamics. The new user stores the probing results and slowly
increases its power according to equation (2.17) for 75 steps. It then compares its
current SIR level on each channel with the probing estimates.

The entire interval from initial probing to final SIR measurement is called the
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probing interval. After the probing interval, the new user is admitted to the system as
an active user, where it maintains target SIR levels on a subset of the channels with
distributed power control. The active timein the network isan exponentially distributed
random variable. The average active time was varied over several simulation runs to
evaluate the effects of user dynamics. Figure 3-4 presents a plot of the simulation

results.

Figure 3-4 Channel Probing Performance
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Astheratio of probing timeto active time approaches 1%, the user will be able
to probe within 3 dB of the correct SIR level about 85% of the time and within 1 dB

about 80% of the time. An error of 3 dB is significant, because that corresponds to the
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power change to allocate an additional bit for systems that employ multiple
constellation sizes. When the probing errors are below this amount we know the system

is accurate enough to make bit allocation decisions as part of an admission algorithm.

3.3 Application of Probing to Indoor Wireless
Systems

Sophisticated DPCA agorithms for indoor wireless applications have been
developed based on adaptive bit allocation [65]. Of these algorithms, the best
performing is a minimum hop interference avoidance strategy. With this strategy, each
user must alocate a set of M bits over agroup of N frequency hops with the minimum
number of hops possible. If afeasible allocation cannot be found, the user is blocked.

The minimum hop strategy achieves high capacity by allowing usersto adapt to
the actual interference conditions. Users near the base station can use afew slotsat high
SIR levels and achieve very high re-use factors. At the sametime, users at the cell edge.
can use more channels at alower SIR level. Power control limitsthe power of each user

to the minimum necessary for communication.

3.3.1 Simulation of System with Probing

The results in [65] were based on a centralized implementation of the
interference avoidance DPCA algorithm. We present new results to demonstrate that
this algorithm can be implemented in distributed fashion with channel probing. The

capacity lossin the distributed version of the algorithm is caused by probing errors and
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power control inefficiencies that occur with distributed power control (DPC). The

simulation helps to quantify this capacity loss. The specifications of the system we

simulated are given in Table 3-1.

Table 3-1: Frequency Hopped System with Probing

Channels 23

Constellation sizes 0,2, 34,5, or 6 bitd
symbol

I (SIR gap) 4dB

Average bits/symbol 2.17 (50 bits/ 23 hops)

Propagation Loss RS

Shadowing 10 dB standard devia-
tion

Number of Cells Simu- | 19

lated

The frequency hopping patterns for each user are determined by a group

coincidence system [65] in which auser seesinterference from the same set of usersin

each hop. Interference is avoided by the choice of channels that each user makes at

admission time. New users admit themselves with the following algorithm:

1

2.

If no hopping pattern is available, block user. Otherwise continue.
Select a hopping pattern that is free and has not been probed previously.
Probe all hops to determine y; and b; terms.

If total number of bits < 60 (50 + 10 bit safety margin) mark this hopping
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pattern as unusable and go back to step 1. Otherwise continue.

5. Allocate bitsto channels starting from highest to lowest y; .

6. Follow power update equation (2.17) for each channel until SIR level is
achieved.

7. Admit user to the system and use DPC equation (2.16) to maintain SIR level.

3.3.2 Simulation Results

Figure 3-5 isaplot of the blocking probability of the distributed DPCA system
with channel probing as a function of Erlang load. Two different simulation runs are
included. Thefast run has probing times 1% of the user active time and the slow run has
probing times of 0.06% of the user active times. These correspond to the operation
when probing is very accurate. For comparison, the performance of the centralized
algorithm is included in the plot. The fast run has 84% of the Erlang capacity of the
centralized system while the slow run has 91%.

The capacity of the distributed system is less than the centralized system
because errorsforce the distributed system to test for more bits (the safety margin) than
necessary to insure that it can be admitted to the system. However, this loss is small
compared to the gains from dynamic channel allocation and power control. A fixed
channel system (without frequency hopping) with the same bit load and number of

channels would have about 1/5 the Erlang capacity of the distributed system.
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Figure 3-5 Performance of Indoor Wireless Systems
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3.4 Application of Probingto ADSL Wireline Systems

In the indoor wireless system explored in Section 3.3 the goal of the access

algorithm was to admit as many users as possible, with each user sending data at the

same rate. For the ADSL system, however, the goal isto maximize the average bit rate

or acost (revenue) function over bit rates of usersthat occupy the channel. The number

of linksthat can be supported isfixed by the number of twisted pairsin the cable bundle.

However, users can be offered different bit rates depending on the transmission

characteristics of the channe!.
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3.4.1 Distributed Accessfor Wireline Systems

The distributed access method for the wireline system is very similar to its
wireless counterpart. A new user first probesthe channel for the maximum possible SIR
level and bit rate on each frequency bin. Next, it determinesthe maximum rate classthat
it can achieve from the total number of bits it can alocate. It then chooses a bit
allocation that will achieve that rate class, increases the transmitter power on each bin
to the necessary level and initiates data transmission. Once active, it maintainsthe SIR
levels on each frequency bin through distributed power control. The different rates are
shown in Table 3-2. Rates 1 through 4 are defined in the ADSL standard [55] and rates
5 through 7 were added for cases where significant improvement is possible with
probing.

Table 3-2: ADSL Rate Table

Upstream Rate | Downstream
Class (Kbps) Rate (Kbps)
1 192 1536
2 384 3072
3 576 4608
4 768 6144
5 960 7680
6 1152 9216
7 1344 10752

With probing and power control, active users always maintain their SIR levels

and consequently dropping does not occur. Therefore, the system revenue can be



simplified from equation (2.12) to:

R, =

Zl-

S NiR (3.21)

where N isthe total number of users, N; isthe number of users admitted at rate class

I with corresponding revenue R, . Revenue can be set to equal the bit rate of the class.

Revenue is maximized by allowing each user to transmit data at the highest rate
possible, subject to the constraints of interference at admission time. Like the bit
allocation problems explored in [65], an optimal revenue maximizing algorithm would
require an exhaustive search over the space of feasible bit allocations. Since a search of
this type is not practical, the admissions based algorithm seeks to maximize the
aggregate revenue by each user maximizing its own bit rate, subject to the current

channel constraints.

3.4.2 ADSL Simulation

A simulation program was developed to compare the performance of the
probing system against the present ADSL system. As mentioned in Section 2.2.3, the
present ADSL system usesaform of fixed allocation. Users allocate a constellation size
to each bin according to the received signal level on that bin and an assumed fixed
interference level. The interference level represents the 1% worst case cross talk level
based on measurements of real cables[38].

The probing algorithm used in the ADSL simulation is the same as for the

wireless ssimulation. The bit alocation algorithm is dlightly different, however. In the
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wireless system, the goal was to minimize the total number of channels that were used
for the bit allocation. For the wireline system, it is assumed that every user will alocate
bits on every available channel. Therefore, the goa is to minimize the excess
interference on each channel. The bit allocation starts by allocating as many bits as
possible and then removes bits starting with the channel with the least SIR margin until
the target number of bits has been reached. The complete algorithmis:
1. Probeall frequency binsto determine y; and b; terms.
2. Total the b; termsto compute the maximum feasible rate class.
3. Sort frequency bins according to excess SIR over that needed for allocated
constellations.
4. Repeat step 5 until the total number of allocated bits equals that necessary for
therate classin Step 2.
5. Decrease the hit allocation in the frequency bin with the smallest excess SIR
by one bit.
6. Follow power update equation (2.17) for each bin until SIR level is achieved.
7. Admit user to the system and use DPC equation (2.16) to maintain SIR level.
The ssimulation system parameters follow the ADSL standard as closely as
possible. A complete listing of the system parametersis given in Table 3-3.

Table 3-3: Simulation Parameters

Duplexing method: Frequency division
Upstream bins allocated: 7 through 31
Downstream bins alo- 32 through 255
cated:
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Bits allocated per bin: 2-15, or zero

Bit alocation SIR margin: | 12 dB (8 dB + 4dB coding
gain)

6 dB (2 dB + 4dB coding
gain)

P, (initial probe power) -60 dBm/Hz (bins 1-50)
-54 dBm/Hz (bins 51-255)

N (probing steps) 14

S (distributed power con- | 2dB

trol margin)

Maximum Power -40 dBm/Hz (bins 1-50)
-34 dBm/Hz (bins 51-255)

Kr mean -78.1dB

K standard deviation 11.17 dB

FEXT power sum K -45.0dB

The simulation program generates an interference channel model of 48 twisted
pairs using the FEXT model in equation (2.5). NEXT is not included in the simulation
because the upstream and downstream paths use frequency division duplexing and
therefore will not see any NEXT. The frequency response of each twisted pair is a
Bellcore standard loop [5] and the coupling is determined by the gamma distributed
FEXT interference. Gamma distributed random numbers are generated with an
algorithm derived from [35].

