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Abstract of the Dissertation

Coordinated Actuation

for Sensing Uncertainty Reduction

by

Aman Kansal

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2006

Professor Mani B. Srivastava, Co-chair

Professor Gregory J. Pottie, Co-chair

The quality of data returned by a senor network is a crucial parameter of perfor-

mance since it governs the range of applications that are feasible to be developed

using that network. Higher resolution data, in most situations, enables more ap-

plications and improves the reliability of existing ones. In this thesis we discuss

methods that use controlled motion to increase the image resolution in a network

of cameras. In our prototype system, our methods can provide up to 15000x

advantage in resolution, depending on tolerable trade-offs in sensing delay.

Mobility itself may have a high resource overhead, and hence a constrained

form of mobility is exploited, which has low overheads but provides significant

reconfiguration potential. Specifically, we concentrate on pan, tilt, and zoom

motion for cameras. Other forms of constrained motion are also mentioned.

An architecture that allows each node in the network to learn the medium

and phenomenon characteristics is presented. A quantitative metric for sensing

performance is defined based on real sensor and medium characteristics. The
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problem of determining the desirable network configuration is expressed as an

optimization of this metric. A distributed optimization algorithm is developed to

compute a desirable network configuration and adapt it to environmental changes.

A key property of our algorithm is that convergence to a desirable config-

uration can be proved even though no global coordination is involved. Other

desirable properties of the algorithm, such as convergence accuracy and conver-

gence time are also studied. Its relationship to previously known optimization

heuristics is also discussed.

A network protocol to implement this algorithm is discussed for execution in

a totally distributed manner. The protocol involves exchanging messages only in

a well-defined neighborhood.

We evaluate our methods using simulations and experiments on our prototype

system. Real world data is used for testing the algorithm.
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CHAPTER 1

Introduction

Several research efforts [SS02, PK00, EGH00b, RAS00, SS03, SMP01a, SMP01b]

have established the feasibility of compact, wireless and low energy devices for

sensor networks. A wide range of applications have been prototyped using such

systems in education [SMP01a, SS03], science [CEE01, MPS02], arts and enter-

tainment [BMK02] and defense [MSL04]. In this work we consider the funda-

mental functionality used by all the above applications – sensing the application

specific phenomenon in the deployment environment. Unlike traditional com-

puting systems, sensor networks must deal with complex and inherently noisy

inputs from the physical world. A given application needs a certain sensing per-

formance, which must be guaranteed in the face of unpredictable phenomenon

distributions and the presence of static and mobile environmental obstacles. The

system designer is challenged to not only provide the required performance within

the resource constraints of embedded sensor nodes and a limited power budget

but also ensure autonomous operation of the system in unknown environments.

Environment specific customization is not desirable, as it hinders rapid deploy-

ment. Our objective is to develop methods for understanding and controlling the

uncertainty in the sensed data.

For instance, in the case of image data, the data uncertainty may be related

to the resolution at which the desired space is covered. This spatial resolution

may determine if a desired application can be realized or not using the network.
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Higher resolution may enable newer applications. Higher resolution also helps re-

duce the effect of transducer noise since more pixels may be allocated to the same

spatial region. Suppose the density at which the cameras are deployed and the

image resolution of each camera is such that a unit length in real space, placed

at any point in the area covered by the network, maps to P pixels in the image.

Then, we define the coverage resolution1 as Ppixels/m. Different points in the

covered area may be at different distances from the respective nearest camera

and coverage resolution may be defined to be that provided at the worst case

point covered by the network. Figure 1.1(a) shows an example scene desired to

be covered by a camera network. Suppose the image data is to be used by a

sensor network application interested in photographing the vehicles in the scene.

A small portion of the scene where a vehicle is present is shown at 15pixels/m

resolution in Fig. 1.1(b). This resolution may be sufficient for applications in-

terested in detecting vehicles, such as using motion detection, in the scene but

not for applications interested in recognizing the vehicles. Figure 1.1(c) shows2 a

small section of the same field of view with the coverage resolution increased to

200pixels/m. Such a resolution may enable an application that is interested in

recognizing the vehicles present in the scene. The simple example clearly shows

that increasing the resolution may enable newer applications. Given a finite set of

sensing resources, it is thus important to provide the highest coverage resolution

feasible with those resources.

There are many ways in which the resolution may be improved. Given the fea-

sible maximum sensor density, signal processing may be used to combine images

1Pixels on some sensing devices may be rectangular rather than square making a unit length
in space map to different number of pixels depending on whether the length is considered
aligned horizontally or vertically. For such devices, we arbitrarily choose to align the unit
length horizontally for defining coverage resolution.

2The image resolution in the printed paper may vary from the resolution of image data used
in the figure.

2



(a) Scene (b) 15 pix/m (c) 200 pix/m

Figure 1.1: Resolution determines feasible data processing.

from multiple cameras to obtain a higher resolution image, sometimes referred

to as a super-resolution image [SCI05]. Another method to increase resolution

with a given set of sensing resources is to use motion, and we discuss this latter

approach in this thesis.

Motion helps improve sensing in at least three ways:

Phenomenon Adaptivity: Motion may be used to adaptively focus sensing

resources on regions of interest. For instance, suppose the camera used to

capture the image shown in Figure 1.1(a) has pan, tilt, and zoom motion

capabilities. Then the total sensing resources used to obtain the image

shown in Fig. 1.1(a) may be allocated, using those limited motion capabil-

ities, to the small region shown in Fig. 1.1(c). The application using the

image data is interested only in regions where phenomena of interest, such

as the vehicles in this example, are present and to that application, motion

makes it appear that the sensor network is providing a 200pixel/m equiva-

lent spatial resolution even though significantly fewer sensing resources are

being used.

Medium Adaptivity: Practical deployment environments rarely ever provide

an isotropic sensing medium without obstacles. Clearly, a sensor can use
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motion to reduce the occlusions to its view due to obstacles in the medium.

Such use of motion assumes that the sensor can obtain information about

the obstacles, either from its own data or through external means. Further,

when multiple sensors are present they may use motion to minimize overlap

areas among their coverage, and hence potentially focus on smaller regions,

providing a high resolution coverage within those smaller regions.

Increased Sensor Range: Mobile sensors can patrol a larger volume, depend-

ing on the acceptable motion delay.

Motion itself may have a high resource overhead but the sensing advantages

often outweigh the cost of motion for appropriate system design choices. To

this end, we focus our discussion on a specific type of motion capability in the

cameras, namely the ability to pan, tilt, and zoom. Such cameras are sometimes

referred to as active cameras in computer vision or motile sensors3 in robotics.

There are several reasons which motivate us to restrict to this type of motion:

1. The navigational overheads of such constrained motion and very low com-

pared to navigating an unconstrained mobile robot, which requires signifi-

cant hardware and software resource overheads.

2. The energy requirements for constrained motion are lower than uncon-

strained mobility since the bulkier components such as the battery, motors

and processing platform can stay stationary while only the transducer has

to move.

3. Such motion is feasible in tethered nodes such as high bandwidth video

sensors where wireless communication may limit data quality.

3The terms motility and mobility are used differently in biology literature and we will not
consider that usage here.
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4. If the tolerable delay in sensing is small, then only a limited range of mo-

tion may be feasible within the actuation time allowed and small motion

capabilities are sufficient to exploit the delay available.

5. In certain applications the intrusion into user space due to unconstrained

mobile nodes may not be acceptable while small motion such as pan, tilt,

and zoom can be incorporated with negligible intrusion.

We also discuss some other forms of constrained, low-overhead motion modalities.

An interesting analogy of using motion to leverage limited sensing resources

occurs in human eyes. The resolution is highest in the center of the retina and

gradually degrades toward the periphery [PG02]. This is an attempt to minimize

sensing resources (in this case, neurons) and at the same time maximize spatial

resolution and field of view. Rapid eye movements are used to shift the focus of

attention toward a peripheral region when some event, such as motion, is detected

by the low resolution peripheral view [BRD05].

1.1 Key Contributions

The goal of this work is to explore the issues in system design when motion is

used for reducing sensing uncertainty in a sensor network. A review of the prior

work reveals that the approach proposed in this paper has not been considered

before for providing high-resolution coverage.

First, we discuss if and when it helps to use motion as opposed to alternative

methods, such as, using a higher density of static sensors to improve the resolu-

tion at which the area of interest is covered. We focus specifically on constrained

motion with low resource overheads and discuss why and when this particular

form of motion is preferred over other alternatives. We discuss the trade-offs
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involved, such as the time it takes for the motion actuators to provide the virtual

high-resolution coverage. We systematically characterize this time as the actua-

tion delay, which is a crucial design parameter, and we discuss it in depth. Some

of the work that lead to the findings in this regard was performed in collaboration

and is available in [KYK04] and [KKP04].

Second, we discuss a system architecture which modularizes the various func-

tions of the motion coordination task. A constrained form of mobility is used,

to minimize the resource cost of motion itself. The system architecture describes

the various components required to effectively use motion capabilities.

Third, we develop a motion coordination algorithm that helps use motion

capabilities with low delay. For this objective, we design a realistic sensing per-

formance metric that models the actual coverage characteristics of the sensors,

rather than relying on abstract disk based models. The motion coordination

problem is expressed as an optimization of this metric over various possible node

poses and orientations. Our distributed algorithm optimizes this global metric

using only local communication in a well defined neighborhood. This allows scal-

ability in the number of nodes and reduces the computational complexity of the

optimization.

Fourth, we discuss some desirable properties of our proposed algorithm. We

prove that our distributed algorithm converges to a desirable network configu-

ration. Convergence is proved without assumptions on the differentiability or

smoothness of the performance metric, but the nature of its dependence on sen-

sors is exploited. This is important because the realistic camera coverage model,

along with the presence of obstacles in the medium, does not yield a closed form

expression for the objective function, and it is not immediately obvious if typical

optimization procedures will converge when used with this function.

6



Fifth, we present a network protocol that implements our distributed motion

control algorithm, and addresses practical details such as the message passing

required for local coordination, and the termination of the motion without global

coordination. The effect of environment dynamics on the motion strategy is

considered. The performance of the protocol is studied through simulations that

model multiple sensor network deployments with obstacles.

Sixth, we develop practical methods to provide information about the de-

ployment environment that may further enhance the operation of our motion

coordination algorithm, such as the distribution of the sensed phenomenon over

space in the region being covered and the presence of obstacles that affect sen-

sor range. The methods to collect information about obstacles use laser ranging

from multiple nodes and aggregate the laser data to produce accurate medium

maps that are useful not only for our motion coordination algorithm but may be

applied to other sensor networks for characterizing the quality of coverage. The

laser ranging and mapping methods result from collaborative work described in

[KCK05a].

Finally, we design and implement a network of cameras with limited mobility,

and supporting resources used to learn the presence of obstacles in the medium.

We present an implementation of our proposed methods on this sensor network,

and evaluate the performance of our proposed methods using real world data

from our prototype system. Evaluations are performed in the context of practical

applications which may be realized using our system. Our results indicate that

the proposals in this work can help attain sensing at a previously unachievable

resolution using available sensing resources.
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1.2 Related Contributions

In addition to the above, some additional issues were explored involving the use

of controlled motion in sensor networks and the reduction of uncertainty using

collaboration among multiple sensors.

Apart from the benefits in sensing performance, controlled motion can also

be used to enhance the communication performance in certain situations. Large

amounts of delay tolerant data can be transferred using a mobile robot rather

than wireless transmission. This is advantageous in terms of energy since it re-

duces the number of hops required and saves the energy spent by embedded

energy constrained nodes for forwarding traffic along multi-hop routes. Addi-

tional advantages occur because the energy spent by the mobile node can even

be replenished at a charging dock while the energy reserves of the sensor nodes

embedded in the sensed environment may be hard to replenish. The analysis of

the exact energy advantage was carried out in the collaborative work, available

in [SKJ06]. The related system design issues such as the appropriate sleep man-

agement and routing protocols, along with a prototype implementation were also

described in [SKJ06].

As mentioned before, the use of controlled motion is only one of the meth-

ods for improving sensing performance and other methods may be applied for

the same objective as well. We also explored the benefits in sensing achievable

though a fusion of data generated at multiple sensor nodes observing a distributed

phenomenon. The results indicate that a lower distortion can be achieved with

a given network throughput if the same throughput is shared among multiple

sensors rather than used by a single sensor. The precise analysis along with the

phenomenon model used and the quantitative analysis of the feasible distortion

advantage is available in [PKP04].
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1.3 Prototype system

The algorithms and methods discussed in this paper are developed in the context

of a network of cameras with limited motion capabilities, or motility.

The sensed data consists of video streams from these cameras, which are

processed frame by frame to detect events of interest. Detected events are then

sensed at high resolution to provide higher fidelity data for more sophisticated

data processing algorithms, such as those for recognition or classification of the

events. The medium contains physical obstacles that cause occlusions in the

covered region.

The lab scale test-bed is shown in Figure 1.2. Apart from the cameras, it also

has other supporting resources such as medium mapping sensors and processing

platforms.

Figure 1.2: Protypte system with motile cameras and supporting resources.

We also used our prototype system to collect data outside the laboratory
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setting, in an outdoor environment in the context of a more realistic application

as discussed in a chapter 7.

1.4 Outline

This dissertation is organized as follows. The next chapter summarizes the prior

work that is related to the considerations in our thesis. Chapter 3 discusses the

potential sensing advantage from various types of constrained motion. Chapter

4 describes the design of the overall system architecture and various components

used in realizing the advantages due to motion. Chapters 5 and 6 discuss the key

components of the system architecture in greater detail, including the motion co-

ordination algorithm developed. Chapter 7 describes the simulations, our system

prototype, and the experiments performed to evaluate our proposals. Chapter 8

concludes the dissertation.
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CHAPTER 2

Related Work

While there is little work on the problem of using motile sensors for improving the

sensing uncertainty and coverage performance of sensor networks, several related

problems have been explored. In this chapter, we summarize prior efforts from a

variety of fields including computer vision, robotics and sensor networks in the

general area of motion coordination for improving coverage related performance

metrics.

The use of motion to enhance coverage in sensor networks has been considered

in other works such as [WR05]; however, random motion was considered instead

of controlled motion. Several motion coordination and configuration strategies

have been explored using controlled motion for coverage and sensing uncertainty

related performance. We study several of these here, and classify them by the type

of algorithm used. This helps us clearly identify the commonalities and differences

in the various approaches, and to exploit their salient features in designing the

algorithms proposed for the specific reconfiguration problem of interest to us.

2.1 Estimation Theoretic Optimization

Some of the motion control methods utilize estimation performance or informa-

tion theory based metrics to model the desired objective functions which are then

optimized for, using analytical or numerical optimization methods.
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An information theoretic measure of sensing uncertainty was used in [Gro02,

GMK03]. A utility function was defined using an information measure of the

sensor reading and was maximized with respect to the possible set of sensor

motion choices. Numerical methods were used for optimization because the cost

function lead to non-linear constraints. For deriving a distributed method the

utility function was defined as a sum of the individual utilities at each node and

a coupling term. One such coupling was through computing a global feature

state information metric at all nodes, which depends on receiving all the other

nodes’ information metrics. The computational cost of such an approach must

be carefully considered, since it can be a limiting factor for large scale embedded

implementations with constrained processing capabilities. Also, while sharing a

global state may be required for optimal coordination, this may not be feasible

in large scale networks.

Another information measure was defined in [ZSR02] for quantifying the track-

ing performance. Rather than motion control, the utility metric was used for

selecting the next best sensor based on the observations collected up to the cur-

rent time. The information gain was measured using the Mahanalobis distance

between the sensor location and estimated target location, which requires the co-

variance in target estimate from each potential sensor for evaluation. An alterna-

tive was also suggested for non-Gaussian cases when the probability distribution

cannot be represented in parametric form, similar to the particle filter approach:

the distribution of the next sensor reading was simulated using the sensor model

and the current belief about target state. The simulated distribution was used

for computing the entropy or other information measures for all possible sen-

sor choices. Since the selection was limited to neighboring sensors, the method

became inherently distributed; a single sensor was assumed to be tracking the

target at any time and hence collaboration was limited. Other information or
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estimation variance based cost functions have also been considered for tracking

purposes, such as in [GJ96].

An alternative information measure is the Fischer Information Matrix, and

has also been used, such as, in [AMB05]. A distributed solution was derived

when sensors move on the boundary of the target region for a distance dependent

sensor model. The algorithm resulted in each sensor moving toward the mid-

point of its Voronoi segment. Conditions for convergence of this algorithm were

also presented.

2.2 Geometric Optimization

These methods exploit geometric optimization and computational geometry tools

to model the sensor properties and performance criteria. The optimization cri-

terion is typically a geometric property such as area covered by a sensor or a

specific geometric model for camera visibility.

Several camera placement strategies, also modeled as variants of the Art

Gallery Problem [Chv75, OR87, Fis78], have been studied using these techniques.

The problem is essentially to place omni-directional sensors with infinite range

such that all points in the required region are covered by at least some sensor.

The case where sensors are allowed to move is known as the Watchmen Tours

problem and has also been explored [CNN93, EGH00a, GLL99, LLG97]. Sev-

eral results on polygon covering for different classes of polygons and algorithms

to centrally compute the best coverings are presented in [Nil94]. Further, the

abstract polygon models are extended to more realistic camera coverage models

in [ES04]. A model for camera coverage is taken in terms of its depth of field

and angular field of view. The pan motion is modeled by considering the angular
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positions that may be reached from any initial pan-angle within a time constraint

T . An optimization problem is then formulated to determine the minimum num-

ber of cameras required to satisfy the coverage constraints and a computation-

ally tractable procedure to solve the optimization problem in 2D is proposed.

However, the procedure is centralized and works only for simple polygons, i.e.,

polygons without holes, since linear time algorithms are available to find the vis-

ible subregion of a simple polygon [GA81] (coverage regions with obstacles are

thus not addressed). A variant which does consider occlusions appears in [CD00].

The coverage at a point due to a single camera is characterized in terms of the

target density at that point, the resolution at which the point is covered and the

probability of the point being occluded due to obstacles. The optimization prob-

lem is centralized and since the exact solution is computationally intractable, an

existing evolutionary algorithm based heuristic is used. In [Suj02], a heuristic

cost function is assigned which accounts for probabilistic information about oc-

clusions, and camera visibility of known target locations. This cost function is

optimized over all possible camera positions. This method is not distributed and

the position is computed at each camera individually.

Some distributed geometric methods were surveyed in [CMB05]. Briefly, the

coverage at a point was modeled as a function of the distance from the sensor

which best covered this point (typically the nearest sensor, but may vary based

on coverage function used), and the total coverage was defined as a weighted in-

tegral of the coverage at all points, the weights being based on a density function

supported over the region of interest. Alternate cost functions for visibility based

coverage (independent of distance within region of visibility) and some other coor-

dination tasks were also discussed. The network configuration was then computed

to optimize the chosen cost function. The interesting step in this optimization

was that for certain cost functions, the gradient turned out to be spatially distrib-
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uted over a well-chosen proximity graph. Some relevant proximity graphs from

computational geometry were considered, such as the Voronoi and Delaunay re-

lations. This allowed finding local optima using methods distributed over that

proximity graph. The cost functions chosen lead to analytically tractable gra-

dient computation and hence numerical optimization was not required. Specific

examples of this approach may be found in [CMB04, OM04] among others.

2.3 Control Theoretic Methods

These methods draw from the analytical tools of control theory to ensure the

stability and convergence properties, detecting reachability of certain states and

detecting deadlock states of such algorithms. Simple control laws are typically

used based on intuitive heuristics for achieving the desired goal.

A representation of the system state and control equations for a distributed

system was presented as a summation of two functions, one dependent only on a

node’s local variables and the other dependent on state variables at other nodes,

in [FLS02]. An interconnection matrix was written based on these and a reacha-

bility matrix was computed from it. The reachability matrix could be expressed

as a directed graph and reachability analysis reduced to a graph search problem.

Reachability is known to be useful for establishing controllability and observabil-

ity. Stability was analyzed using the vector Lyapunov function, and a test matrix

based on it. The analysis was demonstrated for a system with a linear control law

where the position of each robot was commanded to be proportional to the sum

of the positions of the other robots: a limit could be derived on the range of the

proportionality constant within which the group of robots was stable. Outside

this range, the amplitude of the control input could increase to unstable limits.
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A stability and convergence analysis for local interaction based control laws

was also presented in [JLM03]. The matrices representing the linear control

law for varying neighborhood sets were written, and for the neighborhood rela-

tionships of interest, they were shown to satisfy the conditions of the Wolfowitz

theorem, which states that an infinite product of such matrices approaches a con-

stant. Thus, the system controlled by such matrices approached a steady state.

Some other local interaction models were analyzed for stability in [GP04].

It will be interesting to analyze the stability and convergence of control laws

proposed for motion coordination in our work. It may be noted however, that

the methods above were described for linear control laws, while the control laws

used in our work deviate from linearity.

