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Wireless Integrated Network Sensors (WINS) incorporate the latest advances in 

wireless technology, integrated circuits, networking protocols and computing to 

provide compact intelligent sensor nodes for many distributed monitoring 

applications. [5, 13, 14, 36, 85]  From battlefield intelligence to personnel 

monitoring, WINS nodes will play an integral part in national security, the 

manufacturing industry, transportation and health care.  These distributed wireless 
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sensors require signal-processing technology to enable local detection, 

classification, and identification of events.  In this dissertation, a time domain 

Signal Search Engine (SSE) has been developed for event processing, allowing 

events to be classified, identified, and communicated with minimum data payload 

requirements.  This SSE was shown to be able to resolve signal time-evolution 

behavior.  This dissertation presents time-domain signal classification and 

identification algorithms, and the fusion of classified or identified sensor 

information for distributed and centralized decision-making.  One of the 

highlights of this dissertation includes a modular design using the technique of 

signal data decomposition into state spaces.  The SSE implementation has shown 

excellent results for acoustic and seismic vehicle signal classification and 

identification.  Furthermore, excellent classification and identification 

performances are demonstrated for a variety of vehicle signal sources and 

environments. 

 

The SSE algorithms were benchmarked with two parametric methods, MUSIC 

and the Pisarenko algorithm, for created test signal models.  Further 

benchmarking with real world signals was done with a wavelet method.  It was 

found that system level processing and functions contained in the signal pre-

processing modules is the reason for the high accuracy rates.   

 



 xvi

The performance of the SSE depends on the assigned template tree and its span.  

The more complete the span of the tree to sensed signals, the better the accuracy 

rates and associated confidences measures.  The type abstraction hierarchy (TAH) 

concept is used in building the classification / identification tree.  Type 

abstraction hierarchy is a methodology where similar signals are grouped together 

within abstract types for selecting a common template.  TAH brings a methodical 

hierarchical classification and identification structure to the SSE.  The obtained 

results are fused for collaborative decision-making with distributed and 

centralized decision-making architectures.  The fusion of these different types (i.e. 

acoustic, seismic) and state-space sensor results not only enhances the 

performance and throughput of the SSE or Multi-Signal Search Engines (M-SSE) 

but also makes it more robust in noisy environments. 
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CHAPTER 1 

 

Introduction 
 

 

1.1 WINS Background 
 

Wireless Integrated Networked Sensors (WINS) form a new distributed information 

technology based on compact, low power nodes that include sensors, actuators, 

computation and communication systems. [5,13,14,36,85]  WINS distributed nodes form 

autonomous, self-organized, wireless sensing and control networks (see Figure 1.1).  

WINS nodes include microsensors, signal processing, computation and low-power 

wireless networking. 

 

WINS have been developed over the last few years for basic scientific inquiry, defense 

applications in battlefield security, condition-based maintenance, and applications in 

industrial automation and healthcare.  WINS technology includes MEMS micropower 

sensor and interface systems, micropower signal processing, and micropower RF 
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communication circuits. [15,31,58,69]  WINS also includes novel signal processing 

algorithms for event recognition, network communication protocols for low power 

operation, and methods for bridging low power WINS networks with conventional long-

range tactical networks.  Most of the signal processing and event detection of the 

complicated signals takes place in a remote node that has minimal or no power 

constraints.  The purpose of this SSE is to research the possibility of on-node 

implementation or use in off-node data-mining and decision-support systems. 

 

By supporting a dense distribution of low cost measurement nodes, the distributed sensor 

network increases the effectiveness of surveillance by increasing the density of sampling 

points.  In addition, current applications exploit the dense sensor distribution to enable 

multi-hop networking and reduced path loss resulting in dramatic communication energy 

reduction.  Finally, WINS wireless networks also take advantage of distributed sensors to 

introduce fault tolerance into sensing and communication. 

W I N S
n e t w o r k
b r id g e

c o n v e n t io n a l
n e t w o r k
s e r v ic e

s ig n a l l i b r a r y  a n d
c o d e  e le m e n t s

e v e n t
i n f o r m a t i o n

 

Figure 1. 1.  WINS deployment for event detection. 
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WINS have been demonstrated in distributed surveillance applications in many exercises 

with the Department of Defense.  In addition, WINS vibration monitoring sensors have 

been deployed for condition-based measurement applications on a Navy ship.  WINS are 

now being developed for a wide variety of applications. 

   

Figure 1.1 shows WINS nodes (shown as disks) that are distributed at high density in an 

environment to be monitored.  Multi-hop communication permits low power operation of 

dense WINS sensor networks.  WINS node data is transferred over an asymmetric 

wireless link to an end user or to a long-range network service through a WINS network 

gateway.  The WINS gateway manages the network and provides a network protocol 

translation.  SSE library and code information flows to the nodes, while derived events 

and data flow to the remote user. 

 

Recent advances in integrated circuit technology have enabled the construction of far 

more capable yet inexpensive sensors, radios, and processors, which has led to the mass 

production of sophisticated systems that link the physical world to digital data networks.  

Compact geometry and low cost allow WINS to be embedded and distributed at a 

fraction of the cost of conventional wireline sensor and actuator systems.   

  

WINS opportunities depend on the development of a scalable, low-cost, sensor-

networked architecture.  Such applications require delivery of sensor information to the 
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user at a low bit rate through low-power transceivers.  Continuous sensor signal 

processing enables the constant monitoring of events in an environment in which short 

message packets will suffice.  Future applications of distributed embedded processors and 

sensors will require vast numbers of devices.  Conventional methods of sensor 

networking represent an impractical demand on cable installation and network 

bandwidth.  Processing at the source will drastically reduce the financial, computational, 

and management burden on communication system components, networks, and human 

resources.   

  

s e n s o r

A D C

s p e c t r u m
a n a ly z e r

b u f f e r

c o n t r o l w i r e le s s
n e t w o r k
in t e r f a c e

c o n t in u o u s
o p e r a t i o n

l o w  d u t y  c y c l e

 

Figure 1. 2.  WINS architecture with functional modules. 

 

In this dissertation, we limit ourselves to a security application designed to detect and 

identify threats within some geographic region and to report the decisions concerning the 

presence and nature of such threats to a remote observer via threat codes indexed in the 

signal search engine.  The SSE is designed to perform event recognition and signal 

processing at the node itself to minimize the communication and power constraints 

inherent in wireless sensor nodes. 
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Figure 1.2 shows a wireless integrated network sensor (WINS) node architecture that 

includes sensor, data converter, signal processing, and control functions.  Micropower RF 

communication provides bi-directional network access for low bit-rate, short-range 

communication. The micropower components operate continuously for event recognition, 

while the network interface operates at a low duty cycle.  The prototype SSE is resident 

in the node spectrum analyzer.  Future implementations of the SSE may operate as an 

independent coprocessor with signal pre-processing, signal identification, and 

classification modules.   

 

1.2 Signal Classification and Identification 
 
 
The dissertation includes the following contributions.  The results are benchmarked with 

created test signals along with real world signals recorded during field trials.  The 

‘ACIDS’ database provided by the Army Research Laboratory (ARL) is used for 

benchmarking the SSE with real world signals. [92] 

 

1.2.1 SSE Tree Building 
 

The SSE contains a correlator template tree that is vital for classification and 

identification.  Template trees are updated with the introduction of new signals or when 

erroneous decisions or low confidence decisions are present.  Battery power limitations 

require the building of template trees off-line to increase battery life of individual nodes.  

Research done for this dissertation concentrates on the building of a generalized tree 
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structure (generic template tree for all sensors in a cluster) and is performed using the 

‘ACIDS’ database. [92]  This database was obtained (created) in an extensive real world 

data gathering exercise, with real world ‘tracked’ and ‘wheeled’ vehicles.  Correlator 

templates are selected after grouping training signals according to terrain, vehicle type etc 

and then made ready  for template selection.  Efficient, generalized  correlator template 

tree assignments are presented in this dissertation. 

 

1.2.2 SSE Training 
 

The SSE is trained using an existing database depending on applications, needs, and 

signals present in the database.  A well-structured database will enhance the building of a 

proper template tree.   

 

a.  Pre-processing and identification of variables:  Training is initially done for 

investigating signal variables and parameters.  These variables and parameters depend on 

the sensed signals and the class / type of sensors used in sensing.  Identified signal 

variables and parameters are mitigated in signal pre-processing modules.  The 

investigation of signal variables and parameters are signal dependent.  Investigating 

signal variables and parameters are presented in this dissertation for moving vehicle 

waveforms, which tend to have many complex variables in comparison to other signals.  

(i.e.:  Bio-medical signals, stationary signals).  Signal pre-processing modules are 

assigned and customized depending on the variables present.  A state-space 

decomposition is used during pre-processing with individual signal processing operations 
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for each signal that is then fed into the signal classification and identification algorithm 

(SCIA). 

b.  Feature Extraction:  It is during the training phase that distinct signal features for 

classification and identification are obtained.  Individual signal features are extracted and 

used in building a template tree.  These distinct features are then used in building tree 

structures and form the core of the template tree.  Distinct features are selected depending 

on the chosen signals and on the class / type of the considered signal with its associated 

data-gathering phase. 

c.  Probability assignment for correlator templates:  Training is used not only for 

selecting correlator templates to be used in the template tree, but also to assign 

probabilities to each selected correlator in the template tree.  Probabilities are assigned 

depending on post-selection of the template tree, with extensive use of datasets gathered 

in real world scenarios.  The assignment of probabilities is more stable and reliable when 

the training database has a large signal set with most variables present as experienced in 

real world deployment. 

 

1.2.3 Signal Detection and Confidence Measure Assignment 
 

The detection of  signals is separated into classification and  identification.  The Signal 

Classification and Identification Algorithm (SCIA) performs time-domain signal 

classification and identification.  This dissertation concentrates on the proper 

classification and identification of signals using time domain SCIA algorithms.  Proper 

classification and identification depend on the ‘SCIA’ modules that have application 
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specific modules that are based on the gathered signal set.  The time domain SSE 

(inclusive of signal pre-processing modules, and ‘SCIA’) was benchmarked with test 

signals and real world signals.  Based on the successful classification and identification 

results obtained by the use of the SCIA, it is suggested that attempts should be made at 

implementing this algorithm using hardware-software co-design or programmable 

hardware. 

 

1.2.4 Signal State-Space Decomposition 
 
 
Signal pre-processing includes signal decomposition into state-spaces (which is exploited 

for proper classification and identification).  Signal variables are reduced or eliminated 

during state-space decomposition and forms a novel and critical methodology for signal 

classification and identification.  The time domain SSE algorithm has to include signal 

state-space decomposition without which signal classification or identification is not 

possible.  State space assignments not only give more accuracy in classified or identified 

results, but also give more control features and present a modular approach to 

classification and identification.  Various environmental effects on signals are mitigated 

by the use of state-space decomposition that is used as switching modules utilized for 

different sensor types or signal segments. 

1.2.5 Decision Fusion 
 

Decision fusion is an important methodology for collaborative decision-making.  

Distributed and centralized decision-making are possible depending on the WINS design 
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architecture.  The implemented architecture is based on the application and is presented 

in detail in this dissertation.  Decision-making and confidence assignments are performed 

depending on the decision-making criteria.  Decision-making is based on state-space and 

state-class / type.  Modular control of sensed signals is obtained following the decision-

making criteria that are presented extensively for different design architectures.  The 

following methods are derived for WINS decision-making architectures. 

 

Maximum Polling:   A process where polling is done on individual nodes and the highest 

number of polled decisions is taken as the result.  Associated confidence is calculated for 

the result on decisions used to obtain the final decision and their interim individual 

confidences. 

 

Weighted Averaging:  Weighted averaging makes decisions based on a list of decisions 

obtained from each module / decision node.  The list of decisions is used depending on 

the class / type, or state-space.  Decision-making is separated from weighted averaging 

depending on the design architecture.  Associated confidence measures are obtained 

using the confidence calculation criteria detailed in this dissertation. 

 

Lumped Decision:  Lumped decision-making is used to make collaborative decisions, but 

at the cost of modular control.  Lumped decisions are used when the decision-making 

process needs to be simple.  However, losing modularity in lumped decision-making 

makes it difficult to track errors when error tracking is required. 
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System Level Decisions:  When decisions arrive from sensor sub-systems, each 

containing multiple sensors, the decision making criteria is weighted with the number of 

sensors from each cluster / sub-system.  An introduction to system level decision making 

is provided with examples, and should be tested in real world situations. 

 

This dissertation concludes with a comparison and benchmarking of the algorithm with 

created test signals and real world signals giving excellent results for the time-domain 

signal classification / identification algorithm. 
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CHAPTER 2 

 

System Level Description of WINS 
 

2.1 Applications of WINS 
 

Wireless Integrated Networked Sensors (WINS) will enable new applications for 

event detection, condition-based maintenance, manufacturing automation, and 

various environmental and bio-medical applications.  Further, applications of 

intelligent sensing with additions of the latest data-warehousing and data-mining 

techniques aid the evolution of integrated sensor based decision support systems.  

These applications have a fundamental requirement of the need to properly 

classify, identify, catalog, and use data warehousing of sensed signals and 

decisions.  One means to obtain the classification and identification of signals is 

the time domain Signal Search Engine (SSE), which is the core of this 

dissertation. 
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Wireless sensor nodes and systems are energy constrained due to battery power 

limitations. [76]  These limitations restrict processing of SSE modules.  Wireline 

use of SSE enables computationally intensive signal processing modules 

(extended modules attached to the time domain SSE) that may otherwise be 

excluded due to the computational power limitations in a wireless sensor system. 

 

In this chapter, an exploration of wireless communication cost to that of 

transmitting data and decisions for short, medium, and long range is investigated.  

A new application of decision support systems based on the SSE is presented for 

wireline applications.  An introduction to the time domain SSE / M-SSE is 

presented in this chapter with a system level description of the signal pre-

processing, SCIA, and decision making modules of the SSE.  SSE requirements 

of scalability, reconfigurability, and deployability are taken up on the chapters 

that form the basis of the dissertation. 

 

A successful outcome of wireless node sensing is to properly classify and identify 

sensed signals with the given constraints.  Detected signals are then used by the 

end user as information, to support a decision, or to take appropriate counter 

measures or for accumulation of intelligence.  Accurate classification and 

identification is the goal of SSE modules.  Once accurately classified / identified 

the sensed signals need to be sent to the user with low power wireless 

transmission.  It is therefore necessary to look at the detection problem with 
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wireless data communication, since it is found that wireless communication 

dominates the energy budget.  The detection system design must thus cope with 

limits in transmitting data for data fusion, and decision fusion.  Here we explore 

the wireless communication cost of data and battery life to get a quantitative 

analysis of wireless sensor network lifetime and wireless communication issues. 

 

2.2 Path Loss and Fading Issues in RF 
 

Signal transmission between nodes experience many forms of environmental 

interferences similar to what source signals experience during propagation 

through a transmission medium.  Here we look at the case when sensor nodes are 

transmitting (with RF antennas) between each other (for cases of short range 

( ≤ 30m), medium long range (30<D≤ 100m), and long range (100< D ≤ 500m)). 

These scenarios occur when nodes in a cluster transmit among each other (short 

range), or transmit to a centralized node (medium long range), and when a cluster 

head transmits to a base station or remote node (long range) that is located much 

farther away compared to nodes in a local cluster. 

 

Path loss occurs during data communication between a transmitter and receiver, 

where electromagnetic waves go through spreading, as well as energy loss due to 

interaction of electromagnetic waves. [83]  A generalized formula for path loss is 
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given below, with a mean path loss )(dPL , measured in dB, at the transmitter- 

receiver separation distance d.  The mean path loss is conveniently computed with 

respect to a reference distance d0 (which is the free space distance).  For sensor 

node clusters we choose d0 to be 10m, while for transmission to a cluster head d0 

is set to 100m.  The path loss exponent n can be in the range 2 4≤≤ n , with n=2 

for free space, and n=4 for near ground propagation.  Then 

)( )(log**10)()(
0

100 dB
d
dndPLdPL +=   ( 2. 1) 

where )( 0dPL is given by the following formula 

    2

2
0

2)4()0(
λ

π ddPL =     ( 2. 2) 

or in log form expressed as 

    )4(log20)( 0
100

λ
πddPL =       ( 2. 3) 

where λ = 3*108 m/s / f in Hz. 

 

The above formulas present cases of wireless node communication for sensor 

networks.  Having formulated the path loss macro model, let us calculate the 

effects of wireless transmission on communication parameters.  These parameters 

have direct effects on battery life that are critical for battery power constrained 

sensor nodes. 
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2.2.1 Effect of Communication vs. Battery Life 
 
 

Sensor nodes wirelessly communicate decisions based on detected events.  These 

events may occur randomly or routinely depending on sensor network topology 

and implementation locality. [3,54,81]  Threshold detectors are used to determine 

whether an event occurred to trigger the SSE / M-SSE.  When an event is 

classified or detected, communications are required to a cluster-head or a 

centralized node through wireless RF transceivers to alert the user / client.  A 

study of transmission time to battery life would give an idea of how much energy 

is lost with time. [48,82] 

 

Assume the sensor node has the following battery power = 100mA-hour;  

  Conventional transceiver with an operating frequency:   902 – 928 MHz; 

Current drain: 3V, 200mA (Transmission/Receive), 35mA on Receive; 

Available systems: 3V, 1mA peak current;  [66] 

 

 

Calculating the battery life for the above system: 

 Average wireless communication rate: 10 Events / Day; 

 Event length:  32 bits/Event at the rate of 1 Kbits/s; 

 Total transmission time:   0.8 ms/hour; 
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Battery lifetime T to transmit 10 events every Day: 

yearshours
hourmsmA
msmAT 41.15   000,135    

/))(200*8.0(
)(60*60*60*100    ==

−
−

=  ( 2. 4) 

 

Assuming that the battery usage for wireless communication of decisions 

consumes 33% of battery power, it is observed that the battery lifetime would be 

of the range of 4-6 years depending on the deployed scenario.  Above 

calculations, are quite stringent and would in many scenarios average less than 10 

events a day depending on sensor applications and deployment.  Here calculations 

assume sleep mode when transmission does not occur.  The above calculation 

takes in decision transmission only and does not assume data transmission for 

collaborative data fusion.  Therefore, it could be seen that communicating 

decisions only would result in long battery life, compared to transmitting data for 

collaborative data fusion. 

 

2.2.2 Maximum Bandwidth vs. Transmitted Power 
 

In situations when signal data needs to be transmitted to a cluster-head / 

centralized node for data fusion or beamforming purposes, transmission between 

sensor nodes could be optimized for bandwidth with power considerations. 

[6,62,66]  Consider scenarios where distances between the centralized and cluster 
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head nodes are set to be a constant.  These calculations are in an environment with 

the following sensor node specifications: 

     Assuming maximum transmitter receiver separations of: 

     30m (node to node) - short range; single cell; 

   100m (node-to-node) medium long range; single cell; 

   500m (cluster head to base station) – long range; dual cell; 

      Transmitter power consumption: 0.06 W @ 915MHz; 

      Transmitter power consumption: 22 mW to 80 mW @ 915MHz;   [66] 

      Assume a 10dB noise figure and a required SNR of 25 dB. 

      Let us assume unity gain antennas at both ends. 

Assume free space or near-ground propagation. 

  Calculating the Path Loss from equation 2.2: 

  m
f
c

c
3278.0

10*15.9
10*3

8

8

===λ                   ( 2. 5) 

Therefore mean path loss at d0 = 10m and100m respectively are, 

dBdPL md 67.5110*469.1
)3278.0(

)10(*)4()4()( 5
2
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2

2
0

2

100 =====
π
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π

             (2. 6) 

 

dBdPL md 67.7110*469.1
)3278.0(

)100(*)4()4()( 7
2

22

2

2
0

2

1000 =====
π

λ
π

             ( 2. 7) 

 

From Equation 2.1 above, for free space n=2, at d= 30m, 100m, and 500m we 

obtain; 
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dB

dB
d
dnPLPL mdmd
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From the above calculations, it is obtained that path loss for 30m, 100m, and 

500m are 

 

;649.85)(     ;67.71)(     ;21.61)( 50010030 dBPLdBPLdBPL mmm ===  ( 2. 11) 

 

Having obtained the path loss at a distances d=30m, 100m, and 500m we obtain 

the received power during transmission with the following formulae 

  

  dBdBrdBtdBmtdBmr dPLGGPdP ))(()()()()( )( −++=          ( 2. 12 ) 

 

Substituting, )(30mPL =61.21dB, )(100mPL = 71.67 dB, )(500mPL = 85.639 dB, and 

antenna gains of 0dB in equation 2.12 
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  dBmP dBmmr 43.4321.610.00.078.17)( )(30 −=−++=     ( 2. 13 ) 

 

  dBmP dBmmr 89.5367.710.00.078.17)( )(100 −=−++=              ( 2. 14 ) 

 

  dBmP dBmmr 869.67649.850.00.078.17)( )(500 −=−++=   ( 2. 15 ) 

 

 

Figure 2. 1   Received Signal Power vs. Separation Distance for short/medium range. 

 

1Figure 2.1 shows received signal power for separation distances up to 100m.  It is 

assumed that the wireless RF transceiver transmits at a power level of 60mW at a 

                                                 
1 Near Ground Propagation is defined as Shadowed Urban in Plots. 



 20

carrier frequency of 915MHz.  Both complete free space, and near-ground 

propagation environments (with free space reference distances d0=10m) are 

plotted.  Calculation assumes unity gain antennas at the transmitter and receiver. 