Aswith the wireless system, user arrivalsto the network are Poisson distributed
and the hold times are exponentially distributed. For each simulation run the load was

set to 36 Erlangs, yielding a blocking probability of 1% and an average load of about

47



36 simultaneous user pairs.

3.4.3 Simulation Results

The simulation program was run for Bellcore standard loops number 1, 7, and
8. These are representative of the worst case conditions which an ADSL system would
seein practice. Thefixed allocation system is compared with two probing systems, one
with a 12 dB SIR margin and the other with a 6 dB SIR margin. The fixed allocation
system operates with a 12 dB margin because sometimes the interference level will be
worse than the target used for bit alocation. This will not occur with the probing
algorithm, however, because power control will maintain every user SIR at the level
determined at admission time. Consequently it is possible to reduce the SIR margin
without risk of an unacceptable low SIR level due to future users on the same cable.

The results are plotted in Figure 3-6 and summarized in Table 3-4. Even with a
12 dB safety margin, the probing system could out-perform the fixed allocation system
in most cases. This demonstrates the effectiveness of probing and adaptive bit

allocation for the ADSL wireline system.
Table 3-4: ADSL Revenue Summary

: Probing Probing
Fixed | ith12dB | with6dB
Loop Allocation . :
Margin Margin
Revenue
Revenue Revenue
1 4608 6091.2 7664.1
7 4608 4609.6 6142.1
8 4608 4590.2 6129.5
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Figure 3-6 ADSL Simulation Results
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In general, the power controlled ADSL system with probing allowed each user
to increase its data rate by slightly more than one rate class, or roughly 1.5 Mbps. This
is equivalent to increasing the average constellation size by 1.5 bits on each bin. For

comparison, the gain achieved by channel coding is 6 dB, or 2 bits per symbol per
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frequency bin. While significant, this performance gain is not as dramatic as that
achieved with the addition of probing and DPCA to the wireless system.

The primary benefit of probing and distributed access for wireline systems is
that, like coding, they can provide an increase in bit rate (and revenue) without an
increase in system complexity. Power control and bit alocation functions can be
encapsulated in the ADSL modem hardware. Since each user makes its own probing
and allocation decisions independently, there are no changes required in system

software.

3.5 Summary

Channel probing can be successfully applied to multiuser systems when it is
possible to make very accurate signal and interference measurements. Accurate
measurements are possible when three conditions are met: the system symbol rate is
rapid compared to the rate a which channel gains vary (either due to fading or
mobility), adequate time is allowed for distributed power control to converge
completely, and user dynamics are slow enough for probing information to be up to date
by thetimeit is applied. These conditions are met for both high bit rate indoor wireless
systems and the DMT ADSL wireline system.

Power control and dynamic channel alocation provide the most benefit in
systemsthat are strongly interference limited with users sharing multiple channels. This
fact was demonstrated in [65] and has been verified by the results in this chapter.

Wireline systems such as ADSL are limited by maximum constellation sizes and power
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limitsin addition to interference, so they will not benefit as much from dynamic channel
allocation and power control as wireless systems. For congested systems, however, the
addition of probing, power control, and distributed access can provide higher bit rates

and higher revenue for system providers.
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Chapter 4

Probing Time Varying Channels

The goal of the previous chapter was to make probing as accurate as possible so
individual users could make precise bit allocation decisions. Thisallowed asystemwith
distributed, dynamic channel allocation to approach the capacity of a centralized
system. Unfortunately, this approach will not work when the channel varies faster that
it can be estimated. Power control becomes|ess precise and probing will not be accurate
enough to provide bit allocation information. A new algorithm that can produce quick
results is required. This chapter explores a faster alternative to precise probing that is
more suited to systems with channels that vary. Fast probing is applicable to mobile
radio (cellular telephone) and other systems where the radio transceivers are assumed
to be moving.

Inapower controlled cellular system, the users near cell boundariestransmit the

highest power and contribute the greatest amount of interference to usersin other cells.
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This causes a coupling effect in the network where changes in the interference level in

one cell can affect the interference level in other cells that are far away. Coupling can
be expressed quantitatively as |F| , the magnitude of the power control matrix update

in equation (3.15). High coupling corresponds to large off-axistermsin F that tend to
raise the magnitude [25]. High coupling is undesirable because it will slow the
convergence of the power control algorithm and limit its ability to track changesin the
channel characteristics. However, since users on the cell boundary experience the
largest propagation losses to their base stations, they are forced to operate at or near
their maximum power level. Consequently, they do not benefit from power control.
These “worst case” users can be moved to fixed assignment channels to reduce the
coupling effect. Meanwhile, other users can operate in power controlled channels to
yield the capacity advantages of dynamic power and channel allocation. The technique
of using two different channel typesis called channel partitioning.

Since the channel isvarying relatively quickly, it is natural to assume that users
will not be able to assign different constellation sizes based on the instantaneous SIR.
Rather, they will choose either to use the channel or not, based on whether a fixed
minimum SIR level isfeasible. The probing problem isthen transformed into aproblem
of finding the best channel to use as quickly as possible. In the worst case, if nho power
controlled channel can be found, the user can remain in afixed assignment channel.

The partitioned channel system isespecialy useful for acellular mobile system

with hand-off. Fixed assignment channels speed the hand-off process, since users do
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not need to find a power controlled channel immediately when entering a new cell.
Also, since new users enter the cell at the boundary, a fixed channel is the appropriate
choice. As the user moves away from the boundary, it switches to a power controlled

channel to minimize interference.

4.1 Channel Partitioning for Mobile Radio

4.1.1 Channel Partitioning Concept

The cellular system channels are partitioned into two sets, reserved and regular.
Reserved channels are assigned to base stations with fixed re-use patterns as described
in Section 2.1.2. Regular channels are assigned to every base station and allocated to
users by adistributed access algorithm. New users and active usersthat requirelargere-
use distances occupy reserved channels. All other users occupy regular channels.

There are two operating statesfor users, probing and active. In the probing state,
a user transmits data on a reserved channel while probing a regular channel. In the
active state, a user transmits data on aregular channel while applying distributed power
control to maintain its SIR. New users enter the network in the probing state and
migrate to the active state while transmitting data continuously. Probing is performed
in a short segment of each transmission frame so that it will not interfere with data
transmission, as illustrated in Figure 4-1. The segmented approach aso alows
operation with one transmitter and one receiver, minimizing the complexity of the

mobile transceiver.



The purpose of channel partitioning is to provide continuous user access while

achieving a high level of frequency re-use due to power control. It has higher capacity

than fixed re-use systems since most users operate in power controlled channels. The

reserved channels allow new usersto instantly transmit data instead of waiting for the

power control algorithm to find asolution, asis necessary with the algorithms described

in Chapter 3. While transmitting on a reserved channel, the new user probes regular

channels until it finds one where it can achieve the necessary SIR. If the pool of

available reserved channels is full, a new user is blocked. This can be determined

instantly, and the user can then make the choice to try again or give up.

Figure4-1 Signa Frame Format

Probing State
Regular Reserved
Channel Channel
Active State
Regular Regular
Channel Channel
Probing Transmission
Segment Segment

The channel partitioning system also provides a mechanism for hand-off with

power control. When a hand-off becomes necessary, the user moves from a power

controlled channel in the old cell to a reserved channel in the new cell. The user then

probes for a power controlled channel as if it were a new user. In a similar fashion, a
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user will hand-off within a cell if a power controlled channel becomes too congested.
Theratio of reserved channelsto power-controlled channelsis selected to maximize the
frequency re-use or effective Erlang capacity for a given number of channels. Erlang
capacity is maximized when worst case users are forced to remain in the reserved
channelswhile other users occupy power controlled channels. This helpsto mitigate the
coupling effect and reduces the effect of mobility on network capacity.

Another advantage of the channel partitioning system isbackward compatibility
with existing fixed channel assignment systems. Since existing cellular radio systems
(AMPS and IS-54 TDMA) use fixed assignment, it may be desirable to migrate them to
DPCA in the future to increase capacity. Initially, mobile users would use older
hardware that would not allow distributed power control. These users would occupy
reserved channels only. New mobilesthat use both reserved and regular channelswould
be then be introduced. As users upgrade to newer hardware, reserved channels could be
converted to regular channels, increasing system capacity.

The access algorithmis:

1. Create asorted list of accessible base stations with at |east one free reserved
channel.
2. If there are no base stations on the list, block the new user.