2.4 Other Optimization Methods

Optimization functions other than those derived using geometric or information

centric formulations have also been explored. While some of them use central

optimization heuristics, others use highly distributed ones where an approximate

global optimum is an emergent behavior of the algorithm.

A large class of distributed motion control methods for coverage maximization

may be classified as potential field based algorithms. As an example consider

[HMS02a]. The algorithm defines virtual forces which push nodes away from

each other and from obstacles. The highly distributed actions of the robots lead

to minimization of the potential energy of the system of forces and tends to

maximize the coverage of the robots. The network does not spread infinitely due

to opposing frictional forces which stop the nodes in a low energy state. Other

such methods include [HMS02b, PS04].
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The methods we propose are complimentary to those and may be used after

an optimal deployment has been found using those methods. Unlike deployment

methods which typically need not be concerned with motion delay, our methods

address the actuation delay trade-off in providing high-resolution sensing.

Another such approach is found in [BR03], where the occurrence of events

determined the motion steps for the sensor nodes, without any explicit coordina-

tion among nodes. Each sensor moved toward a detected event, and the distance

moved was a function of the distance from the event. This function was so de-

fined such that very far off events did not affect a sensor and this caused a natural

clustering of sensors around events to emerge.

An interesting aspect of the method described in [BR03] is that it allowed the

sensors to learn the event distributions and adapted the spatial sensor distribution

to approach the event distribution. Each sensor learned the event distribution

as events occurred and then updated its position based on the inverse of the

event cumulative density function (CDF). This caused the sensor locations to

acquire the same distribution as the events. While the motion step does not

require communication with other sensors, the motion control law requires central

coordination: each sensor needs to be aware of the location of all events to learn

the event CDF meaningfully, and a large number of events may be required for

the estimated CDF to match the true one. Here, an explicit metric was not

optimized but the emergent behavior was to improve the match between sensor

distribution and event distribution. It remains to be seen if the event distribution

may be learned locally1.

A multi-robot coordination mechanism based on virtual forces which are com-

1In our system, since the motion of each sensor is constrained to a local area, each sensor
could learn the event distribution within its range of motion- this CDF will not be normalized
with respect to the number of total events and any coordination among sensors must account
for this fact.
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puted from the target locations and positions of neighboring robots was presented

in [PT02]. A weighted sum of these forces governed the robot motion. Coverage

maintenance with mobile sensors was also considered in [MGE02] and [GKS04].

Another set of coordination algorithms for multiple mobile nodes for control-

ling their coverage are known as the pursuit-evasion algorithms. One example is

the work presented in [AKS03] which assigns probabilities to different possible lo-

cations of the evaders based on past measurements and proposed heuristic reward

functions for pursuers to cover those locations. Several heuristics are proposed

and compared. The optimization itself is centralized.

In [OM02], the authors optimize camera position for improving the perfor-

mance of 3D reconstruction. This was achieved by placing cameras such that the

error variance in the position estimated was minimized. The error variance was

computed by relating the error in the point in space to the error in the point in im-

age plane over multiple images. The optimization was performed using a genetic

algorithm as the search space is discontinuous and not much was known about

its structure. Other variations which account for illumination effects and other

limitations have been looked at as well. Note that the performance criterion be-

ing optimized for is the scene reconstruction capability rather than detection and

recognition. The optimization was centralized. Controlled motion of a camera

was also used for 3D scene reconstruction in [MC96]. The optimization function

was defined as a weighted sum of the new scene information added due to the

motion step, energy cost of distance moved and additional constraints to avoid

unreachable locations. A heuristic optimization was employed which searches the

parameter space at low granularity and a small region around the approximate

optima at high granularity (it may thus not discover the global optimum). Only

a single camera which could move anywhere in the scene was considered. Cam-
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era position control has also been considered in visual servoing literature, where

the goal is to optimize the position of a camera to maintain multiple features of

interest in view [MC00]. The methods are typically designed for a single camera.

If the locations of all targets are known, methods from vehicle dispatching

problems may be applied to allocate sensors to these known target locations

[BP98]. A utility function was assigned to model the performance and a genetic

algorithm applied for optimizing it.

Motion control methods have also been developed for coordinating the mo-

tion of multi-robot systems for solving other problems such as path planning,

formation generation, formation keeping, traffic control, and multi-robot docking

[APP02].

2.5 Active Cameras

Aside from controlling motion for mobile sensors or robots, the problem of improv-

ing sensing performance in networks of cameras with limited motion capabilities

has been considered before in several works. Cameras with motility capabilities,

such as pan, tilt, or zoom, are sometimes referred to as active cameras.

In [CRZ04], the authors used a set of motile cameras to detect and track

multiple targets. Simultaneous detection and tracking was achieved by introduc-

ing simulated targets randomly over the area of interest and then having these

simulated targets compete with real targets for sensing resources - this ensured

that some sensing resources were also spent on searching the entire area while

other resources are being used for tracking. A cost function called ‘interest’ was

defined including both simulated and real targets and the camera positions were

controlled to optimize this function. The interest in a target was non zero only
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for cameras which could see it (from any of their pan-tilt positions) and the to-

tal network interest was modeled as a summation of the interest in each target.

A factor graph [KFL01] was drawn to represent the dependence of the interest

function on different sensors and the max-sum optimization algorithm for op-

timization over such graphs was used. This method can be implemented in a

distributed manner with limited message passing among nodes. The optimum

computed is a global optimum when the factor graph is a tree. These methods

are complimentary to ours and may be used reactively when an event is detected

from the configuration provided by our methods.

Multiple cameras were assigned to multiple tasks using a greedy cost function

based approach in [CLF01]. A cost function was assigned to each sensor for each

target based on a weighted sum of metrics assigned to visibility of the target,

distance from the sensor, and the priority of the target. The cost was optimized

using a central and greedy strategy- for each target, the sensor with the minimum

cost was assigned to it, and the remaining sensors were assigned to targets for

which they had the minimum cost. Another similar cost function based on target

visibility, distance and possible camera poses was used in [AB03]. Future target

positions were predicted from observed target trajectories and a central optimizer

allotted sensors to different targets by minimizing the cost function.

Another multi-camera system combining a variety of motion capabilities in-

cluding airborne and van mounted cameras was discussed in [KCL98] along with

a discussion of the communication, target tracking and target classification al-

gorithms among various other issues. The problem of camera orientation was

addressed from the perspective of maintaining targets in field of view as either

the mobile sensor platform or the target or both moved. A multi-camera sys-

tem to track multiple targets was also described in [MU02] where cameras were
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grouped as per the target being tracked by them, and a communication method

using a shared memory was presented.

A multi-camera multi-target tracking system was also described in [MHT00]

where the camera motion is controlled for the specific objective of tracking faces

in a meeting-room application. A centralized algorithm is used and the cameras

are oriented and zoomed to capture the speaker’s face at high resolution. Other

systems using motile cameras have been considered in [CDB04, THM00, STE98]

among several other works for related coverage and tracking objectives.

However, these works are distinct from ours. They use motion to allocate the

available sensing resource successively to different locations. The motion objec-

tives are distinct from our objective of providing high-resolution, and the motion

is typically used reactively to track certain events detected by the camera. Also,

the actuation delay considerations are very different for our approach. None of

the above discuss the use of multiple-resolutions. They attempt to maximize cov-

erage at a given resolution. Our goal is to maximize resolution while balancing

the opposing demand of maximizing coverage. One of our system design assump-

tions is that the phenomenon of interest can be detected at lower resolution but

high resolution coverage is required for the specific sensing application using the

data (such as recognizing if the phenomenon is important). We can use this as-

sumption to provide higher resolution sensing in regions with detected events, by

reducing resolution in uninteresting regions. In a fixed resolution system on the

other hand, when a camera orients toward one region, coverage in another region

may be totally lost.
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2.6 Other Related Work

Apart from motion coordination, some other work is also of relevance to this

research, in view of the coverage performance and the specific nature of system

constraints relevant to us.

System reconfiguration may occur using methods other than mobility - for

instance nodes may be toggled between active and sleep states depending on

where the targets of interest are. This may be viewed as a special case of motion

coordination where the motion is effected by turning a node to sleep at one

location and activating another node at a different location. Some work has

been performed in this direction, though with a different objective, for topology

management in sensor networks. An example may be seen in [WXZ03a] among

other work on topology management in sensor networks. A uniform coverage

is desired and redundant nodes are deactivated to save energy. A distributed

algorithm that activates sufficient sensors for maintaining coverage was presented.

A related example is also the work on node selection for target tracking, presented

in [ZSR02].

Designing a mobile sensor system which simultaneously addresses the tasks of

detection, classification and tracking also raises interesting issues in the integra-

tion of various algorithmic components. Some work has looked into organizational

strategies for combining the multiple components in an efficient and robust man-

ner. In [TH], the authors proposed a layered approach where the lowest layers

acted on larger amounts of data and filtered it out so that higher layers which

need to do more complicated data processing received only potentially useful

data. An interesting multi-camera prototype system, using static cameras and

central algorithms, was described in [PMT01] and addressed several practical

system design issues and integration of multiple vision algorithms.
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In our work we assume that camera locations are known. Several localization

strategies have been proposed for sensor networks [SHS01, MLR04] in general

and for networks of cameras in particular [DR04, FGP06, MCB04]. For the type

of motion being considered in our work, even a deployment time record of node

installation locations suffices.
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CHAPTER 3

Sensing Advantages of Small Motion

In this chapter we discuss the potential advantages in sensing due to small and

constrained motion. As mentioned in chapter 1, the use of such motion is more

practical due to its reduced resource and navigational overheads. We discuss two

types of small motion - first, supported by an infrastructure such as a track or a

cable, and second, consisting of pose change using pan, tilt, and zoom.

3.1 Small Motion On Infrastructure

Motion of this form may be achieved by mounting the sensor node on a small track

or cable which guides the sensor node movement, such as used in [KPS03]. The

motion may in fact be achieved by moving the cable itself, with the advantage that

the bulkier components such as motors and batteries may stay static [HAG06].

Such motion yields advantage in sensing through allowing the sensors to min-

imize the effect of obstacles and also sense over a larger volume by moving to

different points allowed along the infrastructure. The resolution of sampling may

also be increased using such motion. Several of the findings presented in this

section result from the collaborative work described in [KYK04].
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3.1.1 Single Obstacle Model

We first analyze the effect of an obstacle on coverage. For the purpose of analysis

we make several abstractions which will be removed gradually in simulations,

laboratory tests and real world experiments presented subsequently. We carry

out our analysis for a sensor with line of sight coverage model, such as a camera,

for ease of exposition; the analysis can be extended to sensors in anisotropic

media, acoustic sensors in a multi-path environment and other sensor specific

coverage models.

Assume that sensors are deployed at uniform density d which yields an inter-

sensor spacing a in a regular grid deployment. The analysis is performed for a

two dimensional deployment, though similar calculations may be performed in

3D. Consider one sensor which is responsible for covering one tile of this grid,

shown in Figure 3.1. Let the area for which one sensor is responsible be denoted

by A. For the regular grid deployment A = a2.
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Figure 3.1: Abstract obstacle model for analytical calculation of coverage.
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Consider a circular obstacle of diameter l present in this tile which blocks

the coverage of the sensor. We will assume that the sensor is capable of limited

mobility over a range which is a small multiple of l.

Suppose the area occluded by the obstacle is Aoccluded (shown shaded in Figure

3.1). To quantify the coverage, we define the probability of mis-detection, PoM ,

as

PoM =
1

A

∫

Aoccluded

ftarget(x, y)dxdy (3.1)

where ftarget(., .) is the probability density of the target location within A.

When there is no design time knowledge of the target location, ftarget(., .)

becomes a uniform probability density. For this case, PoM = Aoccluded/A.

When no obstacle is present, A is completely covered by the sensor and hence

PoM = 0. Now consider the case when one obstacle is present. Consider the

position of the obstacle shown in Fig. 3.1 such that both the tangents from the

sensor to the obstacle circle meet the top edge of the tile. Let θ1 be the angle

made by the tangent to the obstacle edge with the vertical line joining the sensor

and the center of the obstacle. Let the distance of the obstacle center from the

sensor be x. Then,

A = a2 − π

(

l

2

)2

(3.2)

Astatic
occluded = a2tanθ1 −

l2

4tanθ1

− (π + θ1)
l2

8
(3.3)

where θ = sin−1(l/2x). Next consider the case where the sensor is capable of

moving a small multiple of l, say 2l, on a track along the edge of the tile. The

occluded area when the camera may use any location along its track to cover the
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tile is shown hashed in the figure. This area is

Amobile
occluded =

l2

4
tan(ω)− ωl2

4
(3.4)

where

ω =
π/2 + θ1 + θ2 + β

2
(3.5)

θ2 = sin−1

(

l/2√
4l2 + x2

)

(3.6)

β = tan−1 x

2l
(3.7)

To determine the magnitude of improvement for specific values of the model

parameters, let us evaluate the gain due to mobility as the factor, G, by which

the occluded area is reduced due to mobility:

G =
Astatic

occluded

Amobile
occluded

(3.8)

where the expressions for the numerator and denominator were derived in

equations 3.3 and 3.4.

We evaluate the above equation for a range of parameter values. Fig 3.2 shows

G for a = 100, l ∈ (5, 20) and the distance of obstacle, x ∈ (20, 35). These values

are such that the geometrical calculations above hold; the relative values of x, l

and a are such that the figure drawn above represents the situation correctly, the

calculations will change if the shapes of occluded areas differ.

Figure 3.2 shows clearly that limited range mobility reduces the occluded

area significantly. Constrained mobility offers a dramatic impact, therefore, on

detection probability for distributed sensors.

Analytical calculation may be continued for varying positions of the obstacle

and may be extended for more than one obstacle. However, analysis becomes
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Figure 3.2: Calculating the advantage due to mobility for a simplified obstacle

model.

intractable as the number of obstacles grows and we resort to simulations for

evaluating more complex and representative environments.

3.1.2 Multiple Obstacles

The simulations consider several scenarios with multiple obstacles. The simu-

lations model a 2D deployment; the effect of height is not accounted for in the

obstacle model. Three dimensional calculations would be needed when sensors

are observing the environment from a UAV or very high altitude.

Again, we consider sensors placed along edges of a square region, which as

before models one tile of a large deployment. The mobile sensor is assumed to

be able to move a short distance along the edge.

To model realistic obstacles, we first note than most everyday objects have

a small aspect ratio. Also, for the line of sight sensor, it is not the exact shape
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of the obstacle but the angle subtended by it at the sensor which determines the

occlusion. With this reasoning, we simulate the obstacles as circular. A notable

exception to small aspect ratio objects are walls and other forms of boundaries

which will severely limit the coverage of a sensor and we do not expect small

motion to overcome the effect of walls.

The obstacle diameter is assumed to be a random variable with uniform dis-

tribution, between 0 and 2lav. The density of obstacles is represented as number

of obstacles per unit area. The obstacles are placed uniformly randomly over a

square area of size 100× 100. The random coordinates may lead to overlapping

obstacles causing the formation of complex obstacle shapes. As discussed before,

we are not concerned with the exact shape of an obstacle but rather with the

occlusion caused by it. The sensor is again assumed to be capable of moving a

distance dmove which is a small multiple of lav.

Coverage is measured by evaluating the area which is visible to the sensor

compared to the free area left in the square after the area occupied by the obsta-

cles themselves is subtracted. The line of sight from the sensor to every point in

the free area is tested and if there is an obstacle blocking it that point is assumed

occluded. Coverage can be calculated by counting the occluded points and the

visible points.

To suppress the effect of peculiar chance placements, for each choice of para-

meter values we average our measurements over 20 runs of the simulation. One

of the sample obstacle placements is shown in Figure 3.3, with one sensor placed

along the lower edge.

For the first simulation, there is one sensor placed at the center of the lower

edge. The value of lav is 5m. The obstacle density is varied from 1 obstacles in the

square region to 15 obstacles. Coverage is evaluated for three cases: when there
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Figure 3.3: Sample obstacles in deployment terrain (The small line along the

lower edge shows the track on which the sensor moves).

is no mobility, when the sensor can move lav to one side of the center position

and when the sensor can move 2lav, equally divided on both sides of the center

position. Figure 3.4 shows the fraction of free area covered in each case. For each

obstacle density, coverage is obtained by averaging over 20 obstacle placements,

in each of the three sensor mobility cases.

The gains due to mobility in varying obstacle density, compared to a static

sensor are shown in Figure 3.5. The gain is defined as:

G =
PoMstatic

PoMmobile

(3.9)

The figure shows 200% to 700% gain for sensors with small mobility compared

to static sensors.

The next simulation studies the advantage due to mobility in varying obstacle

size. The value of lav varies between 5 and 20m in a 100× 100 area. The number

of obstacles is kept fixed at 10. Figure 3.6 shows the multiplicative reduction in

mis-detection probability, G. The labels 1 and 2 along the x-axis refer to cases
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Figure 3.4: Coverage with varying obstacle density, with and without mobility.

The error bars show the variance among 20 runs with different random obstacle

placements.

when the sensor is allowed to move lav and 2lav respectively. Again, actuation

shows significant advantage, giving more than a factor of 2 improvement. The

variance in the results from the 20 random topologies, not plotted for brevity, is

less than 0.05 in all cases. The simulation results are very encouraging and verify

that the performance gains expected in simplified analysis with a single obstacle

are also expected with realistic scenarios having multiple obstacles and varying

camera mobility range. These results motivate us to implement experimental

systems which utilize small motion capability.

3.1.3 Experiments

The experimental system studies the improvement in coverage in the presence

of realistic effects such as the actual detection algorithms operating on real sen-

sor data, in the presence of transducer noise. The sensor angle of view may be

constrained and illumination conditions may affect detection. Previous work on
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Figure 3.5: Actuation advantage (multiplicative reduction in probability of mis-

-detection) in varying obstacle density.

coverage in sensor networks [WXZ03b, MKP01, LWF03] has been based only

on abstract sensor models, such as a circular disc coverage model, and not on

measurements with real sensors; our experiment is one of the first attempts to

corroborate the proposed coverage enhancement methods with real-world mea-

surements.

This section describes the camera test-bed built for this purpose and our

experiments on it in two different scenarios - a controlled laboratory environment

and an outdoor environment with trees and foliage.
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Figure 3.6: Actuation advantage (multiplicative reduction in probability of mis-

-detection) with varying obstacle size.

3.1.3.1 Laboratory Test-bed with Cameras and Obstacles

Figure 3.7 shows a picture of obstacles in our laboratory test-bed, seen from the

camera location.

The sensor used on the test-bed is an Axis 2100 camera system [AXI]. The

camera system is equipped with rotational articulation to enable imaging in the

entire plane of rotation. The object being detected was large enough to cover

a detectable area in the captured image, even when placed at the maximum

distance from the camera in the region being covered.

The coordinates for obstacle placement are obtained from the actual location

of trees in the Wind River forest [Win03]. The size of tree stems is assumed equal

for simplicity of construction. Actual tree coordinates do not follow a uniformly

random distribution due to physiological phenomena and using actual forest tree

coordinates is expected to provide a realistic obstacle scenario. The obstacles

used here are cylinders with diameter of 1 foot. They are placed in a 12 foot by
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Figure 3.7: The laboratory test-bed for testing coverage advantage due to mobil-

ity.

12 foot grid. The tree coordinates are shown in Figure 3.8.
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Figure 3.8: The coordinates of trees from Wind River forest [Win03] used to

place the obstacles in laboratory test-bed.

The target being detected is a small cylinder of a different color than the

obstacles. A simple image processing technique is used to detect the target in
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the captured image. As the lighting in the laboratory is controlled, we can take

an image of the background with no target present and detect the target by

subtracting an image taken when the target is present from the background image.

If the target is completely occluded, it is will not be detected. If it is partially

occluded, we assume it as detected if the number of pixels visible is above a

certain threshold. This threshold procedure reduces the contribution of noise

associated with the camera system by ensuring that a minimum portion of the

target is observed in order to declare a positive detection.

The experiment is performed as follows. First the camera is placed at the

midpoint of one edge of the square area. With the camera stationary, the target

is moved to uniformly spaced locations on the 12′ × 12′ grid. The number of

locations at which the camera is able to detect the target divided by the total

number of locations at which the target was placed gives the coverage achieved

by the static sensor.

Next the camera is assumed to be able to move a distance of two feet. Cov-

erage is again computed using the previous target placement procedure but now

if the target can be detected by the camera by moving along its track, the target

is assumed detected.

Further, we vary the number of cameras available. One additional camera is

successively added on each of the other edges. The mis-detection probabilities

are plotted in Figure 3.9 for varying number of cameras, both for the stationary

case and the mobile case. The mis-detection with mobility is significantly lower

than the static case, reaching an order of magnitude improvement in some cases.
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Figure 3.9: Probability of Mis-detection in laboratory test-bed experiments: vary-

ing number of cameras. PoM is lower with mobility.