 

Assuming that SNR should be 25dB for reliable transmission [66], then the 

maximum noise power is required to be 

dBdBmr SNRdPN −= )()(     ( 2. 16 ) 

 

dBSNRPN dBdBmmrm 43.682543.43)( )(3030 −=−−=−=   ( 2. 17 ) 

 

dBSNRPN dBdBmmrm 89.782589.53)( )(100100 −=−−=−=   ( 2. 18 ) 

 

dBSNRPN dBdBmmrm 869.9225869.67)( )(500500 −=−−=−=   ( 2. 19 ) 

If only thermal noise is considered, noise power N is given by [83] 

    BFKTN dBm 0)( =     ( 2. 20) 

or 

  )(10log10)(174)( dBFBdBmdBmN ++−=    ( 2. 21) 

 

where K = 1.38*10-23 J/K is Boltzmann’s constant, and T0 = 290 K the standard 

temperature.  B is receiver bandwidth in Hz, while the noise figure of the receiver 

in dB is given by F. 

 

Using equation 2.21, we obtain the following 
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  N30m  = -174dBm + 10log10B + 10   =  - 68.43 dBm  ( 2. 22) 

 

  N100m=  -174dBm + 10log10B + 10  =  - 78.89 dBm  ( 2. 23) 

 

  N500m = -174dBm + 10log10B + 10  =  - 92.869 dBm ( 2. 24) 

 

Solving for B we have maximum bandwidth, 

     B30m =  3.605 GHz;   ( 2. 25) 

 

    B100m = 324.34MHz;   ( 2. 26) 

 

    B500m = 12.975MHz;   ( 2. 27) 

 

Repeating the above calculations for the case below, we find the following:  

 

From Equation 2.1 above, for free space n=4, at d= 30m, 100m, and 500m 

respectively; 

dBdB
d
dnPLPL mdm 754.70)

10
30(log*4*1067.51)( )(log**10)()( 10

0
1010030 =+=+= =

          ( 2. 28 ) 

dBdB
d
dnPLPL mdm 67.91)

10
100(log*4*1067.51)( )(log**10)()( 10

0
10100100 =+=+= =

          ( 2. 29 ) 

dBdB
d
dnPLPL mdm 628.99)

100
500(log*4*1067.71)( )(log**10)()( 10

0
101000500 =+=+= =

          ( 2. 30) 
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Substituting, )( 30mdPL = = 70.754dB, )( 100mdPL = = 91.67dB, )( 500mdPL = = 

99.628dB, with antenna gains of 0dB in equation 2.12, 

 dBmP dBmmdr 974.52754.700.00.078.17)( )(30 −=−++==   ( 2. 31) 

 

dBmP dBmmdr 89.7367.910.00.078.17)( )(100 −=−++==   ( 2. 32) 

 

dBmP dBmmdr 848.81628.990.00.078.17)( )(500 −=−++==   ( 2. 33) 

 

 

Figure 2. 2 Received Signal Power vs Distance for long range. 

 



 23

Figure 2.2 shows received signal power for separation distances up to 500m used 

for transmission from cluster heads to a remote centralized node or client.  It is 

assumed that the wireless RF transceiver transmits at a power level of 60mW but 

could be adjusted to a higher power level to increase received noise power.  The 

carrier frequency of 915MHz is used for complete free space, and near ground 

propagation environments (with free space reference distances d0=100m).  The 

calculation assumes unity gain antennas at the transmitter and receiver. 

 

Assuming that SNR should be 25dB, then the maximum noise power is required 

to be 

 dBSNRPN dBdBmmdrm 974.7725974.52)( )(3030 −=−−=−= =  ( 2. 34 ) 

 

 dBSNRPN dBdBmmdrm 89.982589.73)( )(100100 −=−−=−= =   ( 2. 35 ) 

 

dBSNRPN dBdBmmdrm 848.10625848.81)( )(500500 −=−−=−= =  ( 2. 36 ) 

 

From equation 2.21, we obtain the following 

  N30m  = -174dBm + 10log10B + 10 = -77.974 dBm  ( 2. 37 ) 

  

  N100m = -174dBm + 10log10B + 10 = -98.89 dBm  ( 2. 38 ) 

 

N500m = -174dBm + 10log10B + 10 = -106.848 dBm  ( 2. 39 ) 

 

Solving for B we have maximum bandwidth, 
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   B10m = 400.497MHz;  ( 2. 40 ) 

 

   B100m = 3.243MHz;  ( 2. 41 ) 

 

   B500m = 519.039 KHz;  ( 2. 42 ) 

 

Figures 2.3 – 2.6 display bandwidth / transmitted power relationships for different 

values of d0.  The figures indicated that for most sensor network applications of 

interest, transmission rate would not be the limiting factor; rather it will be the  

 
 
  

 

              Figure 2. 3     Maximum Receiver Bandwidth vs Transmitted Power. 
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energy to sustain transmissions.  However, as will be seen in the next section, a 

more sophisticated propagation model indicates substantially greater difficulties 

for wireless communication. 

 

 

 

 

        Figure 2. 4    Maximum Separation Distance vs. Transmitted Power (Free Space 10m). 
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Figure 2. 5    Maximum Receiver Bandwidth vs Transmitted Power (Free Space = 100m) 
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Figure 2. 6    Maximum Separation Distance vs. Transmitted Power (Free Space of 100m). 

 

 

The calculations above yield a good approximation of wireless bandwidth in free 

space (n=2), and for near-ground propagations (n=4), absent large obstructions.   

Thus, when wireless communication cost intensive data fusion methods are used 

the above criteria determine communication bandwidth limitations.  Sensor 

networks implemented for ground to ground links will for example obtain 1/25th 

the data rate compared to transmission during elevated links at 500m range to 

obtain same error rates. 
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2.3 Propagation Models - Fading Effects on RF Signals 
from Sensor Nodes 
 

Two types of fading effects are considered for analysis in this section.  The two 

methods are common in outdoor wireless sensor environments.  Indoor wireless 

environments do go through similar environmental effects and have different 

propagation constants associated with the propagation formula. 

 

Environmental effects such as multi-path fading, shadowing, and fast fading 

affect sensed  wave (i.e. acoustic signal) propagation, in  addition to transmitted 

signals from RF transceivers on nodes.  Additionally other environmental effects 

could be added and incorporated into fading channel models to attain accurate 

theoretical calculations.  The sections below give a detailed outlook of fading 

channel models used in sensor networks. [26] 

 

- Shadowing (Slow Fading) 

 Path loss models incorporate the following random variable as the 

shadowing component.  The shadowing component is a zero-mean Gaussian 

random variable with a standard deviation of σL – representing the location 

variability.  σL varies with environmental effects, along with antenna heights, and 

frequency of transmission.  The probability density function (PDF) of the 

shadowing component LS is often modeled by the following: 
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The above variable is used to obtain sensor propagation calculations and graphs 

while comparing relative costs associated with transmission in slow fading 

environments.   

 

- Rayleigh Fading (Fast Fading):  Rayleigh fading is the common fading 

component for narrow band RF signals used to model fast signal variation 

due to scattering, diffraction, and refraction.  Here the signal varies rapidly 

compared to path-loss, and shadowing with respect to time.  Fast fading is 

often modeled in sensor networks with a Rayleigh distribution with initial 

conditions measured from node tests and real world measurements.  The 

probability distribution function (PDF) of the signal amplitude is  

 

2

2

2
2)( σ

σ

r

errp
−

 =   ( 2. 44 ) 

 

where σ is the standard deviation of the narrow band signal.  The above 

model is used in obtaining energy data for transmission in a NLOS (non-

line of sight) sensor network environment. 
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- Rician Fading(Fast Fading) 

In LOS (line of sight) situations, where sensor nodes are in direct line of 

sight, the amplitude from the LOS dominates the power and is modeled by 

the Rician distribution given below: 

   )()( 20
)

2
(

2
2

22

σσ
σ rsIerrp

sr +
−

=   ( 2. 45 ) 

 

where s is the direct path gain and I0 is the modified Bessel function of the 

first kind.  The above model is used for proper estimation and calculation 

of the data payloads in sensor networks and is shown below. 

 

With Different Modulation Schemes: 

Sensor data is transmitted between sensor nodes using simple modulation 

schemes in sensor networks. [80]  The following BPSK scheme is utilized for 

determining energy calculations for wireless transmission.  A general BPSK 

modulation scheme is represented by 

    )()()( 2211 tfStfStS mmm +=   ( 2. 46 ) 

 

where 21, mm SS are finite energy waveforms, with )(( 2),1 tftf  given as unit energy 

signal waveforms represented by 
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=
  ( 2. 47 ) 

 

where cf  is the carrier frequency of the signal.  Using the above BPSK signal 

representation we obtain the following graphs shown in Figure 2.7 and 2.8 for 

propagation energy measurements. 

 

2.3.1 Communication Energy vs. Range: 
 

Sensor node wireless transmission costs were calculated for various sensor nodes           

placements along with obtaining energy requirements for communication.  Here a  

communication energy vs. range calculation to transmit wirelessly a 1 Kb  

data payload in conventional free-space systems with a 1/R2 propagation constant 

is presented.  We present this case for the above-mentioned BPSK transmission 

with a required bit error rate (BER) of 10-6. 

 

The same calculations were done for sensor networks for surface-to-surface 

transmission in both Gaussian, and Rayleigh channels with 1/R4 propagation.  

Energy required for 1Kb data payload with a BPSK transmission and a bit error 

rate of 10-6 is shown in Figures 2.7 and 2.8.  The corresponding energy to transmit 

a distance of 100m in Rayleigh, and Gaussian channels are 3 Joules and 0.5mJ 

respectively.  It is observed that the energy required to transmit increases steeply 
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with distance and is observed to be exceeding the low power limitations of sensor 

nodes after a 100 m range. [79] 

 

 

   Figure 2. 7  Energy Consumption vs. Transmitted Distance (Channel Dependent 1/r2). 

 

Thus the prospects of both fading and ground propagation losses limit the range 

and bandwidth available in low power communications.  This reinforces the need 

for in-network processing to reduce the number of instances of long-range 

communications. 



 33

 

Figure 2. 8  Energy Consumption vs. Transmitted Distance (Channel Dependent 1/r4). 

 

 

2.4 Data Warehousing and Decision Support Systems 
 

SSE applications include decision support systems and intelligent tracking with 

pervasive computing. [89,94,95]  An initial well structured database would enable 

in decision support systems where any new signal that arrives at the sensor node 

would be identified and classified and use a look-up table or a codebook built 
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from past signals enabling decision support.  The method of data warehousing and 

decision support systems is explained below with a macro level diagram used 

with intelligent sensor systems. 

 

WINS defense applications include battlefield situational awareness for security 

and tactical advantage and many other intelligent information applications. [8]  

These features in WINS require large amounts of information (data) to be 

acquired, indexed, stored, retrieved, and used to classify potential targets.  A 

methodical and structured way of storing the acquired data (data warehousing) 

and an intelligent method of analyzing patterns (data mining) are looked at from a  

 

 

        Figure 2. 9     SSE usage in a Decision Support and Data Mining WINS application. 
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system level perspective [53] for the application of vehicle event detection and 

transportation monitoring.  Figure 2.9 shows an application of SSE where WINS 

nodes (shown as disks) are distributed at high density in an environment to be 

monitored.  WINS node data is transferred over the asymmetric wireless link to an 

end user or to a conventional wire-line or wireless network service through a 

WINS network Gateway.  The WINS signal search engine (SSE) library and code 

information flows to the nodes, while derived events and data flow to the remote 

user.  The signal database is at the remote user end, which stores, retrieves and 

gives intelligence information to signals and decision support systems.  Various 

application specific data warehousing and data mining systems [43,96] help in 

providing information to the WINS Gateway while interacting with each other. 

      

2.4.1 Vehicle Monitoring Applications and Database Integration 
 
Vehicle monitoring has been studied in detail from traffic monitoring on 

highways to detecting threat vehicles around sensitive locations and institutions.  

Whatever the application of vehicle monitoring is, the information obtained by the 

sensors (WINS) look similar in the attributes they inherit. [27]  Sensor nodes 

monitoring an institution may be randomly placed in the locality of the building.  

The location of the sensor becomes important, especially for locating the data 

source and further for signal processing of obtained data.  Date and time of sensor 

installments would be critical information when it comes to finding the lifetime of 
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the battery.  Therefore a sensor deployment information source (S_DIS) becomes 

necessary. 

 

Sensors themselves have useful information without any vehicles present.  Some 

sensor-inherent specification parameters would help a great deal in giving 

meaning to the acquired data.  Different types of sensors, distinguishable by 

product identification (PID which has SN1, SN2, SN3, SN4, SN5,….), have 

different values for parameters such as gain, battery life and detection range to 

name a few.  These parameters would be encapsulated in the sensor product 

identification information source (S_PID).  

 

The data warehouse should also contain information on events that have been 

recorded earlier so that a user query of past history or a decision support query 

could be explored and validated.  Therefore an event history information source 

(PEH) will contain an event (i.e.:  bicycle rider, animal in surroundings, helicopter 

present …) and additional information as time, date, speed and, location or sensor 

ID. 

 

Further, an event classifier information source (EC) is needed for real-time 

autonomous event/threat detection or classification.  Here, selected classifier tree-

structures (i.e. ‘templates’ in template matching classification) could be included 

with associated confidence or other classifier method parameters.  Therefore, 
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WINS needs an easy and efficient access to integrated information from multiple, 

heterogeneous, semi-autonomous, distributed information sources.  This 

integrated information can be extracted from independent information sources and 

integrated to form a data warehouse.  Significant use of WINS nodes in defense 

and consumer applications has made it a necessity to form a constructive and 

meaningful warehouse DBMS,  primarily for decision support systems (DSS) and 

data mining for discovering patterns of behavior. 

 

warehousing.  One such application specific function is mining a ‘training’ data 

set of signal waveforms and associated data for ‘learning’ and classification 

purposes.  In that case ‘learning’ specific extraction constraints are used whereby 

the S_PID information source could be completely omitted during the extraction 

process. 

   

 

2.4.2 PHierarchy Specifications found in WINS Data 

 

If the vehicle monitoring case of the WINS application is taken into 

consideration, hierarchy specification becomes essential considering the varie  

 

      Figure 2. 10     WINS Data warehousing for SSE based Decision Support Systems. 
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A system level specification diagram on Figure 2.10 shows the WINS data 

warehouse model.  The extractor and integrator play a major role in that all data in  

the data warehouse is first extracted with detection requirements or constraints, 

and then formatted to fit the warehouse model and attributes.  Unwanted or 

useless data is deleted during the extraction process and thus does not reside in the 

warehouse.  Extraction of data from information sources can be further 

constrained by application specific extraction and application specific 

warehousing.  One such application specific function is mining a ‘training’ data 

set of signal waveforms and associated data for ‘learning’ and classification 

purposes.  In that case ‘learning’ specific extraction constraints are used whereby 

the S_PID information source could be completely omitted during the extraction 

process. 

 

2.4.2 Hierarchy Specifications Found in WINS Data 

 

If the vehicle monitoring case of the WINS application is taken into 

consideration, hierarchy specification becomes essential considering the variety 

and amount of information contained in the data warehouse. [27]  Hierarchy 

specification and groupings further enhance data mining tasks by providing a 

structured knowledge base for the query at hand.  It also helps in cutting down 

run-time, and unwanted tree - parsing when tree structures are present.  Further, 
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these specifications help  in rule-based querying  and  finding optimality for data 

mining tasks. 

 

Schema Hierarchy : S_DIS installment date and time would come under schema 

hierarchy either individually or as a combination for an application specific task.  

Use of individual or combined date and time measures depend on the mining task 

and relaxation constraints.  A mining task which asks for an event data history 

would require both date and time in individual forms.  However, a relaxed mining 

task, which requires hour and date of installation, to study installation 

performance of a worker or installing vendor, would like to have combined data 

(some parameters in each date and time variables).  Thus, the schema hierarchy 

would look like the following macro design:   

 

Define hierarchy date_hierarchy on date as     

  [date, month, quarter, year]                    (individual) 

Define hierarchy time_hierarchy on time as     

  [sec, minute, hour]                                    (individual) 

Define hierarchy date_time_hierarchy on date_time as    

  [hour, date, month, year]                (combined) 
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Set-grouping Hierarchy : A data mining task for a traffic monitoring system 

using WINS would require speed clustering to derive knowledge out of raw data. 

The knowledge derived from this data could be used to study and monitor high-

speed areas and detect traffic congestions and jams and even report in real time 

over the internet to possible travelers about traffic conditions.  The PEH 

information source would then be built with a set grouping of speeds of vehicles.  

A level hierarchy of speed groupings is given below. 

 

 

 

Define hierarchy speed_hierarchy for speed on vehicle as: 

  

 Level 1: {very slow, slow, average, fast, over-limit}  < level 0: all 

 

  Level 2: {0,…,15}   < level 1:      very slow 

Level 2: {16,…,30} < level 1:      slow 

Level 2: {31,…,45} < level 1:      average 

Level 2: {46,…,70} < level 1:      fast 

Level 2:     {>70}     < level 1:      over-limit 
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Figure 2. 11 An example of set grouping of speeds with WINS data. 

 

The groupings and eventual tree structure would not only enhance a specific data 

mining task but also would help to form rules for rule induction purposes.  Further 

statistical measures could be attached to the groupings and would give a better 

structure in acquiring knowledge through a direct user query.  The knowledge 

bases would enhance the system intelligence and could be used for real-time 

monitoring of traffic and other data. 

 

Operation Derived Hierarchy:  Data mining also benefits from operation 

derived hierarchies namely categorizing sensor gains into a specified number of 

clusters.   
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Define hierarchy gain_hierarchy for gain on sensor as 

{gain_category(1),…, gain_category(10)}  

:= cluster (default, gain, 10) < all(gain) 

This definition will categorize the sensor gains into ten different clusters whereby 

a user query would be optimized when a specific gain lookup is on for sensors.  

This would reduce run-time significantly since product_IDs would be given for a 

specific gain category with a short run-time in this instantaneous query and 

solution process. 

Rule based Hierarchy:  Mining tasks can also benefit from rule based 

hierarchies.  A person trying to find sensor installation priorities for different 

locations from a preliminary data source would want to prioritize the procedure.  

This would mean a location with high occurrence of over speeding would fall into 

the highest priority cluster.  A rule hierarchy, which would enhance this 

procedure, is given below.   

Define hierarchy priority_hierarchy on location as 

Level_1: high_priority < level_0: all 

  If ( speed > 70 && #occurrences > 20) 

Level_1: medium_priority < level_0: all 

  If ( speed > 70 && ( 8 <=  #occurrences <= 20) 

Level_1: low_priority < level_0: all 

  If ( speed > 70 && ( #occurrences < 8 ) 
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This priority hierarchy rule would cluster the locations into high, medium and low 

priorities from which the user can determine which location has sensor 

installation priority. 

   

In addition to having hierarchies, they could have confidence measures, and 

relaxation constraints attached to them.   A user thereby could  either tighten or 

loosen the relaxation constraints depending on the data mining task.  In addition, 

confidence measures could give more knowledge as to how good or vague the 

results are for that particular mining task.  Data mining could also be more user 

driven by interactive multilevel mining whereby in each level the user could use 

any of the hierarchical types mentioned above which would enhance performance 

of the mining task at each level. 

 

2.4.3 Data Mining the WINS Data Warehouse to Extract a 

Training Set 

 

One of the main functions of the WINS system is to identify and classify events 

autonomously.  This would require a training data set for learning purposes from 

the existing data warehouse that would be extracted by data mining.  The training 

set would not only have attributes and information existent in a typical 
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information gathering node, but would also contain previously known data or 

information that would not be present on a real-time implemented WINS system.   

 

A look at the vehicle monitoring WINS system would reveal particular 

information present on a training set and not in a typical system.  The defense 

community would like to track vehicular movements to characterize them (e.g. as 

threat or not).  Weight, wheel type, and speeds help to characterize the event.  

Therefore, data generalization and attribute removal from an existing database 

helps to build a training set.  The information of a vehicle weight could be 

obtained from parsing a training set information source, by trying to define the 

vehicle weight category as Heavy or Light from the vehicle_ID attribute.  A 

threshold of tw (weight threshold) could be given a value for a particular 

application and could be characterized as  

 

Heavy Vehicle  :=  When Vehicle_ID  weight  > Wt 

Light Vehicle    :=  When Vehicle_ID  weight < Wt 

 

 

 

 

Additionally, a vehicle base structure would be important to have since it is 

known that vehicles with wheels give a different waveform than those with chain 

Wt = 5 tons for the example given below on Tables 2.1 & 2.2 
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tracks in the nature of the seismic and acoustic waves produced by moving 

sources.  This signal processing knowledge would be used to classify whether a 

vehicle is wheeled or tracked.  Further, signal waveforms are terrain dependent.  

Therefore, terrain knowledge is important since the detection process is 

environment dependent.  Terrain knowledge could be mined by mapping the 

sensor location to the terrain. (i.e:  desert, arctic, normal, hilly etc…)  

 

A blind learning algorithm would not need the exact vehicle but would have a 

vehicle Id which could be named as  

 

M-55      :    Heavy  :  Tracked    HT1 

M-56      :    Heavy   :  Tracked   HT2 

T – 9       :   Light     :  Wheeled   HW1 

Tata – 12 :   Light    :  Wheeled  LW1 

Isuzu – 6 :   Light    :  Wheeled   LW2 

 

Table 2. 1 Generalized WINS Data Set 

 
 

Here the generalization has been done having prior knowledge of the behavior of 

the waveforms from signal processing.  Thus, these generalizations and attribute  
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Table 2. 2    Derived relations with generalization of WINS data set. 

 

induction helped in clustering data into classes that would now be used as a 

training set for autonomous identification and classification purposes.  Tables 2.1 

and 2.2 shows the derived relations with generalization and attribute removal for a 

WINS vehicle monitoring ‘training’ data set.  Note that this table has only 4 fields 

compared to more fields as observed in the original data set.   