3. Initiate data transmission on areserved channel assigned to the nearest base
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station.
4. Initiate probing on the free regular channel with the lowest interference level.
5. If the interference change is greater than the threshold, release the regular
channel, hand-off if necessary, and return to step 4.
6. Otherwise, wait N steps for active users to adapt their power.
7. If the SIR level is greater than required, switch to normal state and rel ease the
reserved channel.
8. Otherwise, release the regular channel and return to step 4.
The power control algorithm is a modification of a distributed algorithm given
in Section 2.6.2. The objective is to allow new users to access power controlled
channels with less time delay. This reduces the load on reserved channels. The power

control update for active usersis:
pi(k+1) = pi(k)p;(k) (4.1)
where the update factor, W, (k) , is computed from the ratio of the desired SIR to the

measured SIR and upper bounded:
(k) = min2OL O (4.2)
i Gi(k)’ max_]
Here y is the desired SIR, r;(k) isthe SIR measured during frame k in the probing

segment, and & is the safety-margin. In the steady-state, the SIR of an active user will

be maintained at dy. When no users are probing, the interference measured in the

probing segment will be entirely due to other active users. In this case, the power
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control compensates for changes in signal and interference levels caused by user
mobility. The safety margin is determined by the change in the channel gain auser will
encounter from frameto frame. If the framerate isrelatively rapid compared to the rate
at which the channel changes, & may be small.

Unlike equation (2.17), where new usersinitially transmit asmall power that is
increased in fixed steps, the rapid probing algorithm requires users to estimate the
power they will require on a power controlled channel. New users attempt access to a

power controlled channel by transmitting a fixed power in the probing segment of:

00 V%
‘ — probe

where N isthe receiver noise power, G;; isthe gain to the base station, and 8, o, isa

probing margin factor. The probing margin is used to offset the difference between the
received noise power and the eventual interferencelevel if afeasible admission solution
isfound by the other users. A new user transmits the probing signal for afixed number
of frames and measures the change in interference level in the probing segment. If the
change in interference is less than &, it will continue to probe the channel for several
steps until the transmitter powers of the active users converge. If the new user achieves
thedesired SIR, it isadmitted to the regular channel. If not, then it triesto probe another
channel.

In the distributed power control algorithm with active link protection (described

in Section 2.6.2) power updates are always bounded by 8. A new users increments its
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power in steps of & and active users never need to increase their power by more than &

since their SIRs are already greater than or equal to y. With fixed power probing the
situation is different. When a new user probes a channel, it will not directly interfere
with active users. However, active users will seeincreased interference from the power
updates of other active users. This occurs because each user updates its power
according to the interference seen on the probing segment. If the increase in
interference between two framesis greater than the safety margin, an active user’s SIR
will drop below the desired level. Also, since the transmit power is limited, an active
user will sometimes need more power than is possible to maintain its SIR. In either
case, if auser cannot maintain its SIR it will switch from the active state to the probing

state and probe anew regular channel.

The maximum change in a power update is bounded by [, . The choice of

Hmax = © isthemost conservative. Thiswill prevent new users from disturbing active

users, assuming the active users do not reach their maximum power level. However, it

is often better to select ahigher level for p,., - This allowsthe active users to adapt to

new users more quickly, yielding asmaller probing time. Reduced probing time reduces
the load on reserved channels, increasing potential capacity. Active users that fail to
maintain their SIRs can re-probe and find new power-controlled channels.

The goal isto maintain a balance between new user access, rapid probing, and

active user dropping. In the partitioned channel system, the strategy isto use very rapid
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probing for power controlled channel access. This strategy arises from the fact that
accurate probing measurement are slow, both because of fading in signals and because
of the time required for the power control algorithm to converge. User mobility also
limitsthe accuracy of measurements because channel characteristicswill change before
they can be measured. Rapid probing places|ess of aload on the reserved channel s than
dow probing. The reserved channels then have extra capacity which is used to
accommodate active usersthat are forced out of power controlled channel s by imperfect
probing. The rapid probing algorithm can alow a user access to aregular channel in 4

to 7 power iterations.

4.1.2 Partitioned System M odel

Channel access is evaluated by the load that the system can tolerate at a given
blocking probability. Users are assumed to have Poisson arrivals, uniformly distributed
over the service area, and exponential hold times. Even under these conditions the
blocking probability for the partitioned system is very difficult to compute because the
load on the channels cannot be modeled by a simple process with Poisson arrivals.
Figure 4-2 presents a schematic model of the system. A new user enters the system and
Is served by areserved channel in the nearest base station. The user then movesinto a
regular channel when it finds one that will allow it to meet the SIR requirement. After
time, however, the user may no longer be able to maintain its SIR requirement in the
regular channel and it moves back to areserved channel in the same cell (are-probe) or

a neighboring cell (a hand-off). This occurs because of imperfect probing, finite
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transmitter dynamic range, and mobility.

Figure4-2 Network Model

New User Arrival
Regular

1 Channels  —»Call Completion

Nearest Cell
Servers

Re-probing or Hand-off

Neighboring Cell Servers

In the system model a new user is blocked when there are no available reserved
channels at the closest base station. Preference is given to users that are already in the
system by allowing them to access reserved channels in neighboring base stations. An
active user will temporarily hand-off to aneighboring cell, if it can achieve the required
SIR with that cell’s base station. The preference system provides additional reserved
channel serversfor active users and helps prevent active calls from dropping.

Since reserved channels are used primarily for probing, the hold time will be a
multiple of the time required to probe a regular channel. The multiple is equal to the

number of attempts it takes to find a suitable regular channel. Users nearer to the base
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station will probe fewer regular channels and also have the lowest probability of are-
probing event because they will not run out of dynamic range while holding a regular
channel. These userswill place very little load on the reserved channels. Users near the
cell edge, however, will require alonger time to probe for regular channels and tend to
re-probe often. These users place the largest load on the reserved channels and will be
the primary cause of new user blocking.

The system blocking probability will be a function of the net load on the
reserved channels. Roughly speaking, this will be the product of the net arrival rate
(new arrivals and re-probes) and the average hold time. If the re-probing rateislow, the
input to the reserved channels will be dominated by new arrivals. In this case, the
blocking probability can be approximated with the Erlang-B formula [6]. However, as
the re-probing rate increases, the arrivals at the reserved channels will no longer be
Poisson and this method is not accurate. This occurs because re-probing is a function
of the history of the system and the physical location of previous arrivals. Re-probing
tends to occur in groups, as regions become congested and the regular channels are no
longer able to support their users. Several users will then need to re-probe at the same
time. To evaluate the performance under these conditions, it iS necessary to use a

simulation program.

4.1.3 Trade-offsin System Design
Given the network model, it is possible to examine the trade-offs that determine

the user capacity for a given number of channels. In general, the more users that are
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operating in regular channels, the higher the capacity, since regular channels can
accommodate more users. However, enough reserved channels must be set aside to
allow new users to probe and active users to re-probe when necessary. A simulation
program is used to evaluate the performance of different configurations of channels.
The simulation program evaluates the performance of a network of 19

hexagonal cells, each roughly 7 km in diameter. The radio channel contains an

attenuation factor of R* and log-norma shadowing with ¢ = 8 dB. Shadowing
values are computed on a grid with 100 meter spacing. Actual shadowing values are
computed by a 2-dimensional linear interpolation of the shadowing value in decibels.
The total number of channelsin the system is 84. Each base station is allocated
n reserved channels in a fixed re-use pattern of 7. The remaining 84-7n channels are
regular channels that use DPCA. The SIR requirement in regular channelsis 18 dB.
New users arrivals are Poisson distributed in time and uniformly distributed in
space over the network. Hold times are exponentially distributed, with a mean of 4000
steps. The steps correspond to the power update step in equation (4.1). New users
follow the algorithm in Figure 7 for admission, with a waiting time of N=10 steps.
Active users in regular channels follow the power update in equation (4.1) with a
margin of & = 1.5 dB and a maximum power update of u = 2.0 dB. Transmitter
dynamic range for al users is limited to 66 dB. Users do not move in this first
simulation, but they are allowed to temporarily hand-off to a neighboring base station

during are-probe. This gives re-probing active users an access edge over new users and
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helps to prevent dropping.

The first simulation run was designed to find the optimal number of reserved
channels per cell in an 84 channel system. Five groups of simulations were run with
between 1 and 5 reserved channels per cell. For each simulation group, the arrival rate
was varied until a blocking probability of 1% was achieved. The results are plotted in
Figure 4. Thelargest user capacity (13.6 Erlangs per cell) was achieved with 2 reserved
channels per cell. For the same number of channels, afixed channel system can provide
12 channels per cell and a user capacity of 5.9 Erlangs per cell. In this case, the

partitioned channel system provides a capacity gain of 2.3.

Figure 4-3 User Capacity Optimization
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4.2 Mobility and Hand-off

The effects of mobility in fixed re-use systems is analyzed in [19]. In this
analysis, the probability of a call failure (blocking during initial access or dropping
during hand-off) is shown to be afunction of the number of channels, the call load, and
the average number of cells visited by a mobile during a call. To maintain a given call
failure probability, the number of channels must be increased as either the mobile
velocity is increased or the cell size is decreased. The same principle applies to the
partitioned channel system. More reserved channels are required to handle hand-offs
and probing for new regular channels as the level of mobility increases.