3.1.3.2 Experiment in Trees and Foliage

We also test our findings outside the laboratory, using a more realistic setting.

An environment with trees and foliage is selected, near our campus, shown in

Figure 3.10.

The obstacles are no longer ideal cylinders and cameras do not operate in

controlled lighting conditions. The cameras being used are not designed for out-

door usage and the image quality is affected by exposure to sunshine for the long

duration required for collecting data in our experiments. This leads to some er-

rors in our simple image processing techniques for detecting the target. It may

be noted that the foliage causes rather large occlusions and our mobility here is

much less than the mean obstacle diameter, instead of being an integral multiple

of it.

The experiment performed consists of one camera placed along one edge.
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Figure 3.10: Image of real world scene showing obstacles consisting of trees and

foliage, among which the target is to be detected.

Coverage is measured over a 12′ × 12′ grid in the forest. Detection probability is

first measured when the camera is fixed at the midpoint of the edge. Then the

camera is allowed to move two feet in one direction. Third the camera is allowed

to move 2 feet in both directions. The mis-detection probabilities and gains are

tabulated in Table 3.1. The measurements show that mobility even when lower

than average obstacle length is able to provide significant advantage in reducing

the uncertainty of sensing.

Table 3.1: Mis-detection probabilities with and without motion for real-world

experiment

CameraMode PoM G (%)(relative to static case)

STATIC 0.3885 -

MOVE, 1 direction 0.2374 163.65

MOVE, 2 directions 0.1942 200.05
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3.1.4 Two-dimensional Motion on Infrastructure

We mention an example where constrained motion helps increase the resolution

of sensing, using a system that allows infrastructure supported motion in a two-

dimensional plane. We proposed a system that allows the motors and power

connections to be present at only one corner of the two dimensional plane being

covered. The cables themselves are used to move the node across the plane and

supply power to it. This reduces the payload moved by the motors since the

motors and power supplies do not have to be moved. The system is rapidly

deployable since it only requires the two supporting end poles to be installed at

the location of interest. A schematic of the system is shown in Figure 3.11.

Motor 1

Motor 2

Sensor

Plane of Motion

Figure 3.11: NIMS-LS: a system to provide infrastructure supported 2D motion.

Another system to provide 2D infrastructure supported motion was designed

in [HAG06]. The infrastructure consists of a cable suspended horizontally be-

tween two supports at opposite ends of the plane of motion. The horizontal

cable supports motion along the horizontal axis. A second cable in the vertical

direction is used for motion along the vertical axis.
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Consider an application where the concentration of nitrate radical (NO−

3 ) is to

be mapped across the cross-section of a river, such as shown in Figure 3.12. The
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Figure 3.12: Nitrate concentration (mg/l) across the cross-section of a river.

available nitrate sensor node has a transducer surface 0.1m × 0.1m that is used

for sensing. Suppose nitrate concentration is to be mapped at 0.5m resolution.

Then, installing the available sensor at every 0.5m across the river cross-section

along with the deployment infrastructure such as metal trusses to support the

sensors in the river is likely to interfere with the nitrate concentration map.

On the other hand, a sensor with constrained motion in a 2D plane across the

river cross-section, such as described above, can map the nitrate concentration

at the required resolution without interfering significantly with the phenomenon.

Assuming the concentration map does not change within the time it takes for the

sensor movement to be completed, the nitrate concentration can be mapped at

the required resolution.

3.2 Pan, Tilt, and Zoom Motion for Cameras

Pan, tilt and zoom can significantly extend the sensing coverage, despite its sim-

plicity and ease of practical realization. For instance, the area covered by a

camera can be increased by panning and tilting the camera head. As a represen-
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tative example, we analyze the increase in coverage for a commercially available

pan-zoom-tilt camera [Son04].Its actuation capabilities are summarized in Table

3.2.

Actuation Range Speed

Pan +170 to -170 degrees 170◦/second

Tilt +90 to -25 degrees 76◦/second

Zoom 25X (Horizontal field of view 3 seconds/(1X to 25X)

angle changes from 45◦ to 2◦ )

Table 3.2: Example actuation specifications, for camera used in prototype, Sony

SNC RZ30N.

Figure 3.13-(a) shows a simple model for the volume covered by the camera

at its widest zoom, and without any pan and tilt. This volume, Vstatic, is approx-

imated as a pyramid with a rectangular base of area Ll ×Hl and height Rs. A

small region near the vertex of the pyramid is not actually covered as the camera

has a minimum focal distance and objects closer than this distance cannot be

captured. For the above camera, at the widest zoom, this distance is 0.03m,

which turns out to be negligible compared to the height of the pyramid, R, cal-

culated below and this effect is thus ignored. Based on the minimum resolution

desired for imaging, we can determine the range Rs which is satisfactorily covered

by the camera. Let the image size be L×H pixels, taking L to be the horizontal

dimension. Suppose the minimum spatial resolution needed for the application

is such that a length l in space must cover at least one pixel. The image area of

L×H pixels will then represent LHl2 area in space. The horizontal field of view

for the camera, θfov,h, can then be used to calculate R for the required l value:

tan(θfov/2) =
lL/2

Rs

(3.10)
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Figure 3.13: Actuation in a PZT camera (a) volume covered without actuation

can be modeled as pyramid, (b) tilt capability increases the effective volume

covered, (c) combined pan and zoom capabilities further increase the volume

covered, and (d) volume covered when pan, tilt, and zoom are combined: this

can be viewed as a portion of a sphere swept out using pan and tilt, where the

thickness of the sphere depends on the zoom range.

The value of l depends on phenomenon size and the minimum image resolution

needed by detection algorithms. Suppose l = 1cm is used. For the sample camera,

θfov,h = 45◦, L = 640 pixels and H = 480 pixels, which yields Rs = 7.27m. This
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value is within the focal range of the camera. The focal range may limit R and

hence the usable range of l. We also assume that the illumination is sufficient for

the zoom range available on the camera. Thus, Vstatic is given by:

Vstatic =
LHRsl

2

3
(3.11)

Now consider the volume covered with motility. When motorized zoom with a

zoom factor of z is used, the range covered becomes zRs. The additional volume

covered is a cuboid of depth (z−1)Rs and area Ll×Hl. The total volume covered

with zoom, Vz, becomes:

Vz = Vstatic + LH(z − 1)Rsl
2 (3.12)

and corresponding gain factor due to zoom motility, gz, is gz = Vz/Vstatic = 3z−2.

Let the tilt angles with respect to the plane of pan rotation be denoted θ−tilt in

the downward direction and θ+
tilt upwards, with their total being θtilt. The volume

covered when the tilt capability is used, Vt, can be viewed as the volume of a

sector of a disk of radius Rs, thickness Ll, and sector angle θtilt minus the volume

of two cone sectors of radius Rs, height Ll/2 and sector angle θtilt. This volume

is shown in Figure 3.13-(b). A half of the pyramid extends beyond the tilt range

on each side, and these additional edge volume segments extending beyond the

sector total up to Vs. The total volume covered with tilt motility, Vt, is thus:

Vt = Vstatic +
θtilt

2π

[

πR2
sLl − 2

(

1

3
πR2

s

Ll

2

)]

(3.13)

The calculation of the volume covered using pan motility is very similar, and

is omitted for brevity. Figure 3.13-(c),(d) show the volumes covered when two or

more actuation modes are combined. Evaluating these volumes yields the overall

gain due to pan, zoom and tilt combined, gpzt, to be:

gpzt = (3z − 2) +
θtiltRs

2Hl
(3z2 + 1) +
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θpanz
3R2

s(1− cos θtilt)

LHl2
+

[

cosθ−tilt + cosθ+
tilt

2L

]

θpanRs

2l
(3z2 + 1)(3.14)

This formula can also be used to calculate the gain due to motility primitives

separately; for instance, substituting z = 1 and θpan = 0 yields the formula for

gain due to tilt alone. Note that gpzt is independent of l as the quantity Rs/l in

each term can substituted from equation (3.10) in terms of camera parameters

θfov,h and L.

Substituting the values of L,H and other parameters from Table 3.2 in (3.14),

we get the coverage improvements listed in Table 3.3.

Actuation Gain

Pan only 7.74

Tilt only 4.04

Zoom only 73

Pan and Tilt 27.71

Pan and Zoom 6361

Tilt and Zoom 2908

Pan, Tilt, and Zoom 226940

Table 3.3: Coverage Improvement with PZT actuation

Clearly, actuation yields a significant advantage in coverage, especially when

two or more simple forms of actuation are combined together. For example, the

last row in the table shows that the pan, zoom and tilt actuation can reduce the

number of cameras required by over five orders of magnitude, in unobstructed

environments.
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3.2.1 Usable Range of PZT Motion

The above calculations assumed the entire range of motion capabilities is usable.

However, in a practical setting, only a part of it may be used, such as due to

the tolerable delay available for motion, or the motion triggering mechanism.

Suppose the motion triggering mechanism is such that the camera uses its pan,

tilt, and zoom motion to zoom in to a location where an event is detected from

its wide angle view. Then clearly, the entire pan range may not be utilized but

only the pan range equal to the field of view angle in the horizontal direction may

be used. Also, the useful zoom range is limited to the difference in resolutions

required for detection and the final sensing task. We analyze the coverage gain

with these effects next. Suppose the resolution required for the final sensing

objective is such that the camera can image up to the maximum distances Rs.

The volume covered by the camera can be modeled as a pyramid of height Rs

with the base area Lls × Hls, and its vertex at the camera1. This yields the

volume over which the desired sensing resolution is provided, say, Vs. Suppose

detection can occur when a distance ld is mapped to a single pixel-length, which

similarly leads to a volume Vd over which detection is feasible.

Figure 3.14-(a) shows the volumes Vs and Vd. The camera can provide the

resolution ls at points outside Vs, but within Vd, by using its pan, tilt and zoom

motion. The maximum advantage that may occur in coverage due to motion

is G = Vd/Vs, if the camera has motion capabilities to reach any point in Vd

at the resolution ls and sufficient time is available for that motion to occur.

Figure 3.14-(a) also shows the pan, tilt and zoom ranges required to cover the

entire Vd. Suppose the time taken for that motion, referred to as the actuation

delay, is τ . The advantage G may be reduced if the tolerable actuation delay

1A small region near the vertex may be too close for focus limitations but its volume is
assumed insignificant compared to the entire pyramid
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does not permit reaching some fraction of Vd. The tolerable delay τ depends on

the event dynamics. Consider again the example camera: it has a field of view

θfov,h = 45◦ in the horizontal direction and θfov,v = 30◦ in the vertical direction,

which determine the horizontal and vertical vertex angles respectively for Vd.

It has pan and tilt ranges of 340◦ and 115◦ respectively, which are more than

sufficient to cover the entire Vd. The zoom range is 25, which means that the

maximum ratio Rd/Rs supported is 25. The pan and tilt speeds are 170◦s−1 and

57.5◦s−1 respectively. The time taken for zoom is non-linear and was measured

experimentally for the entire zoom range (Figure 3.14-(b)).
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Figure 3.14: (a) Covered volumes for detection and sensing phases, with the

pan, tilt, and zoom required to provide sensing resolution within the detection

volume. (b) The time to change zoom measured as a function of the zoom

step. The communication delay in sending the zoom command was separately

characterized and has been subtracted from the motion time.

The detailed calculation of the advantage in covered volume due to motion,

G, for these capabilities is skipped for brevity. The derived value of G is plotted

in Figure 3.15 for various values of τ ranging from zero to the maximum time

required to exploit the entire motion range and various values of Rd/Rs within

the zoom range of the camera. Note that G is quite large and hence plotted
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on a log scale. The region in the figure corresponding to actuation delay above

1s and the ratio Rs/Rd > 2 shows more than an order of magnitude advantage

in coverage. Applications with sensing requirements that lie in this region will

benefit significantly from the algorithms discussed in this thesis.
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Figure 3.15: Evaluating coverage gain due to motion with varying actuation delay

and difference in detection and identification resolution.

3.2.2 Advantage with Multiple Nodes

The preceding analysis showed how motion can help improve sensing when it

is used for providing high resolution coverage on demand from a given pose.

There are additional ways in which motion may improve coverage, specifically by

optimizing the initial configuration itself. These additional advantages becomes

relevant when the sensor nodes with pan, tilt, and zoom capabilities are used in

a network, rather than at a single node.

First, a random deployment may cause two sensors to be covering overlapping

areas while other areas remain uncovered. Motion allows efficient orientation of
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the sensors to cover non-overlapping areas.

Second, regions blocked by obstacles for one sensor may be viewable by

another sensor, if that sensor chooses the appropriate position or orientation.

Among the multiple possible network configurations, the positions of the nodes

can be collaboratively adjusted to minimize occlusions. Just as with infrastruc-

ture supported motion, pan, tilt, and zoom motion may also be used to achieve

this.

As an illustration, figure 3.16-(a) shows a random placement of 20 sensors

in a 25m × 25m area, each oriented randomly, and in the presence of obstacles.

The circles represent obstacles in the sensing medium and the sensor locations

are marked with small diamonds. The sectors of circles indicate covered regions,
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Figure 3.16: Instantaneous coverage increase: (a) a sample topology showing ran-

domly oriented sensors, and (b) sensor orientations changed using pan capability.

modeling a 45◦ field of view and a range, Rs = 7.3m, as calculated earlier for

the sample sensor. If these sensors have pan capability, their orientations can be

changed. Figure 3.16-(b) shows a changed network, where the number and loca-
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tion of nodes has remained the same, only the orientations have been updated

using pan motility. Figure 3.17 shows this gain with varying node density. A dis-

tributed algorithm to update the sensor orientations, and achieve a configuration

such as shown in Figure 3.17 is considered in chapter 5.
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Figure 3.17: Coverage advantage when pan actuation is used for initial reconfig-

uration only, at multiple densities. Error bars show standard deviation across 10

random topologies. (Node density is measured as the number of sensors in the

area covered by a single sensor.)

3.3 Trade-offs in Using Small Motion

The preceding analysis and simulations for various types of constrained motion

show that this practical form of motion which is easy to integrate in an embed-

ded sensor network, has a significant potential to impact sensing performance.

However, it is of interest to compare this approach against other alternatives that
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may be used to improve sensing performance, and explore the trade-offs related

to various choices. There are two obvious alternatives to the use of motility.

One is to use a much higher density of static nodes and the other is to use an

even lower density of mobile nodes with long range motion capabilities. We will

discuss how small mobility compares to these.

3.3.1 Feasible Resolution

The deployment environment may limit the density of static sensors that may

be deployed. This limit may arise from various reasons. The ability to provide

mounting supports may be restricted to a limited number of locations within

the environment being monitored. The size of the sensor node limits the density

of deployment. A very high density of sensors may interfere with the phenom-

enon itself. Additionally network capacity, such as the channel bandwidth in a

wireless system, may limit the density of nodes. The provision for energy may

impose another limitation. If a wired energy infrastructure is provided, the den-

sity at which the cabling can be installed will limit the node density. For systems

using environmentally harvested energy, the amount of energy available in the

environment may limit the number of nodes.

Consider for instance the resolution feasible using a finite set of sensing re-

sources with and without motion. The image shown in Fig. 1.1(a) is obtained

using a 1 Megapixel (1MP) camera. The resolution of coverage over the region of

interest is: 40pixels/m at the near end of the road and 7pixels/m at the far end

of the road in the scene. In the image shown in Figure 1.1(c), the same 1MP sens-

ing resource is allocated to a small region achieving 200pixels/m resolution over

that region. Providing such high resolution coverage over the entire scene using

only static cameras, mounted at the same location, requires sensing resources of
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784MP2.

Let us compare what motion may achieve. Suppose the 1MP camera used

to obtain the image is equipped with pan, tilt, and zoom motion capabilities.

Then, a zoom of 13X along with a small pan and tilt motion is sufficient for this

1MP camera to capture the image shown in Fig. 1.1(c) by focusing its sensing

resources selectively on a small region. These motion capabilities may be used

to get high resolution at any subregion of the scene shown in Fig. 1.1(a) and

thus motion has provided a virtual 784MP resolution using only 1MP sensing

resource. There are several issues in using the latter alternative such as the delay

in carrying out the pan, tilt, and zoom steps and the issue of finding out the

regions of interest. These issues will be discussed at length in the subsequent

sections. For situations when those issues can be satisfactorily addressed, using

motion is a significantly better alternative.

Thus, for the application scenario of interest, if the required resolution cannot

be achieved with a static system (such as if 784 1MP cameras are impractical to

be deployed in the above example), but can be achieved with a mobile network,

clearly, the use of motion is to be preferred.

There may be other applications where the resolution achieved by a static

network of low power cameras such as developed in [RBI05] may suffice. In some

instances, the area to be covered may be so small, such as a known choke point

in the field of view, that high resolution can be provided using a static cameras.

Again, motion may not be required to increase resolution in that scenario.

2Deploying cameras closer to the road could enable the use of much lower resolution cameras
such as used in red-light violation monitoring systems, but we assume that we are not allowed
to install our equipment on the city road infrastructure.
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3.3.2 System Deployment and Operation Cost

A second concern in choosing to use motion may be the system cost. Suppose the

number of nodes required in a static network is Ns and the number of mobile nodes

to get comparable coverage is Nm. Excluding certain applications such as those

where the sensor nodes are scattered from an airplane over an open field, most

applications, particularly those in indoor and urban environments, require each

sensor node to be individually deployed at a specific location, often manually. For

instance, deploying a camera requires mounting it on a wall or ceiling, installing

a dome or cover, and connecting it to a wired or wireless communication network.

For the current generation of cameras, deployment also involves providing a power

connection, although batteries or environmentally harvested energy may power

future generations of low power cameras. Suppose the deployment cost per node

is cdep. Suppose the cost of data processing at the back-end for data received from

a node is cp. These two costs are likely to be same for both static and mobile

nodes. Suppose also that the cost of a static node including maintenance for the

duration of deployment is cs. Denote the corresponding number for a mobile node

as cm. This number depends on the type of motion capabilities included in the

mobile node. The total system cost for the static case becomes Ns(cs + cdep + cp)

and that for the mobile case becomes Nm(cm + cdep + cp). Noting that the node

costs cs and cm are likely to diminish with advances in camera sensors and MEMS

based motion technology, in addition to the fact that cdep and cp are same for

both types of nodes, leads to the conclusion that the trade-off will be determined

primarily by values of Ns and Nm. For the current generation cameras, since the

difference between cs and cm is within an order of magnitude while the difference

between Ns and Nm is greater than an order of magnitude, typically several

orders of magnitude for examples considered in this thesis, again the trade-off is
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dominated by Ns and Nm.

3.3.2.1 Example

We now consider an example coverage scenario and compare the Ns and Nm for

it. To decouple the trade-off arising due to motion delay for this example, let

us first assume that the persistence time or the Nyquist interval of the sensed

phenomenon is T = 3s, which allows the pan and linear motion motility to be

used fully. For nodes with unconstrained mobility, while the range of motion is

potentially infinite, only a finite motion is possible within the tolerable delay.

We assume a velocity v = 100cm/s for such mobile nodes, as navigation and

traction support for such speeds has already been demonstrated in experimental

platforms. We also allow the mobile nodes to be able to turn with maximum

agility at the same speed, which implies that an unconstrained mobile node may

move and orient to any position within the distance vT .

The exact relation between the numbers of static and mobile sensors required

is dependent on the medium and the nature of deployment, and hence we gen-

erate random topologies with multiple obstacle and sensor configurations. The

obstacles are again cylindrical and the sensors are arranged in a 2D deployment

interspersed with the obstacles, over a 20m× 20m area. Ten random topologies

of obstacles and sensor placement are evaluated. The number of sensors is varied

to compare the coverage at different node densities. We evaluate the coverage

for four alternatives: static nodes, nodes with pan only motility, nodes with one

dimensional limited linear motility, and nodes with full unconstrained mobility.

Note that only a single calculation is performed for the fully mobile nodes, as

the initial random configuration is not relevant for this case; these nodes may

re-position themselves to the best initial configuration from which the allowable
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mobility range of vT then allows them to cover the maximum area.

Figure 3.18 shows these results. Clearly, lower densities are required with

actuation for the same coverage quality. For instance, at 90% coverage, the

static density is 7 times higher than that with pan actuation. This suggests

small actuation can significantly lower the system cost. Unconstrained motion

has an even lower Nm but the cost and complexity of the mobile nodes may be

unacceptable for the system.

0.4 0.5 0.6 0.7 0.8 0.9 1
10

0

10
1

10
2

Coverage Fraction

N
od

e 
D

en
si

ty

Static Network
Linear motion
Pan Motion
Fully Mobile

Figure 3.18: Alternative deployments: Coverage fraction with and without ac-

tuation at different deployment densities. Node density is the number of nodes

in a 20m × 20m square region, where each sensor covers a sector of 45◦ with

radius Rs = 7.3m. The error bars show the standard deviation across 10 random

topologies simulated.