 

Vehicle 

Type 

Speed Location Data  

File 

Name 

HT1 Slow Desert df2033.dat

HT2 Slow Desert df2045.dat

HT1 Slow Desert df2022.dat

HW1 Slow Normal df3003.dat

HW2 Slow Normal df2526.dat

LW1 Fast Normal df0034.dat

LW2 Fast Normal df0035.dat

LW3 Fast Normal df0036.dat

: : : : 
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The previous table gives an example of vehicle characterization for a training 

dataset obtained by mining the WINS data warehouse.  The use of expert 

knowledge of signal processing and military intelligence was needed in arriving at 

this generalized, attribute removed data set.  Similar procedures could be used to 

derive application specific data sets for learning task specific data sets. 

 

2.5 Decision Support System Overview 

 

Necessary precautions, constraints and planning needs to be specified before 

building a data warehouse for application specific systems. [38]  Data mining of 

the built data warehouse would require expert knowledge and user inputs in 

extracting the data needed to apply in specific applications for learning and 

classification purposes.  Here the WINS data warehouse and WINS data mining 

techniques were discussed at arriving at a training data set for classification and 

identification purposes.  This derived data set is presently used in many academic 

institutions and defense research labs to study vehicle monitoring and intelligent 

information gathering.  Though the WINS technology is not fully developed yet, 

the mentioned system level specifications would build the core of the WINS data 

warehouse and decision support systems.    
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2.6 Distributed vs. Centralized Signal Processing /  
Collaborative Decision Making 

 

Sensor systems that collaborate with data and decisions give superior results in 

noisy conditions and abnormal situations.  A distributed decision making 

architecture is hence explored for collaborative decision making on different 

architectures related to sensed signal processed decisions. [8,12]  Benchmarking 

of the accuracy levels are done with that of the MUSIC and Pisarenko parametric 

methods and wavelet method.  Results indicate that collaborative decision-making 

enhances decision accuracy especially during abnormal environmental and noisy 

conditions.      

 

2.7 Signal Classification / Identification Architectures 

 

Many detection schemes have been researched in the area of classifying and 

identifying moving vehicle signatures.  Neural networks, deconvolution and 

source separation, and wavelet methods are a few of the promising methods. 

[63,70,100]  The time domain signal search engine approach has been to classify 

and identify moving sources with the end goal being the same as those of the 

above mentioned methods concentrating more on low power signal processing. 
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Moving source waveforms were studied with wavelet methods and is used to 

benchmark the time domain SCIA with real world signals using the ‘ACIDS’ 

database. [92] 

 

2.8 System Level Architectural Algorithm Description   

 

We now give an overview of the classification / identification approach to be 

explained in detail in subsequent chapters.  Wireless sensor networks require a 

robust SSE that can accommodate numerous consumer, and client/user 

applications.  Classification / identification of moving sources, traffic monitoring, 

intruder detection along perimeters of buildings and other similar consumer 

applications with WINS require robust signal pre-processing or conditioning 

based on application needs.  Signal pre-processing  or conditioning is included in 

the SSE architecture, and is a vital module that is application specific.  The 

following diagram gives a system level architecture of the WINS SSE.  The 

system is divided into a multitude of system and sub-system blocks or modules, 

each with a specific function and algorithm as explained in the SSE system 

architecture block level description below.  The division of sub-systems reduces 

the number of signal variables while achieving low power signal processing.  This 

approach also enhances accuracy levels while providing modularity for decision 

making methods. 
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          Figure 2. 12  M-SSE system level blocks and modules. 

 

A system level diagram of an M-SSE for multi-sensing nodes is given in Figure 

2.12.  Multi-sensing nodes provide acoustic, seismic, and infrared signal 

waveforms.  A micropower event detector awakens the preprocessors, which 

segments and feeds signals containing unique features while discarding low SNR 

and featureless waveforms.  The preprocessing block is critical in that it 

minimizes the computational power of the classifier / identifier block.  

Preprocessed signals enter each of its classifier / identifier block for classification 

(generalization) and identification (specialization).  The independent classifier 

trees are built with the help of training data sets in TAH and super-TAH structure.  
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Separately classified events are then combined (fused) with their relative 

confidence.  Combining classification results are done by previously chosen 

decision making methods.  The methods effectively incorporate individual type 

based or segmentation based result fusion.  Output is then sent to the user with a 

fused confidence measure. 

 

2.9 Signal Search Engine 
 

The signal search engine performs intelligent processing of sensed signal 

waveforms to detect a threat or an event. [65, 85]  An event is then classified and / 

or identified using the time domain algorithm embedded on WINS nodes.  This 

mode of local processing at the node drastically reduces the power required for 

wireless transmission of complete time series data sets.  However, this 

architecture places demands on the capability of local, low power signal 

processing and event detection and identification.  Independent processing 

relieves networking complexities and enhances scalability by limiting 

communication requirements. 

 

A system design of the  Multi-signal search  engine (M-SSE) is given in Figure 

2.12.  It incorporates multiple signal types in the form of acoustic, seismic, and 

infrared waveforms obtained from multi-sensing nodes.  The M-SSE is more 

robust compared to the single signal search engine (S-SSE) in that a choice could 
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be made to include or exclude any signal type depending on signal to noise ratio 

(SNR) and environmental conditions.  An initial implementation of the M-SSE 

uses independent classifier tree structures for different types of signal waveforms. 

Therefore, the tree structure built for classification and identification is 

independent in that each signal type traverses its unique tree structure.  Once the 

results are obtained, a confidence measure is given for each type of signal and 

combined by weighted averaging to output the event. 

 

2.10 Dynamic System and Reconfigurability 
 

The SSE architecture employs a signal correlation engine that operates on 

incoming, unidentified input signals with a library of stored signal waveform 

templates (referred to as "correlators"). [85]  Template selection is completed by 

extracting distinct features from previously acquired data.  Once the template 

correlator library is formed it is arranged in blocks or trees to group similar event 

classes together.  A hierarchical type abstraction hierarchy (TAH) is considered in 

building this tree structure.  This preparation may be completed prior to 

deployment of the wireless sensor node or remotely uploaded after deployment.  

With this done, the SSE and the sensor node are ready for real-time classification 

and identification. 
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For any distributed signal processing system, it is required that the system be 

modified whenever new events, previously unknown, occur.  For the SSE, this 

modification is conveniently accomplished through template additions.  Apart 

from new events occurring, users of the SSE may want to classify previously 

indexed events with new classification algorithms.  Further, new indexing 

schemes may be needed depending on environmental changes in the localities of 

WINS nodes.  When new events occur or templates are added, the tree structure is 

rearranged in the critical node or rebuilt altogether on off-node computing 

platforms.  These examples introduce the importance of the dynamic system 

specification needed for the SSE.         

 

The SSE classification algorithm therefore could be implemented on application 

specific processors or on field programmable gate array (FPGA) modules. [36]  

Dynamic programmability features existent in these modules makes them the best 

choice for sensor nodes.  

 

2.11 Multi-Signal Search Engine (M-SSE) 

Multi-signal search engine concept was taken since there is a need to make 

decisions based on the various types of sensing present in integrated sensors.  

Collaborative decisions obtained from multi-type sensors enhance accuracy levels 

of the sensed signals while giving control of the obtained decisions.  Modular 

control is obtained during decision fusion within a sensor or at the cluster-head.  
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Various control features inherent in decision fusion architectures are shown in 

Chapter 3 of this dissertation. 

 

An implementation of M-SSE with acoustic and seismic signals gave better 

accuracy levels compared to the S-SSE (Single-Signal Search Engine).  Signals 

that had saturated, or unidentifiable / unclassifiable signal segments (state-spaces) 

attained further robustness.  This was achieved by replacing unworthy state-

spaces with that of the different type state-space.  Environment and circuit issues 

were overcome with the M-SSE that is robust to variations of signal parameters, 

while giving results that are more accurate. 

 

2.12 Multi-Signal Detection and Signal Evolution 
 

The application of the SSE to multiple sensor data streams or to the time 

evolution of sensor signals offers the possibility of enhanced identification 

accuracy.  With continued success for SSE identification with signal classification 

and identification the SSE has expanded into multisensor signal analysis.   

 

Evaluation of SSE operation has also demonstrated the ability for the SSE to 

resolve signal evolution.  Signal evolution behavior has been examined 

experimentally for seismic and acoustic vehicle data sets.  Examination of the 

time series waveforms for vehicle motion reveals that these waveforms evolve 
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during the periods when a moving vehicle is approaching the sensor system, 

during the period of closest approach (CPA), and during the departure phase.   

 

The SSE system was applied to the identification of vehicle seismic and acoustic 

signal waveforms for signals obtained during these periods.  It is a goal that these 

data sets would be combined to provide enhanced measurement and signal 

identification opportunities for vehicle signals.  As a first step, segments of the 

approach, CPA, and departure phase of the vehicle were considered to form a 

super TAH similar to the longitude and latitude combination used on COBASE 

implementation. [27]  A combination of these segments not only gave enhanced 

performance but also excluded the constraint that all three segments need to be 

extracted for classification.  An example scenario would be when a vehicle stops 

before passing the sensor whereby not giving the departure segment or a vehicle 

begins moving after a stop near to the sensor whereby not giving the approach 

segment.  The use of super TAHs effectively reduced constraints to having at least 

one segment rather than the need to have all signal segments for classification / 

identification with the SSE. 

 

2.13 SSE Implementation 
 

The SSE correlator template operates as a matched FIR digital filter.  The 

complete correlator library forms a complete filter bank. [67, 68]  Correlators are 
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short data time series segments extracted directly from field data.  The SSE 

operates on unknown signals by forming an inner product between each data point 

of a correlator and the data set (or properly sub-sampled versions) for each 

correlator in the correlator library.  By translating the correlator along the 

unknown signal time series, a new waveform is generated.  The RMS value of this 

waveform, computed over a window, can be treated as a scoring value.  The 

application of a  family of correlators to the unknown  data set provides a scoring 

spectrum and permits classification or identification.  Due to the limitations or 

lack of models for the generation and propagation of seismic and acoustic signal 

sources, the SSE is developed to rely on actual data acquired in the field for its 

identification codebook.  The SSE development is directed to exploiting the 

variability of terrain and condition to identify a signal source as well as its 

operating location.  With information on operating location present, effective 

beamforming techniques could be applied for fusion of data between closely 

located sensor arrays therefore enhancing the SNR of the unknown signal 

waveforms.[22] 

 
 
 

2.14 Summary 
 

This chapter analyzed data and decision communication costs to that of battery 

life and other communications criteria as bandwidth, and distance for low power 
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operation and longevity of the wireless sensor system.  The tradeoff of 

communication vs. computation is essential for battery power constrained 

wireless sensor nodes.  Battery power determines sensor lifetime and is crucial for 

microsensors that are remotely deployed, due to re-deployment problems.  The 

basis for the time domain SSE was set with an analysis of competing 

classification and detection schemes.  An application of WINS classification and 

identification was explained for decision support systems with the use of data 

warehousing and traffic monitoring. 

 

The SSE concept was formulated with the system diagram for triggering, 

classification and identification, and decision support for WINS systems.  The 

need for M-SSE was explained in detail with an emphasis on multi-sensing 

sensors.  SSE implementation was discussed with a system level description of 

the blocks present for identification and classification.  These explanations form 

the basis for this dissertation in the form of the time domain signal search engine  

( SSE ).   
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CHAPTER 3 

 

Distributed vs. Centralized 

Signal Processing and Decision Making 
 

3.1 SSE Background 
The Signal Search Engine (SSE) is implemented to accommodate either distributed or 

centralized signal processing and decision-making depending on application needs 

[2,33,34,59,64,101,102].  A thorough system architecture study and description enable 

optimal implementation of SSE (Signal Search Engine) or M-SSE (Multi-Signal Search 

Engine) for distributed and centralized signal processing and decision-making.  In this 

chapter, different system architectures for signal processing, and decision-making are 

considered.  Signal processing is divided into two modules: 

1. Signal Pre-Processing:  Signal conditioning as required for SCIA. 

2. Signal Classification / Identification Algorithm (SCIA):  Time domain 

algorithm for Classification / Identification. 

Each module has its own variant depending on the selected SSE / M-SSE architecture. 
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The decision-making architecture follows the SCIA architecture [47], also separated into 

two modules: 

1. Decision Methods:  Maximum Polling, Weighted Averaging. 

2. Statistical Confidence Measure:  Assignment is dependent on the 

weighting scheme and decision making architecture. 

 

This chapter begins with a description of different application specific robust 

implementation requirements, and compares the computational power for distributed vs. 

centralized signal processing for SSE / M-SSE. 

 

3.2 Distributed (Localized) vs. Centralized Signal 
Processing for SSE 

 

Signal processing for SSE and M-SSE is separated into two modules.  Initially acquired 

signals go through a signal pre-processing step, where various signal-conditioning 

operations are performed in order for the raw signal to be in an acceptable form for the 

SSE / M-SSE’s SCIA module.  Signal pre-processing is an extremely critical functional 

module of SSE that strongly influences accuracy and optimizes the SCIA algorithm, 

while reducing signal parameter variability in the acquired signals.  Hence, the signal pre-

processing module is vital, enabling the SSE algorithm to be applicable to wideband 

signals.  Figure 3.1 below shows a system level view of SSE relative to the RF 

transceiver of the sensing node.  Received signals go through analog and digital 
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processing after which the SSE follows.  The SSE module is separated into signal pre-

processing / conditioning module and SCIA and decision making modules.  Once signal 

pre-processing is complete, segmented signals are input to the SSE’s SCIA module.   

 

 

 

 

 

 

 

 

 

 

 

 

The SCIA module contains a pre-assigned template tree with associated confidence on 

each leaf that is obtained by the process of template tree building using a training set. The 

SCIA module is independent of the pre-processing module and therefore could be 

architecturally separate. 

 

In Figure 3.2 the signal processing architecture shows both the signal pre-processing and 

SCIA resident in local nodes within each cluster.  Signals sensed at individual nodes go 
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Figure 3. 1. System diagram of SSE relative to sensor node transceiver. 
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through signal pre-processing and signal classification / identification modules using a 

localized signal processing architecture.  Once classified or identified, decisions are 

transmitted wirelessly to a local cluster head that does collaborative decision making 

based on information received from local nodes.  The above architecture is preferred due 

to its low communication cost, scalability, and ease of reconfigurability. 

 

 

Figure 3. 2.  Distributed local signal processing and SCIA for WINS. 
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Figure 3.3 below shows the signal processing architecture with localized signal pre-

processing and local cluster head based SCIA.  Distributed local nodes within each 

cluster sense and perform signal conditioning / pre-processing operations.  Signal pre-

processing is application specific and performs functions of sample down conversions, 

filtering, signal variable reductions, and state space decomposition.  Selected signal 

segments are then wirelessly transmitted to a local cluster head for signal classification 

and identification.  Cluster head based SCIA is used when data fusion 

 

 

Figure 3. 3. Localized signal pre-processing and localized / centralized SCIA for WINS. 
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algorithms (i.e. beamforming or array processing) are incorporated for location finding or 

source tracking. [22]  Added information, obtained during beamforming increases 

accuracy of the SCIA without adding wireless communication overhead.  The above 

architecture is preferred for mobile ‘source’ tracking, identification, and classification.  

This architecture is concurrently used with the architecture of Figure 3.2 and is activated 

in critical circumstances, either to validate localized identification / classification or 

employed when localized identification / classification falls in the grey / overlapping area 

of decision boundaries.  This architecture is preferred due to its ability for verification, 

and source tracking.  However, wireless transmission costs, and high calculation costs for 

data fusion makes this architecture possible for selective WINS applications. [39] 

 
Results obtained from SCIA are input into the ‘decision making’ module that consists of 

two parts, a statistical confidence measure assignment module, and a weighting module, 

each of which could be independent depending on the WINS application.  Confidence 

measures are assigned to each classification and/or identification result, from a-priori 

probability knowledge obtained during training possibly from a large database.  These 

confidence measures are updated frequently as and when more signals are acquired and 

re-used for training.  A final module consisting of weighting schemes is incorporated to 

make a final weighted decision coming from individual sensor nodes or sensor node 

clusters. 

 

Figure 3.4 shows the architecture for signal segmentation based localized SCIA.  

Decision making and confidence calculations are performed in two steps where 
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segmentation based decisions and confidence are fused initially in a local cluster head. 

This information is then either processed for collaborative decision making on the same 

local cluster head, or transmitted to a centralized (remote) node.  Here, signals are 

partitioned into approach, arrival, and departure segments.  This method of segment-

based decision-making gives more control over segment states and eliminates low 

confidence decisions. 

 

 

Figure 3. 4.  Segmentation based localized SCIA Architecture. 
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segmental states.  These decisions are then fused to derive a final decision on the cluster 

head or transmitted to a remote centralized node for final decision-making.  Confidence 

measures are calculated following decision-making criteria as explained in Figure 3.7.  

The above architecture is robust in that segmental state control for decision-making is 

attained.  Segments that have low confidence measures or segmental state changes that 

introduce new variables into signals, could be excluded in decision making (i.e. exclude 

departure segments if road conditions change in the departure locality (state) of the 

sensed signals / or if arrival segments are saturated due to circuits not being tuned 

properly.) 

 

 

Figure 3. 5.  Distributed / Localized SCIA and Sensor Type based Decision Fusion at cluster head. 
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Figure 3.5 shows the signal segmentation based localized SCIA architecture within the 

segmentation module and a sensor-type-based decision fusion within a cluster head for 

M-SSE.  Decision making and confidence calculations are performed in three steps.  

Segmentation based decisions and confidence are fused initially within each node for 

each sensor type.  Fused segmentation based signals are then transmitted to a cluster head 

for sensor type based decision fusion.  The above diagram shows sensor type based 

decision fusion in the form of acoustic, seismic, and infrared signal types.  This module 

gives control over sensor types that may have low confidence due to deteriorating 

environmental or geographical conditions.  The sensor type based decisions and 

confidence information is then either transmitted for collaborative decision making to a 

cluster head or to a remote centralized node. 

 

The above architecture is robust in that sensor-type based control for decision-making is 

achieved.  Segments as well as sensor types that have low confidence measures, or 

segmental state changes that introduce new variables into signals and sensor types that 

have low confidence could be excluded from decision making (i.e. exclude acoustic 

sensors in high wind environments, while excluding seismic sensors during ground 

condition changes due to rain, melting snow etc.). 

 

SSE / M-SSE can be scaled to distributed localized (signal processing and decisions on 

each sensor node), or local head node (local signal processing with decisions processed 

on local neighboring head-node within a geographical cluster), or centralized (local signal 
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processing with decisions processed on a centralized node) architectures for a 

combination of signal processing and decision making depending on applications.  

Application needs determine these architectural designs. This requires consideration of 

wireless communication and computing costs in addition to scalability, deployment 

issues, and throughput of the SSE / M-SSE system. 

 

At this stage of processing, any special environmental conditions that may impact 

different types of signals (i.e. acoustic, seismic, IR) or classification / identification 

accuracies may be taken into account by turning particular sensor readings on / off if they 

have not already been acted upon much earlier during signal acquisition or pre-

processing.  Again, statistical confidence measures and weighting could be in the same 

SSE architectural block or in different blocks in the case of M-SSE.  A careful analysis of 

application specific signal parameters, wireless communication and computational costs, 

accuracy, throughput, and feasibility of SSE / M-SSE will yield a suitable architecture as 

shown in the study given below. 

 

3.3 SSE Application Architectures 
 

Wireless sensor network applications determine SSE / M-SSE architectures for signal 

processing and decision-making.  Many implementations are feasible while making the 

SSE and M-SSE more robust, less complex, and suitable for a particular application. [47] 
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Sensor networks that deal with high data densities require localized (on node) signal 

processing, or localized signal pre-processing and local cluster head node based signal 

processing (due to signal fusion needs such as beam forming) while decision-making is 

done at a local or remote head node.  Interim decisions are made at localized nodes, while 

final decisions are made at a local cluster head node. 

 

Applications that require minimal data transfer and communication overhead can use 

centralized decision-making, as scalability and communication resource costs become 

less important issues.  Temperature monitoring nodes embedded on walls of buildings are 

a classic example.  Other applications that can follow this architecture include intelligent 

sensor nodes embedded in bridges, and biomedical applications in medical and research 

facilities. 



 69

 

Figure 3. 6.  Consumer, and industrial applications using distributed / centralized processing. 

 

SSE system architectures are determined initially with application specific needs that 

make use of criteria given in section 3.4 of this chapter.  Analysis done in this section 

helps to determine whether to implement distributed / localized or cluster head 

/centralized sub-systems within the SSE / M-SSE systems architecture.  Figure 3.6 shows 

consumer and industrial applications that use distributed, and centralized processing.   

Specific application implementations strive to determine a simple architecture that 

achieves necessary performance while consuming the least power for each wireless node.  

Low complexity and low power operation are formulated by analysis given in section 3.4 

that is done during architectural design phase. 
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3.4 Communication vs. Computation Costs 
 

Power consumed by wireless nodes for wireless data communication is typically much 

higher than the computation power requirements for identification / classification. [93]  

Much of the signal pre-processing and often the bulk of the signal processing is done on-

board each node after data acquisition, in order to minimize wireless data communication 

costs.  However, advanced signal data fusion algorithms require signal data to be 

transmitted to a cluster head node for further processing, in which case wireless 

communication costs become important.  The following section analyzes wireless 

communication vs. computation costs as experienced in real world sensor network 

scenarios. 

 

3.4.1 Communication Cost: 

A number of methods are now detailed for reducing communication costs.  These 

methods concentrate on optimization methods for low power, and performance. 