In addition to the problem of hand-off, mobility also introduces complications
for the power control and channel access algorithms. As auser moves, its gain termsto
the base stations will vary due to propagation distance changes and shadowing effects.
Asthe gains change, new transmit power levels must be computed to maintain the SIR
for each user. Eventually, some regular channelswill no longer be able to support all of
their users and re-probing will occur. This places additional load on the reserved
channels and decreases the effectiveness of regular channels to provide capacity gain
through power control.

When auser hands-off from one cell to another, there is achance that areserved
channel will not be available. If this occurs, the user must either be queued (i.e. wait)
until areserved channelsis available or forced out of the system (dropped). Dropping

users is undesirable, so we choose to queue the active user until a reserved channel is
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available. The user remains in the old cell on either a reserved channel or a regular
channel, if feasible. Hand-off occurs when the new cell hasafreereserved channel. The
hand-off algorithm is:

1. Create asorted list of accessible base stations.

2. If Gyax < Gc + 3 dB then do not hand off.

3. If the condition in Step 2 is not true for M iterations then continue, otherwise

cancel the hand off.
4. |If thereisafreereserved channel in the new cell then hand-off.
5. Otherwise, wait for 1 power iteration and go back to step 4.

A user starts executing the algorithm when the gain to the current base station,

G, is3dB lessthan Gy, 5y, the maximum gain of all the neighboring base stations. If

Gpax remains at least 3dB greater than G for M iterations, the user hands-off to the

maximum gain base station. The algorithm provides a hysteresis effect in the hand-off
decision to compensate for the effects of shadowing on the cell boundary. Since
shadowing makes the cell boundary less distinct, it is desirable to limit unnecessary
hand-offs in the boundary region with hysteresis. The threshold value of 3 dB islarge
enough to avoid the measurement errors that could occur in a practical system. With
M = 10 the number of hand-offs in the simulation runs was consistent with the
expected number of hand-offs from mobility, indicating proper operation of the
algorithm.

The partitioned system assumes a fixed channel re-use factor of K=7 and a
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corresponding SIR requirement of 18 dB. This is typica for the AMPS and 1S-54
TDMA systems. A total of 84 channels are available with 28 set aside as reserved
channels (4 per cell) while the remaining 58 are regular channels. Users in regular
channels maintain an SIR of 18 dB. In this simulation, users have 66 dB of dynamic
range in their transmitters.

To test the performance of the hand-off algorithm, several sets of simulations

have been run. The results are plotted in Figure 4-4.

Figure 4-4 Blocking Probability with Mobility
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For comparison, fixed channel results from [19] have been included. These results are

for asystem with 12 channels per cell. Mohility is characterized by the mobility factor,

0, which isthe probability that when a user exitsacell it is handing off to another cell.
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Both the fixed channel results and the partitioned channel simulation have a mobility
factor of 8 = 0.5. This mobility factor would be considered high for a traditional
cellular system, and is designed to demonstrate the performance of the partitioned
channel system under stressful conditions. Even under these conditions, the partitioned
channel system provides afactor of 2 increase in the user capacity without a reduction
in the required SIR level for users.

A pure DPCA system (no fixed re-use channels) would not work well under
these high mobility conditions because of the rapid rate at which power controlled
channels become infeasible. As channels become infeasible, users must re-probe often.
Without a pool of reserved channels, this would require some type of service
interruption for every hand-off or re-probe. The length of time to find a new power
controlled channel is indeterminate and it is impossible to predict the number and

length of the service interruptions that would occur.

4.3 Channel Partitioning with Power Leve
Constraints

Inapractical system, thetransmitter power level will be selected from adiscrete

P O{Ag Ay oo Ay_3 (4.4)
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The levelswill usually bein fixed decibel increments. In absolute terms:

A = aA_, (4.5)
where a istheincrement value. For example, in1S-54 TDMA, A; = 0 dBm, N = 8,

and a = 4 dB.
With distributed power control, it is necessary to round-up to the next highest
discrete power level after the required transmitter power is computed. From equation

(4.1), the modified power update is formed:
pi(k+1) = min A, st. A =p;(K)p;(k) (4.6)
A further restriction we can add isto limit the change in power from time k to
k + 1 to one power step:
u O{a1 1, 0} (4.7)

Thisisuseful if the step size isrelatively large and more than one step at atime could
cause users to be dropped. Another benefit is that only two bits of power control
information need to be sent from the base station to the mobile with each power update.

The effect of discrete power levels with distributed power control isto create a
distribution of SIR levels between the desired level and the desired level multiplied by
the power increment. Under stable conditions the SIR level of a user in a regular
channel will bein the range:

dy<r. (k) <ady (4.8)

except for users near the base station. These users will have SIRs higher than the upper
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bound because they cannot decrease their powers below the minimum power setting,

A, . The boundsin equation (4.8) arise because feasible power vectorsfor the userswill

be quantized to points greater in magnitude than the minimum required. There will be
acorresponding loss in the capacity of the regular channels compared to a system with
finer power control and greater dynamic range. In the partitioned system, there is a
small offset to this capacity loss because the power control will converge faster as the
power step sizeincreases. This decreasestheload on the reserved channelsas new users
can probe more quickly. Fewer reserved channels are required and therefore more
regular channels are available. These effects are explored below in asimulation of IS
54 TDMA with channel partitioning.

We have investigated the channel partitioning system applied to the uplink
(mobile to base-station) of the 1S-54 TDMA system. The system we simulated is
similar to the one in Section 4.2, however the power control is restricted according to
equation (4.5) through equation (4.8), and mobility is decreased somewhat. These
changes reflect expected parameters in an upgraded |S-54 system. We examined two
possible system upgrades. The first uses probing segments on each user frame. Power
updates occur after every other complete TDMA frame, which contains two frames for
each user [37]. The second system does not use probing segments but instead uses one
out of every ten user frames as a probing frame. Power updates occur after every 5
TDMA frames. In general, the probing segment approach is more desirable sinceit can

provide more accurate power control and faster probing. However, the probing segment
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approach requires the ability to quickly change frequency, which represents a
considerable design change for the mobile unit. The parameters for the simulations are
givenin Table 4-1.

Table4-1: TDMA Simulation Parameters

Cell Diameter 7 Km

Mobile Velocity 30 mph (ave), 15 mph (s.d.)

Power Control Update Interval 80 msec (2 frames) with probing segments
200 msec (5 frames) without probing seg-
ments

Average Call Time 106 seconds

Transmitter Dynamic Range 28dB

Transmitter Power Steps 8 (4 dB intervals)

Regular Channels 140

Fixed Channels 28 (4 per cell)

In an actual system, there could be up to 1250 channels, based on current
frequency allocations for 1S-54 TDMA in the United States. We simulated a smaller
system (168 channels) to limit the total number of computations. Once again, we

simulated a 19 cell network and computed the blocking probability for users in the

center cell. Power attenuation was assumed to follow an R characteristic with log-
normal shadowing. Shadowing was assumed to be independent every 100 meters and
shadowing values were computed by interpolation as in the earlier ssimulations. When
occupying aregular channel, the worst case was 15.5 dB and the average was over 19.5
dB. Fewer than 10% of all users had SIRs lower than 18 dB at any given time. These
statistics correspond with the performance of a fixed channel system with K=7 [37].

The results are plotted in Figure 4-5.
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Figure 4-5 1S-54 Comparison
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A plot of expected fixed assignment performanceisincluded in Figure 4-5asa
comparison. With the operating parameters given in Table 4-1, the mobility parameter
iSO = 0.22. Based on resultsin [19] thiswill result in a capacity reduction of roughly
3%. Thefixed assignment curve was computed using the Erlang-B formula[6] with this
reduction factor. The partitioned curve was generated from the simulation results of the
partitioned system. With call failure probabilities of 1% or less, the probability of a
dropped call was less that 0.2%. At 1% failure probability, the partitioned channel
system provided a capacity gain of about 60% without probing segments and up to 80%

when probing segments are used.

The increase in Erlang capacity of the upgraded 1S54 TDMA system with
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channel partitioning (Figure 4-5) was significant, but not as impressive as the capacity
gain achieved in the first system simulation (Figure 4-4). Thisis due to the fact that the
limited transmitter dynamic range (28 dB) and quantized power levels (4 dB) of the IS
54 TDMA system cannot provide precise power control. This leads to a wider spread

in user SIR levelsin the power control channels and alower average frequency re-use.

4.4 Summary

Thischapter introduced several new techniquesfor probing and applying DPCA
to systems with time varying channels. In a time varying channel, such as in mobile
radio, it is not possible to accurately probe the channel for maximum feasible SIR.
Instead, the new user quickly probes to determine whether or not a channel isfeasible
or not. Separate probing segments (or time slots) are used to protect active users from
excessive interference from the new user. The addition of channel partitioning allows
users to transmit immediately on a fixed re-use channel while probing for a power
controlled channel. This provides instant access for new users and continuous service
for active users that must |eave power controlled channels due to changes in channel
characteristics or hand-offs.