Such numbers for Ns and Nm provide an approximate insight into the ap-

propriate system design choice, since the operational and deployment costs are
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determined largely by these two quantities. One may however, for a specific sys-

tem, compute the node costs as well and compare the system cost in terms of the

node costs.

The cost needs be evaluated for the particular sensors of interest for a sys-

tem, and the costs may change over time. Here we compare the system cost

for known values of cs and cm for various motion alternatives. First, we do not

account for (cdep + cp), which makes the comparison harsher on the alternatives

with motion. Installation costs as high as 75% of the system cost have been

reported [Far01]. Here, the savings in (cdep + cp) due to a lower Nm compared to

a static system are not being considered. Second, the off-the-shelf fully mobile

nodes do not have built-in reliable navigation and localization subsystems, rather

they have a traction platform with appropriate interfaces for adding deployment

specific navigational support. We ignore the costs of these additions, thus losing

the significant advantage that motile nodes have in that they do not need such

extra support. Third, the cost of the motile node considered is with three motile

capabilities- pan, tilt, and zoom even though only the pan capability is considered

in the above density evaluation. Obviously, the cost of a pan-only camera will

be lower than one with all three motility primitives. Figure 3.19 shows the cost

trade-off, and even with the harsher comparison, the motile nodes offer a signif-

icant advantage. The costs considered are USD 800 for a static network camera

[SNC04], 1300 for a pan-tilt-zoom network camera from the same manufacturer

and having similar optical capabilities [Son04], and 35000 for a fully mobile node

[Pac04]. For linear actuation, we assumed the cost to be 1200, assuming the

static node cost plus an additional track, motor and motor controller.
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Figure 3.19: Converting the node density to total network cost, at 90% coverage

point.

3.3.3 Actuation Delay

Another difference between a static and mobile network is that while in a static

network, the sensing is instantaneous, it is not so in a mobile one. Since the mobile

camera takes a finite non-zero time for the actuating to the region of interest,

there is a delay before the application receives the desired high-resolution data.

We call this delay the actuation delay. The advantage in resolution depends on

the tolerable actuation delay; the motion advantage disappears if the tolerable

delay is zero. Hence, this is a crucial issue in deciding whether motion may be

used.

The actuation delay scales better than linearly with the number of cameras

saved. Recall the earlier example where 784 static 1MP cameras were required
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to obtain the desired resolution. A näıve approach can achieve a linear scaling

in delay. For instance, a single camera may be actuated to perform a raster

scan visiting the appropriate pan, tilt, and zoom poses to successively cover the

small regions covered by the 784 cameras. However, a better strategy such as

using the single 1MP camera to cover the entire scene at low resolution, applying

a low resolution algorithm to detect regions of interest in the field of view and

actuating only to cover those regions, reduces the delay significantly. In this case,

the camera does not visit all 784 poses but only a few of those, depending on the

number of detected events.

We will consider the delay trade-off in greater depth in designing the motion

coordination methods to exploit small motion capabilities for improving sensing

performance.
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CHAPTER 4

System Architecture

The preceding discussion motivated the choice of small motion for improving

sensing performance in certain scenarios as opposed to other alternatives. In

scenarios where such motion is indeed the preferred choice, a key design issue is

to provide a system architecture that exploits motion capabilities effectively to

provide the best possible sensing performance. As mentioned before, we design

our methods for a system of cameras with pan, tilt, and zoom capabilities and

some of our design choices are thus specific to image sensors.

A näıve method to use motion for reducing the sensing uncertainty is to

successively allocate the available sensing resources to small regions such that high

quality coverage is provided at each region, in a time shared manner. However,

this method has a high delay penalty. An alternative method, that promises

significant advantages in delay, is feasible in several applications. This method

is as follows: allocate available sensing resources sparsely to cover the region

of interest at a low resolution that is sufficient to detect the phenomenon of

interest, and then selectively concentrate more sensing resources on regions where

the phenomenon is detected, providing an equivalent high-resolution coverage to

the overlying application using the sensor network. This approach is feasible

in all applications where a low resolution coverage is sufficient to detect the

phenomenon, such that high resolution coverage may then be provided only at

the locations where the phenomenon of interest is detected. There are several
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applications where detection of an event of interest may be carried out at low

resolution. For instance faces can be detected using color detection [BSP04],

which requires a lower resolution than required for recognizing the faces. Humans

or vehicles in a scene may be detected using motion detection, whereas high

resolution coverage may be required for the actual surveillance application logging

a high resolution image of the visitors. In other applications, an alternate sensor

modality may be used for detection. For instance, magnetic sensors may be

used to detect vehicles and then image sensing resources may be allocated to

the required region. An acoustic beam forming technique may be used to detect

where an animal call originates [WEG03] for an ecology application, or where

a shooter is present for an urban security application [MSL04], and then high

resolution imaging may be directed toward that location.

Obviously, one of the system components required in realizing this approach

is a motion control method to carry out the motion required each time a phenom-

enon detection occurs. A simple example of this motion occurs in a camera with

pan, tilt and zoom capabilities: the camera may zoom in to the pixel location in

its field of view where a phenomenon of interest is detected. More sophisticated

motion strategies may be used for other objectives such as providing coverage

by multiple cameras when a phenomenon of interest is detected by one of them.

The exact requirements are application specific, and some methods have been

explored for such motion control [CDB04, CLF01, THM00, STE98].

Somewhat less obvious perhaps, and not previously studied to the best of our

knowledge, is the need for methods that allows the system to use the motion capa-

bilities effectively, such as with low delay, for the above mentioned motion control

component. We focus our attention on this latter aspect. Before the movement of

nodes to provide high resolution coverage takes place, the phenomenon must be
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detected and the system is thus required to provide a good detection performance.

Further, when the movement occurs, the actuation delay is a key consideration,

particularly when the mobile network approach is compared to the alternative of

using a higher density of static sensors to achieve the same resolution. Clearly,

this delay should be characterized. The system should use motion capabilities

in such a way that the actuation delay is small for phenomena occurring at any

point in the area covered by the network. The limits on tolerable delay will also

limit the range of motion that may be used.

Our objective is to develop a system architecture that provides the required

detection performance and helps minimize the actuation delay.

Additionally, the system architecture should also attempt to exploit any infor-

mation available about the deployment environment. Specifically, the following

two types of information may be useful in controlling motion: a map of obstacles

in the sensing medium and the expected spatial distribution of the phenomenon

being sensed. It is desirable that the system architecture include components in

the system to learn such information and that it allows the network to gather

and use such information in a distributed manner.

We now discuss our system design in view of the design objectives mentioned

above and also describe additional design choices made in our system. We are

not concerned with the actual application level image processing algorithms but

only with providing the high resolution image for such processing.

The various system components required to support the above mentioned

objectives have been modularized into the blocks shown in Figure 4.1.

Block I, labeled medium characteristics, represents any means available to the

network for learning the locations of the obstacles. If available, this knowledge

helps the motion strategy to minimize occlusions. Such methods may be based
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Figure 4.1: System software architecture.

on the use of range sensors [HH03] or in the case of cameras, the use of stereo-

vision. If this block is not available, known sensor coverage models assuming an

obstacle-free space may be employed, albeit with a performance penalty. In our

testbed, we use laser ranging to map the obstacles, as discussed in chapter 6.

Block II, labeled event distribution, denotes any methods available in the

system to learn the spatial distribution of interesting events. As an example,

consider a network of cameras deployed to capture all the faces of people present in

a shopping mall. Motile cameras can adapt their poses to provide lower actuation

delay in specific regions where more people are present, such as a food court at

meal times or a box office before show times. The functionality of this block may

be realized using various means. For instance, the block may use a high density

deployment of low power sensors (Eg. Passive Infra-Red sensors) for detecting

human motion, or using the cameras themselves at low resolution to detect an

event, for learning the distribution of the phenomenon over space. The specific

methods used in our work are discussed in chapter 6.

Block III, labeled motion coordination algorithm, represents the algorithm

used to choose the appropriate pan, tilt, and zoom setting at each camera such

that actuation delay, when some event is detected, is minimized. We refer to these

reconfiguration methods are proactive motion control methods to keep them dis-
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tinct from the motion control methods used reactively after an event is detected,

for zooming in to that particular event and sensing it at high resolution. This

block also includes the network protocol required to implement the motion co-

ordination algorithm in a distributed manner. We discuss this block in greater

detail in chapter 5.

Block IV, labeled motion actuators, represents the motion capabilities avail-

able in the system. These motion capabilities are used both by the proactive

method to choose a good configuration for the network and by the reactive meth-

ods for providing the high resolution sensing when an interesting event is detected.

In our system these actuators are the pan, tilt, and zoom motors in the camera.

The camera used allows controlling its motion capabilities via sending it com-

mand packets in HTTP format with hardware specific values for various motion

settings. We developed a driver, in Java, with a programmer friendly interface

that accepts the required pan, tilt, and zoom motion steps in decimal values. Our

driver takes care of converting these to hardware specific format and packetizing

them as per the protocol required by the hardware.

This architecture is distinct from previously designed active camera networks

that used motion to patrol larger areas [CRZ04, CLF01, STE98, CDB04] that

required constant motion for the patrol. On the other hand, the low resolution

detection phase that we use does not require constant motion. Further those

methods are mostly designed for the reactive phase of tracking events after being

detected. That is distinct from the high-resolution objective we present. Also, the

previous works do not proactively configure the system to reduce the actuation

delay.

Assumption: In designing our system architecture in view of the above design

issues, we have made the following general assumption. We assume that each sen-

61



sor knows its location. This assumption is required only for improving the sensing

performance through coordination among multiple nodes. A local rudimentary

strategy to use motion without any coordination among sensors is also mentioned,

and while it does not require the use of location information, such a strategy per-

forms significantly worse than one with coordination. The assumption about the

availability of location information is reasonable in many applications since the

location information is required to geostamp the sensor data itself. Several lo-

calization strategies have been proposed for sensor networks [SHS01, MLR04] in

general and for networks of cameras in particular [DR04, FGP06]. For the type

of motion being considered in our work, even a deployment time record of node

installation locations suffices.

4.1 Technology Context

While our prototype is implemented using the current technology generation of

cameras, we believe that our system architecture is designed to support the antic-

ipated technology trends in this domain. More compact and lower power cameras

are becoming available for use in wireless sensor networks. MEMS based motion

technology will enable significantly more compact and lower power pan and tilt

mechanisms for such devices. Electrically controlled lens focus for changing the

zoom, such as being developed for zoom-capable cellphone cameras, will enable

the zoom capability to be accessible in compact low power wireless camera nodes

likely to be used in future sensor networks. As more and more applications that

use image data emerge given the increasing accessibility of the underlying tech-

nology, our methods for increasing the resolution will be increasingly relevant

for newer generations of camera networks. Further the potential for significantly

larger numbers of cameras made feasible through these emerging technologies will
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directly benefit from the distributed and scalable nature of our methods.

Also, as technology evolves, the image resolution in terms of number of pixels

at a camera and the processing capabilities may increase, such as with Moore’s

Law. This may enable a given number of static cameras in a network to achieve a

higher resolution than possible with the current generation hardware. For certain

applications, this increased resolution may mean that the required resolution

becomes feasible with static cameras alone. The architecture we presented may

be used to obtain still higher resolution when it helps enable newer applications

or improve the performance of existing ones further.
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CHAPTER 5

Motion Coordination Methods

We now consider block III of Figure 4.1 in detail: motion coordination algorithms

to achieve a desirable network configuration, and adapt it to the spatio-temporal

dynamics of the environment. Our focus is on distributed methods, due to scal-

ability concerns.

We express the problem of motion coordination algorithm design as an opti-

mization of a specific sensing performance objective. This performance objective

models the two key considerations in using motion - the actuation delay and the

detection activity required to guide the actuation. We begin with the discussion

of a quantitative metric to characterize this performance objective.

5.1 Sensing Performance

The first important consideration in motion coordination is the choice of the

sensing performance metric to quantify the value of a given network configuration.

Our camera coverage model depends on three parameters. The camera can view

any point not closer than its minimum focal distance Rmin, and not farther than

Rmax beyond which distance the spatial resolution is too poor to be of interest.

The camera has an angular field of view θfov. The three parameters Rmax, Rmin,

and θfov, change with the zoom setting of the camera. Given this model, the

sensing performance is characterized as follows.
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5.1.1 Actuation Delay

The first quantity of interest is the actuation delay achieved by the network

configuration. As mentioned before, complete coverage is only provided at a

resolution lower than required for the final sensing application, and the cameras

are zoomed in to the relevant location when an event of interest is detected. The

actuation delay depends on the time taken by the camera to actuate (using its

pan, tilt, and zoom motion) for providing the required high resolution coverage

after an event is detected. It is defined concretely below.

Let the region to be covered by the network be denoted by A and let p be a

point in A. Suppose an event is detected at a point p. Suppose the time taken

by the camera to pan, tilt and zoom for focusing at the point p is denoted by

τ(p). It can be measured in terms of the motor capabilities of the node. Since

the pan and zoom are driven by separate motors and can occur in parallel, the

time required is:

τ(p) = max{δθp ∗ ωp, tp(δz)} (5.1)

where δθp is the pan angle to be moved to direct the sensor at p, ωp is the

angular pan speed, δz is the change in zoom required for achieving the required

classification resolution at p, and tp(δz) is the time required for changing the

zoom. Note that tp(δz) is a non-linear function of δz and a closed form expression

is not available for it. We have experimentally measured it for integral values

of δz for our sensor, and we use a linear interpolation in between the measured

values (Figure 3.14-(b)). The tilt time can be considered similarly as the pan

time, but our system deployment is two-dimensional and hence tilt is ignored.

This quantity τ(p) is defined to be the actuation delay for that particular

point p, for the given camera. In a network, multiple cameras may be able to

actuate to point p. We define τ(p) to be the one required by the specific camera
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chosen for detection, as described below.

5.1.2 Detection Performance

Second, the coverage metric must also characterize the detection performance.

Several possible metrics exist for this, beginning with a purely geometric cov-

erage metric which quantifies the area in line of sight of the sensors, to more

sophisticated estimation theoretic metrics which quantify the probability of de-

tection based on the noise models and collaboration among sensors. Let c(p)

denote the detection performance at point p. Since detection depends on resolu-

tion, we model c(p) as proportional to the resolution at which a sensor s views p,

measured in the number of pixels per unit area. This is a more accurate model

than a purely distance based one, since the resolution depends not only on the

distance but also the zoom setting of the camera and obstacles in the medium.

For simplicity we assume no coordination among sensors for detection. Since

multiple cameras may have c(p) in their field of view, we define c(p) to be the

highest value provided by any one of sensors observing p.

5.1.3 Performance Objective

To aggregate the above factors into a single metric, we consider a linear com-

bination of the two metrics to determine the sensing performance, f(p), at a

point:

f(p) = w ∗ c(p) + (1− w){1/τ(p)} (5.2)

The choice of the weighting parameter w, where 0 ≤ w ≤ 1, determines the

proportion of the contribution of actuation delay and detection terms to the

performance. The value 1/τ(p) is capped to a maximum when τ(p) = 0.
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Apart from maximizing the probability of detection, and minimizing the ac-

tuation delay, it may also be of interest to maximize the area covered. Let 1(p)

be a binary function which takes the value 1 at covered points and 0 at others.

The network may have to be geared toward regions where more events are

expected. Suppose that the event distribution function is known at all points

p ∈ A and is denoted q(p). Considering the above factors, we define the coverage

utility at a point as:

u(p) = (1− α)f(p) ∗ q(p) + α ∗ 1(p) (5.3)

where α is a constant weight, 0 ≤ α ≤ 1, determining the significance of coverage

alone. Note that the second term in the above equation is not multiplied by q(p).

This allows maximizing the area covered, even when events are concentrated in

a small region, by setting the value of α to be high. Methods to learn q(p) are

discussed in chapter 6.

Suppose the state, or pose, of a sensor node i is denoted by si = {θp, z},
where θp and z represent the pan and zoom settings respectively. The network

configuration, for a network of N nodes is then denoted by S = {s1, s2, ..., sN}.
Given the pan and zoom ranges of a node, the node state si lies in a set Si =

{[θmin
p , θmax

p ], [1, zmax]}, where the superscripts min and max represent the mini-

mum and maximum possible values respectively for the superscripted parameters.

Let S represent the resultant set of possible network configurations. It is given

by:

S = S1 × S2 × . . .× SN (5.4)

Using the metric defined above for each point, we now express the overall utility

of a network configuration, S, as:

U(S) =
∑

p∈A

u(p) (5.5)
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The network reconfiguration problem can now be expressed as an optimiza-

tion problem, where the goal is to determine the network configuration which

maximizes the coverage utility:

Sopt = max
S∈S

U(S) (5.6)

5.2 Distributed Motion Coordination

We now discuss a distributed algorithm to solve the above problem. A distributed

approach is advantageous due to the reasons discussed below.

5.2.1 Complexity Considerations

It is not immediately obvious how the optimization problem can be solved effi-

ciently because the optimization problem in (5.6) is NP-hard. Consider a special

case of the problem: α = 1. In this case the utility function is reduced to max-

imizing the coverage due to N sensors over a polygonal region with obstacles.

So, if the problem in (5.6) can be solved in polynomial time, then a polynomial

time solution exists to maximize coverage in a polygonal region with obstacles.

However, that problem is known to be NP hard [CN88]. Thus, the problem in

(5.6) is clearly NP-hard.

Further, the nature of c(p) and τ(p) implies that U(S) is not only non-linear

but also not known in a closed form – it can only be evaluated numerically for

each S. As seen from equation (5.4), the search space is exponential in N and a

brute force search over S is clearly out of the question.

The performance metric being used for optimization is a global metric for the

entire network and depends on the state of multiple sensors. The phenomenon

distribution and medium characteristics are learned locally. Thus, the perfor-
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mance metric is not known at individual sensors given their local views and only

partial knowledge about q(p).

5.2.2 A Distributed Approach

A distributed solution will thus help ameliorate both communication overheads

and computational complexity. Here, we define an algorithm to be distributed, if

under its execution, each node exchanges messages only within a local neighbor-

hood rather than with a central coordination entity or the entire network. The

desirable local neighborhood for a node should minimize the number of commu-

nication hops required for coordination, and its size should not increase with the

network size N .

Consider the utility function U(S) defined in equation (5.5). This function is

inherently distributed in that the utility value at a point p can only be influenced

by a subset of the sensors: the ones which have p in their line of sight and within

the maximum range of view from one or more of their possible poses. Denote

the set of sensors which influence the utility value at p by β(p). Collect together

into a sub-region Bj, all those points which share the common influencing sensor

set β(p), and denote this sensor subset by βj. Suppose the entire region A
can be divided into K such sub-regions. By definition the {Bj}Kj=1 are disjoint

(the corresponding βj are not). There may be points in region A that are not

covered by any of the sensors; as a matter of notation, these may be denoted

by BK corresponding to βK = Φ, the null set. The utility function can now be

decomposed into a summation over these disjoint sub-regions:

U(S) =
K

∑

j=1

∑

p∈Bj

u(p) (5.7)

Since each Bj corresponds to a sensor subset βj and a set of N sensors may
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have 2N subsets, the number of terms in the above summation is potentially

exponential. We can however map the above decomposition to one where the

number of terms is linear in N . Let γi denote the subset of sensors which is the

union of all subsets βj to which sensor i belongs:

γi = {j|∃βk such that (i, j) ∈ βk} (5.8)

The utility in the region within range of sensor i can only be affected by the

sensors in γi. Given the state of each sensor in γi, sensor i can compute the set of

points Γi at which i gives the highest f(p) value. The sub-regions Γi are disjoint

(though the sensor subsets γi are not) and {Γi}Ni=1 ∪ BK = A. Hence the utility

function can be decomposed as:

U(S) =
N

∑

i=1

∑

p∈Γi

u(p) (5.9)

The interesting property of this decomposition is that each each sensor only

needs to communicate with sensors in γi to determine U(S) over Γi. We call γi

the neighborhood of sensor i. The set γi includes all sensors which may affect

the computation of Γi from any pose selected at those sensors.

Suppose the region influenced by sensor i from all its poses is Vi. Then, the

set γi includes potentially all sensors influencing any point in Vi. The expected

cardinality of this set depends on the deployment density and the maximum

distance up to which a sensor may influence coverage. For most practical sensors,

the distance up to which they may sense is bounded, which implies that the

cardinality of γi stays constant even as the network size, N , increases, at a given

deployment density.
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5.2.3 Coordination Algorithm

We now describe a distributed algorithm which requires each sensor to coordinate

only with sensors within γi and yet improve the global utility function. Suppose

a mechanism is available at sensor i to ensure that when it is changing its pose,

all other sensors in γi will remain static. The communication protocol to realize

this mechanism, and other implementation details will be discussed in the next

section. The algorithm then proceeds as follows.