 

a. Local Communication of Decisions to a Cluster Head / Centralized node: 

In this architecture, SSE / M-SSE have signal pre-processing and SCIA on-board each 

node.  Results from each node are transmitted to a cluster head or centralized node for 

collaborative decision-making.  A study of communication cost for transmitting interim-

decisions and associated confidence is formulated and calculated for a WINS network. 
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We assume that sensor nodes are used to transmit decisions to a cluster head or 

centralized node at a distance of 10m, with the following transmission environment 

criteria [83]: 

- Surface node to Surface node (flat terrain) transmission in Rayleigh Channel @ 

1/R4 propagation.  Calculations also assume BPSK transmission at a target bit error rate 

of 10-6. 

Assume transmitted decision has 32-bit word length; 

Assume Symbol Rate of 10 bits / Sample; 

 

 For 10m node separations, 

Propagation Limit @ 10m: 1000 bits / 0.3 mJ; 

 Energy required to transmit 32 bit detection result = 9.6 nJ; 

 

Similarly for 100m node separations, 

Propagation Limit @ 100m: 1000 bits / 3 J; 

 Energy required to transmit 32 bit detection result = 96 mJ; 

 

The above calculations show the energy required to transmit data to a local cluster head 

or centralized node, on a per-detected result basis.  Different Classification / 

Identification schemes in SSE / M-SSE architectures would require variations of these 
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detected results (32-bit word lengths) to be transmitted with multiplicative factors of the 

calculated energy needs. 

 

b. Local Communication of Data to Local Cluster Head after Pre-Processing: 

Assuming that the sensor node is used to transmit signal segments to a cluster head or 

local centralized node 10m in separation with the following wireless communication 

environment criteria: 

- Surface-node to Surface-node (flat terrain) transmission in Rayleigh Channel @ 

1/R4 propagation.  Calculations also assume BPSK transmission with a required error rate 

of 10-6. 

 

Assume Sample Signal Length = X Samples * 10 bits/Sample = 10X bits; 

Propagation Limit @ 10m = 1000 bits / .3 mJ; 

Energy required to transmit 1000 samples of segmented signal = 3.0 mJ; 

 

Summarizing, evaluations of decision communication vs. data communication costs, it is 

observed that to transmit pre-processed data to a local cluster head based SSE / M-SSE 

architecture consumes high energy and is used only in critical and selective 

circumstances. [76]  This is the case when computationally intensive data fusion 

algorithms are implemented and used before classification / identification by SCIA.  Here 

a calculation for a quantity of 1000 samples is given to quantify the energy requirements 

as needed for wireless transmission with this design of SSE / M-SSE architecture.  It is 
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therefore evident that communicating decisions only would prolong battery life and 

hence node life.  Example 3.1. shows the needs of battery energy for transmitting 

decisions and data. [87] 

 

 

 

Example 3. 1.  Direct Communication of Data / Event: 
The following calculations are performed for a channel with the following propagation 

and transmission criteria: 

-  Surface Node to Surface Node, Rayleigh Channel with 1/R4 propagation and BPSK 

transmission at a required error rate of 10-6 bits / sample. 

 

Sample Word Length = 32 bits;   (Assumption) 

Propagation Limit @ 100m: 1000 bits / 3 Joules; 

 Propagation Limit @ 100m:  100 samples / 3 Joules; 

 Number of samples transmitted per unit energy = 10.4 Samples / Joule; 

 

3.4.2 Comparison of SSE / M-SSE to Communication 

It is crucial to make a comparison of communication cost to SSE / M-SSE calculation 

costs to decide upon the appropriate strategy.  Example 3.2 looks at a sample case and 

compare the associated power consumption for a SSE/M-SSE implemented algorithm. 
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Example 3. 2.  SSE / M-SSE Event Processing Power Cost Calculations: 

 
Let us look at the following SSE/M-SSE event processing calculations: 

Number of Samples used in the Signal Segment : 1000 Samples 

Number of Correlators parsed during a search    :  100 Correlators   

Number of points per correlator        :  100 Points per Correlator 

Number of operations per sample        :    10 ops / sample 

       Assuming a worst case general purpose processor 

       Processing Rate of Processor – 100 MIPS/W and 100 MIPS Processing Rate; 

      Cost associated with detection / identification of this system: 1 Joule; 

 

Now, let us calculate cost associated with direct communication of event [79,83]: 

 

Number of Samples used for Transmission    :  1000 Samples@10 bits/Sample; 

 Wireless Transmission Distance (wireless link): 100 m; 

 Cost associated for the above transmission     : 30 Joules; 

 

Example 3.2 above shows a simple calculation in energy requirement for event detection 

and wireless transmission.  It is observed that energy required to transmit samples 

wirelessly is 30 times more compared to detecting a signal with the same number of 

samples.  This simple calculation shows that data communication needs to be done only 

for obtaining the highest resolution, and the architecture should more usually be limited 

to communicating decisions only, for low power operation. 
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Summarizing the results of example 3.2, we derive the following for a comparison of 

computation to communication energy: 

~105 Samples Computed : 1 Sample Transmitted @ 100 m 

The above case provides a notion of how transmission cost dominates overwhelmingly in 

comparison to computation cost.  The following were assumed for qualification of the 

above calculations:   

- Propagation calculations assume 100% efficiency for conversion from base band to 

radiating energy. 

- Propagation calculations assume no shadowing. 

- Realistic communication system analysis will further degrade communication link 

and further favor computation. 

 

3.4.3 Accuracy of Distributed vs. Centralized SSE & M-SSE 
 

Accuracy of results obtained during classification and / or identification in distributed and 

centralized SSE, M-SSE are very similar.  However, there is a slight decrease in 

confidence measures associated with centralized classification or identification (without 

data fusion), due to the phase offset carried by signal sets located at different distances 

from the source, and time delayed  versions of source signals arriving at  nodes due to 

multi-path.  Further errors are incurred due to generalized correlator templates forming 

the tree structure for centralized processing.  It is found that the associated probabilities 
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attached to each leaf correlator template contributes in forming of lower confidence 

measures when class based decisions are made.  Other reasons for the increase in error 

rates are due to limited signal data in order to reduce wireless communication costs 

whereby only limited signal segments are obtained and transferred for centralized node 

processing. 

 

The above findings were obtained using sensor data from different neighboring sensors 

that was excluded from the template choosing training set.  Signal segments obtained 

from different neighboring sensors were used for segmental identification.  Given the 

above findings, it is concluded that without any additional data fusion algorithms it is 

better to use distributed processing rather than centralized processing for accuracy, 

communication costs, and low power operation. [78] 

 

Figure 3.7 shows a class based confidence assignment procedure for classification 

decisions. [7,42]  The confidence assignment procedure for identification is handled 

similarly.  An initial training data set is used for confidence measure assignment on each 

leaf of the tree that is remotely updated intermittently.  Correlator templates are initially 

used for assigning confidence using the existing training data set.  Once each confidence 

measure is obtained, it is tagged to each correlator.  An example of assignment of a final 

confidence measure for a classification result of class {B12} would be Pb1*Pb11*Pb112.  

Similarly for identification decisions, confidence is tagged with ‘source ID’, with final 

confidence calculated as shown in the Figure 3.7.  Centralized processing with data 
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fusion is therefore called for during some critical decision-making instances, and may be 

used to validate or reinforce decisions when it has a low confidence measure associated 

with classification / identification results. 
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Figure 3. 7.  Class based probability assignment procedure. 
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C{A32}P({A32}) = Pa312 

C{Z1}P({Z1}) = Pz11 

C{Z2}P({Z2}) = Pz12 

C{Z3}P({Z3}) = Pz13 

C{Z4}P({Z4}) = Pz14 

C{B1}P({B1}) = Pb11 

C{B2}P({B2}) = Pb12 

C{Z11}P({Z11}) = Pz111 

C{Z12}P({Z12}) = Pz112 

C{Z41}P({Z41}) = Pz411 

C{Z42}P({Z42}) = Pz412 

C{B11}P({B11}) = Pb111 

C{B12}P({B12}) = Pb112 

S 
O 
U 
R 
C 
E 
 

S 
I 
G 
N 
A 
L 
 

F 
E 
D 
 

T 
O 
 

S 
C 
I 
A 
 

T 
R 
E 
E 

C : Class;   C{A} : Class A   Tier 1 
P({A}): Probability of  C{B} : Class B   Tier 2 
   class {A}  C{Z} : Class Z   Tier 3 
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3.5 Decision Making – (Localized vs. Centralized) 
 

Localized decision-making is performed when the SCIA is local, with the results 

transmitted to a cluster-head or centralized node for final decision making with results 

obtained from other neighboring sensor nodes. [4, 9]  Results output from the SCIA 

would consist of the classified / identified source or source listing, along with its 

confidence measures.  Cluster head based or Centralized SCIA on the other hand has 

decisions made in their  respective domain  where the SCIA is resident.  In centralized 

decision-making, a centralized node would obtain results from all individual nodes, or 

cluster heads of sub-systems to consider weighting of decisions. 

 

Figure 3.8 is a system level diagram for ‘decision making’ with individual WINS nodes, 

cluster heads, and a remote centralized node.  Decision-making may be local cluster head 

based with individual WINS nodes transmitting decisions and confidence to cluster heads 

that perform collaborative decision making to achieve final identification / classification. 

Alternatively, a centralized decision-making process receives sensor cluster head 

processed interim decisions and makes decisions and confidence measures based on 

received cluster head information.  This module based approach helps in avoiding low 

confidence decisions by giving more control to avoid low confidence decision origins. 
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Figure 3. 8. Collaborative ‘Decision Making’ at Cluster Heads or Centralized Remote Processor. 

 

3.5.1 Decision Making (Localized) 

SSE / M-SSE architectures containing local, or local interim decision making have a 

statistical confidence assignment and weighting at each sensor node.  The decision 

making process is similar in both cases with information passed to the localized or 

centralized node for final decision-making, depending on the architecture and would 

consist of:  

- identified or classified source with its confidence  (i.e. Source A – 95% confidence) 

SPP / SP 
 

SCIA Maximum Polling 
or 

Weighted Averaging 
1. Node 1 or 2. Cluster 1 

SPP / SP 
 

SCIA Maximum Polling 
or 

Weighted Averaging 
1. Node 2 or 2. Cluster 2 

SPP / SP 
 

SCIA Maximum Polling 
or 

Weighted Averaging 
1. Node N or 2. Cluster N 

…
…

…
…

…
.

Collaborative Decision 
Making: 

 
 
1. Cluster Head based: 
- Individual decisions or list 
of decisions from each sensor 
node in a local cluster is 
combined using application 
specific decision-making 
criteria or decision-making 
architecture. 
 
 
2. Centralized: 
- Individual decisions or list 
of decisions from each 
cluster head, combined using 
application specific decision-
making criteria of centralized 
decision-making architecture.

SPP : Signal Pre-Processing block 
SP   : Signal Processing block 
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- identified or classified source order with its confidence (i.e. Source B – 35%  

confidence, Source C – 31% confidence, Source D – 32% confidence etc.)  

 

A collaborative decision-making is involved at the sensor node cluster head to achieve a 

final result.  This result is assigned weights according to one of several methods that may 

include for example lower weighting due to environmental effects.  These scenarios 

happen when ground conditions are soggy on a rainy day, altering the channel of the 

source signal drastically for seismic signatures.  In these situations, seismic identification 

/ classification is excluded from decision-making and assigned a lower weight than in 

regular conditions. 

 

 

3.5.2 Decision Making (Distributed) 
 

Distributed decision-making is collaborative decision making, where individual or cluster 

head node identification / classification results and associated confidence measure is 

transmitted to a cluster head, or centralized node.  These results are weighted using 

different methods mentioned below to attain a final decision.  Weighting could be 

assigned depending on environmental conditions as in local decision-making.  The final 

decision is then transmitted to the user / client. 
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3.5.3 Weighting Methods for Segmentation 

Various weighting methods are considered for decision making with signal segmentation.  

Signal segmentation is used to reduce variables of signals, especially waveforms of 

moving objects.  The following methods are used for decision making along with 

obtaining a final confidence measure on one type of signal set (i.e. acoustic, seismic, IR 

etc). 

- Class based decision-making:  Methods where decisions are made with the same 

class / type (i.e. Seismic, Acoustic, and IR) of signals with different segmental states 

(i.e. approach, arrival, departure.) 

 

- Maximum Polling:  Signals of the same type are classified / identified in parallel 

with SCIA and would consist of single source result along with its confidence 

measure for each identification / classification.  The method of maximum polling 

considers only the selected source from each segment and selects interim final, or 

final decision without consideration of confidence.  However, confidence for the 

final decision is calculated independently after obtaining the maximum polling 

result. 

 Maximum Polling Source Identification / Classification 

 segment 1  – S(1)   -   Selected Source; Confidence – P1(S(1)); 

 segment 2  – S(2)   -   Selected Source; Confidence – P2(S(2));    

 segment N – S(N)   -   Selected Source; Confidence – PN(S(N)); 
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Maximum polling is implemented for decision making with signal segments acquired 

with the same sensor type.  These segments will each have independent confidence 

measures that are used for calculating the final confidence of the decision.  The following 

table shows decisions and confidence derived by using the above formulas. 

 S(i) P(S(i)) 

approach tv1 0.75 

arrival wv2 0.39 

departure tv1 0.69 

Table 3. 1.  Class/Type based Maximum Polling. 

 
Maximum polling on a single class / type is used where 2 out of 3 segmented decisions 

on a signal results in an identification of ‘tv1’.  Confidence is calculated as mentioned in 

the above with a measure of 0.72. 

Decision:   tv1   (2/3) 
 
Confidence:     0.72 
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-  Weighted Averaging:  Weighted averaging is considered here for segmented signals 

acquired with the same sensor type.  However, this method selects a list of sources as 

results for identification / classification as opposed to single source selections with 

maximum polling.  However, confidence for the final decision is calculated with 

dependence on a selected list of results as output from the SCIA. 

 

Weighted Polling Source Identification / Classification 

 segment 1 – S1(1)   -   Selected Source 1; Confidence – P11(S(1)); 

 segment 1 - S2(1)   -   Selected Source 2; Confidence – P12(S(1)); 

 segment 1 – Sn(1)   -   Selected Source n; Confidence – P1n(S(1)); 

 segment 2 – S1(2)   -   Selected Source 1; Confidence – P21(S(2));   

segment 2 – S2(2)   -   Selected Source 2; Confidence – P22(S(2));    

segment 2 – Sn(2)   -   Selected Source n; Confidence – P2n(S(2));     

 segment N – S1(N) -   Selected Source 1; Confidence – PN1(S(N)); 

 segment N – S2(N) -   Selected Source 2; Confidence – PN2(S(N)); 

segment N – Sn(N) -   Selected Source n; Confidence – PNn(S(N)); 
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Table 3.2 shows an example of segmentation based weighted averaging.  Here the top 

three results are selected for averaged decision-making.  Decisions achieved from the 

above equation results in an identification of ‘tv1’ with a confidence measure of 0.60.     

 

 

 S(i) P(S(i)) 

tv1 0.75 

tv2 0.41 approach 

tv3 0.21 

wv2 0.39 

tv1 0.35 arrival 

tv3 0.11 

tv1 0.69 

wv2 0.31 departure 

tv2 0.22 

Table 3. 2.  Class/Type based Weighted Averaging. 

 

Decision:    tv1   
 
Confidence:     0.60 
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3.5.4 Weighting Method for Different Classes of Signals 
 

Similar to weighting methods used for decision making with the same type of signals, 

acquired signals coming from different types / classes of sensors are combined for 

decision making with methods shown below along with calculation of associated 

confidence measures. 

- Segment based decision making: Principle where decisions are made with 

different classes of signal on an identical segment basis. 

The above principles are derived and shown for maximum polling and weighted 

averaging for node-based decision-making. 

 

-       Maximum Polling:  Signals of different types are classified / identified in parallel 

with SCIA.  It results in a single source along with its confidence measure for 

identification / classification for each segment and class.  The method of maximum 

polling considers only the selected source for each class segment and selects interim 

final, or final decision with confidence calculations to follow soon.  However, confidence 

for the final decision is calculated independently for maximum polling. 

 

 Maximum Polling Source Identification / Classification 

 Type 1, Segment 1  –   S(11) -   Selected Source;    Confidence – P11(S(1)); 

 Type 2, Segment 1  –   S(21) -   Selected Source;    Confidence – P21(S(2));    

Type M, Segment 1 –   S(M1) - Selected Source;  Confidence – PM1(S(M)); 
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 S(i) P(S(i)) 

acoustic  tv8 0.77 

seismic  tv8 0.63 

Table 3. 3.  Segmentation based Maximum Polling. 

 

Table 3.3 shows maximum polling for different classes / types of signals on a single 

segment.  All classes / types result in identifying ‘tv8’ with a confidence of 0.70 

calculated using the above method. 

 

 

Decision:   tv8   (2/2) 
 
Confidence:     0.70 
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 Decision for Segment 2:  
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Table 3.4. shows maximum polling on a different segment.   Here results are tied with an 

acoustic identification resulting in ‘tv8’ and the seismic identification resulting in ‘wv6’.  

In cases where maximum polling results in a tie, confidence measures are inferred for 

decision-making.  Acoustic identification of ‘tv8’ resulting in a higher confidence 

(confidence 0.79) is chosen as the decision over ‘wv6’ (confidence of 0.6).  If ties are 

frequent occurrences during training, weighted averaging is utilized for the particular 

decision making sub-system. 

 S(i) P(S(i)) 

acoustic  tv8 0.79 

seismic  wv6 0.66 

Table 3. 4. Segmentation based Maximum Polling with a tie. 

 

Decision:   tv8   (1/2) 
 
Confidence:     0.79 
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Maximum polling in this case is considered in signals where the signal types are different 

but segments are identical (i.e. approach, arrival, departure) with confidence measure 

calculations following soon. 

 

-  Weighted Averaging:  Weighted averaging is considered here for segmented signals 

of different types.  This method selects from a list of selected sources (results of SCIA) 

for identification / classification decision making relative to individual selections with 

maximum polling.  However, confidence for the final decision is calculated with 

dependence to selected list of results from SCIA. 
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Weighted Polling Source Identification / Classification 

 Type 1; Segment 1 – S11(1) - Selected Source 1;Confidence – P11(S(1)); 

 Type 1; Segment 1 - S11(2)  - Selected Source 2;Confidence – P11(S(2)); 

 Type 1; Segment 1 – S11(n)  - Selected Source n;Confidence – P11(S(n)); 

 Type 2; Segment 1 – S21(1) - Selected Source 1;Confidence – P21(S(1)); 

 Type 2; Segment 1 - S21(2)  - Selected Source 2;Confidence – P21(S(2)); 

 Type 2; Segment 1 – S21(n)  - Selected Source n;Confidence – P21(S(n)); 

 Type M; Segment 1 – SM1(1) - Selected Source 1;Confidence – PM1(S(1)); 

 Type M; Segment 1 – SM1(2)  - Selected Source 2;Confidence – PM1(S(2)); 

 Type M; Segment 1 – SM1(n)  - Selected Source n;Confidence – PM1(S(n)); 
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 S(i) P(S(i)) 

tv8 0.77 

wv2 0.66 acoustic 

tv3 0.63 

tv8 0.63 

tv3 0.44 seismic 

wv4 0.32 

  Table 3. 5. Segmentation based weighted averaging. 

 

Weighted averaging is utilized on acoustic and seismic signals with a listing of the best 

three results.  Using decision-making method shown above a decision of ‘tv8’ is obtained 

with a confidence of 0.70. 

 

Similarly, for the case of Segment 2;  
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where ℜ  : { all possible events / sources for the WINS application }; 

 

 

 

 

Decision:   tv8    
 
Confidence:     0.70 
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A general case for Segment N is given by; 
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3.5.5 Lumped Weighting Method with Combined  

Class and Segmentation based Decision Making 
 

Similar to weighting methods used for decision making with the same type or same 

segmentation of signals, weighting methods are combined to have both types and 

segments lumped together for generalized weighted decision-making and confidence 

building.  This is the super set of independent segmentation based, and class based 

weighting.  However, this lumped generalized method loses control features present in 

independent class based and segmentation based weighting.  Thus, it cannot discard all 

departure segments if situational / environmental changes cause signal variations.  It may 

also not be able to discard seismic signatures due to environmental soil condition 

changes.  With less control features, this set of segmented signals acquired by different 

types / classes of sensors are combined for decision making as well as associating 

confidence measures. 

- Lumped Segment and Class based decision making: Principle where decisions 

are made with different classes and segments of signals combined together with 

confidence assigned with lumped weighting; 

 

Both criteria for Maximum Polling and Weighted Averaging for lumped segment and 

class-based decision-making are shown in the following derivations. 
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-    Maximum Polling:  Signals of different types and different segments are classified / 

identified in parallel with the SCIA.  Results obtained from the SCIA would constitute a 

single source along with its confidence measure for each segment and class.  The method 

of maximum polling considers only the selected source for each class segment and selects 

interim final, or final decision with confidence measure calculations following soon.   

However, confidence for the final decision is calculated independently for maximum 

polling. 

Maximum Polling Source Identification / Classification 

Type 1, Segment 1  –  S11(11) -  Selected Source;     Confidence – P11(S(1)); 

Type 1, Segment 2  –  S12(12) -  Selected Source;     Confidence – P12(S(1)); 

Type 1, Segment N  – S1N(1N) - Selected Source;     Confidence – P1N(S(1)); 

 Type 2, Segment 1  –  S21(21) -  Selected Source;      Confidence – P21(S(2)); 

Type 2, Segment 2  –  S22(22) -  Selected Source;      Confidence – P22(S(2));    

Type 2, Segment N  – S2N(2N) - Selected Source;     Confidence – P2N(S(2));       

Type M, Segment 1 –  SM1(M1) - Selected Source;  Confidence – PM1(S(M)); 

Type M, Segment 2 –  SM2(M2) - Selected Source;  Confidence – PM2(S(M)); 

Type M, Segment N – SMN(MN)-Selected Source;  Confidence – PMN(S(M)); 

 

Lumped Decision with all Segment and types included: 
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  S(i) P(S(i)) 

approach tv8 0.88 

arrival tv8 0.55 acoustic 

departure tv5 0.81 

approach tv8 0.71 

arrival wv8 0.44 seismic 

departure wv1 0.51 

   Table 3. 6. Lumped maximum polling. 