The ratio of fixed channels to power controlled channelsis set to maximize the
Erlang capacity of the system. The required number of fixed channels depends on the
SIR requirement, the amount of mobility, the length of the average connection, and the
timerequired for probing. It isvery difficult to determine the optimal channel allocation

analytically so simulations are used. For the mobile radio applications discussed here,
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1/6 of the available channels were assigned to a fixed re-use pattern.

As with any system that employs DPCA, the frequency re-use and Erlang
capacity of the partitioned system depend on the ability to adapt to interference
conditions. Consequently, systems that have high dynamic range and fine precision
power adjustments can achieve higher capacities. This is consistent with previous

DPCA research [39][66].
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Chapter 5

Probing Channelswith Adaptive
Antenna Arrays

Adaptive antenna arrays provide three maor benefits to aradio communication
system. First, they help mitigate the fading effects of a multipath channel by providing
antenna diversity. Second, they can help reduce intersymbol interference by combining
spatially diverse signals with the desired time delay while rgjecting signals with other
delays. Third, they help reduce interference from other users by lowering the antenna
gain in the direction of interferers. These three benefits are achieved when a minimum
mean square error (MM SE) agorithm to adjust the antenna weights on the receiver.
Additional benefit is possible with adaptive transmitter antenna arrays.

This chapter examines a new method for probing a channel where each user

employs an MM SE adaptive antenna array. As in the previous chapters, it is assumed
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that distributed power control is employed to allow users to maintain their SIR levels.
The combination of adaptive antennas with distributed power control was first
investigated in [43]. Here, aformal proof is given of the convergence of power control
with the MM SE algorithm. Next, the probing algorithm is derived and its performance
isexplored.

Probing with adaptive antennas is much more difficult than the probing problem
in Chapter 2 because the power control problem is no longer linear and the new user
cannot entirely determine the channel SIR characteristics from signal and interference
measurements. However, it is possible for the new user to anticipate how well its
antenna array can adapt to the desired signal and interferer directions and power levels.
Thisinformation is then used to estimate the SIR level at adesired transmitter power.

The adaptive antenna probing algorithm is practical because it can quickly
predict SIR target levels that are accurate enough for bit allocation agorithms.
Simulation resultsindicate that it workswell with varying numbers of antenna elements

and interfering users.

5.1 Adaptive Antenna Systemsfor Wireless

Communication

Any wireless communication system can be made more efficient through the
use of directional antennas. A directional transmitter antenna will increase the amount

of desired signal in the direction of the receiver while minimizing the interference to
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usersin other directions. Likewise, a directional receiver antennawill acquire more of
the desired signal and rgject unwanted signals and noise. For mobile or movable
systems it is necessary to point the antenna beam in the desired direction. With an
antenna array, it is possible to perform this pointing operation electrically. Each signal
from an antenna element is multiplied by a complex weight. The weights, combined
with the antenna element patterns, determine the overall antenna pattern [54].
Researchers have explored numerous methods for computing the antenna
element weights [16]. Of these, the MM SE method is the most appropriate for a high
speed wireless radio modem since it maximizes the signal-to-interference ratio at the
receiver. The MM SE solution can be computed with adaptive algorithms, such as |east-
mean-squares (LMS) and recursive-least-squares (RLS) [29]. Furthermore, MM SE
adaptation is compatible with adaptive equalizers that employ the same algorithm.

The simplest multiuser system with antenna arraysis drawn in Figure 5-1.

Figure5-1 Peer-to-Peer System With Adaptive Antennas
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Each user has a transmitter and receiver array as shown in Figure 5-2 and Figure 5-3.

Figure 5-2 Transmitter Array
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Figure 5-3 Recelver Array with Weight Update
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It is assumed that the transmit and receive antennas are either physicaly the
same or are co-located. Each array has N elements. The receiver computes the MM SE

solution for its antennawei ghts based on measurements of the received signal voltages,
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X; , on each antenna. In vector form, the antennavoltage can be expressed as the column
vector:
X = [Xgy Xq, ooy Xn_q] T (5.1)
Likewise, the receiver weights, w* , and the transmitter weights, v*, can be expressed
the same way. The MM SE solution for the receiver tap weight vector is[29]:
w = R1p (5.2)
where R isthe auto-covariance matrix of the received signal voltage:

R = E[xxH] (5.3)
and p is the cross-correlation between the received voltage vector and the desired
signd, d:

p = E[xd"] (5.4)

We assume that the MMSE solution is computed with the LMS algorithm
because it isthe simplest to implement and has robust performance [29]. Withthe LM S
algorithm, the receiver weights are updated on a symbol by symbol basis:

w(n+1) = w(n) + px(n)e*(n) (5.5)

where p is scaling factor, and e(n) is the received symbol error (the difference
between the desired received symbol and the output of the antenna array):

e(n) = d(n) —wH(n)x(n) (5.6)

The desired symbol, d(n) , can be determined either by a training sequence or by a

decision device, as shown in Figure 5-3.
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The MMSE solution for the receiver weights is employed because it will
minimize the interfering signal energy and because it can be computed with well
understood algorithms. However, the situation is quite different for computing the
transmitter antenna weights. Transmitter weight settings will affect both the received
signal and the interference seen by others. Consequently, maximizing the signal power
seen at the receiver is optimal for one user but is suboptimal in a multiuser situation.
Methods for optimizing the choice of transmitter weights for multiuser systems have
been explored in [22][47]. These methods use the received signal covariance matrix, R,
to compute transmitter antenna weights that attempt to minimize interference to other
users. Thisis feasible, since by reciprocity the location of received interference is the
same as the location where transmitter interference should be minimized.

The ssimplest of these methods is to use transmitter weights that are normalized

versions of the receiver weights [43]:

w

Iwl

While not optimal in al cases, this method is straightforward to implement. The

vV = (5.7)

normalization also allows the transmitter weights to be adapted independently of the
transmitter power. This help simplify the combination of transmitter antenna weight

adaptation and power control.

5.2 Adaptive Antennaswith Power Control

If adaptive antennas were perfect at nulling interference, then there would be no
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need for power control. Each user would simply null al the interference from other
users, yielding a Gaussian channel. The multiuser channel problem would go awvay
completely. In practice, this will never occur for several reasons. First, the number of
interferers will often be greater than the number of nulls the antenna array can create.
An N element antenna array can create only N —1 nulls. If there are morethan N — 1
distinct sources of interference (both from interfering users and multipath), then the
MM SE solution will select acompromise that only limits the worst of the interference.
Second, the nulls will have finite depth due to finite precision in the weight multipliers
and coupling between antenna array elements. Therefore, it will be impossible to
completely null any signal there will always be residual interference.
Aswiththeearlier channel model, power control isused to limit theinterference
from other users and to allow active users to maintain their SIR levels. Once again, it is
possibleto useindividual power control updatesfor usersto compute their power levels
in a distributed fashion. First, consider the case when the transmitter antenna weights

are fixed. Each user computes an MM SE solution for its receiver weights and updates

its transmitter power level, p;(m) , according to:

pi(m)jest(m)

; (5.8)

pi(m+1) =

where j; isthe target mean squared error (MSE) level whichisrelated to the SIR target

by:
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1
1+y;

i = (5.9)

and ] .;(m) isthe estimate of the current mean square error. This can be computed by
averaging the symbol error e(n) . It isimportant to distinguish the time variables m,
the power update time and n the symbol time. A suitable number of symbols (about
100 for 0.5 dB accuracy) are required to average the error between each power level
update.

The origina distributed power control algorithm given in equation (2.16)
computed a matrix inversion by a matrix iteration formula [4]. The conditions for
convergence could be determined from the gain matrix, yielding both the maximum
feasible SIR for anew user givenin equation (3.1) and theresidual error dueto thefinite
convergence rate given in equation (3.20). These provided the foundation for precise
channel probing. Unfortunately, the power control update with MM SE antenna weights
cannot be represented by a matrix iteration, and consequently it is more difficult to
derive the conditions for convergence.

However, it is till possible to prove that power control with MMSE antenna

adaptation will converge to a feasible solution if a solution exists. The vector of
transmitter powers, p = [Pg, Py, -+, Py _1] |, determines the state of the multiuser

channel at any point in time. The power updates defined in equation (5.8) form avector

function, I (p) , of interference over the power vector. The system has converged when:

p=1(p) (5.10)
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The system will converge if the function | (p) has the properties of positivity,
monotonicity, and scalability [67]. Clearly, the MM SE function is always positive. The
other properties are less obvious, but also true. A complete proof is given in Appendix

A.

5.3 Transmitter Antenna Weights

The addition of transmitter weights complicatesthe power control problem. The
state of the system is no longer determined by the vector of transmitter powers, but by
amatrix of the transmitter weight vectors of every user sharing the channel. The exact
conditions for convergence are unclear, but have been explored viasimulation in [43].
In genera, the system will converge when the coupling between interfering users is
weak. This could be due to the fact that weak coupling implies the system is feasible
without transmitter antenna adaptation at all. Asthe system adapts the receiver weights
and power levels towards the fixed point solution, the transmitter antennas adapt to
positions that will provide useful antenna gain and allow less transmitter power to be
used.