Sensor i searches over all its possible pan settings, and chooses the one for

which the utility evaluated over Vi is maximum:

θp(i) = max
θp∈[θmin

p ,θmax
p ]

∑

p∈Vi

u(p) (5.10)

This is a one dimensional search and thus computationally tractable. After se-

lecting its best pan setting, the sensor similarly selects its best zoom setting.

After this pose update, sensor i stops and some other sensor j waiting on i may

update its pose, again making sure that sensors in γj stay static during its update

step.

This change in pose at i affects all Γj for j ∈ γi. However, it does not affect

sensors not in γj and they may be changing their poses in parallel with sensor

i using the same method. This property makes the algorithm distributed over

neighborhoods γi. The sensors update their poses in an arbitrary order.

5.2.3.1 Termination Condition

The termination condition in the protocol is chosen for ease of distributed imple-

mentation. In centralized optimizations, a stopping criterion that can determine

when to stop the iterations is to check when the change in the estimate of the

optima has become insignificant over the past few iterations. However, in the
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distributed setting, the global utility metric is not available to any node. Even if

the parameters in control of a particular node are not changing from one iteration

to the next, the parameters at other nodes may be changing and determining the

stopping time would thus require global coordination. The distributed termina-

tion condition is that a node will assume its actuation has terminated when the

improvement increment in local utility is below a threshold ∆. In our implemen-

tation discussed in section 5.4, the value of ∆ is set to 0.1% of the previously

measured utility over Vi and may vary from sensor to sensor.

Note that a sensor need not physically carry out the actuation until it reaches

the termination condition of the algorithm. It only needs to communicate its

updated pose for the coordination mechanism to work.

5.2.3.2 Example

Before analyzing the convergence and other properties of interest, let us visualize

the above update procedure for a simple example with two sensors. Consider

a rectangular region with a few obstacles and two cameras placed at diagonally

opposite corners, as shown in Figure 5.1. Each camera can pan 90◦, in its corner.

To reduce the dimensionality of the search space to two for easier visualization, let

us ignore zoom. The utility function achieved for all combinations of pan angles

at each camera is shown in Fig. 5.2. The pose selection algorithm described

above proceeds as follows: sensor C1 first selects a pan, θp(1), which maximizes

the utility in its region of influence. This change is configuration is seen as line

segment A in Figure 5.2. Then, sensor C2 selects a pan pose, θp(2), for this given

value of θp(1), and line segment B shows the change in network configuration. In

the next iteration, again C1 selects a new pan θp(1) moving along line segment

C.
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Figure 5.1: Illustrative scenario for motion coordination algorithm. The white

cirular regions are obstacles. The darker shade is uncovered region. The lighter

shaded regions represent covered areas, where lighter regions represent better

detection.

At each step, our algorithm searches along a line in the 2N -dimensional search

space, S, and so we will refer to the above optimization procedure as incremental

line search (ILS). The procedure is incremental at each node but not at the

network level. Multiple nodes may be actuating in parallel. The neighborhoods

γi may be overlapping implying the reconfiguration process cannot be broken

down as occuring in each neighborhood separately but the constraints within

each subset γi must be satisfied.

Note that in addition to the above method for configuring the network, an-

other motion control algorithm is also required to move the cameras after an

event is detected for providing the required high resolution coverage. For this

task, we use a simple method that zooms in to the pixel location in the image
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Figure 5.2: Utility function for various possible pan pose combinations. The θp

values are in degrees, measured counter-clockwise from initial camera pose. The

utility function has multiple local maxima, even for this simple scenario.

where an event is detected. One advantage of this approach is that the spatial

location of the detected event is not required. More sophisticated methods which

may move multiple cameras in response to detected events have been studied in

other works [CDB04, CLF01, THM00, STE98].

5.3 Convergence and Other Properties of the Motion Co-

ordination Algorithm

While the proposed algorithm is not guaranteed to find the global optimum, it

has several desirable properties that are discussed below, including convergence

to a stable state.
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An important property of the above optimization procedure is that it does

not require a closed form expression for the utility function, but may proceed

using only a numerical computation. It does not make any assumptions on the

smoothness or differentiability of the objective function. This makes the above

procedure amenable to several realistic performance metrics, in the presence of

non-linearities in actuation and the effect of obstacles.

Further, the termination condition used is distributed, and hence no global

coordination is required for the termination. A side effect of this is that no node

in the network may know when the actuation has terminated globally.

Another important property is the convergence of the network configuration

to a stable state. Even though the sensors may update their local poses without

any global coordination, the network utility function will not oscillate. Further,

the utility will reach a local maximum1, though not necessarily the global one,

which is hard to ensure without global coordination. We prove this convergence

property below.

Lemma 5.3.1 (Monotonicity of ILS) Under ILS execution, the global net-

work utility increases monotonically.

Proof: Assume first that only one sensor i in the entire network updates its pose

at a time. Suppose the network configuration after iteration t is denoted St. The

region A can be viewed as consisting of two disjoint subregions Vi, the region

influenced by sensor i from any of its poses, and A − Vi. The utility can be

expressed as:

U(St) =
∑

p∈Vi

u(p) +
∑

p∈A−Vi

u(p) (5.11)

1As seen in Figure 5.2, the maximum found by ILS is not necessarily the local maximum
closest to its starting point, unlike gradient descent based methods.
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The update at sensor i does not affect the second term and it thus stays constant

at this iteration. The first term only depends on the region over which utility is

computed by i and since i choses a pose to maximize this term, this term can

only increase or stay constant. Thus when only one sensor updates at a given

iteration, monotonicity holds:

U(St+1) ≥ U(St) (5.12)

Now, suppose multiple sensors update in parallel. However, the coordination

over γi ensures that no sensor that affects Vi will update its pose when i is

moving. Thus, we can consider the region A − Vi independently. For another

moving sensor j, we can decompose A − Vi into two disjoint sets A − Vi − Vj

and Vj. An equation similar to (5.11) can then be written over these two sub-

regions. Recursively applying the same argument, all sensors j which update in

parallel within the coordination constraint over respective γj can only lead to a

monotonic increase in the global network utility regardless of update order. �

Theorem 5.3.1 (Convergence of ILS) The network configuration converges

to a stable state using ILS.

Proof: The proof follows from the fact that a monotonically increasing function

can either grow unbounded, or stabilize to a fixed value. Since the definition of

u(p) always yields a finite value and a summation over a finite region A ensures

that U cannot grow infinitely and hence the ILS algorithm will cause the network

configuration to converge to a stable state. Noting further that the actuation step

is lower bounded and can never be infinitesimally small, the convergence must

occur in a finite number of steps. �

As long as the decomposition in equation (5.5) holds, ILS can be used for

arbitrary performance metrics, other than the one discussed above. Generaliza-
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tions include examples where the objective is not classification but tracking the

movement of events after detection. Instead of time τ(p), the metric of interest

would be the localization quality which might depend on the angle and distance

from the nearest two sensors for any point p.

5.3.1 Graceful Degradation

Note that the monotonicity is valid as long as other environmental parame-

ters such as the obstacles and phenomenon distribution remain stationary. The

monotonicity property yields another desirable behavior in the distributed mo-

tion coordination protocol: graceful degradation in the presence of rapid environ-

ment dynamics. Under such conditions, the network configuration may continue

to evolve without ever reaching a globally static configuration, due to frequent

medium and phenomenon changes. Between any two instances of an environmen-

tal change, the monotonicity property holds. This implies that even when the

environmental dynamics are faster than the convergence time of ILS, the network

will only try to improve its configuration for the current situation. The improve-

ment in configuration may be smaller than that which the ILS algorithm could

have achieved in a static environment, thus degrading the performance gracefully

with increasingly faster environment dynamics. The distributed nature of our

methods implies that each change will be incorporated into the ILS execution

locally rather than having to be transmitted to a central entity.

5.3.2 Relationship to Other Heuristics

Several heuristics have been explored in literature for optimization over com-

binatorially large search spaces. An important class of such heuristics is that

based on stochastic local search methods, such as simulated annealing. While

77



the optimization problem for network reconfiguration can be solved centrally us-

ing simulated annealing, it is not straightforward to extend it to a distributed

algorithm. First, a global temperature state may have to be maintained. Sec-

ond, the monotonicity property discussed above does not hold for the annealing

process and convergence proofs are not available for distributed operation. The

ILS algorithm always guarantees that any reconfiguration actions it takes will

not worsen the utility compared to a static network. Parallelized simulated an-

nealing algorithms, also sometimes referred to as distributed, are significantly

different from our approach. They are typically designed for implementation on

multiprocessor systems or computer clusters, for reducing the processing time

compared to a single processor implementation. The global objective function

is still available to each node and each node may anneal the entire set of state

variables. The multiple processors are mainly used to search multiple random

paths in parallel. The distributed nature of the objective function itself is not

considered. Extension of stochastic local search methods to distributed settings,

exploiting the decomposition of the optimization objective function over a rele-

vant neighborhood set is an open research problem.

Another potentially useful optimization heuristic is incremental sub-gradient

descent. Its similarity to ILS lies in the fact that at each iteration step only a

subset of parameters is updated in order to change the global objective function.

While the utility function in our system is not differentiable and sub-gradients do

not exist, such methods may be applied to our objective function at least centrally,

by computing its derivatives using the method of finite differences. However, con-

vergence is an issue when distributed operation is desired. Monotonicity does not

hold. Convergence proofs of incremental sub-gradient descent, such as discussed

in [Sol95], require the utility function to be continuous and differentiable. Ex-

tending such methods to operate with limited neighbor coordinations is still an
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open problem.

Some other properties of the ILS algorithm are of interest: the proximity

of the converged stable state to the global optimum and the time required for

convergence. We will explore these in chapter 7.

5.4 Coordination Protocol Implementation

In this section we develop a motion coordination protocol to implement the dis-

tributed optimization algorithm described above. This includes determining a

distributed mechanism to ensure coordination among the neighbors, exchanging

the information required for calculating the motion steps, and determining the

appropriate stopping criterion for the optimization in a distributed manner. This

also involves learning the function q(p) from local data without global normal-

ization.

5.4.1 Protocol Specification

The first step is the determination of a mechanism to ensure that for each node

i changing its pose, the set of nodes in γi stay static, and the number of nodes

which can update their pose at any given time is maximized. This can be viewed

as a graph coloring problem where for a given node i, all nodes in γi are treated to

be adjacent to it. Each node must be allotted a color such that no two adjacent

nodes have the same color while the number of colors is minimized. With this,

nodes of one color can update their poses simultaneously and the number of

iterations required to allow each node update once would be equal to the number

of colors used. Efficient graph coloring heuristics are known and hence if the entire

network graph is known at a central location, any such heuristic may be used.
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However, we do not assume that a central view of the network graph is known

and propose the following heuristic for achieving a graph coloring in a distributed

manner. This procedure is inspired from common RTS-CTS based wireless MAC

protocols for avoiding interference, though we do not need the communication

channel to be wireless for its execution. The network reconfiguration protocol

based on ILS is described below:

Protocol 5.4.1 (Network Reconfiguration Using ILS) At each node i in

the network:

1. Contention: Wait for a random back-off period, and send packet Request

To Update (RTU) to each node in γi. Wait for Ttimeout. If no CONFLICT

message is received, begin updating as per step 2. Each node which re-

ceives an RTU packet, refrains from sending an RTU until it receives an

Update Finished (UF) packet from each node which had sent it an RTU. If

a CONFLICT message is received, wait for UF message from the sender

of CONFLICT message, and retry the RTU after random back-off. This

ensures that within γi, only one node moves at any instant.

2. Update: If an RTU is received anytime during this phase, send a CON-

FLICT message to the sender of the RTU.

(a) Medium and Phenomenon Information: Use the medium map-

ping service to get information about obstacles within Vi. Retrieve the

q(p) over the region Vi as acquired locally in the phenomenon learning

phase.

(b) Neighbor Pose Information: Look up the list of UF packets re-

ceived up to now. UF packets contain the sender’s chosen {pan, zoom}
pose after an update. Thus the poses of all nodes within γi which have
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updated up to now are known. Using these and the medium informa-

tion, the utility metric over Vi can be calculated.

(c) Pose Selection: Select the pan and zoom settings as per the ILS

algorithm. Transmit packet UF={identity, chosen pose}. Other nodes

may now contend to update their poses. After a node receives a UF

packet from every node from which it had received an RTU, it goes to

Step 1 unless the termination condition (Step 3) is met.

3. Termination: When a node discovers that the pose computed using the

ILS algorithm does not change the utility over Vi by more than a threshold

∆ compared to its current pose, it need not update its pose for that iteration.

Each node maintains the past two UF packets received from its neighbors.

Now, if the poses of all the neighbors have remained constant in the past two

UF packets received, the node no longer needs to update its pose. If it has

itself transmitted at least two UF packets, it terminates its motion algorithm

until such time as another neighbor updates its pose or the information

regarding q(p) or the medium changes.

The protocol requires a random wait before sending a Request to Update

(RTU) packet in order to ensure that over a long duration, most nodes will get

a chance to update their poses rather than a just few well positioned nodes with

a smaller number of neighbors repeatedly winning the contention. No sequential

ordering within a neighborhood is imposed, and it is not required that each node

get an equal number of chances to update its pose. This is compatible with

the distributed termination condition, which may cause certain nodes to stop

the update before others and hence this will not cause an undue interruption of

updates at other nodes which are still changing their pose.
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If a node receives an RTU packet from any neighbor followed by an UF packet

which shows a change in pose, it is likely that this node has a further opportunity

to optimize its pose and hence it will restart its motion coordination protocol. The

node will also restart pose updates if the medium information affecting its covered

region is updated or when the phenomenon density learning module indicates a

change in q(p) in this node’s covered region. Thus a node stops pose updates

based on local conditions and may re-enter the update process when required.

No node may know when the entire network has reached a stable state. Each

node may stop its motion and restart it multiple times before reaching a stable

condition. This approach is valid because of the monotonicity property of our

algorithm. Due to monotonicity, the stable state is reached even if different parts

of the network stop and restart motion at different times. This stopping criterion

automatically ensures that updates to node poses due to medium changes lead

to relevant pose changes at affected nodes without the need for globally sharing

such information.

The protocol requires that each node i knows its set of neighbors γi. A

conservative list of neighbors may be obtained by computing the radius, r, of

the volume Vi which the node may influence assuming there are no obstacles

in the medium. Then, all nodes within a distance 2r potentially belong to the

neighborhood set. More accurate calculations which compute the exact shape

of Vi at each node accounting for occlusions due to obstacles may also be used.

This process requires a knowledge of node coordinates. Also, this is a one time

procedure since node locations do not change; the communication overhead of

this step is thus insignificant and we do not dwell on designing a specialized

communication strategy for this step.
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The protocol assumes a medium information service to learn the obstacles. An

example implementation of this service using laser ranging, as shown in chapter

6, is used in our experiments.

5.4.1.1 Phenomenon Learning Phase

The protocol also requires a service to acquire q(p). This is carried out in a dis-

tributed manner as follows. Node i maintains locations of all events detected by

itself or its neighbors within Vi. Practical methods to detect events are discussed

in chapter 6. We assume that when a node detects an event, it informs all its

neighbors about it. Since only a sub-region of Vi is covered by selected poses of

the sensor and its neighbors, events which occur in uncovered parts of Vi, are

not detected and do not affect the learning process. Since the total number of

events in the network is not known to node i, q(p) is not normalized but the

count of events at a point p is incremented whenever an event is detected there.

Thus, q(p) acquired locally need not be a consistent probability density function

in a global sense, but it serves its purpose of providing higher weight in the local

utility function, to points where more events occur. To adapt to changing envi-

ronment dynamics, the q(p) data is periodically aged as follows. After every time

duration Tq, the sensor i scales the q(p) at each point in Vi by 0.5. The aging

step is:

q(p)← 0.5 ∗ q(p) + q′(p) ∀ p ∈ Vi (5.13)

where the temporary variable q′(p) stores the event count since the previous aging

step. This aging procedure thus gives higher weight to more recent events as the

contribution of older events degrades by 0.5 every Tq. The duration Tq is expected

to be a long duration over which sufficient events may be accumulated.

The aging procedure has the beneficial side effect that it prevents the count
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variables from overflowing, and this is helpful for a practical implementation.

The phenomenon distribution learning thus continues perennially and every

Tq, the update of q(p) may trigger a network reconfiguration to occur.

The specific aging procedure used may be changed based on how rapidly the

system is required to adapt to changing environmental dynamics.

More sophisticated models for maintaining the phenomenon distribution which

maintain separate states for the system, each corresponding to a different event

distribution my also be employed. For instance, a traffic monitoring system may

use different probability distributions at different times of the day: one state

for morning times when more traffic seems headed for the business district and

another state for evening times when more traffic seems headed away from the

business district. When a service to learn q(p) is not available, this distribution

is assumed to be uniform.

In this chapter, we described a distributed algorithm for motion coordination

along with a network protocol to implement it. The protocol assumes certain

services such as obstacle mapping and phenomenon distribution information to

be available. We discuss these services in the next chapter.
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CHAPTER 6

Medium Mapping and Phenomenon Detection

In the previous chapter we showed how the motion coordination algorithm could

use information about the medium obstacles to further enhance the network con-

figuration. Also, we had mentioned before (chapter 4) that for the final actuation

that is required to provide the high resolution coverage of any location, an event

or phenomenon of interest must be detected at that location. This detection

procedure must occur at low resolution coverage. The detection of events is also

used for learning the phenomenon distribution over space by building a spatial

event distribution histogram as more and more events are detected over time, as

discussed in section 5.4.1.1. In this chapter, we discuss both these supporting

services of medium mapping and event detection.

6.1 Medium Mapping

Much of the work presented in this section was performed in collaboration, and

is also described in [KCK05a].

The signal of interest generated in the environment must travel through some

medium to reach the sensor transducer. The medium may attenuate it and the

extent of attenuation tolerated depends on the transducer noise. Also, obstacles

in the medium may block the signal entirely. These obstacles may even create

occluded regions that are not sensed by any of the sensors in the network. The

85



deployment environment and presence of obstacles is usually not under the control

of the system designer and hence the system is required to adapt to the given

environment.

Our goal is to provide methods for sensor networks to actively measure the

sensing medium and determine the presence of obstacles. Acquiring such a

medium model has many benefits.

Estimate Uncertainty. The model may be used to determine the occlusions to

sensing and provide an estimate of sensing uncertainty. One such method

to model the sensing capacity of a sensor network given the occlusions was

provided in [RNK04].

Reconfiguration. The network may attempt to overcome the occlusions. For

instance, if some of the nodes are mobile, they may be moved in order to

minimize occlusions. In our network, we use limited motion to overcome

the effect of obstacles.

Determine Choke Points. In certain applications where the sensed targets

are mobile, the knowledge about obstacles may help generate the medium

model and use it to determine choke points which a target must cross if

it has to enter the occluded regions. Data from such choke points may be

used to estimate presence of targets in occluded regions.

Data Aggregation. The information on occlusions for each sensor may help

guide the aggregation process when data from multiple sensors is com-

bined. For instance, a simple strategy may be to ignore data from nodes

which indicate a detection in regions known to be occluded from their view.

Further, energy resources being spent on sensing at nodes whose transduc-

ers are occluded may be saved, and devoted to communications, aggregation
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or other network activity.

Additionally, the medium maps may also act as secondary data inputs for

higher layer applications to help determine context. For instance, the presence

of several tree-trunk shaped obstacles may indicate to the application that the

sensor network is operating in an outdoor region while the presence of wall and

ceiling like obstacles may help it infer that the network is operating indoors. Such

context information can be used in several ways.

Sensing performance has traditionally been characterized in terms of a sensing

range and transducer noise. We believe that explicit medium information will

help sensor networks provide better performance guarantees than those based on

circular disk models alone.

Environment mapping is commonly studied in robotics for robot navigation

and path control. The use of context information has been explored in various

other domains such as pervasive computing and location aware services. However,

the nature of context information and mapping constraints differ in the case of

sensor networks. We will note the commonalities and differences in subsequent

sections.

6.1.1 Enabling Self-Awareness

We propose a sensor network architecture in which supplementary sensors are

added for medium mapping. Since these sensors may not be required for the sen-

sor network application directly, and we refer to them as self-awareness sensors.

The other sensors, which in our work are cameras, are referred to as application

sensors. Figure 6.1 depicts a block diagram of the proposed architecture. Much

of this architecture design is motivated by the system concerns that arose in the
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development of our prototype system, and thus, the design is tightly coupled to

practical considerations of its use cases.
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Figure 6.1: System architecture, consisting of self-awareness and application sen-

sors.