 

Decision:   tv8  (3/6)  
 
Confidence:     0.71 
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Table 3.6 shows an instance when multi-sensing is utilized with results from multiple 

state spaces.  Here maximum polling yields a decision of ‘tv8’ with a confidence of 0.71 

obtained using the above methods.     

 

Maximum polling in this case is considered for signals where the sensor types are 

different along with their segments (i.e. approach, arrival, departure).   The confidence 

measure is now calculated with all segments with all types of signals that were used for 

decision-making. 

 

-  Weighted Averaging:  Weighted averaging is considered here with all segments and 

sensor types simultaneously.  This method selects from a list of selected sources (results 

of SCIA) with identification / classification results.  Lumped decision-making is obtained 

with individual results for maximum polling.  However, confidence for the final decision 

is calculated following depending to selected list of results from the SCIA, with 

association to corresponding results. 

Weighted Polling Source Identification / Classification 

 Type 1; Segment 1 –S11(1) - Selected Source 1;Confidence – P11(S(1)); 

 Type 1; Segment 1 - S11(2)  - Selected Source 2;Confidence – P11(S(2)); 

 Type 1; Segment 1 – S11(r)  - Selected Source n;Confidence – P11(S(n)); 

 Type 1; Segment 2 – S12(1) - Selected Source 1;Confidence – P12(S(1)); 

 Type 1; Segment 2 - S12(2)  - Selected Source 2;Confidence – P12(S(2)); 

 Type 1; Segment 2 – S12(r)  - Selected Source n;Confidence – P12(S(n)); 
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Type 1; Segment N – S1N(1) - Selected Source 1;Confidence – P1N(S(1)); 

 Type 1; Segment N - S1N(2) - Selected Source 2;Confidence – P1N(S(2)); 

 Type 1; Segment N – S1N(r) - Selected Source n;Confidence – P1N(S(n)); 

 Type 2; Segment 1 – S21(1) - Selected Source 1;Confidence – P21(S(1)); 

 Type 2; Segment 1 - S21(2)  - Selected Source 2;Confidence – P21(S(2)); 

 Type 2; Segment 1 – S21(r)  - Selected Source n;Confidence – P21(S(n)); 

 Type 2; Segment 2 – S22(1) - Selected Source 1;Confidence – P22(S(1)); 

 Type 2; Segment 2 - S22(2)  - Selected Source 2;Confidence – P22(S(2)); 

 Type 2; Segment 2 – S22(r)  - Selected Source n;Confidence – P22(S(n)); 

 Type 2; Segment N – S2N(1) - Selected Source 1;Confidence – P2N(S(1)); 

 Type 2; Segment N - S2N(2)  - Selected Source 2;Confidence – P2N(S(2)); 

 Type 2; Segment N – S2N(r)  - Selected Source n;Confidence – P2N(S(n)); 

 Type M; Segment 1 – SM1(1) - Selected Source 1;Confidence – PM1(S(1)); 

 Type M; Segment 1 – SM1(2)  - Selected Source 2;Confidence – PM1(S(2)); 

 Type M; Segment 1 – SM1(r)  - Selected Source n;Confidence – PM1(S(n)); 

 Type M; Segment 2 – SM2(1) - Selected Source 1;Confidence – PM2(S(1)); 

 Type M; Segment 2 – SM2(2)  - Selected Source 2;Confidence – PM2(S(2)); 

 Type M; Segment 2 – SM2(r)  - Selected Source n;Confidence – PM2(S(n)); 

 Type M; Segment N – SMN(1) - Selected Source 1;Confidence – PMN(S(1)); 

 Type M; Segment N – SMN(2)  - Selected Source 2;Confidence –PMN(S(2)); 

 Type M; Segment N – SMN(r)  - Selected Source n;Confidence– PMN(S(n)); 
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  S(i) P(S(i))   S(i) P(S(i)) 

tv8 0.88 tv8 0.71 

wv4 0.91 tv5 0.55 approach 

tv3 0.11 

approach 

wv3 0.22 

tv6 0.55 wv3 0.44 

tv8 0.53 tv8 0.41 arrival 

wv4 0.21 

arrival 

tv3 0.51 

tv5 0.51 wv1 0.31 

tv8 0.49 wv3 0.30 

acoustic 

departure 

wv1 0.11 

              

seismic 

departure 

tv8 0.29 

 

Table 3. 7.  Lumped weighted averaging. 

 

Decision:   tv8 
 
Confidence:     0.55 
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Lumped weighted averaging is taken up above with a list of results with associated 

confidence for the case of multi-sensing sensors with multiple state spaces.  From the 

above method, a decision of ‘tv8’ is obtained with a confidence of 0.55.  With this form 

of lumped decision-making modularity is lost, but it has a simple hardware 

implementation of multipliers and adders. 

 

These weighting methods are used with SSE / M-SSE following the SCIA to obtain 

statistical analysis and calculate confidence intervals.  These weighting schemes are 

studied for localized, cluster head based, or centralized weighting schemes depending on 

SSE / M-SSE architecture.  Decisions derived from sub-systems or cluster heads are 

assigned one of the above weighting schemes on a system-to-system, or sub-system to 

sub-system basis.  The number of nodes taking part in the decision making process needs 

to be included with this method of decision-making. 

  

System 1 => S(1)=Xi      Confidence => P(S(1)=Xi)   Number of nodes => n1   

 System 2 => S(2)=Xj      Confidence => P(S(2)=Xj)   Number of nodes => n2   

 System N =>S(N)=Xk     Confidence => P(S(N)=Xk) Number of nodes => nN 
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An example of decision making with results from sensor sub-systems follows: 

 

 System 

Name 
S(i) nt P(S(i)) 

system 1 tv8 3 0.66

system 2 wv5 2 0.55
Sensor  

sub-systems 
system 3 tv8 3 0.78

Table 3. 8.  Sub-system level decision making. 

 

The above method is utilized at the system and sub-system levels depending on WINS 

applications.  These methods offer a novel way of combining statistical weighting 

schemes towards the final decision making with the SSE / M-SSE architecture.  Table 3.8 

shows results from three sensor sub-systems, and is shown here as an example when 

cluster head relay decisions to a central processing node. 

 

Decision:    tv8 
 
Confidence:     0.72 
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3.6 Sensor SCIA Control Criteria 
 
Robustness of SCIA is achieved by having different modules activated and de-activated 

depending on the nature and quality of sensed signals.  Signals are often corrupted, or 

distorted due to environmental as well as circuit effects (as in the case of random glitches 

and saturation at CPA).  These discrepancies cause low probability of detection, while 

resulting in low confidence on classification / identification results. Therefore, a pre-

emptive low power optimization is used to discard these undesirable signal segments.  

This is achieved by detecting saturation points and glitches with the help of a threshold.  

Deactivating seismic sensing during rainy days, or to deactivate acoustic sensors during 

windy conditions or in mountainous terrain could mitigate these discrepancies.  Decision-

making process, and confidence calculations follow the previously mentioned methods.  

SCIA modules are utilized efficiently by deactivating modules assigned to identify and 

detect signal types or segments, or a combination of both.  The module based concept of 

SSE / M-SSE architecture facilitates the process whereby energy constrained nodes will 

prolong life with selective SCIA processing. 
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3.7 Summary 
 

This chapter investigated architectures for distributed vs. centralized signal processing.  

Signal pre-processing, and signal processing (SCIA algorithm), along with decision-

making methods were described.  SSE / M-SSE architectures were described along with 

requirements and schemes for decision-making.  Various collaborative decision making 

schemes were discussed along with obtaining associated confidence measures with each 

decision.  Decision-making architectures and methodology are determined during training 

of application specific signals.  It is decided during training as to which decision fusion 

method to implement for a particular application.  Additional new signal variables (either 

introduced after deployment, or not present in signals in the training database) will 

introduce low confidence measures and errors that call for updates on the template tree 

along with associated confidence measures.  In this case re-training is enforced either off-

line with the new training database or process on-board.   

 

Energy constraints were calculated and compared with communication and computation 

costs to analyze wireless data communication cost.  The need to perform on-board 

training and decision-making is emphasized by the large energy requirements in 

transferring data between nodes. 
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CHAPTER 4 

 

Investigation of SSE to Signal Variables 
 

The Signal Search Engine (SSE) algorithm was investigated extensively for many 

theoretical and real-life signal sets.  A test signal set was supplemented with additional 

wideband signals added from real life situations to obtain full coverage.  This chapter 

looks at SSE performance based on this full coverage signal set. 

 

These test signals were self-contained in that they were initially created with varying 

amplitude, frequency, phase, and noise content.  The signals were divided into the 

following classes:  Single narrow-band (discrete frequency), multiple narrow-band 

(multiple discrete frequencies), and wideband signals for extensive testing on the SSE.  

These signals formed the fundamentals for SSE event classification and identification. 

 

Created signals were input to the SSE algorithm that was coded with MATLAB modules, 

for template selection, and VBasic, and Visual C++ modules for identification and 

classification.  An interface with MS ‘Excel’ application software was used to obtain 
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plots of AARMS / MARMS scores for a graphical representation.  Frequency features 

from created test signals were used as the classification / identification criteria that 

closely associated with that of real world signal detection. 

 

4.1 Test Signal Set 

Narrow band signals correspond to mutually exclusive events, which are discrete in 

frequency and often periodic.  Wideband frequencies on the other hand are discrete in 

time and continuous or semi-continuous (wideband with discontinuities) in frequency.   

The following are examples of the cases of wideband signals:  clock-ticks with sensors in 

the vicinity of the source; non-periodic events such as gun shots from repeater rifles 

(signals modified to obtain non-periodic or random occurrence by introduction of dirac 

delta / sinc function in time); semi-periodic or random events such as sounds from robots 

(used in mine clearing operations), and sudden explosions, and automatic fire.  Such 

signals are created to investigate the wideband / discontinuous wideband characteristics 

of the SSE.  Semi-periodic or random events were created by either manually adjusting 

the periodic signal without loss of phase or by modifying the amplitude content. 

 

Additionally, narrow band signals were created and tested for SSE behavior.  Wideband 

frequencies or discontinuous wideband frequencies can be modeled with continuous 

narrowband frequencies in the discrete frequency domain.  Therefore, narrowband 

behavior of the SSE is critical for accurate detection of wideband signals / discontinuous 
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wideband signals in the discrete frequency domain.  The following gives information on 

the created test signal set.     

4.1.1. Single Narrow Band:  Narrow band sinusoidal signals with single discrete 

frequencies corresponding to low frequency acoustic and seismic signals were created. 

High frequency acoustic, and seismic signals were created for a sanity check since the 

SSE is robust to narrow band signals in the acoustic and seismic frequency spectrum.  

Zero mean additive white Gaussian noise (AWGN) with variance σ2 was added to have 

signal SNRs of 0 dB to 20 dB.  These signals were used to investigate and test the 

robustness of the SSE and its response to noise.  Amplitudes were varied discretely for 

different signals throughout the signal set to test amplitude robustness of the algorithm. 

The following represents a single frequency narrow band signal 

s

1
2

1  *)( ψπ += e  )
fs
f

 n j ( 
s AnS                   ( 4.1 ) 

where A1 is the signal amplitude and f1, the narrow band frequency.  Here we sample the 

signals at fs =1 KHz for both acoustic and seismic sensor nodes.  Frequencies are selected 

within close proximity with separation increasing many fold to see the robustness of the 

SSE in classifying / identifying close frequency narrowband signals to those with 

frequencies separated wide apart. [10,29]  sψ  is zero mean AWGN with a variance of σ2 

introducing signal SNRs of 0 to 20dB.  The effect of Doppler is modeled with the 

following equation and is used in all preceding equation with step functions triggering to 

model closest point of approach. 

12 ffdoppler α=     (4.2) 
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A phase shift component is added to the above narrow band signals to investigate the 

tolerance to phase offset and performance of SCIA with a generic template tree.  With the 

added phase offset, the signal is represented by, 

    s
s )

fs
f

 n j ( 
s eAnS  *)(   

1
2

1 ψφπ += +               ( 4.3 ) 

where φs is the phase component associated with signal Ss.  Phase is varied from 0 - π 

radians, covering source presence from aligned far-field to closest point of approach 

(CPA) and encompassing non-aligned far-field (π radians off sensor beam direction).   

 

 

Figure 4. 1  A sample low frequency signal window, with an SNR of 0dB. 
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This is the case when stringent power constraints make computation intensive 

beamforming algorithms unusable, whereby each sensor (with a generic template tree 

embedded on the SCIA) in the sensor array would receive the same copy of the signal 

with phase-shifts.  This investigation gives insight, as to how an array of sensors would 

receive the same signal with different phase offsets.  Successful results would yield 

validity of a generic SSE template tree for distributed SCIA reducing the need in 

customized template tree assignments for each sensor node in an array.  Its robustness to 

different phase and accuracy levels would validate generic SSE for distributed signal 

processing.  This will provide validity to a generic template tree for individual clusters, 

and will prove independence of sensor location for the SSE’s SCIA template tree. 

 

4.1.2. Multiple Discrete Frequency Narrowband:  Multiple narrow band 

signals were created using a similar procedure for multiple discrete frequencies.  The 

multiple discrete frequencies were selected with random spacing and had at least two 

discrete frequencies per signal.  A set of discrete frequencies in a continuous block was 

created to see the effect of a comb train (when wideband signals are digitized into 

segments of continuous discrete signals in the time domain) and its response to SSE 

classification / identification.  Varying amplitudes and phases were introduced in each of 

these multiple-discrete frequency signals corresponding to simultaneous periodic and 

semi-periodic, mutually exclusive events.  Amplitudes were varied for each segment, 

along with their frequencies for a low frequency band of signals.  Higher frequency 

signals were created on high frequency acoustic / seismic bands for a sanity check of 
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their effect on the SSE.  Investigation of low and high frequency signals were checked 

similarly with input to the SCIA modules.  Phase offsets on these events were introduced 

to include readings from different sensors in a sensor array, or to include muti-path 

components (delayed versions of the same signal arriving at individual sensors due to 

reflection).  Relative phase offsets ranged between φ1 = π/180 and φ2 = π radians to cover 

directional antennas with a coverage of a 180° plane.  Zero mean AWGN with variance 

σ2 was introduced to the signals at a level ranging from 0 dB to 20 dB.  The generic 

formula below shows a multi frequency narrow band signal: 
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where A1, A2 …Am are the respective amplitudes, and f1, f2 … fm the irrespective narrow 

band frequencies.  s ψ  is the zero mean AWGN noise component with variance σ2 

resulting in signal SNRs of 0dB to 20dB noise levels. 

 

The above signals present situations where multiple mutually exclusive events occur 

simultaneously.  Real life situations consist of periodic, semi-periodic, random, and / or 

chaotic events occurring during a given time interval.  These events would happen at the 

same time at different locations.  An acoustic sensor in a closed environment may receive 

periodic clock ticks from multiple clocks located at different distances from the sensor, 

each with different signal strengths and phase offset from each other.  A battleground 
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Figure 4.2  A high frequency signal with a SNR of 0 dB. 

 
may consist of multiple automatic / semi-automatic gunfire events often coming from 

different locations.  Gunfire is bursty in nature, and may co-exist with artillery, or 

intermittent rocket fire corresponding to different signal strengths modeled by Dirac delta 

functions.   Such cases are modeled by multiple discrete  narrowband frequencies, with 

different amplitudes, and phases.  Frequencies for the various cases are modeled by 

periodic, semi-periodic, or random frequencies along with their phase offsets.  The 

following formula shows a multi-narrow band signal with phase offsets related to each 

other. 
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where A1, A2, …Am are the respective amplitudes, and f1, f2, … fm the respective narrow 

band frequencies.  The phase offset on each frequency is given by φ1, φ2,…,φm respectively.   

       

 

Figure 4.3  Signal with contents from multiple adjoining frequency bands.                 
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These signal features from Figure 4.3 are exploited to obtain templates during feature 

extraction (signal pre-processing) to build a classification / identification tree structure.  

Distinct features are embedded on the template tree structure along with associated 

confidence measures obtained during training. 

 

4.1.3. Wideband Signal Set: 

Application specific SSEs should cater to wideband signals, since many present-day 

signals detected by acoustic, and seismic sensors are wideband in nature.  It should be 

noted that unlike the radar communication problem where the signal may be a random 

process with known statistics or drawn from a known finite alphabet, the acoustic/seismic 

wideband source signals are most likely deterministic but unknown (e.g.  waveforms 

generated by a passing vehicle). [6]  Therefore, real world signals are used to test 

wideband source signals on the SSE and results presented in Chapter 6.  These wideband 

signals are given by the following formula, [23] and take into account multiple source 

presence: 
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               ( 4.6 ) 

 

where n = 0… L-1 is the number of received samples, )(m
wA  is the amplitude of the signal 

of the mth source, and m = 1,…, M the number of sources.  )(m
wS  is the wideband source 

signal from the Mth source, with )(m
wt  which is the fractional time delay in samples, along 
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with wψ which is the zero mean AWGN with variance σ2.  These sensor readings could 

further be modeled to include multiple sensor readings with associated spacing between 

them, and to characterize sensor readings to model signals for sensor arrays. [91]  

However, this phenomenon is not looked at in the SSE testing. 

 

Test signals were introduced with zero mean AWGN with variance σ2 to include 

environmental and circuit noise as sensed by the receiver to achieve various levels of  

 

 

          Figure 4. 4  Distinct signal features selected as a Correlator template. 
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SNRs.  It was observed that the SSE was robust to noise effects up to 0 dB SNR, with 

AARMS / MARMS variations of up to 65% at 0 dB, falling within the boundaries of 

correct identification / classification.  Having obtained excellent identification / 

classification results, a look at noise and distortion in acoustic, seismic, and infrared 

signals is given below. 

 

 
 
4.2 Channel and Environmental Effects on Signals 

 

Seismic, acoustic, and infrared signals traveling through a channel suffer distortion and 

channel specific degradation. [74]  The channel is modeled by convolving the channel 

transfer function with that of the wideband signal.  However, the SSE algorithm was 

robust to minimum channel nulling effects of the time varying acoustic and seismic 

channels.  This is achieved by statistical averaging that is used over the segments under 

consideration, in addition to averaging RMS values obtained by window stepping.  A 

more accurate method would be to identify the channel and deconvolve the channel to 

obtain an approximation of the source signal without channel-induced distortion. 

[51,60,61,97]  However channel estimation and deconvolution of the signal is 

computationally intensive and therefore avoided for purposes of the SSE. 
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4.2.1 Acoustic Signals 

Noise due to Environmental Conditions:  

 

Wind (Flat Open Terrain):  Noise due to wind or turbulence distorts acoustic signals.  

Examples of such distortion include dilation effects.  Dilation is a form of noise that 

introduces frequency, and amplitude offsets that may give erroneous classification / 

identification.  It is therefore best to turn acoustic sensing off in windy situations since 

confidence measures would be low. 

 

Echo (Mountainous Terrain):  Acoustic signals sensed in mountainous terrain have 

replicas of reflected signals that arrive at sensor nodes with a time delay.  These multi-

path components are aligned and combined by array-processing or beamforming 

algorithms.  However, when these computationally intensive methods are not present, a 

combination of time-frequency information along with the time domain SSE could be 

utilized to increase confidence in results. 

   

4.2.2 Seismic Signals 

 

Rain / Snow (Atmospheric Effects):  Rain causes ground conditions to change 

drastically especially on seismic sensors located in clay ground, or situated in dense 

foliage that would keep water resident much longer than desert sand.  Channel 

characteristics also change in snowy conditions that would distort and have nulling 
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effects on sensors buried in the ground. [50]  In these situations, sensors should be looked 

at closely with time-frequency effects along with accuracy readings obtained during 

classification / identification.  Therefore to have a generic tree structure, it is essential to 

train the algorithm, and create the template tree with signals obtained from different 

environmental conditions as performed in Chapter 6 of this dissertation. 

 

4.2.3 Infrared Signals 

 

Thermal gradients (Atmospheric Effects):  Thermal gradients existent in the channel 

medium introduce noise in low frequency infrared signals causing feature set loss.  When 

contrasting thermal gradients are present in LOS (line of sight) signals, the obtained IR 

signals are fuzzy or distorted.  Presently infrared signals are used as a triggering 

mechanism to awake the SSE from sleep mode.  When thermal gradients cause LOS IR 

signals to be distorted, other modalities such as seismic signals should be used to awake 

the SSE by a threshold trigger mechanism. 

 

Foliage ( Line Of Sight ) :  Low frequency infrared signals form the core for triggering 

the LOS (line of sight) signals and helps in the detection of thermal gradients originating 

from the source.  However, in dense foliage, signals are distorted considerably due to 

environment sensitive vegetation conditions that make the signals hard to detect or to be 

used as a trigger mechanism.  The above characteristics would make IR sensors hard to 
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use and therefore other means such as seismic signals should be used to trigger sensing 

from sleep state. 

 

4.2.4 All Signals 

 

Lightning:  Lightning and other circuit effects introduce glitches on the signals that need 

to be eliminated by the SSE algorithm.  Glitches are either detected ahead of time and 

eliminated during calculations of average RMS or excluded during pre-processing of the 

signal.  This could be obtained by introducing a threshold discard during average 

AARMS / MARMS calculation. 