Given the problems in analyzing the transmitter antenna array, it is tempting to
leave it out of the probing algorithm. However, the transmitter array is very useful in
practice. It supplies antenna gain which means that less transmitter power is required
on all communication links. It also reducesinterference to other usersin the system. For

these reasons, it is included in the probing algorithm even if an exact analysis of its
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convergence properties is incomplete.

5.4 Probing with Adaptive Antennas

Probing with adaptive antennas is inherently difficult because it is difficult to
know when a feasible solution will exist. The maximum feasible SIR for a new user
without adaptive antennas was explored in Section 3.1. Thislevel was determined from
the point at which a feasible power control solution was no longer possible. At this
point, the intersection of the user SIR constraints given in equation (2.13) moves out to
infinity. With adaptive antennas the set of feasible solutions is more complicated to
define. As a channel becomes more congested, convergence of the combined adaptive
antenna and power control algorithm slows down until it can no longer converge in a
useful period of time. A practical method is needed to determine an SIR level that each
user can achieve while maintaining timely convergence.

To develop aprobing agorithm, the properties of the M SE as seen by anew user
are explored. The new user wants to determine the SIR level it can achieve at an access
power level, p, on achannel with interfering users. It is assumed that a probing channel
without any interferersis available for the user to probe. To insure that this channel has
the same frequency response characteristics as the desired channel, the probing channel
can use a separate time segment or frequency hop on the desired channel. In afrequency

hopped system, this could be achieved with a spare hopping pattern.



54.1 MSE Bound for a New User
The received signal voltage on the antenna array will be a combination of the

desired signal vector, X, the gaussian receiver noise X, , and theinterference signal x;,

scaled by afactor ./B:

X = Xg+ X, + /BX (5.11)
By definition B = 1 when the new user is not transmitting on the channel. Once the
new user begins transmitting, B will indicate the amount the interference power has
increased from this nominal level.
The auto-covariance matrix for the received voltageis:
R = E[xxH] = Ry+ Nyl +BR (5.12)
which can be separated into a signal and noise matrix of rank N:
R, = Ry+ Nyl (5.13)
and interference matrix which is approximated to be of rank 1:
R, = bbH (5.14)

This assumes that the interference matrix is dominated by a single user and a single
signal path. In an indoor system with light coupling and moderate multipath, this
approximation will hold true. The inverse of the total auto-covariance matrix can be

computed by asmall rank adjustment [30] from the inverse of R; :
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The cross covariance of the received signal with the desired signal is:

a = E[xd"]
asin equation (5.4). The MM SE at the receiver will then be:
J=1-a"R1a
Applying equation (5.15) to equation (5.16) yields:

Ba"R{lbbHR ta
1+ BbHR;1h

= 1-a"Rfla+

(5.15)

(5.16)

(5.17)

(5.18)

Thefirst two terms correspond to the residual M SE without any interference, which will

becalled J,:
Jo = 1-a"Rjla
Define
q, = a"RylbbHRta
and

d, = b"R{b

Then the MSE as afunction of scaled interference power will be:

Ba,
1+Bq,

J=Jy+

and the maximum possible M SE can be upper bounded:
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(5.20)

(5.21)

(5.22)



= limJ = Jo+q—1 (5.23)

B oo d>

J

max

This bound measures the ability of the new user to adapt to changes in the
interference level of one resolvable interfering signal. Consequently, it will only apply
when a single interferer dominates and the multipath on that signa is relatively low.
When these conditions do not apply, the MSE cannot be expressed in the ssmple form

shown in equation (5.22).

5.4.2 Probing with Receiver M easurements

A new user will probe the channel for the values of g, and g, in order to bound
the MSE it can achieve on the channel. To do this, it needs to measure three values, J,
the M SE on the channel with no interference, X; the additional MSEwith 3 = 1, and

X, the additional MSE with B = 2. These measurements are made with a modified

version of the recelver shown in Figure 5-4.
The new user first measures and storesthe interference voltages on each antenna
while receiving on the desired channel. It then initiates transmitting on the setup

channel (or frequency hop) and adapts the receiving array until convergence. This

yields an M SE measurement of J,,. Next, the stored interference measurements are fed

forward into the receive path for each antenna. This simulates the interference present

on the desired channel. The array is adapted again until convergence, yielding a second

MSE measurement, J, .
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Figure 5-4 Probing Recelver Structure
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The stored interference power is then scaled by afactor of two and the antenna

is adapted a third time. The third MSE level is stored in J,. Two new quantities are

computed:
Xy =J;-Jgand X, = J,—J,. (5.24)

From these, the parameters in the M SE bound can be found:

- x s XXX (5.25)
1 l 2()(2 1)
2X1 X,
g, = (5.26)
27 2(X,=Xy)
and the ratio has the simplified form:
b XXa (5.27)
q  2X—X;
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With this information, the new user can predict the MSE it will see on the desired
channel as afunction of the interference power on that channel.

A simulation plot in Figure 5-5 demonstrates how the probing measurements
can be made.

Figure 5-5 Simulation of Probing Algorithm
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In this smulation, two pairs of active users, each with a two element antenna array,
maintain SIR levels of 13 dB on the channel. A third pair of users probesthe channel to
determine what SIR level they can achieve. After the active user power levels have

stabilized, the new user pair starts probing.

The new user measures J,,, J,, and J, asdescribed above. Inthiscasethe SIR
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level a B = 2 is9.4 dB while the MSE bound for worst case interference is 6.7 dB.
The new user chooses to operate with an SIR of 9.4 dB and adapts to the necessary
transmitter power over the course of about 25 frames. The required power level isabout
1 dB less than the target level of 40 dB.

This probing technique will work with an arbitrary number of antenna elements
and interfering users. It islimited by the fact that one interferer must dominate in order
for the M SE bound to hold. However, even when this condition has been met, the bound
will tend to under-predict the SIR level that the new user can achieve. In practical
systems, the active users will only increase there power levels by a small amount when
anew user entersthe system. They will often be able to adapt their receiversto null the
interference from anew user. They will also adjust their transmitter antenna patternsto
help limit interference to the new user. These facts can be incorporated into the probing

strategy to make a better algorithm.

5.5 Practical Considerations

A practical probing algorithm must be both fast and precise enough to allow the
new user to predict what type of bit allocation it can use on a set of channels. The MSE
estimator described in the previous section could not achieve high precision under many
conditions because it is impossible to know how much the active users will increase

their transmitter powers. Another problem is that accurately measuring the parameters

X, and X, will be difficult because the change in MSE will often be very small.
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Accurate measurements take along time, and this slows down the admissions process.
Given the problems in precisely determining the exact MSE level, it is simpler
and faster to make arough guess of the SIR level that can achieved at the target power

level. It turns out that a good estimate is simply:

Yest(Prarget) = _‘]2 (5.28)

where pyqq¢ 1S the target power level and J, is the MSE measurement described
above.

This estimate works well for lightly coupled systems that employ adaptive
transmitter antennas as described in Section 5.3. On un-congested channels where it is

possible to achieve a high SIR level, the mean square error will be aloose function of

B. (The MSE will be dominated by J,.) Consequently, it is not necessary to actually

estimate [3, but merely to use avalue that isreasonable. 3 = 2 isreasonable sincein
amost al systems with feasible solutions, active users will be able to tolerate the new
user without significant increases in their transmitter powers. Except in extreme cases,
the increase in interference power will be less than 3 dB.

On more congested channels, the estimate is less accurate. However, in these
cases, the estimate tends to under-predict the achievable SIR level. This occurs because
active users adapt their transmitter antenna arrays and the actual interference power

seen by the new user does not increase as much as predicted.
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5.6 Simulation Results

A simulation program was devel oped to test the performance of the estimator in
equation (5.28). In the simulation, users probe and are subsequently admitted in pairs.
Once admitted, each user follows the power control algorithm to maintain the SIR level
it selected during probing. A total of 5 pairs of users are admitted on each run. Each
user adapts its receive antenna array with the LMS algorithm and uses normalized
receiver weights for transmission as in equation (5.7).

A typical layout for usersis shown in Figure 5-6.

Figure5-6 User Location Grid
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Each user pair israndomly located within one of 5 cellsin the center of the room. Only
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onelink isallowed in each cell. This reduces coupling between interfering links which
helps to insure convergence of the distributed power control with the adaptive receiver
and transmitter antenna arrays. An impulse response is computed between each
transmitting antenna element and each receiving element on every user with a ray-
tracing technique described in [43].
The model assumes an operating frequency of 2.45 GHz and a bandwidth of 10 MHz.
Antenna arrays vary in size from 2 to 4 elements. The arrays are linear with half-wave
spacing. Each array element has an omnidirectional pattern. MSE at each receiver isa
combination of both interference from other users and intersymbol interference (1SI).
Each user adaptsits receive antenna array with the LM S algorithm on a symbol
by symbol basis. MSE is averaged over frame is 256 symbols. After each frame, the
transmitter weights are updated according to equation (5.7). Active users al'so update
their transmitter power levels after each frame according to equation (5.8).