The figure reveals one of our key system design choices: that the self-awareness

sensors need not be present at the same nodes as the application sensors. There

are several reasons for this choice. Firstly, the self-awareness sensors may be

required to be deployed at a vastly different density than the application sensors.

In our system for instance, the range of the camera depends on the application and

was calculated to be 7.3m when a sensing resolution of 100pixels/m was required,

while the self-awareness sensor has a range of more than 100m. For a given set

of obstacle locations in the medium, the numbers of the two types of sensors

required may well be different and thus, adding a self-awareness sensor at every

node might be an unnecessary overhead. Secondly, the medium dynamics may
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be much slower than the dynamics of the phenomenon sensed by the application

sensors. In this case, a few mobile self-awareness sensors could acquire and update

the medium map [HH03] while many more application sensors actively track the

rapid dynamics of the phenomenon of interest.

It may be noted that supplementary sensors have been used in other ways to

reduce sensing uncertainty – such as the use of magnetic sensors to help augment

the vehicle tracking performance of a video sensor network. However, the use of

self-awareness sensors is not quite the same thing as the use of multiple sensing

modalities. In multi-modal sensing, the data fusion process is highly application

dependent. If the primary sensor data, the images in the above example, are used

for another application which is not interested in magnetically active objects,

that supplementary sensor is not of relevance. In our approach, the application

processing is independent of the self-awareness sensors; the medium information

is used to estimate or improve the quality of application sensor data, and any

application which uses the sensor data benefits from this.

The prototype system that we developed for providing a concrete context to

explore this problem space is described first.

6.1.1.1 System Hardware

The self-awareness sensor node in our prototype test-bed consists of:

1. a laser range sensor, Leica Disto Pro [Lei],

2. a pan-tilt platform, Directed Perception PTU-D46-17N, [Dpe], to move the

direction of the laser beam, and

3. an embedded processing platform, Intel Xscale based Stargate [Sta].
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The laser ranger is interfaced to the Stargate using a serial port, over which

the control commands are sent to acquire range readings from it. The pan-tilt

platform is also interfaced using a serial port, for sending it commands to change

its orientation. Since the Stargate has only one directly accessible serial port, we

added a PCMCIA to serial port card to the Stargate for creating another serial

port. The prototype is shown in Fig. 6.2.

Figure 6.2: Prototype self-awareness node.

6.1.2 System Design Issues

Conceptually, the medium mapping process can be viewed as this: the self-

awareness sensors collect data about the medium characteristics and then provide

this data to the application sensors. Now, there arise several issues in the process

of collecting and distributing such self-awareness data with minimum resource

overhead.
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First, the range data must be collected as fast as possible, in order to enable

faster updates and to minimize the node active time. The näıve method would be

to take a range measurement at a sufficiently fine granularity and determine which

regions are blocked from view. However, the environment has certain structure

to it and it is intuitive to expect that if such structure can be exploited, we

can reduce the number of readings to be collected, thereby speeding up the data

acquisition process. Implementing this procedure on a practical laser ranger and

pan-tilt platform reveals the various issues in doing this. Our aim is to determine

useful strategies to minimize data acquisition time, which are expected to work

in a wide variety of environments in view of the system limitations.

Second, the medium map has a significant data size. This motivates a study of

efficient methods for sharing this data among the application and self-awareness

nodes. The storage and communication strategies may attempt to minimize the

data size, but the compression techniques should not lead to extensive processing

overheads for retrieval and update. The storage strategies for a data set typi-

cally depend upon the nature of queries that must be answered using the stored

data. Our objective is to determine the relevant strategies to store and share

medium map data in a manner that enables answering queries about the medium

occlusions for the application sensors.

There are further design steps required to complete the self-awareness process.

The medium information may have to be appropriately converted to a form that

enables the application sensor to determine which portions of its field of view are

occluded. For instance, in our test-bed the spatial coordinates of an obstacle may

have to be mapped to the corresponding pixel coordinate in the image taken by

a camera. For the case of cameras, this process is known as external calibration

and existing methods [HS97] can be used for this step.
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Also, since the self-awareness sensors are not necessarily present at the ap-

plication sensor node and a single self-awareness node will typically not be able

to map the entire medium, self-awareness data from multiple nodes has to be

combined to develop a coherent medium map. In our test-bed we assume that

each node is localized, in a common coordinate system. Such an assumption is

valid for sensor networks since most nodes are static and localization is a basic

service required for many other sensor network applications. Given the location

information, the medium data from different locations can be combined using the

appropriate spatial transformations and we do not dwell on it further.

6.1.2.1 Technology Choice

We have selected a laser range sensor to measure the medium characteristics.

There are other means to achieve the same functionality. One alternative is to

use stereo-vision to derive depth maps. This approach has limitations of accuracy

compared to a laser sensor and may miss small obstacles in the environment. Also,

stereo-vision algorithms require detecting key features in the environment which

can then be identified in the multiple images collected by the cameras in the

stereo-system. It may not work in all environments where such key features are

hard to detect. Further, the stereo-vision generated depth map is relative and

a known dimensional measure is required in the environment to scale the depth

measurements correctly.

These issues motivated us to use a range sensor. Among range sensors, there

are various options, such as ultrasound ranging and infra-red ranging. Both these

alternatives give lower accuracy than the laser, and the distance range of the infra-

red sensors is usually lower than that of laser based ones. However, both these

are usually available at a lower cost, and may be of interest in scenarios where
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the low accuracy is not a deterrent. The map acquisition algorithms discussed in

later sections are in fact applicable to these types of range sensors as well. The

data sharing methods developed in our prototype are applicable to all the above

alternatives.

Advanced three dimensional imaging technologies, such as based on single

photon avalanche devices [NRB04] may make three dimensional imaging more fea-

sible in the future. This may yield more alternatives to realize the self-awareness

sensing functionality that we propose for sensor networks.

Mapping based on range sensors has also been considered in mobile robot nav-

igation. While our problem is similar, the solution is different and the resultant

design issues are distinct. For a robot, medium mapping is a primary task nec-

essary for navigation. Even if the environment map were available a-priori, the

range sensor on a robot would be actively used to avoid obstacles in the path. In

the case of a sensor network, the demands from the self-awareness sensor are less

stringent. First, the self-awareness data is not being used for active navigation

of a mobile robot. Each node need not have a self-awareness sensor. The static

nature of most sensor nodes also enables carrying out the mapping process at a

much slower pace than required for a robot. A direct consequence of this is in

the technology choice – the laser range sensor used in our work is significantly

cheaper than those typically used on robots and has a slower response time for

taking range readings. The pan-tilt actuation used in our prototype is much

slower than required for real time navigation, and can be achieved with lower

energy expenditure. Second, the assumption on the availability of localization

also causes our work to differ significantly from robotic mapping. In the case of

a team of multiple robots exploring an unknown environment, the processes of

localization and mapping are dependent [DNC01] on each other. Combining the
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maps generated at multiple robots is not straightforward and different techniques

such as maximum sub-graph isomorphism have been explored for that purpose.

On the other hand, for sensor networks, if localization is available as is needed for

many sensor network applications, combining the self-awareness data from mul-

tiple nodes is simpler. Thus, the medium mapping problem in sensor networks

is more tractable than the corresponding robotics problem, and we expect to be

able to solve it with a lower resource overhead.

6.1.3 Adaptive Medium Mapping

There are three basic types of maps [Cho]:

1. Grid based: These maps divide the space into discrete elements which are

mapped as empty or occupied [ME85, TB96].

2. Feature based: These maps are a collection of landmark features in the

environment [SSC90, LDC92].

3. Topology based: These maps represent distinctive places in the environment

as nodes in a graph and the interconnections or paths between them as the

edges [KW94, RN99].

For the purpose of determining sensing occlusions, the most relevant maps are the

grid based ones. These provide a detailed model of the sensing medium, based

on which the application sensors may estimate their sensing performance.

The process to generate a grid based medium map proceeds as follows. Range

measurements are taken by orienting the laser at varying pan and tilt from a fixed

location to form a depth map for the space around the self-awareness node. Such

depth maps from multiple self-awareness nodes may then be combined to develop
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a medium map for the region of deployment. Figure 6.3-(a) shows a small section

of a possible deployment environment with obstacles of various shapes. Figure

6.3-(b) shows one horizontal plane in the depth map generated by scanning the

laser placed at one corner of the region, and Figure 6.3-(c) shows a similar scan

from a node placed near another corner. The white regions in the scans represent

clear field of view while the dark regions represent occluded areas. Note that the

second node does not scan the entire quadrant scanned by the first one. Both

nodes scan 90 degrees. Combining the two scans for this small section, in the

plane represented, yields the medium map shown in Figure 6.3-(d). The occluded

regions could either be obstacles or spaces between obstacles which are empty but

not accessible from the laser locations.

Suppose the medium map is stored as a three dimensional matrix where each

entry represents a voxel (a small volume element) in space. Each entry in the

matrix denotes whether the corresponding voxel is empty, occupied or unknown.

Such a matrix is referred to as an occupancy grid (OG). The data collection task

is to take range readings at different pan and tilt angles and determine which

voxels are empty or occupied. Voxels not accessible from a self-awareness sensor

node’s position remain unknown in the OG generated at that node, and have the

same effect as occupied voxels in the calculation of clear field of view. Entries

in the OG are filled using the range readings taken by the laser range sensor at

different pan and tilt angles. At each orientation, the voxels along the free line

of sight of the laser are designated as empty.

Let us now consider the practical considerations which affect the time taken

for collecting the laser range data. Our experience with the laser device used

in our prototype indicates that it must be stationary when acquiring a range

reading, for accuracy of measurement. If the laser beam is continuously moved,
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Figure 6.3: Map generation process.

the device still returns range measurements. However, the time taken to acquire a

range reading increases by an unpredictable amount, which makes it is impossible
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to determine the orientation, and hence the relevant voxels in the OG, which

corresponds to the returned range reading. Thus, the laser is moved in small

steps along the pan and tilt axis and the readings are acquired when the device

is stationary. With this, the time taken, T, to acquire a reading at a particular

pan and tilt position can be modeled as consisting of three components:

T = tmove + taxdx + tread (6.1)

where tmove represents the time taken by the pan-tilt platform to move to the next

position at a constant speed using the pan and tilt motors, taxdx represents the

additional time taken due to acceleration and deceleration phases in executing

the motion step since constant speed cannot maintained throughout the motion,

and tread represents the time taken for the laser range sensor to acquire a reading.

The parameters tmove and taxdx depend on the capabilities of the pan-tilt

platform, and tread depends on the laser unit, and the reflectivity and the angle

of incidence of the surface at which the laser beam is pointed. For a constant

pan and tilt range scanned by the laser at a given granularity, suppose the total

angular distance moved is dω and the number of readings taken is N . The total

time taken to execute the scan becomes:

Tscan = dω ∗ tmove + N{taxdx + tread} (6.2)

The time taken thus varies with N . If we reduce N , and thus increase the angular

step size at which the laser stops to take a reading, Tscan can be reduced. Our

objective is to generate the OG in a manner that exploits the structure in the

environment in order to reduce the number of readings taken by the laser.
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6.1.4 Reducing the Scan Time

For many signals, a frequency spectrum analysis yields that the signal needs to be

sampled only at a coarse granularity. Considering the range scan in space as the

signal to be sampled (such as shown in Fig 6.3-(b,c)), indicates that the Nyquist

sampling interval is quite small due to the presence of sharp discontinuities in the

environmental features, and the value of N derived in this manner is very high.

Thus, we need to exploit other forms of structure in this signal. We propose

two heuristics to exploit such structure. These are described in terms of the pan

motion of the laser1 and the goal is to minimize the number of readings for a

constant pan scan range.

6.1.4.1 Adaptive Filter Based Algorithm

The first method is based on the use of an adaptive filter to learn the medium

structure from the readings acquired and when the laser readings match those

predicted based on the adaptive filter, the scan step size may be increased to

reduce the number of points measured. We refer to this method as adaptive

filter based (AFB) algorithm and use least-mean-square (LMS) adaptation as our

adaptive filter. LMS is a gradient descent based heuristic for the filter adaptation.

Suppose the filter at time step i is represented by a length n column vector h(i),

the previous n values of the scan are represented by a column vector x(i), and

e(i) is the error in the prediction, calculated using:

e(i) = hT (i)x(i)− x(i + 1) (6.3)

1Similar methods apply to tilt motion.
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where x(i + 1) is the measurement at time step (i + 1). Then the gradient search

equation to minimize the square-error becomes:

h(i + 1) = h(i)− µ▽ (|e(i)|2) (6.4)

where the gradient ▽(·) is taken with respect to filter coefficients h, and µ is

a constant step size for the gradient descent. Simplifying the above expression

leads to a computationally efficient filter update equation:

h(i + 1) = h(i)− µe(i)x(i) (6.5)

We deviate slightly from the conventional LMS filter in that the step size at

which readings are taken varies as we adapt the angular step size using the AFB

algorithm. Whenever the prediction error e(i) is below a threshold, we increase

the angular step size for the laser pan motion, as described in the next subsection.

The step size cannot be increased beyond a certain limit which depends on the

size of the smallest feature of interest to be mapped. The problem of adaptive

filter design is not addressed as part of this work; several adaptive filters are

available, and may be explored depending on the specific needs of the system

[Hay01].

6.1.4.2 Adaptive Linear Prediction Algorithm

The second method is more domain specific and exploits the nature of the signal

being sampled. Since adaptive filters are not specially designed for depth maps,

they require significant learning data. However, observe that when sampling at a

fine granularity, many of the surfaces in the medium, especially for indoor built

environments, can be approximated as consisting of small planes, or in one plane

of pan motion, a curve consisting of small line segments. When scanning this

curve, the number of samples taken need only be sufficient to reproduce the line
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segments. Thus, when range data indicates that the laser is taking measurements

along a line, we may increase the angular step size of the pan motion.

This prediction method proceeds as follows: Determine the coordinates of the

points on the sampled curve corresponding to the previous two range readings.

Use these to determine the equation of the line joining them. Now predict the

coordinates of the next point along this line, which the laser will hit when moved

by its current angular step size. At the next laser pan step, calculate the error

between the predicted point and the measured point. If the error is below a

threshold, increase the angular step size. The exact algorithm to control the step

size appears in the next subsection. We will refer to this method as the adaptive

linear prediction (ALP) algorithm.

Some further improvements can be applied to both the AFB and ALP algo-

rithms as described below.

First, when the laser range extends beyond the area of interest, such as when

the laser is near an edge of the deployment area, we need not scan the exact

structure of the medium and may increase the angular step size to the maximum

limit dictated by the minimum obstacle size to be detected. The step size would

be reduced as soon as a feature of interest is detected within the region of interest.

Second, for a given angular step size, the scan resolution in space varies with

distance from the laser. This can be seen in Fig. 6.4: the spatial resolution ∆α is

higher than ∆β for the same angular step ∆θ. Thus, ∆θ may be increased when

scanning obstacle A, as the OG is stored at a constant resolution in space.

Third, when the step size has been increased using an adaptive method and

a high error is encountered, it is likely that a large change in the scanned depth

occurred in the region between the current and the previous readings. Thus, if

we back-track, i.e., move the laser back to the previous position and then scan

100



∆θ ∆β

∆θ
B

∆α
A

Figure 6.4: Varying spatial resolution with obstacle distance.

the region of large change using a small step size, the quality of reproduction can

be improved significantly with a small increase in the number of readings taken.

6.1.5 Algorithm Implementation and Evaluation

The precise ALP and AFB algorithms derived from the above discussion are

stated together in Fig. 6.5. The key difference among the two algorithms is in

the prediction step. The values of parameters used are summarized in Table 6.1.

The parameter ∆θ0 represents the minimum angular step size required to achieve

a desired spatial resolution, for the maximum laser range in the environment.

The step size µ was chosen to be 0.03. Larger step sizes were tried, and while

they yield faster convergence and somewhat lower error, they lead to divergence

of the LMS filter in some cases. The filter length was kept at n = 3. A larger filter

length can learn more complex shapes but needs a longer adaptation time and

the signal characteristics may change over such time as the laser moves from one

obstacle to another with different a shape. Optimizing the LMS filter for various

environment categories is part of future work. We now evaluate these algorithms

by comparing them to a constant step size approach, both using simulations,

which allows testing over several obstacle placements, and using experiments on

our prototype hardware.
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1. Initialization: Set ∆θ = ∆θ0. Take first M range measurements by

panning the laser in steps of ∆θ. Set k = 0, i = 0.

If method is AFB, initialize adaptive filter h to zeros. M = length(h).

If method is ALP, M = 2.

2. Prediction: Predict the next point, based on previous M readings (using

AFB or ALP methods described in previous subsection).

3. Measurement: Pan laser by ∆θ and take next reading.

4. Update: Calculate error e(i) between the predicted point and measured

point.

IF e(i) < ethresh:

(a) Set k = k + 1.

(b) Set ∆θ = ∆θ0 + kδ

(c) IF ∆θ > ∆θmax, Set ∆θ = ∆θmax

(d) For AFB, update h using equation (6.5).

ELSE

(a) Set k = 0.

(b) Set ∆θ = ∆θ0.

(c) Back-track: Move laser to previous pan position.

5. If scan not completed, set i = i + 1, and go to step 2.

Figure 6.5: Adaptive step size control algorithm for medium mapping.
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Parameter Value

ethresh 1 cm

µ 0.03

length(h) 3

δ 0.05◦

∆θmax ∆θ0 + 1◦

Table 6.1: Algorith parameter values.

6.1.5.1 Simulations

To test the proposed methods, we generate several random obstacle placements

in a square region, place the laser ranger in one corner of the square and simulate

the range readings that would be collected when the laser is panned with the

step size computed as per the adaptive methods. As a base case, the readings

are also generated if the laser were to be panned with a periodic step size kept

at ∆θ0. The obstacles generated are rectangles and circles, placed randomly and

overlapping with each other leading to arbitrary shaped obstacles, such as shown

in Fig. 6.6(a). Ten such random obstacle topologies were generated. A simulated

laser scan using adaptive step sizes is shown in Fig. 6.6(b), where the varying

step size between successive pan positions is apparent, and the back-tracking near

obstacle edges may be seen as well. The angular step size increases as the filter

learns a curve and falls back again when the curve changes significantly.

Error performance of a scan is calculated as follows. From the application

perspective, the OG generated from the range scan data is of interest. A high

resolution periodic scan is first carried out and the OG generated from it is

used as the ground truth. Then, for each simulated scan, the corresponding

OG is generated and the error is measured in terms of the number of voxels
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which differ with respect to the ground truth OG. A two dimensional OG is used

for the simulations, considering only the pan motion of the laser. The exact

same techniques can be applied in the tilt direction as well to generate the three

dimensional OG. The number of differing pixels is normalized by the number of

total pixels in the OG, and the error is plotted as a percentage.

For each topology, multiple scans are carried out with ∆θ0 varying from 0.09◦

to 0.9◦. Increasing ∆θ0 implies reducing the resolution of the scan and thus

increasing the error. For each scan, we count the number of readings taken when

a periodic scan is used and when the adaptive algorithms are used. To compare

the savings in time when using the adaptive methods, we plot the number of

readings taken for the same error using the periodic and adaptive schemes.

The simulation data needs to be averaged over the random topologies. Since

each topology may lead to different error values with varying ∆θ0, the number of

readings, N , required cannot be directly averaged. We divide the error axis into

small intervals and consider the average of number of readings taken for error

across multiple topologies divided into these intervals. These averaged plots are

shown in Fig. 6.6(c). The error-bars show the standard deviation across multiple

topologies.

The figure shows that at low error the adaptive scans require much fewer

readings than the periodic scan. Among AFB and ALP, ALP performs better

since it is designed specifically for the nature of the sampled signal. As the angle

step is increased for the periodic scan, the error increases and the number of

readings reduces. However, the advantage due to adaptive methods dwindles as

the step size for the periodic scan has also increased. The portions of the scan

where the adaptive methods can use an increased step size now form a smaller

fraction of the total scan.
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Figure 6.6: Comparing the number of readings taken with varying error perfor-

mance for the three scanning strategies.

6.1.5.2 Experiment

We now experimentally compare the performance of these algorithms using our

prototype self-awareness node. Apart from validating the implementation of our

proposed methods on an embedded platform, the experiments include additional

effects not modeled in the simulations. First is the presence of sensing errors in

the laser readings and pan motion. Secondly, while in the simulation, only the

number of readings could be plotted, in the experiment we can measure the total
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savings in time. These includes the time for motion and the time for taking a laser

reading. The time for taking a laser reading varies with the color of the surface

scanned and even for the same number of readings, the difference in the positions

of those readings on some dark colored spots in the environment may cause an

increase in time consumed; such effects were not modeled in the simulation.

The environment used in our experiment was a 2m square space with some

objects placed as obstacles. The results are shown in Fig. 6.7. Only the better

adaptive method, ALP, was used.
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Figure 6.7: Comparing the adaptive and periodic scan strategies using the pro-

totype self-awareness node.