 

Glitches:  Many sensor readings exhibit random glitches that need to be acted upon 

during signal pre-processing.  These random occurrences caused RMS variations, and 

special handling of the glitches were derived and implemented in the SSE algorithm.  

Circuit effects, or EMI and environmental effects such as lightning cause glitch.  Test 

signals with intentional glitches were used to understand SSE’s SCIA algorithm’s 

behavior.  However, classification / identification results remained accurate even in the 

presence of glitches.  This is due to the following feature in the SSE: 

- threshold elimination of windowed signal segments during RMS calculation. 

- Maximum Absolute RMS (MARMS) algorithm instead of AARMS. 

(definitions of MARMS and AARMS are given in Chapter 5, Section 5.6.3) 

- threshold elimination of low RMS values during MARMS. 
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These fixes were performed in the signal-processing module.  However, threshold 

elimination of adjacent low amplitude continuous samples gave even more robustness 

and fewer computations in the signal-processing module.  

 

Effect of Circuit Noise: 

Low frequency signals are dominated by flicker noise that is inversely proportional to the 

frequency of the sensed signal.  At the higher frequencies, thermal noise begins to limit 

performance, since it dominates over flicker noise and introduces a relatively flat and 

linear frequency noise effect.  Circuit system analysis already accounts for noise effects 

in designs; therefore, we use a macro system model and include these noise effects with a 

zero mean AWGN with variance σ2.  Noise is introduced depending on the frequency of 

the signal. 

 

 

4.3 Classification / Identification of Test Signal Set 

 

The test signal set that we created was used to test for classification / identification using 

SSE’s SCIA algorithm.  Occasionally, we used acquired real world signals to obtain full-

coverage of the test signal set.  The test signal set was initially clustered into individual 

sets as described in 4.1.1 – 4.1.3, with results obtained by initially picking correlator 

templates.  Once correlator templates were selected, testing was done by separating the 



 118

signals into different classes and thereby obtaining classification and identification on the 

signal sets. 

 

4.3.1 Template Selection for Classification / Identification 

 

Signals used for selection of correlator templates were from a training set that mutually 

excluded test signals.  Correlator segments were initially chosen for classification, and 

later for identification.  Template selection algorithms, described in Chapter 5, were used 

in selecting correlator templates. 

 

Template selection for classification of the test signal set was done separately for single 

frequency, multiple frequency, and wideband signals.  Following the selection of 

templates, test signals were performed on the selected correlator templates with mutually 

exclusive signal sets from a combination of single, multiple, and wideband frequency 

signals.  Correlator templates were picked from a subset of created signals comprising a 

training set.  The signal used to pick the template was excluded from the test signal set.  

Investigated signal sets comprised of phase and SNR variations of  

      0  ≤  ∆φ  ≤  π           ( phase ); 

0 dB  ≤  ∆ψ  ≤  20 dB    (zero mean AWGN noise with variance σ2); 

which were used to measure the robustness of SSE to frequency, phase, and noise 

variations. 
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Confidence on the classification is derived from previous runs on initial training sets, and 

is updated based on performance of known test signal sets, following repeated runs using 

those signals.  The selection of correlator templates, along with identification / 

classification boundaries are obtained with exhaustive tests on created signals (now 

included in the training set). 

 

Selected correlator templates were investigated with histogram plots output from the SSE 

in order to determine the optimal choice of correlator window for different signal 

parameters and signal variables.  In the initial implementation, a graphical view of the 

effects of the algorithm is provided, without any signal pre/post processing.  This is 

essential to minimize signal parameter dependence on correlator templates.  A complete 

set of MATLAB scripts were developed for comprehensive full coverage during 

exhaustive correlator picks and SSE test runs. 

 

4.3.2 Classification / Identification on SSE 

 

A multi-tier correlator pick algorithm is followed using a multi-step (module) procedure, 

where the first tier is for classification and the leaf templates for class subset based 

classification or identification purposes.  Template picks followed algorithms mentioned 

in Chapter 5.  Identification could further be extended with a broader signal category 

such as real-life signals as demonstrated in Chapter 5. 
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4.4 Results on Test Runs 

Created signals were used to test the SSE extensively.  Different cases were tested 

methodically, while SSE modules were optimized to improve performance.  A summary 

of the key results of the SSE is shown below along with the methodology. 

 

4.4.1 Identification 

Identification of signals was performed with one, and two hierarchies, and could be 

extended to multiple hierarchies in real word identification SSEs.  Initial one tier 

correlator templates were created by clustering similar signals together (i.e. single 

frequency, multiple frequency, wideband) taking into consideration similarities in 

frequency range / separation, harmonics, bandwidth, and event repetition.  

 

First Tier selection:  First tier selection of correlator templates is for generalized 

classification (i.e., single frequency narrow band, multiple frequency narrow band, 

wideband in the particular test signal set.)  Correlator template picks were made for each 

training signal with auto or self correlation over the signal.  The top three-correlator 

templates were chosen and used for classification algorithm runs on known (created) test 

signals.  Each test signal from the training set had its top three template picks, for the 

particular class of signals. 

 

Second Tier selection:  Second tier correlator template picks are for the first step in 

identification.  First tier templates could be contained as a subset of the second tier 
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correlator template superset.  A tree can be built from the 1st tier, and 2nd tier correlator 

signal sets.  In real world SSE implementation, this is the first step in building a tree as 

discussed in Chapter 6. 

 

4.4.2 SSE Runs on Test Signals 

 

Test signal runs were performed on signal sets systematically, to investigate behavior of 

the following on the classification / identification results: 

i. Amplitude variation of signals. 

ii. Phase offset / noise effects on signals. 

iii. Template window size variation. 

iv. Channel medium noise effects on signals. 

v. Stepping size of template window. 

A summary of results of the investigation is given below.  Customized algorithm modules 

for classification / identification of moving objects is explained in Chapter 5, while run 

results are investigated in Chapter 6 on real world moving object waveforms from 

acquired acoustic and seismic signals.   

 

i. Amplitude Variation. 

Signals were modeled to include amplitude variations as observed by the sensors with 

amplitude dependence corresponding to signal strength.  This is the case when sources 

are present at different distances from sensor nodes.  These variations occur during signal 
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propagation through the channel, or due to multiple time delayed replicas arriving at the 

sensor node due to multi-path where time delayed version of the signals contribute to 

amplitude.  This effect also occurs when signal sources are at different distances from 

sensor nodes.  SSE robustness was investigated to see whether the signal amplitude 

variation had any effects on the classification or identification results (CIR).  It was 

observed that the windowed signal normalization module in the SSE mitigated the 

amplitude variation of the signal.  This normalization step provided the same values for 

averaged RMS values that resulted within the CIR boundaries.  The SSE results were 

consequently robust to amplitude variations. 

 

ii. Phase offset / Noise Effects on Signals. 

Many classification / identification methods are sensitive to phase offset / noise effects on 

signals.  This is an important phenomenon and therefore needs to be investigated 

thoroughly.  Test signals with phase offset included in the test signal set gave no 

difference in the RMS values of the SSE.  This is due to the overlap of window stepping 

during RMS calculations and eventual averaging during AARMS / MARMS calculations.  

It was concluded that averaging and stepping the signal mitigates dependence in phase.  

This result indicates that the SSE is robust to phase offset, and therefore any phase noise 

occurring in sensor arrays has no effect regarding phase in a generic template.  Thus the 

SCIA utilized in distributed classification / identification could have the same templates 

in adjoining nodes. 
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Figure 4. 5  High frequency (180 Hz) phase offset behavior of SCIA. 

 

 

Results shown on the histogram plot of Figure 4.5 have a 32-sample length correlator 

template.  Phase offset is introduced on signals to observe phase mismatch behavior of 

the SCIA.  Results show correct identification of signals with frequencies within a 10 Hz 

range to that of the correlator template, depicted by AARMS scores that are close to the 

correct frequency content of the signal. 
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The histogram of Figure 4.6 shows results of SSE identification for a low frequency 

signal.  It is inferred here that correlator templates could have a window of less than one 

wavelength.  This is a crucial finding since it eliminates long correlator templates for low 

frequency signals minimizing computational costs.  Phase offset is investigated here with 

a 32-sample template that identifies 20Hz signals correctly. 

 

Figure 4. 6.  Low frequency (20 Hz) phase offset behavior of SCIA. 

 

iii. Template Window Size Variation 

SSE window sizes need to contain as few samples as possible to be low power.  The SSE 

algorithm was investigated to find the minimum number of samples on templates with the 

mentioned sample parameter variables.  Tests were carried out methodically to see what 
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the effects of reducing the window length would be to increasing noise on signals, along 

with phase offset and wavelength.  The following observations were found: 

- RMS scores are scaled according to the size of templates. 

- Number of template samples required for correct identification / 

classification increased with increasing noise. 

- It was found that a template could have less than one wavelength; 

however, results were quite distinguishable as more wavelengths were added 

to the template, and fell well within the range of decision boundaries. 

 

          
              Figure 4. 7 SSE identification with a 64 sample length correlator. 
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Window size variation effects were investigated on test signals to study the identification 

performance while minimizing computational costs of the SCIA.  Figure 4.7 results show  

SSE identification with a 64-sample correlator template.  RMS scores clearly distinguish 

this signal from training signals in the same frequency neighborhood.  This particular 

correlator template is good for identification rather than classification since it clearly 

distinguishes the correct signal from that of adjoining frequency signals, clearly 

identifying the target.  An RMS score of 23 is obtained for this identification. 

 

 

Figure 4.8 shows a 32-sample correlator template with a RMS score of 12.5.  It 

could be seen that when the window size is made smaller, the RMS score is scaled 

accordingly.  Decision boundaries are scaled similarly for different correlator 

Figure 4. 8  SSE identification with a 32 sample length correlator. 



 127

template sizes.  It is inferred from the above study that signal window length is 

signal type specific and therefore should be optimized for each signal type (i.e. 

acoustic, seismic, infrared). 

 

iv. Channel Medium Noise Effects on Signals. 

 

Signal channel and medium noise effects were investigated with window sizes, 

and stepping.  The investigated signals showed good results with noise up to 3 dB.  

However, with signals spaced widely in frequency, SNRs of up to 0 dB could be 

identifiable / classifiable.  Required correlator template sample sizes were twice 

that of what was required for 4 dB SNR.  It was also found that SSE was more 

robust to noise compared to many other parametric identification schemes, and 

was formidable in properly identifying signals which had wideband 

characteristics. Noise performance on the SSE is superior due to segmentation 

that eliminates low SNR components of the signal while reducing variable signal 

parameters.  AARMS / MARMS of the windowed signal RMS values further 

makes the SSE robust to noise.  Results in Figure 4.9 show SSE performance to 

signal noise effects.   Histogram plots show low noise signal identification using 

the SSE.  It is seen that for a high SNR signal, RMS scores are much higher than 

that of its low SNR counterpart.  The signal conditioning / pre-processing module 

effectively handles this variable by selecting high SNR signal samples, while 

avoiding low SNR samples.  This is performed in many ways by the signal pre-
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processing modules.  A combination of threshold range selection and signal 

windowing eliminates low SNR signals.  

 

 

 

 

 

 

Figure 4. 9SSE performance with high SNR ( 20dB ) signals. 
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Figure 4. 10.  SSE performance with low SNR ( 0 dB ) signals. 

 

The histogram plot of Figure 4.10 gives results of signals with SNR of 0 dB.  It could be 

seen that during identification of lower SNR signals, RMS scores are lower compared to 

higher SNR signals.  It is also evident that the results are close and falls in the boundary 

regions when low SNR signals are present. 
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v. Stepping Size of Template Windows. 

 

Window stepping distances are varied and their results observed.  Window movements 

with 1 window stepping were observed to give a complete set of identification / 

classification at the cost of high computational power.  Variable step size results were 

then compared to that from the 1-step RMS score as the reference.  Arrays of steppings 

are observed and results compared.  Steppings were set at a rate of {1 ≤ step size ≤ 

(Window Length of Template - 1)} samples. It was found that the smaller the spacing the 

better it was in avoiding phase offsets, as well as in detecting special features present in 

samples. 

 

The following shows SSE classification runs with different stepping distances.  The test 

results indicate that stepping distances are more application specific. This can also be 

observed in real world signal runs in Chapter 6.  The following graphs show results on 

test signals. 
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Figure 4. 11  Window stepping sample effect on RMS during signal correlation. 

 

 

Figure 4.11 shows identification with different window sample steppings.  To obtain 

minimum computation cost application specific maximum stepping sample sizes are 

obtained.  Stepping of correlator template window along signal samples depends on 

signals types under consideration.  It is a necessity that window stepping be customized 

for low power depending on sensed signal characteristics for specific applications. 
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Figure 4. 12   SSE performance with an optimized stepping for minimum power computation. 

 

 

Figure 4.12 shows SSE identification with a smaller correlator template and different 

stepping compared to Figure 4.11.  It was observed that the bigger the template sample 

size and the smaller the stepping size, the better the results at the cost of computational 

power.  For low power operation, it is optimal to have a smaller template size compared 

to that of a bigger template window sample size with optimized maximum stepping. 
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4.4.3 SSE Runs on Real Signal Sets 

 

Results from test runs showed a very superior performance in detecting signals.  SSE was 

found to be robust to many signal parameters namely signal strength, phase variation, and 

channel noise exhibiting errors of 2-5% during low SNR signal identification / 

classification but  otherwise showing almost  100% accuracy.  A combination of signal 

segmentation into state spaces, in addition to SCIA modules that perform AARMS / 

MARMS contributed to these excellent results. 

 

Having obtained excellent results from SSE runs, the MUSIC and Pisarenko parametric 

methods were tested with a similar signal set to compare with SSE identification.   

 

 

 

4.5 Comparison of ‘Music’ / ‘Pisarenko’ Method for  

Identification / Classification 

 

SSE performance with a test signal set was compared and benchmarked with the 

parametric methods namely “Pisarenko” and “MUSIC”.  The Pisarenko and MUSIC 

methods are two of the earliest forms of parametric spectral analysis for complex signals. 

[57]  They are used for time-frequency, spatial-transform domain spectral analysis.  One 
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of the features of identifying and classifying data is a study of the signal spectral contents 

and its match it with a known spectral feature existing in a codebook.  Since the signals 

received at a sensor node or monitoring antenna have many variables, the robustness of 

the identifying or classifying method needs to be studied with the above parametric 

methods similar to that of the SSE signal tests. 

 

The studies of both methods were conducted with signals having various SNRs, 

amplitude variations, phase shifts, and different number of sources present as parameters.  

Each parameter is considered separately at particular noise levels similar to the SSE tests, 

and their limits were obtained. 

 

It has also been found that these parametric approaches have often outperformed the 

interpolated FFT algorithms for short data records. [30]  The two methods considered 

were taken for a particular sample length (25 samples) with 10 time averages with much 

lower computation power requirements compared to the SSE signal set.  A smaller 

sample set than that used with the SSE was used to test the parametric methods.  A 

sampling frequency of 1 KHz was used to create signal data with distinct frequencies in 

the range of 300-400 Hz.  The limiting parameters were obtained by running tests on the 

algorithms many times.  A sample set similar to the SSE signal set is used for parametric 

identification analysis of the ‘MUSIC’ and Pisarenko methods. 
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4.5.1 Noise Variations 

 

Signals with two frequency components are considered to evaluate robustness in 

distinguishing spectral contents from noise variation.  Two different cases were 

considered.  In one case, the signals had frequency components that were far apart; in the 

other case, the signal had closely spaced frequency components.  The signal-to-noise 

ratio (SNR) ranged from 20dB to –3dB. 

 

When the frequency components were well separated (f1=200Hz, f2=400Hz) the noise 

variation did not affect the detection all the way up to an SNR of 0dB.  Fig.4.13 shows  

 

Figure 4. 13  Results from runs with noise on well-separated and close frequency contents. 
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the distinguishable spectral contents that can be clearly detected with high precision.  The 

noise tolerance of the MUSIC method for well-separated frequencies even at very low  

SNR is evident, allowing for proper detection even in noisy environments. 

 

Having obtained the results for the case with well separated frequency components, the 

second case investigated was that of a signal that had two different frequency 

components close together (f1=300Hz, f2=320Hz).  The detection process was effective 

up to an SNR of 8 dB as illustrated by Figure 4.14 on the comparison of the ‘Pisarenko’ 

and MUSIC methods.  With further degradation of SNR, the MUSIC method gave a 

slightly better outcome than the Pisarenko method, though the spectral contents were not 

entirely prominent from inspection of test results. 

 

From the above results, it is concluded that this approach is a good technique to detect 

narrow-band signals but would not be useful for wideband signals, with closely separated 

frequencies. 

 

4.5.2 Amplitude Variation Effects 

 

The second interesting case that was studied is that of two signals, each with independent 

frequency components, but having different amplitudes.  The detection of multiple 

sources with different SNR was tested using the MUSIC and Pisarenko methods.  The 

test cases were built with amplitude ratios of 20:1, a dominant signal having a 20-fold 
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strength as compared to that of the less dominant signal.  This is the case when one of the 

sources is close to the sensor while the other is farther away.  When the source 

frequencies were far apart with a SNR of 8dB, the two distinct frequencies were clearly 

detectable.  However when the dominant  amplitude is five times  higher than the non-

dominant one, both frequencies could be detected with the Pisarenko method, whereas 

the MUSIC method did not allow for proper detection.  When the amplitude ratio was 

further increased, only one frequency component was detectable, while the other was 

lost.                 

 

The detection process with the amplitude ratio as a variable was considered for two close 

frequency components as well.  For the case of 0 dB, it was possible to detect the two 

distinct frequencies when the amplitude ratio was 2:1.  The Pisarenko method gave a 

better resolution though the MUSIC method gave a peak range between the two distinct 

frequencies as evident in Figure 4.15.  When the amplitude ratio was 5:1, both methods 

are limited by their resolution, allowing detection of only the dominant frequency as seen 

in Figure 4.15 with Pisarenko and MUSIC methods.  Thus, it can be concluded that 

detecting sources with differing strengths under low-SNR conditions will cause problems 

for the weak signal.  For this reason, detecting multiple sources would not be trivial if the 

signal strengths vary. 
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Figure 4. 14 Analysis of signal strength on closely spaced and well separated signal sets.     
 

4.5.3 Phase Variation Effects 

 

Phase variation in the signal is an important parameter, which would significantly 

influence the proper identification of the source.  Most spectral detection methods are 

very sensitive to phase changes.  Hence, robustness of the Pisarenko and MUSIC 

methods to phase variations was evaluated.  A phase difference ranging from π/4 to π 

was used for the phase offset. [30] 

 

When the signals were far apart, it was evident that the two distinct frequencies could be 

detected without any frequency resolution being lost, even with a low 0 dB SNR. 
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Figure 4. 15  Effect of phase distortion on signal set. 
 

The performance of the signal with close frequencies was more dependent on noise than 

the phase variation. When the signals were shifted by π, the ones with 8 dB SNR gave the 

correct distinct frequency, whereas for 0 dB SNR, both methods gave a frequency band 

between the two distinct frequencies of the source.  Thus, it is inferred that though the 

MUSIC and the Pisarenko methods are very robust to phase shifts, its performance is 

based on the SNR.  In comparison, SSE’s close frequency signals were detected even 

with a low SNR of 4 dB.  Thus, the SSE is more robust to phase shifts, and noise content 

compared to that of parametric signal identification, using MUSIC and Pisarenko 

methods. 
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4.5.4 Multiple Source Identification 

 

Some of today’s common applications include the detection of the presence of multiple 

sources. Since the number of sources present is usually unknown, the need to find 

methods to identify the frequency contents of all the sources is high.  It resulted in an 

erroneous detection, for cases with both close and widely separated frequencies. When 

the frequencies were far apart, it was still not possible to see any distinct frequency.  This 

incorrect prediction is as expected, since the algorithm used was designed to detect only 

when two or fewer sources are present. 

 

When the two frequencies were close together, it gave an incorrect detection of a single 

frequency that was not part of the three frequencies present in the input signal.  These 

erroneous results indicate that the Pisarenko and MUSIC methods can only be used when 

the number of input sources is known. This design can be implemented using more 

matrix properties of Pisarenko and MUSIC methods. If the numbers of sources are 

unknown, the design should be implemented with a larger number of sources in mind.  

The results validate the fact that the parametric approach does not work when the model 

order is incorrect, at which time adaptive ordering algorithms should be considered. 

 

4.5.5 Summary of finding of ‘MUSIC’ and Pisarenko Identification 

The Pisarenko and the MUSIC methods were shown to be efficient tools for the detection 

of discrete frequencies in low-noise situations. Thus the behavior needs to be tested under 
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such realistic conditions, to check their feasibility specifically for acoustic, seismic, 

infrared, and EKG applications.  One method is to decompose these frequency band 

signals into discrete frequency components and use the Pisarenko and MUSIC methods to 

find the threshold of frequencies present, thereby giving a good classification of the 

incoming data.  Though this concept may be conceptually correct, its feasibility is yet to 

be seen. 

 

This detection method is mainly for stationary signals and it may be extended to non-

stationary signals with the help of snapshots, at time instances for it to achieve stationary 

behavior.  Further, this method should be extended to be robust relative to the number of 

sources present by following adaptive ordering techniques especially to be tried for 

wideband signals where the discrete frequency spectrum could be modeled with a comb 

train with variable amplitudes.  One form of source finding would be to use beam-

forming techniques and then separate the signals and focus on an individual source rather 

than changing the algorithm altogether for multi-source identification. 

 

The above parametric methods are weaker compared to the SSE in identification of 

closely spaced signals.  They further have erroneous results for low SNR signals.  It was 

also observed that the dominant signal could be easily detected whereas a signal with less 

strength could be lost as a noise component.  SSE performance was more robust to low 

SNR signals, and had higher accuracy levels in comparison to parametric identification.  