The resultsfor atypical simulation run are given in Table 5-1.

Table 5-1: Typical Smulation Results

User S.I R PO‘“{ef
Estimate Required
0 25dB 30dB
1 25 30
2 22 30
3 18 27
4 17 27
5 17 27
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Table 5-1: Typical Simulation Results

v | (SR | Powe
Estimate Required
6 13 28
7 13 29
8 1 23 (fail)
9 3 30

In this simulation, each user has a four element antenna array and a target transmitter
power of 30 dB.

A user begins probing by measuring the SIR it can achieve with equation (5.28).
The user is then admitted to the channel and increases its power in fixed steps starting
at 10dB until itsSIR isat the probing level. It then follows the distributed power control
algorithm to maintain its SIR. If the probing is accurate, the new user’s power level will
be exactly 30 dB after power control isinitiated. The third column in Table 5-1 show’s
the actual power level required to meet the target SIR level. Values over 30 dB are
considered probing failures because the user cannot actually achieve the target SIR at
the desired power level. Likewise, power values under 27 dB are also considered
probing failures because they indicate that a higher target SIR (perhaps enough to
allocate an additional bit) would be feasible.

A total of 15 sets of simulations were performed with 10 users admitted in each
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simulation. The results are given in Table 5-2.

Table 5-2: Probing Simulation Results, pgge = 30 dB

Array Probing Probing
Elements Attempts Failures
2 50 3
3 50 0
4 50 8

The probing algorithm was successful 139 times out of 150 admissions, 92% of
the time. In general, the algorithm seemed to work best with 3 antennas, but there was
no obvious relationship between the number of antennas and the accuracy of the
channel probing algorithm.

The simulation program was run a second time to test the performance of the

probing algorithm when user interference is more tightly coupled. Theresultsare given
in Table 5-2.

Table 5-3: Probing Simulation Results, pigrget = 35 dB

Array Probing Probing
Elements Attempts Failures
2 50 11
3 50 11
4 50 11

The user locations and channel responses were the same as the first run, but the
target power level wasincreased by 5 dB. Thisallowsthe first users entering the system

to achieve higher SIR levels, at the expense of later userswho achieved lower SIR levels

95



than in the earlier simulation. It also increased the probing failure rate. Out of 150
probes, 117 were successful, or roughly 78%. The probing agorithm was equally
accurate for different array sizes.

In general, this simple probing algorithm worked fairly well under moderate
interference levels. At higher target power levels, the system coupling became so high
that the power control and adaptive antenna al gorithm would not always converge. This
is consistent with the results in [43] where it was first shown that the adaptive antenna
algorithmsrequirelight coupling between interferersin order to converge properly. The
probing algorithm doesn’t place any new restrictions on the use of the adaptive antenna

algorithms.

5.7 Summary

The goal of channel probing with adaptive antenna arraysisto quickly produce
an estimate of the achievable SIR at a target power level. Since the combination of
power control and adaptive antennas is very complicated, it isimpossible to produce a

precise algorithm comparable to the one for power controlled channels. Therefore, the
best probing algorithm for most situations is to measure J,, at the desired transmitter
power level as described in Section 5.4.2. The target SIR level can then be computed
with equation (5.28). The new user can then begin transmitting on the desired channel
at very low power and increase in fixed steps until the target SIR is reached.

In situations where timeisless critical, the new user can compute the full set of
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parameters described in Section 5.4. Then, J; will lower bound the MSE level (upper

bound the SIR) and J....,, will loosely upper bound the MSE. The new user can begin

max
increasing its transmitter power until it can measure an increase in the interference
power from the active users. This interference increase, 3, can be substituted into

equation (5.22) to estimate the M SE at the target power.
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Chapter 6

Conclusions

The primary purpose of channel probing algorithmsisto allow dynamic power
and channel allocation to be made distributed. With channel probing, each user will
have the information necessary to makeits own allocation decisions. If users cooperate,
they can use this information to make distributed admission and resource allocation
decisions. The exact methods depend on the nature of the communication channel.

Channel probing is most successful when the channel characteristics vary very
slowly compared to the symbol rate of the communication system. In this case, the
precise probing algorithm described in Chapter 3 can be applied. Thisalgorithm allows
the probing user to exactly compute both its maximum feasible SIR level and the SIR
level it can achieve asafunction of transmitter power. The maximum feasible SIR isthe
maximum level the user can pursue with distributed power control and still guarantee
convergence. The ability to accurately estimate this value means that users will know
the exact limits on the bit rate they can achieve on one channel or over a group of

channels.
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The particular example systems explored in Chapter 3 were a low frequency
hopped CDMA system and a DMT ADSL wireline system. However, the probing
technique is also directly applicable to other systems, including direct sequence
CDMA. The key feature is that a power control algorithm that equalizes the SIR level
must be employed. Since power control algorithms of thistype are now well understood
itislikely that more systems of thistype will be seen in the future. Consequently, more
opportunities to use probing will arise.

Chapter 4 explored a wireless system where accurate probing is not possible.
Thisistypical of high mobility systems, such ascellular networksin urban areas. Inthis
case, the access algorithm is modified to determine whether it is appropriate to use a
power controlled channel. This type of decision is more robust than precise probing.
Even with high mobility, the probing al gorithm works well enough to make distributed
power control practical.

The addition of adaptive antennas to a power controlled system adds new
challenges. These were discussed in Chapter 5. For probing to be feasible, the power
controlled system must converge to afixed point. Otherwise, it isimpossible to predict
whether or not a feasible solution exists. Convergence to a fixed point was proved for
the MM SE adaptive receiver system with power control (Appendix A). When adaptive
transmitter antennas are added we know there are situations were convergence is not
guaranteed. However, simulation results where normed receiver weights are used for
transmission converged consistently when coupling between users was light.

In a system with adaptive transmitter antennas, active users will increase their
power when anew user arrives but will often limit their interference in the direction of
the new user. This actually helps to ssimplify the probing process. The new user can

assume that the interference will not increase greatly if achannel isfeasible. Therefore,
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it can often estimate the SIR level at atarget transmitter power by storing interference
measurements and adapting its antenna on a separate setup channel or segment.

There are several directions that look promising for future research work in
channel probing. Thiswork examines the cases when very accurate probing is possible
and when only simple probing is possible. There are awide variety of channelsthat are
somewhere between these two extremes. For example, a high bit rate mobile radio
channel might benefit from probing for feasible SIR level, but it could not generate the
precise results reported in Chapter 2. It could, however, still use probing to help select
from a set of channels, rates, and, equalizer settings.

Another area for future work is in adaptive antenna probing. If the receiver
employs a more sophisticated antenna processing algorithm than LMS, then a wide
variety of signal processing options become available. Sub-space methods could be
applied to the received auto-covariance matrix to isolate different interfering signals.
This could make probing faster, and alow the receiver to distinguish between ISl and
other user interference. Such information would be useful in choosing symbols rates,
constellation sizes, and equalizer settings.

As wireless systems become more complex, the need for probing grows. More
processing and decision making must be made in adistributed fashion in order to insure
both high performance and robustness. However, distributed problem solving requires
distributed information. Channel probing allows each user to gather itsown information
on the state of the channel that it will use. Complicated, information gathering and
distributing backbones are simplified or eliminated. Consequently, more resources can

be devoted to achieving high capacity.
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Appendix A

MM SE Receiver with Distributed Power
Control

A.1 Background

Yates[67] definesa* standard” distributed power control algorithm as one that
will converge to asingle fixed point if afeasible solution exists. Below is a proof that
minimum mean square error (MM SE) antenna adaptation combined with distributed
power control is standard. The constraints for the user transmitter powers are expressed
as:

p=21(p) (A.1)
where p is the vector of user transmitter powers and |(p) is the vector function of

interference seen by each user:

1(p) = (14(P). 12(P), -, In(P)) (A.2)
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The iterative power control algorithm is:

p(t+1) = I(p(1)) (A3)
and, of course, p>0. Vector inequalities are defined as strict inequality in al
components.

Aniteration is standard if the following properties hold:

I(p)>0 Op (A.4)
if p=p’,then 1(p)=1(p') (A.5)
Oa>1,a I(p)>I1(ap) (A.6)

Now, the interference function for each user is defined to be:

P;Ji(P)
J.

li(p) = (A7)

where J;(p) isthe MMSE at user i given power vector p and J; is the target MMSE
for user i. At the output of the antenna array the received power is fixed at 1, so the

MMSE level can be set by the SIR target level, y;:

3 = yiil (A8)
The MM SE is represented by:
Ji(p) = 1-rARr, (A.9)
where
r, = E[ud’] (A.10)

isthe correlation between the recelved antenna voltage vector u and the desired signal
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d. Thesignal isnormalizeto give ||d||2 = 1. The covariance matrix is defined by:

R = E[uuf] (A.11)

A.2 Proof

The update in equation (A.3) using the definition in equation (A.7) will
converge to aunique fixed point if afeasible solution exists. Thisis proved by showing

that equation (A.4), equation (A.5), and equation (A.6) are always true.