These results are similar to those seen in simulations. The evaluation clearly

shows that significant savings in time can be achieved using the adaptive methods.

Apart from the savings in time, another side effect of the adaptive methods

is a saving in storage and communication overhead as discussed next.
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6.1.6 Sharing the Self-awareness Data

After each laser sensor has collected the range scan, using either a periodic scan

or the adaptive methods, the data at each self-awareness node must be used to

determine the medium occlusions at each application node. There are several

design choices in doing this, differing in how the data is stored and how the

depth maps from multiple laser sensors are combined.

Data-sharing schemes depend on the nature of queries that need to be an-

swered based on the stored data. In our system, the application sensors are only

interested in determining the occluded regions from their point of view. The

individual occupancy grid (OG) generated by a laser scan (such as seen in Fig.

6.3(b)) may be stored at each laser node. To generate the medium map all laser

nodes with overlapping fields of view must transmit their OG’s to a common

location where the medium map is then computed. The individual OG’s are first

translated along the spatial axes in a global reference frame, depending on the

laser coordinates and then an ‘OR’ of their overlapping voxels is computed. The

OR operation assumes that the occluded voxels (obstacle surfaces or unknown)

are stored as zeros and the clear regions as ones. This generates a combined OG,

referred to as the medium map (as was seen in Fig. 6.3(d)). Relevant portions of

such a medium map once generated can be distributed to each application sensor.

6.1.6.1 Computing the Field of View at Application Sensors

We can improve the above process if we observe that the medium map need not

be calculated centrally for the application sensors to be able to calculate their

occlusions. Each self-awareness node need not compute its OG, but may just

store the raw coordinates of the points scanned by the laser ranger. Let us refer

to these points as range coordinates. The range coordinates which were used
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to compute the OG’s seen in Figures 6.3(b) and 6.3(c) are shown in Figures

6.8(a) and 6.8(b). We present a distributed method using which the raw range
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Figure 6.8: Range coordinates used to compute occupancy grids (OG’s)

coordinates at the individual laser nodes are directly used by the application

sensors to determine their occlusions.

Suppose the nominal range of the laser is known to be Rl, and that of the

application sensor is Rs; the actual ranges may be much shorter due to presence

of obstacles. An application sensor now accesses those laser nodes which are

within Rl distance, and queries the range coordinates stored by the laser, as well

as the coordinates of the laser itself. The application sensors now computes their

own OG’s, to represent which voxels in their field of view are unoccupied, as

follows: connect the laser node coordinates to each of the range coordinates, and

all voxels through which the connecting lines pass are deemed to be unoccupied.

The application sensor only generates the OG for a circular area of radius Rs

around it and not the entire Rl.

As an illustration, consider the 3m× 3m area seen in Fig. 6.3 and the corre-

sponding range coordinates in Fig. 6.8. Laser A was placed at (x, y) = (0, 0) and

108



laser B was placed at (2.22, 2.15). Suppose an application sensor, say, a camera

with full 360◦ pan range, is placed at (0.5, 1), and has Rs = 1. It first accesses

the range coordinates from laser A and computes its local OG by checking which

pixels are unoccupied, as shown in Fig. 6.9(a). The OG is computed at a reso-

lution of 1cm, which means that each grid point in the OG is separated by 1cm.

Next, it accesses the range coordinates from laser B. Again, it connects the range
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Figure 6.9: Example: Generating a combined OG directly at the application

sensor.

coordinates with the laser coordinates and computes the unoccupied pixels, thus

discovering further pixels in its OG which are unoccupied. This OG is seen in

Fig. 6.9(b).

6.1.6.2 Evaluation

In our proposed approach, no global medium map is generated. This approach

has several advantages compared to the laser nodes first generating their OG’s,

exchanging them, generating the medium map and then distributing it to the

application sensors.
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Memory Requirements: The application sensors calculate the OG only

within their sensing range, Rs. The size of the OG is proportional to the cube

of Rs (or the square of Rs when only the horizontal plane is considered). If

Rs < Rl, which is the case in our system, this means that each application sensor

has to compute a much smaller OG than at a laser node. This is significant,

since embedded nodes have limited memory, and increasing the memory size in

increases their power consumption and cost.

Communication and Storage Overhead: The communication overhead

in our approach is only the data-size of the range coordinates. This is significantly

lower than the OG at a laser, and the combined OG’s (medium maps) generated

using the data from multiple lasers. For instance, at a resolution of 1cm, the

size of the OG matrix in two dimensions is 104 binary values per square meter,

while the range coordinates only store a few points corresponding to obstacles

in the same area. The number of points stored can further be reduced using the

adaptive methods discussed in the previous sections.

It may be noted that the OG need not be communicated in its raw form but

could be compressed using a data compression or image compression method.

Our approach of storing range coordinates can be viewed as a domain specific

compression scheme which is expected to perform better than the general com-

pression techniques. Fig. 6.10 shows the storage space required for our proposed

approach with Periodic, AFB, and ALP methods, as well as that required for

storing the OG when using a data compression technique: TIF-packbits com-

pression, which is a lossless compression method exploiting the repetition of bits,

and an image compression technique: JPEG, which uses a transform to derive an

efficient data representation. The sizes are for the same data sets as generated in

the previous section.
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Figure 6.10: Comparison of data size for multiple storage strategies, with varying

scan error.

Our storage approach clearly has lower data size. Also, the general compres-

sion methods operating on the OG as a whole are unable to achieve any significant

reduction in size as the tolerable reproduction error is increased by reducing the

number of range coordinates. Reduced data size saves communication energy,

bandwidth, and the energy required to write to flash memory.

A trade-off in this approach is that for an application sensor, the time to

compute the OG from the range coordinates is larger than the time to decompress

a medium map image if sufficient memory is available to hold the entire medium

map. However, the computation of the OG from range coordinates is carried out

over only the application sensor’s range, a much smaller region than the medium

map generated by the laser nodes. Thus, computation time is not significant, and

when memory is limited, it may in fact be lower than the image decompression

time. Further, computation costs are typically lower in sensor nodes than the
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costs of flash memory writes and communications, and hence this approach is

still preferred.

Resolution Flexibility: The application sensor is free to compute its field

of view at a much lower resolution than the data generated at the laser. Without

application information, the laser node may have to compute the medium map

at the highest resolution possible with the collected data, and generate a much

larger OG matrix than required.

Reduced Remote State Dependence: The proposed method is com-

pletely distributed, and dependence on the state of remote nodes is minimal.

Firstly, no data exchange is required among the self-awareness nodes. Since Rl

may be large, such communication may have required data to be sent over large

distances. Reducing this overhead saves significant bandwidth. Secondly, the

application sensors are not required to know the state of progress of the self-

awareness nodes coordination and determine if the combined medium map has

been generated. They may access each self-awareness node’s data asynchronously.

Such reduced state dependence not only simplifies design in distributed systems

but also helps improve system robustness because in case of a node’s failure, its

effect on other nodes is reduced. The modular and decoupled operation yields a

significant advantage when the sensor network is executing multiple applications

and services.

Efficient Updates: The medium may change over time and our data sharing

method allows for efficient updates. First, transmitting only the range coordi-

nates to the application sensors reduces the size of data communicated. This

approach has at least as much advantage in communication overhead as seen in

Figure 6.10 with respect to the size of the update data to be exchanged. Sec-

ond, the asynchronous data access mode, rather than having to wait for the
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self-awareness nodes to generate a coherent map, allows for update information

to be incrementally incorporated with minimal delay as and when the medium

changes.

The updates may be exchanged using either a push or a pull approach. In the

push approach, the laser nodes send an update to the application sensor whenever

a change is detected and in the pull approach, the application sensor queries

the laser nodes for updates. Depending upon the nature of the deployment,

one of these methods would be preferred. For instance, if the medium changes

infrequently, then the self-awareness nodes may push the updates. This saves

the overhead of the application nodes periodically polling for updates when not

many updates are expected. However, if medium changes are frequent, the push

approach will lead to a high overhead. In this case, the application sensors should

query for updates at the frequency they require. The pull approach is also useful

for power management as it allows application sensors to enter low power modes

without worrying about medium changes when they are not even sensing. In our

system we have selected the pull approach to keep the update process at each

application sensor decoupled from the self-awareness node’s operation. The laser

periodically collects data and publishes it at a known location. In our prototype,

we use the common HTTP protocol for data exchange. The range coordinate data

is stored in a web accessible folder on the self-awareness node. The application

sensors access this data as required.

There are other enhancements possible to the update process if the overhead of

maintaining remote nodes’ state is acceptable. For instance, each self-awareness

node may maintain the locations of the application sensors which access it. Then,

it could compute which portions of its range coordinate data affect each appli-

cation sensor. In case of updates to the range coordinates data, the laser would
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compute which application sensors are affected and publish a flag indicating such

change. Now, when an application sensor accesses a self-awareness node, it first

looks at the update flag corresponding to itself. If the flag indicates that the data

has changed, it downloads the new data, else the unnecessary communication cost

of the redundant update is eliminated.

6.1.7 Related Work

While the use of medium characterization methods specifically for sensor networks

is little explored, several related aspects of the problem have been researched. The

most closely related problem is that of mapping in robotics, such as discussed

in [TB96, ME85, DNC01] among many other works. Our problem differs as

we do not need to support simultaneous mapping and localization. Also, since

localization may be decoupled from mapping in sensor networks, the problems of

combining the medium maps from different sensor nodes differs significantly from

robotics. Further, the sensor nodes are only interested in computing the occluded

regions, rather than generating a global map for navigation. This allows us to

use lower resource overheads and use simpler methods than required for robots.

Learning world models for enhancing computation performance has also been

considered for context awareness and location aware computing [CK00, BC04].

These are orthogonal to the medium characterization problem for sensor networks

since the nature of queries about the world are very different. Those world models

are designed to help the system determine where the user is, what activity the

user is engaged in and the state of the objects in the user’s environment. In sensor

networks on the other hand, the query of interest is the location of occlusions for

the sensor. The use of medium mapping was also considered in [HH03]. However,

adaptive methods to optimize the scanning process were not considered. Also,
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their system involved only one mobile mapping node and distributed mapping

and data sharing methods were not relevant.

Another related body of work is the design of adaptive filters for predicting

a signal from its previous values [Hay01]. We use these methods in our specific

context of adapting the sampling step size. We also propose a different prediction

method specific to the problem domain using linear extrapolation. The use of

varying sampling step size was also considered in [BRY04] to reduce the number

of samples taken but their techniques were not designed for mapping obstacles.

While our work forms an important first step toward realizing the autonomous

operation of sensor networks with performance control, several new issues were

revealed during our development process, which are yet to be explored in greater

depth. One of these is the intelligent separation of mobile events from obstacles,

so that depth maps are not generated based on transient occlusions such as due

to human motion within the network. Further, the application specific trade-offs

in the push vs. pull methods for updates may be studied in more detail.

6.2 Phenomenon Detection

We now discuss the methods used in our system for detection of phenomenon. As

mentioned before, the detection is a crucial step in the method that we use for

actuation, since the high resolution sensing is provided only at locations where

a phenomenon of interest is detected. It is thus important for the detection to

take place at low resolution. Several methods for detection may be applicable

depending on the phenomenon being sensed. As part of our work, we implemented

three example methods for a couple of different applications. These are discussed

below.
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6.2.1 Ellipse Detection

One of the example applications for a network of cameras such as our system

is to detect objects of interest in a user’s environment for various ubiquitous

computing applications. One approach for detecting objects using cameras is to

place a visual tag on each object of interest. Methods have already been proposed

to design tags and recognize a tag given a high resolution image of the tag[IL01].

Our system can thus provide the sensing infrastructure required to obtain the

high resolution images.

An example tag used in the tag recognition system developed in [IL01] is

shown in Figure 6.11.

Figure 6.11: Example visual tag used for object detection.

The circular pattern seen in the tag is a visual code for an identification

number. The exact pattern of the tag depends on the identification number

which is to be represented. The tag design is such that it has two concentric

circles in the middle of the pattern. These concentric circles are common for any

tag number and are used to detect the tag in the field of view of the camera.

The circles may appear as ellipses depending on the angle which the plane of
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the tag makes with the camera’s image plane. The interesting thing to note is

that ellipses can be detected at a much lower resolution than that required for

recognizing the tags. Several methods are available for detecting ellipses, such

as based on Hough transform [Ver91] as discussed in [AMN95, CL04] or other

methods including genetic algorithms [XJ02, YKG04, EAB92].

In our system implementation we used the same method as in [IL01] and the

prototype was demonstrated at [KCH05].

6.2.2 Color Detection

Consider again the tag recognition application mentioned above. Apart from

using ellipse detection to detect a tag in the field of view, another method that

may be used if the tags can be restricted to be of a unique color is to use color

detection. The color should be chosen so as not to be present on other objects

as far as possible so as to avoid false positives in the detection phase. Color

detection can also be achieved at much lower resolution than that required for

recognition of the tags.

There are several methods for color detection. A simple method involves

checking the values of the red, green, and blue components to find out which

one dominates. For instance, if the green value is higher by a threshold factor

than the other two components, we declare the pixel to be predominantly green.

Suppose the threshold factor is f , and the red, green, and blue components of a

pixel are rpresented by R,G,B, then, the pseudo-code for this method is:

if (G/R) > f and (G/B) > f

then Pixel is GREEN

The value of the threshold factor f may be chosen depending on allowed tolerance

in color matching.
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A second method is based on a computation of the Euclidean distance between

the color of the test pixel and the reference color. Suppose the reference color to

be detected is represented by a vector [Rf , Gf , Bf ]. Suppose the test pixel has a

value [R,G,B]. Then, the Euclidean distance, D, is:

D =
√

(R−Rf )2 + (G−Gf )2 + (B −Bf )2 (6.6)

The reference color may be picked to match the tag color, say green, represented

by [Rf , Gf , Bf ] = [0, 255, 0]. The detection procedure compares the distance, D,

with an allowed tolerable error threshold and if D is smaller than the threshold,

the color is declared to match.

More advanced methods are available based on transformations of the pixel

vectors. For instance, pixel values in the red, green, and blue (RGB) format may

be converted to the hue, saturation, and value (HSV) vector space, where the hue

specifies the color and the saturation value may be used to allow for tolerances

in the purity of the color. Several color detection techniques are surveyed in

[VSA03].

In our system we used threshold based color detection, with f = 1.5, and

implemented it for two different colors: green and red. The implemented system

was demonstrated at [KCK05b].

6.2.3 Motion Detection

As another application consider logging high resolution images of all vehicles

entering a particular campus area, as shown in Figure 1.1 in chapter 1. One

method to detect vehicles using low resolution coverage is to use motion detection.

We implemented motion detection methods specifically to detect vehicles as part

of our work.
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The processing carried out to detect moving vehicles in the image data is

described below.

1. A background image is first captured to be used as prior knowledge of the

scene being photographed. This background image is updated using an

autoregressive filter as described in [SDB00]. The update step for each

pixel I(i, j) in the image matrix is:

I(i, j) = a ∗ Icaptured(i, j) + (1− a) ∗ I(i, j) (6.7)

where Icaptured denotes the most recently captured image while I is the

maintained background image. The parameter a satisfies 0 ≤ a ≤ 1 and

is typically close to zero. A larger value will lead to a faster update but

will also cause some of the motion events to be incorporated into the back-

ground. We use a = 0.05. The objective of the update is to to adapt the

background image to gradual changes such as due to light variations or

addition of background objects in the outdoor scene (Fig. 6.12(a)).

2. Each frame captured by a camera is subtracted from the background image

and the pixel values above a minimum threshold in the difference image are

denoted as motion pixels. A sample frame is shown in Fig. 6.12(b) and

the difference image in Fig. 6.13(a). The shade in Fig. 6.13(a) corresponds

to the magnitude of the difference value. Pixels with small magnitude

difference may arise due to sensor noise even when there is no change in the

background and hence differences below a noise threshold are ignored. The

sensor noise depends on the camera hardware used and may vary with light

levels of the scene. We chose a noise threshld suitable for our hardware in

an outdoor setting.
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(a) Background (b) Frame

Figure 6.12: Detecting regions of interest using motion detection.

3. Adjacent motion pixels in the difference image are clustered into groups,

referred to as blobs. Each blob is shown in a different shade in Fig. 6.13(b).

Based on the geometry of the scene, the maximum distance being viewed

by the camera and theminimum known size for a vehicle of interest one

may calculate the minimum area of the image that a vehicle occupies in

terms of number of pixels. Blobs with pixel counts lower than that are

likely to have arisen due to uninteresting motion events. Thus, blobs with

pixel count below a minimum threshold are discarded. In the figure these

blobs are also shown but a new shade is not used for such blobs. Several

uninteresting motion events, such as tiny blobs corresponding to the edges

of the foliage moving in the wind, may be seen in the figure. These are

rejected as far as the phenomenon detection method is concerned.

4. Thresholding the blobs by pixel count serves as a first filter for rejecting un-

interesting events. However blobs with pixel count greater than the thresh-

old used may arise due to motion events corresponding to pedestrians at

certain locations who may appear larger than vehicles by being closer to the
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(a) Motion Pixels (b) Blobs

Figure 6.13: Differencing to detect pixels which change.

camera. To filter out such uninteresting motion events due to pedestrians,

we exploit the difference in the expected shape of a vehicle and pedestrian.

A rectangle surrounding each blob with pixel count above the minimum

threshold is calculated (Fig. 6.14(a)). The aspect ratio of each rectangle,

i.e., the ratio of its height to the width is calculated. Blobs with aspect ra-

tio, r, such that 0.2 ≤ r ≤ 1 are assumed to be arising from vehicles. Blobs

with an aspect ratio greater than 1 may arise due to pedestrians moving

in the scene (height is greater than width) and blobs with an aspect ratio

lower than 0.2 may arise due to noise blobs corresponding to edges that

occur in the difference image due to small unavoidable camera shake.

5. For each blob which passes the two filters above, the centroid blobs is

calculated. This centroid represents the average location of all the pixels

that constitute that blob. We assume the centroid to be the location of

the motion event corresponding to that blob. The calculated centroids for

the filtered blobs are shown superimposed on the captured frame in Fig.

6.14(b). These locations represent the phenomenon of interest where high
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resolution coverage is desired.

(a) Aspect Ratio (b) Filtered Events

Figure 6.14: Filtering motion events of interest for phenomenon detection.

The above procedures yields the location of the events in the image pixel

coordinates. This is sufficient for controlling the actuation when only a camera

which detects a phenomenon in its field of view must actuate to it since then, the

camera can direct its actuation based on its its own pixel coordinates. However,

if a camera other than the one used for detection must be used for the actu-

ation step, more detailed information about the event coordinates in the three

dimensional space may be required.

For our scenario for the latter application of imaging vehicles, where the plane

of the road is known, the image coordinate may be projected to the road surface

using geometric calculations. This may not be feasible in some applications and

the true coordinates of the events in 3-space may be needed. More sophisticated

detection methods, such as triangulation of the detected phenomenon’s location

by having it imaged via two or more cameras, may be studied for that objective.

In this chapter we have described the supporting services relevant for our mo-

tion coordination algorithm. Next, we consider the simulations and experiments
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performed to evaluate our proposed methods and demonstrate their operation on

a real system.
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CHAPTER 7

Simulations, Prototype, and Experiments

In this chapter, we evaluate the motion coordination methods in simulation and

study some interesting properties of the ILS algorithm beyond convergence to

a stable state. Further, we demonstrate the implementation of our proposed

methods on a prototype system consisting of pan-tilt-zoom cameras and actuated

lasers. We also experiment with our proposed methods on real world data using

a practical application as a concrete use case for our proposed methods.

7.1 Simulations

Three properties are of primary interest for a distributed optimization algorithm

such as the incremental line search proposed in chapter 5. The first is whether

the algorithm converges to a stable state. The second property of interest is

the proximity of the converged state to a true optimum. The third property of

interest is the speed of convergence.

We have already proved convergence to a stable state, in section 5.3. Since

we used a realistic sensing performance model, our assumptions are valid under

practical implementation constraints and hence the algorithm will converge to a

stable state. As an illustration, let us visualize the operation of the algorithm

for an example scenario and a randomly generated event distribution, for various

choices of design parameters. Figure 7.1(a) shows a random initial deployment
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of 10 sensors with a few obstacles. The shade at a point represents the utility

at that point due to the best-suited sensor for it, darker shades corresponding to

higher utility. The white regions are uncovered and the black circles represent

obstacles. Suppose the event distribution has not been acquired as yet. Also,

we first set α = 0 in the metric calculation of equation (5.3): ILS will try to

maximize network utility – which may depend on a few points with high utility,

rather than due to more covered points.

(a) Random initial configuraion. (b) Optimized Config. 1

Figure 7.1: Illustration of ILS convergence (a) random initial network configu-

ration (b) optimized configuration with w = 0.1, showing significantly improved

coverage than (a).