It should also be pointed out that the parametric methods could not detect multiple 
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sources when the number of sources was more than the algorithm initial design assumed.  

However, the SSE algorithm performed well in detecting multiple source model signals, 

while being more robust to noise. 

 

4.6 Summary 

 

Test signals were created with various parameters and tested extensively on the SSE.  

Performance of the SSE to amplitude, noise, phase offset, template window size 

variations, and window stepping distance was investigated.  It was concluded that the 

SSE accuracy was very good for the test signal models, with a 2-5% error on low SNR 

(0dB) signals and correct identification of signals with higher SNR.  SSE performed 

similarly for phase distortion.  Signal strengths were irrelevant to the SSE due to it having 

a signal window normalization module.  Template window size did give a scaling on the 

RMS values.  However it fell within the range of classification / identification 

boundaries.  Investigations also revealed that the templates consisting of less than one 

wavelength (with distinct features) were successful in identifying or classifying the 

signals successfully. 

 

A comparison of signals with parametric approaches revealed that the SSE performed 

much better in noise, with high identification accuracies.  Benchmarking of created test 

signals was done with the Pisarenko and MUSIC methods.  SSE’s performance was a lot 

more accurate in detecting multiple source presence.  It was also concluded that 
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‘MUSIC’, and Pisarenko methods were not able to detect wideband, or closely separated 

narrowband signals (low SNR), whereas the SSE was more suited for this case.  

Benchmarking of SSE with that of the competing signal identification methods was also 

done with real world signals and is presented in Chapter 6.  
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CHAPTER 5 

 

Classification & Identification Algorithm for SSE 

 

5.1 Introduction 
 

The Signal Search Engine (SSE) for Wireless Integrated Networked Sensors (WINS) 

receives signals with many environmental, situational, and conditional signal effects.  

Therefore, it is necessary to pre-process signals before the Signal Classification / 

Identification Algorithm (SCIA) becomes active.  Many of today’s wireless sensor 

networks require low power, high capacity, high-throughput, robust algorithms to 

incorporate a multitude of signals for classification and / or identification.  This chapter 

includes a description of how pre-processing of signals is undertaken before activating 

the SCIA along with the variables that are acted upon to reduce signal variables.  The 

SCIA algorithm performed well in identifying and classifying moving sources, as well as 

a multitude of narrowband sources with the addition of the pre-processing module.  



 145

Results obtained from real world signals are presented in Chapter 6, along with correlator 

template selection, classification / identification, and decision-making. 

 

The SSE algorithm deals with a broad range of signals that include customized 

application specific modules.  Here we concentrate on classification and identification of 

moving sources, that has the most complex waveforms with a multitude of signal 

variables.  Other less complex signal waveforms can be classified and identified with this 

SSE algorithm with the addition or elimination of application specific modules.  This has 

been proven with created signal models as seen in the previous chapter.   

 

A two-step approach is taken in explaining the signal classification / identification 

scheme.  The initial step is signal pre-processing.  In this module signals go through noise 

reduction, segmentation and are assigned to state spaces.  Signal segmentation is a crucial 

module of the SSE, and is designed using a state-space approach.  The SSE algorithm 

exploits state-space information for proper classification / identification that was 

unrealistic in the time domain before the addition of this method.  Once signals are 

decomposed into different state-spaces, they are fed into the SSE and are parallel piped 

into state-dependent processing modules.  This parallel processing activity is more 

intense when signal state types are present along with state spaces as in cases of M-SSE.  

Multi-sensing sensors are assigned state spaces dependent on state types for acquired 

signals.  State space assignments were a crucial breakthrough for proper classification / 

identification with enhanced accuracy levels as seen from results presented below. 
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Once these signals are submitted for parallel processing, they undergo signal 

classification or identification according to the customized SSE / M-SSE modules.  The 

SCIA algorithm properly classifies and identifies signals according to ‘Type Abstraction 

Hierarchy’ (TAH), or ‘Type Identification Hierarchy’ (TIH) depending on client / user 

requirements. It properly traverses the TAH or TIH tree designed with a training set.  A 

method of choosing the correlator templates and building the tree is shown in Section 5.5 

of this chapter. 

 

State space assignments are accomplished in many different forms.  Figure 5.1 shows an 

example of state-space dependent signal pre-processing along with parallel SCIA for  

 

Figure 5. 1.  State-Space approach to SSE event Identification / Classification. 
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source identification and classification.  Signal pre-processing assigns state spaces to 

signals depending on application needs.  A moving vehicle waveform will have state-

spaces such as approach, arrival, and departure assigned to it.  Furthermore, condition- 

based maintenance sensor readings associate lifetime with the observed phenomena (e.g.  

brake change / maintenance levels assigned  state1: up to 10 K miles,  state 2: 10-20K 

miles …etc.).  The state-space based approach to SSE gives more modular control, and 

methodically divides and conquers signal redundancies. 

 

Once classified, the results undergo confidence measure assignment as shown in Section 

3.4.3 of Chapter 3.  The decision making process is explained in detail for both 

‘distributed’ and ‘centralized’ architectures in section 3.5 of Chapter 3. 

 

The implemented time-domain algorithm was obtained and modified while 

experimenting with complex signals that had a multitude of signal variables.  The 

complexity of signals becomes more pronounced especially with moving sources.  This is 

the case when sensor readings do not have information such as location, or other 

variables such as speed.  When such information is not available, these complex signals 

cannot have high precision-specification requirements such as the identification of 

vehicular speeds, or angle of approach.  Contrary to the above, if there is a requirement 

for determining vehicular speeds or angle of arrival, time-frequency information can be 

exploited to obtain the requested information.  The SSE algorithm by itself gave excellent 

results from SSE runs without time frequency information.  Present day tracking 
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algorithms obtain speed information using source localization and identification.  An 

explanation of why time / frequency information needs to be exploited for high precision 

identification / classification is shown with time frequency spectrogram results obtained 

from real-world sensor readings.  These waveforms are studied to investigate sensed 

waveform behavior in sections 5.2.1 – 5.2.5, and were initially used to find moving 

object waveform characteristics. 

 

5.2 Moving Source Variables 
 
Special concentration is directed at identifying and classifying moving object waveforms 

because numerous variables are present in the acquired signals. [46, 56]  These 

waveforms are methodically segmented and decomposed into state spaces to diminish 

signal variability while optimizing for low power.  Signal variables that are dominant in 

moving source waveforms are described below with an introduction to the state space 

concept for SSE.  Spectrogram plots are used to study signal characteristics and model 

them mathematically, while observing time –frequency behavior.  However, spectrogram 

plots are not included in the SSE, where time –frequency behavior is calculated in the 

time-domain.   
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Figure 5. 2. Moving source waveform with state-space decomposition. 

 

5.2.1 Doppler Shifts 
 

Moving objects exhibit frequency dependence relative to time.  Frequency variation 

relative to time is dependent on the velocity of the moving object (direction relative to the  

sensor gives scaling in speed of the vehicle) and causes Doppler effects.  Doppler 

frequency shifts need to be detected initially and mitigated by pre-processing to diminish 

the effect of rapidly varying  frequencies over short periods of time.   One of the main 

functions of the signal pre-processing algorithm is to reduce these redundancies.  Fast 

frequency variations cause widespread and non-conclusive variation in algorithm results, 

and thus need to be acted upon before the signal reaches the SCIA. 
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Moving objects present additional signal variables that are mitigated by the state space 

approach shown in Figure 5.1 and by the use of signal segmentation and state space 

assignment shown in Figure 5.2.  Such pre-processing and signal segmentation not only 

mitigates the Doppler effect to a certain extent, but also eliminates other dominant 

variables that are discussed in section 5.2.2 – 5.2.5.  When signal segmentation is not 

present, frequency variation within the same signal is dominant and therefore produces 

significant effects that make classification and identification unreliable.  The following 

methods are considered to reduce Doppler shifts due to vehicular movements: 

 

- Signal segmentation into approach, arrival, and departure state spaces for 

moving sources. 

- Choosing ‘correlator’ templates in the highest SNR region within average 

frequency limits, between the highest and lowest frequency band for each 

individual state-space. (i.e. using time–frequency information for the arrival 

phase (CPA: Closest Point of Approach) to find frequency regions to choose 

the correlator template where Doppler shift is minimal.) 

- Including phase variation mitigation efforts in the SCIA. 

- Including time-frequency spectrogram information during pre-processing 

(before signal segmentation) where any abrupt frequency changes are 

identified and segmented into sub-spaces.  However, use of time frequency 

information is feasible only with sensors with a reliable energy supply or 
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during off-line training.  Low energy wireless sensor nodes to the contrary use 

time domain equivalents corresponding to time-frequency information.  Time 

– frequency information is further decomposed into sub-spaces where source 

gearshift information could be included in the correlator template tree for 

more precise identification. 

 

Figure 5. 3.  Time-Frequency behavior showing Doppler effects on high-speed (30 km/h) source raw 
data. 

The above methods were used to pre-process and post-process signals obtained during 

real world signal acquisition.  A training set was utilized in an extended study for features 

present in moving sources that helped in refining the SCIA. 

 

Figure 5.3 shows the presence of Doppler on a moving heavy wheeled vehicle at 30 

km/h.  Acoustic microphones sensing these signals were located at a distance of 25-100m 

from the moving source.  The presence of rapid frequency variation is reduced by the 
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state space approach implemented in the pre-processing module.  The same vehicle 

traveling at a lower speed of 15 km / h shows minimal Doppler as depicted in figure 5.4.  

However, even the presence of minimal Doppler is averted during state-space 

segmentation, and is one of the fundamental building blocks for accurate classification 

and identification in the time domain. 

 

 

 

 

Figure 5. 4. Time-Frequency behavior showing minimal Doppler effects on low-speed (15km/h) 
source data. 
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5.2.2 Abrupt Frequency Loss / Gain 
 
 

Abrupt frequency changes in source waveforms create perturbation or loss of continuity 

in the signal waveform that causes inconclusive or erroneous results to show up during  

classification / identification with SSE / M-SSE.  Abrupt frequency changes are common 

during gearshifts in moving sources due to changes in road conditions or obstacles in the 

path of travel.  When a moving source encounters a random obstacle in the form of a 

ditch or bump, this obstacle causes either gearshifts or slowing of the source that affects 

signal parameters. Some of these situational circumstances prompt the moving source to 

make adjustments in motion in the form of gearshifts (sometimes introducing some 

multiple quantity gear down/up shifts) that introduces multiple Hz of frequency loss or 

gain. 

 

A study of time frequency information points to a 3 – 7 Hz frequency drop during one 

gearshift (up or down) with linear increases for multiple shifts.  These abrupt changes call 

for further state-space decomposition of the signals into sub-spaces.  Segmentation of 

signals into sub-spaces is a necessity for precision classification / identification (i.e.  

classification / identification with vehicular speeds).  Figure 5.5 shows abrupt losses and 

gains in frequency during the 99-100 sec. interval and again during the 101.5 – 102.5 sec. 

time interval.   
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Figure 5. 5.  Abrupt frequency loss / gain as seen by an acoustic microphone in a moving source. 

 

Time / Frequency spectrogram information (on raw data) is exploited to find abrupt 

frequency changes due to the above-described scenarios including Doppler shift.  These 

situations show a 3 - 7 Hz or more drop in frequency within a short time period             

(∼∆(t) -> 0).  Frequency drops in raw signal data are segmented into state-space 

components in the classification tree.   Subdivisions of these signals  are separated into 

state sub-spaces for identification.  Though minor in affecting the outcome, segmenting 

signals when abrupt frequency changes occur enhances the confidence measure 

considerably and minimizes errors in classification and identification results. 
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5.2.3 Directional Change in Path of Travel 

 

The speed of the vehicle does relate to frequency variation through Doppler shifts.  

However, the effects of directional change of motion in path of travel further affect 

parameters such as angle of signal arrival at each sensor and scaling of source frequency.  

Vehicular speeds are closely coordinated with vehicle gear segmentations, and the axis of 

source travel.  When sensors are stationary, (unlike mobile sensors) moving sources 

having the same speed but taking different paths exhibit path dependent Doppler 

frequency shifts. [26]  Figure 5.6 shows the same vehicle taking different paths.  The 

angle of arrival of a wideband source waveform is shown for cases where the distance of 

travel is the same (d1 + d2).  Doppler for the above case is derived as shown below: 

 

Case 1:  When the source is approaching the sensor with a speed of   ν km/h, the wide-

band Doppler shift  dΓ is: 

1  1 sin    θν
w

d
D

=Γ      ( 5. 1 ) 

where wD is the wavelength of a dominant narrowband frequency and 1θ  is the angle of 

wideband signal waveform arrival at the sensor node.  
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Case 2:  When the source is away from the sensor at a distance (d1 + d2) traveling at 

  ν km/h: 

1  )21 sin       ( θν
w

dd
D

−=Γ +      ( 5. 2 ) 

The above equation is symmetric with equation (5.1) above, but shows a decay when the 

source travels away from the sensor. 

 

1θ1θ

2θ

distance d distance d

distance d

Case 1: 
Source 
Speed ν 

Case 2: 
Source 
Speed ν 

Case 3: 
Source 
Speed ν

Figure 5. 6.  Doppler from same source moving in different directions. 
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Case 3:  This case pertains to a source that travels in a different path, but has moved the 

same distance as that of case 2.  Here, the reference angle contributes to a slower 

frequency decay than that of case 2 and is given by the following equation 

2  )21 sin       ( θν
w

dd
D

−=Γ +     ( 5. 3 ) 

Equations (5.1) – (5.3) show path dependent Doppler shifts that were observed in 

analyzed signals.  State space segmentation was used effectively to eliminate these 

redundancies and was effective as seen in results to be presented in Chapter 6. 

 

 

 

Figure 5. 7.  Shows an acoustic microphone detected time-frequency information.  
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Figure 5. 8.  Seismic geophone detected time-frequency information for the same run as above. 

 

Figure 5.7 and 5.8 show readings for an acoustic and seismic sensor for the same run.  A 

heavy tracked vehicle with a constant velocity of 15 km / h traveling in normal terrain is 

illustrated.  Acoustic signals were more sensitive to Doppler shifts and abrupt frequency 

loss / gain compared to their seismic counterparts.  The above readings are for the vehicle 

at the same distance away from both acoustic and seismic sensors with seismic readings 

showing a delay due to the threshold for sensing low pass seismic signals. 
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5.2.4 Glitches and Saturation of Sensor Readings 

 

Other occurrences of abnormal signal behavior are due to circuit effects on sensor 

readings.  Glitches, saturation, or other circuit disruptions may occur during sensor time-

outs or if sensing circuits are not tuned accordingly.  These glitches or discontinuities 

cause the algorithm to generate low threshold RMS values during classification / 

identification that fall in the gray area of decision boundaries.  This effect is corrected by 

the following methods that are used during calculation of the final threshold value. 

 

- Avoid data obtained during the presence of glitches and exclude them in 

correlator window calculation of average data.  Eliminating glitches is done 

with a thresholding operation observing a sudden loss of continuous signal 

amplitude gain followed by a sudden increase in continuous amplitude gain. 

 

- Have a signal conditioning system module to minimize the effects of glitch 

and discontinuities, without introducing phase offset, abrupt frequency gain / 

loss, or amplitude effects. 

 

- Detect uneven spikes or data corruption during the pre-processing stage by 

having a minimum and maximum threshold value for windowed segments to 

be process worthy.  This will help in determining signals that are above the 
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average threshold and in detecting uneven spikes (above a maximum 

threshold) that may exist in collected data sets. 

  

Figure 5. 9.  Saturated signal readings are avoided during signal pre-processing. 

 
 

- Avoid initial noise and initial signal accumulation segments where the SNR is 

low.  Have a threshold of 0 to 4 dB minimum SNR where signals are 

considered process worthy. 

Having discussed methods that mitigate the effects of glitches, we now present steps to 

avoid saturated signals at the CPA as exhibited in real world sensor readings.  Saturation 

occurs when the vehicle is nearest to the sensor and signal strengths are at peak level.  

Fine-tuning sensors is needed when this effect is observed.  However, saturated signal 

segments are excluded during signal pre-processing due to fine frequency features of 

signals being lost.  A threshold value of signal strengths for a maximum value is set and 
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any segment that shows signal amplitudes of greater than this maximum threshold is 

discarded during signal pre-processing.  Figure 5.9 shows a saturated seismic signal.  It is 

evident that the signal cannot be used to obtain features for identification / classification. 

 

5.2.5 Methods used to Mitigate Variables and Generalizations 

The above-mentioned variables are mitigated or handled by various pre-processing steps.  

Effective initial signal conditioning, along with various signal segmentation methods help 

to create a robust SSE.  Both frequency information in the time-domain, and time-domain 

signal data are exploited to achieve signal uniformity.  An explanation of block diagrams 

and their functionality give a description of what steps are taken during signal pre-

processing. 

 

5.3 Time-Frequency Observations 

 

Spectrogram plots were initially created to investigate and determine time frequency 

characteristics of the sensed signals. However they are not used in the SSE.  These 

spectrogram plots were used to investigate frequency behavior relative to time.  This 

information is more useful in real-world signals where signal frequencies tend to vary 

depending on source mechanics and dynamics.  These observations were transformed 

into mathematical formulas to model real world signal behavior. [2, 20, 22, 23]  The 

following equations model abrupt frequency gain / loss as experienced during situational 
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conditions in the path of travel.  A wideband source signal )(nSw sensed at the sensor is 

given by:  
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sources.  )(m
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Individual frequency gain and loss for m sources are given by matrices )(m
guΦ  and )(m

gdΦ  

respectively.  Again, the frequency gain and loss are variables that are dependent on the 

distance and speed of the source relative to the sensor. 

 



 163

; 

...
::::

...

...

,2,1,

,22,21,2

,12,11,1

)(





















=Φ

tm
gu

m
gu

m
gu

s
gugugu

r
gugugu

m
gu

fff

fff
fff

   ( 5. 7 )       ; 

...
::::

...

...

,2,1,

,22,21,2

,12,11,1

)(





















=Φ

wm
gd

m
gd

m
gd

v
gdgdgd

u
gdgdgd

m
gd

fff

fff
fff

   ( 5. 8 ) 

 

The time when these gear-up and down shifts occur is given by the time matrix )(m
guτ  and 

)(m
gdτ  for m sources.  Gearshifts are random depending on situational conditions and 

therefore are given as a variable with step functions that result in time-dependent matrix 

values. 
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Wideband signals consist of dominant narrowband frequencies as observed in time-

frequency information with the above information taken into consideration during signal 

decomposition into state spaces. 

 

5.4 Time Domain Processing 

 

5.4.1 Signal Segmentation 

 

An important feature of the SSE is signal segmentation.  Signal segmentation is required 

to reduce many signal variables and to create much needed uniformity and alignment 
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between ‘correlator’ templates, and corresponding signals to be detected.  Many of the 

signal variables are mentioned in sections 5.2.1 – 5.2.5 above.  Initial efforts to determine 

proper classification / identification were not successful in the time-domain SSE without 

signal segmentation since redundant parameters existed in the acquired signals that 

caused non-convergence. [40, 41] 

 

 

 

 

 

 

 

 

 

 

 

Signal segmentation is handled methodically using results acquired from both time-

domain time-frequency information and time-series data during offline processing of time 

series raw data from each wireless node.  Figure 5.1 presents block diagrams of the signal 

segmentation process.  Figure 5.10 shows decomposition of signals into state spaces by 

methodical signal elimination and segmentation.  State-dependent filter banks are 

associated with the windowing operation as a final step.  More precise classification and 

State 1 

State 2 

State N 

Eliminate Noise 
Components: Choose 

signals with SNR > 4 dB 

Eliminate Glitches and 
Saturated segments: 

Threshold based. 

Decompose signals into 
previously assigned 

State-Spaces. 

Obtain state dependent 
parameter information for 

state segment lengths. 

Filter signal segments 
into individual states. 

::::

Figure 5. 10.  Signal Pre-Processing associated with State Space decomposition. 
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identification could consist of sub-state decomposition that is beyond the scope of this 

dissertation.   

 

Once initial data processing is complete, each acquired signal undergoes data cleanup of 

each signal segment.  Acquired signals undergo elimination of noise components and the 

retention of signals with a higher SNR.  SNR requirements depend the sensor types and 

the associated source distance from sensors.  The signal envelope is detected initially for 

all acquired data samples.  The envelope is then used to clean data that have low SNR’s.  

A full set of signal samples is then processed for time-frequency information in the time 

domain.  This set also undergoes further time domain pre-processing before the SCIA 

algorithm is exercised. 

 

5.4.2 Methodology for Signal Segmentation 

Time-Frequency Information 

Pre-processed data undergoes processing of time-frequency information in the time 

domain using time evolving snapshots.  Analysis of time-frequency information was done 

with plots as seen in Figures 5.3-5.5, 5.7-5.9.  Moving source gear shifts corresponding to  

∆f  ->  ≥ 3-7 Hz;  δ(t) -> 0; 

were taken into consideration and avoided during state-space decomposition when 

gearshift associated state sub-spaces were not present in the classification / identification 

tree.  In addition, any abrupt frequency losses were avoided during decomposition into 

signal states. 
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Envelope Detection:  Detection of arrival, approach, and departure could also be clearly 

characterized or formulated by information present during the processing of time-

frequency information in the time domain.  Frequency shifts relative to time are minimal 

during the approach and departure state of sources, which is dependent on the distance of 

sources from the sensors: 

 

∆f   ≤   5 Hz;   ( for 0 ≤ L ≤ MASSL)  Approach State:   δ(t) -> 0;  

 ∆f   ≥ - 5 Hz;   ( for 0 ≤ L≤ MDSSL)  Departure State:   δ(t) -> 0;   

MASSL : Maximum approach state signal length. 

MDSSL:  Maximum departure state signal length. 