A.1.1 Positivity Property (equation (A.4))
By definition, p;, J;(p) , and J; are all positive. Consequently, equation (A.7)

ispositive for all i.

A.1.2 Monotonicity Property (equation (A.5))
A.121 Casel

For agiven user i we assume that some P> pj' for j#i.Then 1;,(p)=1,(p")
because an increase in power from interfering users will always increase the MM SE.

When the MM SE increases, the interference function must increase whether or not p,
increases.

A.122 Casell
Wewill show that I;(p) =1;(p') forthecase = pj’,jii and p, = p;’. Start

with equation (A.7) and substitute equation (A.9) into the right hand side:
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l(p) = %[1—riHRi—1ri] (A.12)

then substitute;

r = J/pa; and (A.13)

= Z JEY a +Ngl = piQi+Z ijj+NOI = pQ+Q (A.14)

ji=1 1#1
where &;; are the cross correlation terms from the transmitter antennas to the receiver
antenna array and Qj = & aH Each Q; will have rank equal to the number of

resolvable multipath components between the antennas. | is the identity matrix. Then:
_ bk H -1
li(p) = I[l—piaii[piQi"'Q] a;] (A.15)
|

Applying the matrix inversion lemmacto the inner matrix inverse yields:

0. 1= 0-1_ -10.0-1 16
[piQ; + Q] Q 1+pq1[Q QQ™] (A.16)

where g, = a!Qla;. Note that:
a[Q1QQ Y4, = allQ 'a,al'Q e = 2 (A.17)

Applying equation (A.17) to equation (A.15) yields:

p3q? } _

10 P
= A.18
1+ pq, J. ( )

= Ll p2
h(p)-—‘h[pi Py + T+ pal

which increases monotonically with p;. Therefore, 1,(p)=>1,(p') for the case
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=p/ jziadp2p .

A.1.3 Scalability Property (equation (A.6))
Scalability istrueif and only if
Ji(p) > J;(ap) (A.19)

holdsfor al i with a > 1. Using the notation from above:

Ji(p) = Ji(ap) = apaf[Q; - Q,l & (A.20)
where
Q; = [Q+ %’IT and (A.21)
Q, = [Q+NyI]? (A.22)
Note that:
[Q—-Q,] = NO%H%[Q“ NO%*%EQ”NE(%'T (A.23)

Theinverseterm on theright hand side can be divided into the inverse of the sum of two

Hermitian, positive definite components:

[83” o +[ oH— 250+ NS Zlﬂlﬂ (A.24)

The first term is square of an auto-covariance matrix and will always be Hermitian,
positive definite. The second term is also a valid auto-covariance matrix and will also
always be Hermitian, positive definite. Since the sum of two Hermitian, positive definite

matricesis Hermitian, positive definite, and the inverse of aHermitian, positive definite
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matrix is also Hermitian, positive definite, the difference [Q; —Q,] isalwayspositive
definite. Therefore equation (A.20) is always positive and the scalability property is

proved.
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Appendix B

Glossary

B.1 List of Acronymsand Abbreviations

AMPS Advanced Mobile Phone System

AWGN Additive white Gaussian noise

BER Bit error rate

CDMA Code division multiple access

DCA Dynamic channel allocation

DPCA Dynamic power and channel allocation

DPC Distributed power control

FCC Federal Communications Commission (U. S.)
FDMA Frequency division multiple access

FH Frequency hop

107



HO Hand off

Hz Hertz or cycle per second.

1S54 Interim Standard 54 (TIA/EIA TDMA cellular standard, U. S.)
1S-95 Interim Standard 95 (TIA/EIA CDMA cellular standard, U. S.)
ISDN Integrated Services Digital Network

ISI Inter-symbol interference

ISM Industrial, Scientific, and Medical (bands, devices)

LAN Local area network

LOS Line of sight

MTSO Mobile telephone switching office

Pblock Probability of blocking

Pdrop Probability of dropping

PC Power control

PCN Personal Communications Network (Europe)

PCS Personal Communications Services (U. S.)

QAM Quadrature amplitude modul ation

QOS Quality of service

RF Radio frequency

SIR Signal-to-interference ratio

SNR Signal-to-noise ratio

SS Spread Spectrum
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TCM Trellis coded modulation

TDMA Time division multiple access
TIA Telecommunications Industry Association (U. S.)
B.2 Déefinitions

Baud: The transmission rate in symbols per second.

Bit error rate: Theratio of the number of bitsincorrectly received to the total number
of bits transmitted.

Blocking: New users to the system are declined services due to the lack of channel
resources.

Capacity: Maximum number of users a system can support.

Cedllular radio: A system in which a service areais divided into smaller areas called
cells where users in each cell communicate with a base station usually located
near the center of the cell.

Channel: A transmission medium for communications.

Channel coding: Adding controlled redundancy to the information sequence to
improve reliability of data transmitted through a noisy channel.

Coherent detection: Detection using a reference signal that is synchronized in
frequency and phase to the transmitted signal.

Code divison multiple access. A way of sharing a common spectrum in which
signals from different transmitters are distinguished by a code known to the
intended receiver. It is usually divided into two categories: direct sequence (DS)
and frequency hopped (FH).

Dispersion: The spreading, separation, or scatter of awaveform during transmission.
Diversity: The reception of different versions of the same information bearing signal .

Down-link: The radio link where the base station is transmitting to a user in the
coverage area. Also known as the forward link.
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Dropping: Users aready in the system are denied services due to the lack of channel
resources.

Dynamic channel allocation (DCA): A system of allocating channel resources to the
user depending on the channel condition and the availability of the channel
resource.

Dynamic power and channel allocation (DPCA): A system of assigning channel and
power to the user depending on the channel condition and the availability of the
channel resource.

Erlang: A unit-less measure of the offered load to a communications network.

Fading: The variation of the intensity or relative phase of any frequency component of
areceived signal dueto changesin the characteristics of the propagation path with
time.

Flat fading: Fading resulting in similar attenuation of all frequency components of
signal.

Forward link: The radio link where the base station is transmitting to a user in the
coverage area. Also known as the down-link.

Frame: A set of consecutive time dlots in which the position of each slot can be
identified in reference to the frame start time.

Frequency diversity: A transmission technique that employs different frequency
channelsto achieve diversity.

Frequency hopping (FH): A spread spectrum technique in which the transmitter
rapidly variesits carrier frequency in order to expand the transmission bandwidth.

Frequency reuse: The system of assigning different frequencies to different cells to
limit interference while allowing a channel to be used multiple times.

Frequency-selective fading: Fading in which not all frequency components of the
received radio signal are attenuated equally.

Hand-off (HO): The process of auser changing the base station it communicates with
as it moves across the cell boundaries. Also known as hand-over.

Interference: Undesired signalsin the communication channel.

110



Offered load: Theratio of the new user arrival rate divided by the system service rate.
It may be normalized to the number of channels that are available to the system.

Modulation: The process of varying certain characteristics of a carrier in accordance
with an information signal.

Multipath: The large set of propagation paths that the transmitted signal takes to the
receiver. The multiple paths could be caused by scattering.

Multipath fading: Fading that results from multipath.

Multiple-access. A system for users to simultaneously access a common channel
resource.

Network: An organization of terminals capable of intercommunication.

Outage: A condition when a user is deprived of service due to unavailability of the
communication system.

Personal Communication Services (PCS): For standard purposes, it is an umbrella
term to describe services and supporting systems that provide users with the
ability to communicate anytime, anywhere, and in any form.

Power control (PC): A technique employed to adjust the transmit power from every
radio link to the minimum level required for reliable transmission.

Quadrature amplitude modulation: A coherent digital modulation technique that
uses the amplitude in both the I-channel and the Q-channel of the signa to
represent information.

Receiver: A device that converts signals used for transmission back to information
signals.

Reverselink: Theradio link where a user is transmitting to a base station. Also known
as the up-link.

Signal-to-Interference Ratio (SIR): Theratio of the desired signal power divided by
the total power of the interference.

Spread spectrum (SS): A signaling scheme in which the transmission signal
bandwidth is much greater than the information bandwidth.

Transmitter: A device that converts information signal to electrical or optical signals
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for transmission purposes.

Transceiver: A contraction of “transmitter/receiver” The term is used when a
communication device can both transmit and receive.

Trelliscoded modulation (TCM): A digital bandwidth-efficient modul ation technique
that incorporates the concept of set partitioning and channel coding.

Up-link: The radio link where a user is transmitting to a base station. Also known as
the reverse link.

White noise: Noise whose frequency spectrum is uniform over awide frequency band.

Wireless communications. General term for communication with electromagnetic
waves.
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