The final configurations found by executing ILS with w = 0.1, corresponding

to low weight for the detection performance and a higher weight for time to

actuate is shown in Figure 7.1(b). The coverage may now be seen to be much

better.

As an alternative, one may set the weight w = 0.9 and the resultant configu-

ration is shown in 7.2. The shades within covered regions here are different since

in this case the utility is dominated by the resolution of coverage rather than the
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time to actuate. The exact choice of the weight parameter depends on desired

behavior, which is application specific and we do not dwell on it further here.

Figure 7.2: Illustration of ILS: optimized coverage using w = 0.9, showing a

different stable state.

Suppose next that the event distribution shown in Figure 7.3(a) is acquired.

The figure axes represent the spatial extent and the shade at each location corre-

sponds to the event density at that location. In the simulation this event distri-

bution is generated as a sum of two Gaussian distributions. The ILS algorithm

can use this distribution in the calculation of its utility metric. The optimized

configuration is shown in Figure 7.3(b) with w = 0.1 - the prominence of higher

zoom (narrower field of view) in the diagonal region with higher event density

is apparent. Suppose however that the area covered is also to be kept high and

thus α is set to 0.8. This yields the configuration in Figure 7.3(c).

The above illustration shows how the ILS algorithm can be tuned for different

behaviors as desired by the user application.

We now discuss the other two properties of interest in simulations.
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(a) Sample Event Distribution

(b) Optimized Config. 3 (c) Optimized Config. 4

Figure 7.3: Illustration of ILS (a) a sample event distribution, where brighter

areas show higher event density (b) optimized configuration after learning the

event distribution, and (c) optimized configuration with α set to a high value.

7.1.1 Accuracy of Converged State

As was proved in section 5.2.1, the optimization problem being solved is NP-

hard and our proposed algorithm is a computationally tractable heuristic to solve

it, with certain desirable characteristics such as its distributed nature. It may
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however not converge to the true optimum. Hence, we wish to evaluate:

1. Is the configuration found by ILS better than the configuration achieved

without using ILS but by allowing each node to take its individual decision,

and

2. Is the configuration found by ILS close to the true global optimum.

Few analytical proofs are available for convergence to a global optimum for

distributed operation. Comparison of the converged state to the true optimum

is not feasible since the computation of the true optimum for a representative

setting becomes NP-hard. Hence, we simulate the behavior of ILS for certain

random scenarios and study how good the converged state is. Different orders in

which the sensors update their poses, due to differences in the contention success

pattern achieved due to the random waits at the sensors, lead to different search

paths in the search space. Also, in the contention phase of the network protocol,

certain sensors may win the contention more often than others, and update their

pose more often. We simulate the operation of ILS for ten random contention

success patterns, and plot the network utility in Figure 7.4.

Note that the network utility is not available to any individual node, and is

made available in the simulations by considering the poses of all nodes centrally

for the purpose of evaluation. The solid curves show the evolution of utility

with iteration for different contention success patterns. The dotted line shows

the utility achieved by a näıve method: updating the pose of each sensor locally

without any coordination with its neighbors.

The graph shows that:

1. while the convergence time varies among multiple contention success orders,

the final utility with ILS is always better than a näıve local method.
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Figure 7.4: Optimization accuracy: convergence with ten random search paths.

Each curve shows a different random contention success pattern. The various

converged states have a utility within 10.9% of the best case.

2. the final utilities, which are local minima, found in multiple random runs

are within 10.9% of the best case. This suggests, though does not prove,

that ILS behaves well for several random instances. This is also expeted

due to the relationship of ILS to incremental subgradient methods. It has

been known that incremental methods are less likely to get stuck in poor

local optima or stationary points, compared to gradient descent methods

since they do not suffer from the gradient descent effect of finding the local

maxima closest to the starting point [Sol95].

Based on such arguments and our simulation results, we conjecture that

ILS discovers a good quality stable configuration with high probability. The

monotonicity property always guarantees that ILS will never worsen a configura-

tion, and the graph shows that using ILS has a significant advantage compared
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to a näıve approach.

7.1.2 Convergence Speed

We now address the third important consideration: time to converge. Again, this

is studied through simulations. The simulation scenario consists of a network of

N = 25 sensors spread across 100 × 50 meters, and maximum camera range

Rmax = 8m at widest zoom. Several random topologies are simulated. The

convergence performance for each random topology is plotted in Figure 7.5.
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Figure 7.5: Convergence: evolution of utility with increasing number of iterations.

Each curve corresponds to a random location topology and random initial poses

of the sensors.

To consider the worst case execution time, we consider each sensor’s update as

a separate iteration, even though several of these occur in parallel. The time taken

for each iteration is considered next. Each iteration consists of the contention

phase wait of Ttimeout. This setting depends on the communication layer used.
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For instance, for 802.11 MAC, the per hop delay is expected to be less than 10ms

[TS04, GK04] and, if γi spans 10 hops as a worst case estimate, the total round

trip delay would be limited to 200ms. At least one sensor wins the contention

and computes its optimal pose. This has the delay of pan motion and zoom

motion. The longest pan step may be 340◦ degrees which takes 2 seconds. The

longest zoom step (see Figure 3.14-(b)) allowing a maximum zoom setting of 5 in

detection mode (leaving the remaining zoom range of 20 available for providing

high resolution coverage for recognition), is 1.3s. A single update time is thus

2 + 1.3 + 0.2 = 3.5s.

The number of iterations required to achieve the final utility is about 80 as seen

in the graph for each random topology, and even in the worst case this requires

4 minutes 40 seconds. The number of iterations is about 3 times the number of

sensors, implying that on an average each sensor updates three times. Even with

increasing network size, due to parallelism in updates, the convergence time will

stay at the same order. Thus the stable state is discovered in only a few minutes

for the hardware capabilities in our system. Since the phenomenon learning phase

(which must wait for several events to occur in order to estimate or update the

q(p)) and medium dynamics are expected to be much slower, convergence time is

not an important consideration for our system, and ILS can repeatedly be used

to update the network configuration whenever new environmental information

becomes available.

Time to converge may be an important concern in other applications of ILS

where the system must deal with rapid dynamics. The graceful degradation

behavior of ILS discussed in section 5.3.1 then helps ensure that ILS does not

worsen the situation.
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7.2 Prototype System

Let us now consider the execution of ILS on the test-bed shown in Figure 1.2. The

test-bed has four pan-tilt-zoom cameras [Son04]. The motion capabilities of this

camera have already been tabulated (Table 3.2). It also has two self-awareness

nodes described in section 6.1.1.1. Some objects of various shapes are placed

to emulate obstacles in the covered space. Any available networking technology

that has sufficient bandwidth to support video data, may be used and we used

Ethernet. The cameras also allow for a WiFi card to be added in its PCMCIA

slot and that may be used if a wireless connection is preferred. Since we did not

have access to change the firmware on the camera, we developed our software on

an external processing platform but the methods could well be implemented on

the camera processor itself in actual production.

Rather than beginning with a random configuration, we arrange the cameras

along the edges to form a regular tessellation covering the entire rectangular

region of interest. However, the obstacles in the rectangular region, render the

regular tessellation ineffective.

The first requirement is the information about medium obstacles. We collect

this using laser ranging. Range scans from the bottom left corner and the top

right are shown in Figures 7.6(a) and 7.6(b) repectively. Note that these scans

exploit the adaptive scanning enhancements discussed in section 6.1 and hence

the scan step size is seen to be greater when scanning a structured environmental

feature, such as a straight line, since it matches the adaptive algorithm’s predicted

structure. A backtracking procedure allows the algorithm to reduce the scan step

size and re-scan the missed portion in case a large deviation from the predicted

structure is observed. Combining the two scans yields the obstacle map shown

in Figure 7.6(c) by the dark patches. Figure 7.6(c) also shows the initial network
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configuration.
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Figure 7.6: Gathering medium information for ILS operation (a) range scan

from laser in bottom left corner (b) range scan from laser in top right corner,

(c) map of obstacles in the medium and the initial network configuration, (d)

optimized configuration found by ILS - it changes both the pan and zoom settings

of the cameras to increase sensing performance characterized by time required for

recognition.

In this configuration, each sensor node has all other nodes as its neighbors.

The test-bed can thus be viewed as one neighborhood set in a larger network.
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The final network configuration found by the ILS algorithm is shown in Figure

7.6(d). The experiment used w = 0.1, thus giving more weight to the time

required for actuation and the parameter α was set high to maximize covered

area. These results not only verified that the ILS algorithm behaves as designed

but also helped us ensure that all the algorithms and methods proposed can be

implemented in a real system.

The testbed software also includes certain supporting components to enable

visualization of the experiment’s progress. The images captured by the network

cameras are compressed JPEG files for ease of transfer over the network. Our

camera controller software decompresses each image. It also calculates the oc-

cluded pixels based on the laser ranger readings. The occluded pixels are plotted

superimposed on the raw image for visualizing the camera’s field of view as it

evolves under ILS. A snapshot of the visualization of four separate processes,

each controlling one of the network cameras is shown in Figure 7.7.

A central experiment monitoring program was also developed in Matlab for

controlling the cameras centrally for various experiments. The graphical user

interface to this program alows setting various parameters in the experiment,

and is shown in Figure 7.8.

Further, a manual control interface was developed which exposed the camera’s

actuation capabilities to a human user through an HTML interface. This manual

control interface allows a user to manually over-ride the settings found by ILS

if so desired. The complete system software in operation, including the manual

over-ride may be seen in Figure 7.9.
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Figure 7.7: GUI snapshots of the four processes controlling the network cameras

in the testbed.

7.3 Experimental Evaluation

We also evaluate the proactive motion coordination methods on an experimental

system using real world event data. One key parameter of interest in comparing

an actuated system against a system of static cameras is the actuation delay

required for actuating after an event is detected. Since the reactive methods

required to carry out the actuation step in response to a detected event are not

developed as part of our work, we assume a simple method where each camera

will zoom in to an event detected in its field of view. Issues in the reactive

phase, such as scheduling the camera for multiple simultaneous events [CDB04]

135



Figure 7.8: Experiment monitoring software.

or tracking an event as it moves through the covered area [CRZ04, CLF01] are

not being studied here.

While most of our design choices apply generically to any camera network

where resolution is to be increased, some of the analysis is performed in the

context of the example application mentioned briefly in section 1, and specified

concretely here. Consider the access road to a building shown in Fig. 1.1(a). This

image is captured from a camera mounted on a 2nd floor patio of the building

itself. Suppose the entire sealed road area in this scene is to be photographed at

a resolution good enough to visually recognize a vehicle, say 200pixels/m. The

vehicle license plate, if captured in the image, will be legible at this resolution.

However, cameras may be installed only within the building premises and not on
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Figure 7.9: System software in operation alongside the testbed.

the roads themselves since the building owners may not have jurisdiction over the

road infrastructure or the sidewalks. Given that the application is interested in

photographing vehicles, assuming that the minimum vehicle width is 1.5m, and

also assuming that motion detection can work reliably if the one of the moving

object dimensions is at least 15 pixels, we see that Rdet = 10pixels/m. For the

required Rsense = 200pixels/m, this yields z = 20X. The camera we use in our

system [Son04] has a zoom range, zhw, greater than this. The range of pan and

tilt required, for the reactive actuation when an event is detected, is equal to the

angle of field of view at the zoom setting used for detection. For instance, the

angle of field of view is 45◦ at the widest zoom setting, z = 1, and the pan range

of the camera is greater than this. The available actuation capabilities of the
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camera are compared to those required in Table 7.1.

Capability Required Available

Zoom z=20X zhw = 25X

Pan θfov = 45◦ θpan = 370◦

Tilt 30◦ 115◦

Table 7.1: Required actuation ranges and hardware capabilities.

We will compare the network configurations achieved by our method and

other methods by measuring the actuation delay per event averaged over a large

number of events.

To obtain a realistic trace of event locations in the covered area of interest, we

used motion detection, as described in section 6.2.3, on a live stream of images

coming from a camera mounted to view the scene shown in Fig. 1.1(a). Note

that we are not addressing the problem of detection method design in this thesis

and assume that the detection performance achieved by the available method,

such as motion detection in our example, is sufficient for system operation.

A total of 5000 events were detected using the above procedure in a live

video stream. A histogram of these events over the scene coordinates is shown

in Fig.7.10. Lighter shades correspond to regions with more events. The com-

plete image stream, and the event coordinates obtained via motion detection are

available through our CVS repository [Kan].

The proactive motion coordination methods are evaluated using this event

trace for a set up of four cameras looking at the scene for which this event trace is

collected. The actuation delay performance of a particular network configuration

is calculated as follows: for each event in the trace, the time required by the

camera to zoom in to provide the high resolution coverage is computed. The
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Figure 7.10: Event trace

time is computed for that camera which has detection coverage (low resolution

coverage) over the event location. This time varies with the extent of zoom,

pan, and tilt motion required to reach that event, and can be computed using

the documented pan and tilt speeds for the camera along with the measured

zoom change speed of the camera (Figure 3.14(b)). An average of the computed

time for each event is taken over all events, for each configuration as the delay

performance of that configuration.

We compare four alternatives, labeled in the following graphs using the acronyms

below:

1. TESS, a regular tessellation: The four cameras are arranged regularly with

their zoom set to widest and each camera looking straight ahead.

2. ILS(UNIF): The ILS algorithm is used to optimize the configuration. Only
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5X of the zoom is used since the remaining 20X is required for the reactive

phase. Similarly, the excess pan range not required for the reactive phase

is used. The tilt is ignored, but can be used in the same manner as pan.

3. ILS: The ILS algorithm is used with a knowledge of the true event distrib-

ution. The histogram generated from the event trace is used as the event

distribution, and since this comes from the trace itself, it is a true event

distribution. If the observed event distribution varies from the distribution

learned by the system, the delay performance may suffer somewhat; the

exact deviation depends on the error in the learned distribution itself.

4. RAND: The cameras are configured randomly. Ten random configurations

are tried and the average and standard deviation of the quantities being

evaluated are plotted.

In the utility metric used for ILS, the tuning parameter w allows biasing

the algorithm toward actuation delay or detection quality. Suppose we bias it to

actuation delay, by using a higher weight w = 0.9 for the delay term and (1−w) =

0.1 for the detection term. The delay performance for the four alternatives is

plotted in Fig. 7.11(a). The corresponding detection performance, measured in

terms of the fraction of the events detected is plotted in Figure 7.11(b). The

lighter shade bar segment on top of the bar for RAND is the standard deviation

across the multiple random runs. Clearly ILS yields the best delay performance.

The detection performance is comparable, though not exactly the same, for all

alternatives except RAND. It is above 90%, showing that when ILS optimizes

for delay, the penalty on detection is not significant. For applications where the

detection performance is at a premium, delay may have to be sacrificed by chosing

the configuration with the highest detection performance.
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Figure 7.11: Performance of different network configurations, when optimization

is weighted for actuation delay.

Note that internally, the ILS algorithm is not using delay but the utility metric

defined in section 5.1.3 for optimizing the configuration. This utility metric for

the four alternatives is plotted in Fig. 7.12, to see how this internal measure

relates to the observed application level performance metrics. The configurations

obtained using ILS have higher utility. This is expected as the ILS algorithm

changes the starting configuration to increase the utility metric. Among these,

the utility is higher when the true event distribution is used.
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Figure 7.12: Utility metric evaluated for various configurations.

On the other hand, we could bias the utility metric for detection performance,

using the tuning parameter w provided by our algorithm. The results for this

choice, i.e., the weight for delay term set to w = 0.1, and that for detection

term set to (1 − w) = 0.9, are shown in Figs. 7.13 and 7.14. As may be seen

in Fig. 7.13(b), the detection performance has improved. Since the detection

performance was already high, the improvement relative to Fig. 7.11(b) is small.

The above evaluations show the delay required using our prototype hardware

to increase the resolution of sensing by over an order of magnitude. Clearly,

when such delay is acceptable, our methods can be used to improve the sensing

performance significantly, or conversely, to provide significant savings in sensing

resources for a given sensing performance. Further, the graphs above indicate the

flexibility of our algorithm provided through the tuning parameters for biasing
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Figure 7.13: Performance of different network configurations, when configuration

optimization is weighted for detection performance.

its operation for the metric of user interest.

The delay can be further reduced by increasing the number of cameras. For

instance, if each camera in our system is replaced with 4 similar cameras, then

each camera is responsible for only a quarter of the original volume covered for

detection and a lower actuation time is sufficient to cover the reduced volume.

In our prototype, we use four cameras based on equipment availability. In actual
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Figure 7.14: Utility metric for various configurations, when detection performance

is weighted higher.

production, the number of cameras may be determined based on the desired delay

tolerance and the expected number of simultaneous events in the scene.
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CHAPTER 8

Conclusions and Future Work

In this dissertation we discussed why using small motion is a potentially useful

alternative to improve the sensing performance of embedded sensor networks

and provided a framework of distributed methods to effectively exploit the small

motion.

While it has been known before that motion and even small motion has a

sensing advantage, a quantitative understanding of the potential benefits and an

in-depth analysis of the related trade-offs was lacking. Our work has evaluated the

exact extent of sensing advantage that may be achieved using small motion and

also compared it to other alternatives such as using a high density of static sensors

or a low density of unconstrained mobile nodes. We showed that small motion can

lead to several orders of magnitude advantage in sensing resolution depending on

certain trade-offs and in our particular prototype, we demonstrated four orders of

magnitude advantage. We also discussed several reasons which make the use of

small or constrained motion more practical than other alternatives for a variety

of scenarios.

Further, while motion has been used before for increasing the range of coverage

or for tracking mobile phenomenon before, the precise delay trade-off in the use of

motion had not been discussed. We quantified the delay trade-off in using small

motion for providing high resolution coverage for a specific methodology of using

motion: using a low resolution view for detecting the phenomenon of interest and
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then using motion to provide high resolution sensing at required locations.

We also presented a framework for optimizing the configuration of a mobile

sensor network with limited motion capabilities. Prior work has considered the

use of motion for optimizing the deployment in terms of area covered, increasing

the extent of coverage by having a sensor patrol a set of sensing points, or even

the use of motion to track a mobile phenomenon. However, the use of motion to

increase the resolution of coverage by using a low resolution view for detection

has not been studied in depth before. Using motion for configuring the network

in order to minimize motion delay had not been considered in prior work. We

provided methods that allow minimizing the motion delay required for providing

high resolution coverage. We showed that solving this problem optimally was NP-

hard and provided computationally tractable heuristics to address the situation.

The motion coordination methods we developed for the above objective were

distributed in nature. This leads to extreme scalability of the proposed methods

in terms of the number of nodes in the network since the motion coordination

algorithm required communication only in a well defined neighborhood, the size

of which depends only on the network density and does not grow with the num-

ber of nodes. The distributed motion coordination algorithm developed as part

of this work was shown to have several desirable properties, including provable

convergence, graceful degradation and the ability to operate with realistic sensor

models.

In addition to the motion coordination method, we also presented practical

methods to learn the environmental parameters which affect the network configu-

ration. Specifically, our methods could exploit information about the obstacles in

the medium and the expected distribution of events in the space covered. Prac-

tical methods for acquiring this information about the environment were also
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developed and demonstrated with prototype hardware implementations.

Finally, we implemented all our proposed methods on a prototype system to

not only verify their realizability but also study their behavior with respect to

certain performance considerations. We also conducted experiments to evaluate

our methods on real world data collected using our prototype in the context of

practical application examples.

8.1 Future Directions

Most of the methods developed as part of our work are the first in the domain

of minimizing actuation delay in using motion for high resolution sensing. Thus,

significant future research is feasible to improve the proposals of our work.

An interesting problem for future research is the integration of the proac-

tive methods for network reconfiguration presented in our work with the reactive

methods used to perform the final actuation in response to detected events. The

network configuration provided by our proactive methods can be exploited by the

reactive methods to achieve the best delay performance in the face of multiple

events detected by multiple sensors. The scheduling of actuation steps and the

allocation of appropriate sensing resources to the detected events presents inter-

esting research challenges. For instance, methods may be developed to prioritize

the detected events based on their dwell time in the field of view of the network,

and then use the allocating the cameras in the derived priority order to those

events.

Future work also includes fundamental considerations that relate the number

of actuated cameras required for given event dynamics in terms of the number

of events in the environment and their dwell times and mobility characteristics.
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The appropriate strategy to use all available sensors for detection and actuation

for high resolution sensing on demand, or allocating a fixed number of sensors for

constant detection while others are used for actuation may be studied as part of

this problem as well.

The ILS algorithm may further be extended to exploit the temporal dimension

and determine sequences of configurations to be visited over a given time period

rather than finding a single optimal configuration. Further, our methods may be

extended to include the case of tracking mobile events rather than just providing

high resolution coverage once for each event.
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