 

An additional state defined (other than approach, and departure) is the arrival state (when 

sources arrive at the “closest point of approach” - CPA) of the sensor nodes.  These states 

are classified separately since signal variables present in this state are sensitive to many 

variables.  The arrival state consists of sensitive signal transformations to slight source 

movements along with the nature of fluctuating data with high SNR.  The arrival state 

can be further narrowed depending on the application, and sensitivity of the source data. 
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5.5 Building the Template Tree 

The SSE / M-SSE contain a template tree that is used for classification / identification.  

State spaces and state types each contain separate template trees and classify / identify 

signals coming from each state accordingly.  Building a template tree and updating it as 

the signal database increases in size enhances accuracy levels of the SSE considerably.  

Template trees are differentiated into increasing ‘tiers’ which contain more precise 

identification with increasing hierarchy.  The following section shows how classification 

and identification trees are built. 

 

 

5.5.1 Classification 

Classification of signals is the superset of identification [98].  Classification trees are 

built according to information obtained from a training set.  Individual correlator 

templates are picked according to the method shown below.  These templates are then 

chosen to represent the correlator tree structure.  The classification tree is built according 

to the method shown below. 

   { 
   Choose a correlator template from a training set. 

   Choose signals from the same state space/type with different but known     

     classes. 

   Input signals into SCIA and obtain AARMS / MARMS. 

   From the results, obtain binary decision matrix as shown in figure 5.11. 

} 
  Perform above operation with other correlator templates from same class. 
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Correlator templates are selected for classification and identification using the following 

matrix table.  Selected correlators are trained with a previously known signal set using 

the SCIA algorithm.  Obtained RMS values are checked for p-n coverage (positive 

classifications are assigned “p” and erroneous classifications are assigned “n”).  Binary 

assignments are subsequently used to pick tier 0, tier 1, and tier 2 correlator templates 

respectively.  The correlator selection algorithm was used with a real world training set 

and is elaborated on Section 6.3 of Chapter 6. 

 

 

 ST1 ST2 SW3 … SWM

CT1 p p n .. n 

CT2 p p n .. n 

CW1 n n p .. n 

   : : : : .. : 

CWN n n p .. p 

 

 

 

Figure 5.11 shows correlator template selection with ‘p’, ‘n’ assignments and eventual 

binary assignments for the selection.  It is observed that correlator template ‘CW1’ gives 

an erroneous classification with the signal SM that is of the same class.  These situations 

 ST1 ST2 SW3 … SWM

CT1 1 1 1 .. 1 

CT2 1 1 1 .. 1 

CW1 1 1 1 .. 0 

   : : : : .. : 

CWN 1 1 1 .. 1 

Figure 5. 11.  Correlator template selection for tier 0, tier 1, and tier 2. 
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are corrected by the selection of a correlator template that gives more classification hits 

than the template in question.  When the training databases are large, probability 

assignments for each correlator template are taken with a combination of correct 

classifications along with the scaling of a reference signal.  

 

Classes for tier-0 are stated below with major classes listed as A, B, and Z: 

  Class A = {Class a-1, Class a-2,…, Class a-20} 

  Class B = {Class b-1, Class b-2,…, Class b-25} 

  Class Z = {Class z-1, Class z-2,…, Class z-5}   

The initial class tree contains tier-0 as the initial template in the tree structure.  Tier-0 

templates are a super set of tier-1, tier-2 … classes.  Therefore, when selecting tier-0 

templates it is necessary to obtain all necessary information of sub-classes from the 

known training set. 

 

Tier-1 classes stated below follow the tier-0 class assignments shown above:  

 

  Class a-1 = {Class a-1_1, Class a-1_2,…, Class a-1_20} 

  Class a-2 = {Class a-2_1, Class a-2_2,…, Class a-2_25} 

  Class a-20 = {Class a-20_1, Class a-20_2,…, Class a-20_5}   

 

The above tier-1 class assignment contains the superset of identification formed in tier-2.  

Correlator templates form the superset to classify signals according to sub-classes, and 
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form the superset that includes all signal identification to be performed in tier-2.  

Therefore it is necessary to include all signals encompassed in each sub-class while 

choosing correlator templates from a previously known database.  

 

 

5.5.2 Identification 

Identification is performed in tier-2 of the classification / identification tree.  Here 

templates are picked precisely for the identification of sources.  Identification is done on 

source basis without consideration for situational variables (i.e. speed of moving vehicles 

/ direction of movements etc.).  SSE identification consists of the following as performed 

on each state space and type separately.  The following definitions show identification 

based on vehicle types. 

 

   ID tv1    =   { tv1-10; tv1-15; tv1-40,…}   

   ID tv5    =   { tv5-15; tv5-18; tv5-20,…} 

ID wv1   =  { wv7-16; wv7-18; wv7-40,…} 

 

The identification set contains the letters “t”, “w” which represent tracked and wheeled 

vehicles, respectively.  Different identifications for tracked vehicles 1, 5, and wheeled 

vehicle 1 are shown above.  Each vehicle is shown with its associated speed in the 

example above.  Associating precise identification with speeds was not performed with 

the SSE.  Further decomposing the tree according to gearshift information provided by 
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the time-frequency information enables more precise identification with vehicle types 

along with speed groupings. (i.e.  speed class 1 (1-10 MPH), speed class 2 (11-20 MPH) 

etc…).  However, precision identification is not studied in this dissertation and is left as 

an issue that requires future investigation. 

 

   

  

  

 

 

 

   

 

 

 

 

 

Figure 5.12 shows a tier structure with three hierarchies in depth.  Each defined state-

space has a parallel structure independent of the others.  Tier-0 shows class divisions and  

tier-1 shows class sub-divisions.  Identification is performed in tier-2, with each element 

representing an identification of sources.  Classification and identification run results on 

real world signals gave excellent results in correctly classifying and identifying signals 

tier - 0 tier - 1 tier - 2 

State Space 1 

Class A 

Class B 

Class Z 

Class a-1 

Class a-2 

Class a-3 

Class b-1 

Class b-2 

Class z-1 

Class z-2 

Class z-3 

 a-1_1 

 a-1_4 

a-2_2 

a-3_1 

b-1_2 
b-1_1 

b-2_1 
b-2_2 

 a-1_2 
 a-1_3 

a-2_1 

a-3_2 

z-1_1 
z-1_2 
z-1_3 
z-1_n 

z-1_1 
z-1_2 

z-2_1 
z-2_2 

State Space 2 

State Space N 

…
..

Figure 5. 12.  Tier structure for class based classification and identification. 
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from separate state spaces and sensor types.  The methods mentioned above were 

implemented, and results obtained from real world signal runs are shown in Chapter 6 of 

this dissertation. 

 

 

 

5.6 Training the SSE with Template Selection 

 

5.6.1 Window Size Selection 

 

Correlator templates were picked methodically with varying window sizes.  An 

automated correlator selection algorithm was used to obtain this variable.  Signals from 

the training set were selected and auto-correlated with window sizes varying from 25 

samples to 210 samples for  a sampling rate of 1 KHz and 512 Hz.  Selected  template 

windows are auto-correlated with the same signal segment to find the optimal correlator 

template.  A stepping of one sample is used for correlator template selection to have a full 

set without losing feature sets.  Each selected correlator template is parsed with the same 

training signal that the correlator template was picked.  Maximum, and average RMS 

values of the parsing are stored to pick the best three templates for that particular 

template.  This procedure is performed for each chosen window length. 
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Choose signal to pick correlator template from a training set 

  Choose a window length {is looped for different window lengths}  

  { 

  for{ 1 < stepping size < (training signal length – (window length)) } 

 { 

perform correlation on the signal and include averaged / 

maximum absolute RMS (AARMS / MARMS) for each stepping 

window in a matrix(similar to SCIA); 

 } 

selected window length for template = highest average {AARMS / 

MARMS} for each window length 

   } 

 

Results obtained as AARMS / MARMS values from the SCIA algorithm are then 

grouped together to find a suitable window length for the particular state-space.  These 

window lengths are grouped together to derive a common window length, with each 

state-space having its unique window length.  Variable window lengths within a state-

space are possible under critical circumstances with scaling used during confidence 

measure calculations.  However, for simplicity without the loss in generality, template 

window lengths are kept constant throughout different state-spaces. 
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5.6.2 Minimum Signal Length 

 

Signals to be classified / identified by the SSE are required to have minimum length for 

low power operation.  Therefore, there is a need to have minimum number of samples in 

a signal for optimal performance of the SSE.  This is performed by taking a reference 

AARMS / MARMS value for the chosen template – signal combination during correlator 

template picks.  This reference value is used to compare scaled AARMS / MARMS 

values obtained from different signal lengths used with the picked correlator template.  

This process is followed for multiple signals from the training set individually.  Once a 

common signal sample size is chosen, this chosen value becomes the signal length input 

to the SSE for template tree building as well as for reference AARMS / MARMS value 

selections. 

 

Choice of Correlator Templates:  The proper choice of correlator templates is essential 

for optimal detection and for the building of an efficient tree structure called “Type 

Abstraction Hierarchy” (TAH).  Such a selection results in efficient use and parsing of 

the tree with minimal hierarchical levels along with the highest confidence in classified / 

identified results.  Proper selection of the ‘correlator’ template was investigated with a 

GUI and then used in an automated correlator selection implementation. 
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5.6.3 Time Domain RMS Algorithm 

The time domain RMS algorithm is separated into two different modules and 

implemented depending on applications.  Choices of these modules depend on signal 

features as well as algorithm requirements.  The selected methods are: 

 

- AARMS (Average Absolute Root Mean Squared):  This correlation, takes the 

root mean squared of the absolute correlation values.  This method takes into 

account all absolute RMS values without discriminating between high or low 

RMS values for each stepping. 

 

- MARMS (Maximum Absolute Root Mean Squared):  This correlation takes 

the maximum, or averages the maximum three values of the correlation result 

on the signal to be classified / identified. 

 

Both the above methods gave excellent results and did not differ in result.  However, 

their confidences were different given the decision-making probabilities associated with 

each leaf.  Both these methods are similar in their signal conditioning / pre-processing.  

Once these signals are input into the SCIA, the algorithm goes through steps of signal 

mean centering, normalization, absolute root mean cross correlation, window stepping, 

confidence scaling, and parsing the tree structure associated with classification / 

identification.  These steps are performed in modules that have more control on the SSE 

algorithm.  
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Signal Normalization:  Each windowed signal is initially centered (after obtaining its 

mean), and then normalized relative to its maximum value.  The centering operation, and 

normalization of each value is needed for having a uniform operation and to obtain a 

normalized RMS value for scaling and association of probabilities.  Without this internal 

operation on each windowed signal, results obtained during SCIA classification / 

identification will have non-coherent AARMS / MARMS values.  This in turn will have 

probabilities that are skewed with a loss in uniformity. 

 

Length of Signal:  As described in section 5.6.2 above, signals input to the SCIA follow 

minimum length requirements.  However, when signals exceed the minimum 

requirements, the classification / identification results were similar to those with 

minimum signal length for each state-space with the loss of more power due to more 

processing required by the signals.  When signals are divided into state spaces, and state 

types as in the case of classifying and identifying moving sources, each signal coming 

from each of these different state spaces and state types will follow this requirement. 

5.6.4 Probability of Detection or False Alarm 

 

Statistical weighting was used extensively for decision-making based on the decision 

boundaries. [32]  Probabilities were assigned according to clusters.  Training set signals 

with known parameters were used for obtaining identification / decision boundaries based 

on results from the SCIA.  Decision clustering was multi-dimensional based on the 
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number of state-spaces and state-types. [88]  Figure 5.13 presents decision clustering as 

shown for 2D and 3D graphs below cluster shapes. 

 

 

Multi-dimensional state spaces result in multi-dimensional decision boundaries.  It is 

evident from Figure 5.13 that when there is a 2D state space clustering of decision 

boundaries are 2 dimensional.  This results in classification decision boundaries to be in 

class sub–spaces that have two dimensional probability statistics.  Here, class A, B, and Z 

are shown with cluster boundaries with outliers present close to decision boundaries.  The 

3D diagram shows a three dimensional state space / sub-space as is evident in local 

clusters being formed for classes M, K, and L.  The cluster boundaries are planes or 

three-dimensional spaces.  For multi-dimensional state spaces (> 3), the same decision 

boundaries are formed mathematically with the distance from the boundaries showing 

classification confidence scaling. [18, 35, 49, 84, 99] 
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Decisions are made according to the following criteria.  For the case of 2 dimensional 

decisions, a signal Sij is a member of class k1 if,  
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where, {µk1, σk1} and {µk2, σk2} are the mean and variance of predefined classes k1 and 

k2 respectively.   

 

Figure 5. 13.  2D and 3D decision boundaries formed during multi-dimensional state-space 
classification and identification.
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For multi-dimensional (N dimensional) decision boundaries the following criteria is used 

in associating a signal to a class.  A signal Sij is a member of class k1 iff, 
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       for all m = 2, 3, 4, ......, N & m ≠ 1   

(5. 12) 

where, {µk1, σk1} and {µkm, σkm} are the mean and variance of predefined classes k1 and 

km respectively, where m = 2, 3, 4, …..,N different classes.  Confidence measure of each 

class is calculated relative to the variance of the signal to that particular class. 

     

    

Re-Configuration of Template Tree 

 

Initial implementation of the template tree is from an available known signal set 

contained in a database.  When more signals are acquired and stored in the signal 

database, these signals will constitute a broader class of signals for correlator template 

selection and tree assignment.  Probabilities obtained during training from a larger 

database gave more credibility to confidence because a larger number of signals are used 

for probability assignment.  The obtained probabilities are assigned to each leaf in a tree.   

Once this new tree and probabilities are obtained using off-node processing, this tree 

structure along with its probabilities is updated on the SSE architecture, either remotely 

or manually (if accessible).  In many instances it is easier to deploy a new node with the 
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latest correlator template tree (along with its probabilities) than to reconfigure already 

deployed sensor nodes.  This decision is based on the sensor network application and 

deployed topology given its cost and the number of sensor nodes in deployment.  

 

5.6.5 State Space Approach 

 

One of the fundamental concepts of the SSE is the state-space approach to fragment 

signals into different state spaces.  Separating signals into state-spaces reduces the 

number of variables as mentioned above and gives a methodical structure to classifying 

or identifying signals in the time domain.  The SSE did not perform as expected without 

the state-space approach.  However with the implementation of the state-space approach, 

result accuracy was enhanced tremendously.  Moving vehicle signals were initially 

studied with time-frequency contents to investigate signal characteristics of wideband 

signals as shown in section 5.2.1-5.2.5 of this chapter.  It was observed that moving 

source signals did have time dependent frequency characteristics and designing with a 

state-space approach mitigated or diminished these effects while enhancing the 

performance of the time-domain SSE.   

 

The approach is to separate signals into state spaces, and sub-spaces.  Subspaces will 

experience further separation of signals based on variables or parameters as observed in 

sensed signals, and therefore will consist of  further division as observed in these sub-

spaces.  Figure 5.14 shows a diagram for acquired signal decomposition.  Here, signals 
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are separated into state types, each of which has its own state-space and sub-space. State 

types depend on sensor types and are assigned labels of “acoustic”, “seismic”, and 

“infrared” signals based on the sensed signal types.  These signal types are then 

decomposed into state spaces dependent on the distance and locality of moving sources 

relative to the sensors. [24]  Each of these state spaces are further decomposed into state 

sub-spaces during feature extraction.  Figure 5.14 shows approach, arrival, and departure 

as state spaces, and has feature 1, and feature 2 as state sub-spaces. 

 

 

Figure 5. 14.  State Type, Space, Sub-Space based decomposition of acquired signals. 
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5.6.6 Detection in M-SSE 

The multi-signal search engine (M-SSE) concept originated when multiple types of 

signals were gathered with multiple sensor types for signal source classification / 

identification.  These signals were processed in parallel and were combined after 

statistical evaluation (associated probabilities were obtained from a training set).  

Weighting and confidence measures were assigned independently, relative to each type of 

signal and were used to classify and identify based on classification / identification 

systems specified in section 3.3.  The combining of signal results was done according to 

methods mentioned in section 3.5.  A Multi - Type Abstraction Hierarchy (M-TAH) was 

used to obtain classification / identification when multiple signals were present.  M-

TAHs were used with two different methods: once during classification / identification, 

and the other during confidence measure calculations or weighting. 

 

Low Power: A time domain signal classification / identification algorithm takes into 

effect a novel methodology that is lower in power in comparison to present day 

algorithms used for the classification / identification of signals.  It is more efficient in 

computational power while it attains higher percentage of accuracy. 

 

Accuracy:  The accuracy of results from the time domain SSE has been quite outstanding 

as seen in training signals and test signal sets.  Furthermore, classification / identification 

with real world signals have shown error rates of < 10% for the SSE.  Data of 
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comprehensive analysis and results yield even better error rates (as shown in the data run 

results in the following chapter). 

 

 

5.7 Summary 

 

The state-space approach to signal classification / identification in the time domain SSE 

was presented.  The importance and need for this approach is explained, and the signal 

parameters that were acted upon for structural decomposition explained.  One of the 

dominant moving source parameters, the ‘Doppler’, is detailed with graphs from real 

world signal sets.  Spectrograms were used during training to determine and investigate 

real signal characteristics.  However, SSE modules do not contain spectrogram 

calculations / plots, and instead use time domain frequency analysis. 

 

The time domain SCIA algorithm is presented along with methods for selecting correlator 

templates and building a tree.  Choosing a proper correlator tree template is vital for 

event identification and classification.  This was detailed with an explanation of 

optimization of window size for building a correlator template ‘tier’ structure. 
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CHAPTER 6 

 

SSE / M-SSE Results on Real World Signals 

 

6.1 Background 

 

All SSE / M-SSE modules were used to obtain behavior of the implementation to real 

world signals gathered in different environmental and situational conditions.  Signal 

database included raw sensor readings from an array of acoustic microphones and seismic 

geophones.  Correlator templates were selected for classification and identification 

separately. [55]  Signals were decomposed into state-types and state-spaces during signal 

pre-processing / conditioning operation.  These state spaces were input into the M-SSE 

for signal classification / identification.  Obtained results were then fused for decision-

making.  The obtained decisions gave excellent results to moving source real- world 

sensor readings.  It is observed that  relative to other forms of  classification M-SSE is 

more robust to classification / identification with an ‘open’ signal set, with comparable 

accuracy rates, and additional features.  Benchmarking SSE results to that obtained 
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during wavelet method points to comparable accuracy, with the SSE having an extra 

feature in confidence measure calculation that detects a new signal previously unknown 

and not present in the training database. A comparison of computational cost for the 

wavelet method and the SSE is given later in this chapter. 

 

 

6.2 Real World Signal Database 

 

One of the signal databases used for real world signal testing was provided by the Army 

Research Laboratories (ARL) and consisted of a systematically acquired data set. [92]  

The data designated as the Acoustic-seismic Classification Identification Data Set 

(ACIDS) was used as real world signals.  The data was collected by two co-located 

acoustic/seismic sensor systems designated as Sensor System 1 and Sensor System 2.  

There were over 270 data runs (single target only) from nine different types of ground 

vehicles in three different environmental conditions. The ground vehicles were traveling 

at constant speeds from one direction toward the sensor systems passing the closest point 

of approach (CPA) and then away from the sensor systems.   

 

The ground vehicles repeated the same test runs from the opposite direction.  The CPA to 

the sensor systems varied from 25 m to 100 m.  The speed varied from 5 km/h to 40 

km/hr depending upon the particular run, the vehicle and the environmental conditions.  

The acoustic data is from a 3-element equilateral triangular microphone array with an 
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equilateral length of 15 inches.  In the x-y plane with the positive x-axis as the reference 

and the center of the array as the origin, Mic 1 is at 210 degrees, Mic 2 is at 330 degrees 

and Mic 3 is at 90 degrees.  For all of the test runs, microphone 1 was positioned 

perpendicular to the path of travel of the vehicle as shown on Figure 6.1.  There is a 

seismic sensor located at the center of the array.  The data included raw digitized acoustic 

signatures from three piezo-ceramic microphones.  Seismic data 

 

 

 

Figure 6. 1.  Database containing real world sensor readings provided by ARL. 
 

from the same runs were obtained from a co-located geophone sensor.  The microphone 

acoustic data is low-pass filtered at 400 Hz via a 6th order filter to prevent spectral 
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aliasing and high-pass filtered at 25 Hz via a 1st order filter to reduce wind noise.  The 

data is digitized by a 16-bit A/D at the rate of 1025.641 Hz. [92] 

 

Seismic data is from a single vertical-axis geophone that is mounted on the bottom of the 

sensor system with the weight of the sensor system serving to provide coupling to the 

ground.  The geophone is located at the center of the microphone array as shown on 

Figure 6.1.  The data contained seismic signatures from the low gain channel (36 dB) and 

high-gain channel (62 dB) of the single axis geophone.  The two channels accommodate 

the large dynamic range of the seismic signals without the need for an automatic gain 

control circuitry.  The geophone data is low-pass filtered at 200 Hz via a 4th order 

Chebyshev filter to prevent spectral aliasing.  The seismic data is digitized at 512 Hz. 

[92] 

 

The dataset contained different classes of vehicles namely ‘heavy track vehicle’, ‘heavy 

wheel vehicle’, ‘light track vehicle’, ‘light wheel vehicle’.  Data gathered came from the 

following environmental conditions: 

 

•   Site Desert:  Desert like similar to conditions in the desert southwest in the  

   summer (typically dry and very hot). 

•   Site Arctic I:  Arctic like similar to conditions in Alaska in the winter 

(typically cold, windy, with and without snow cover). 
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 •   Site Normal:  Normal, similar to conditions in Mid-Atlantic states in the 

spring and fall (typically mild, with and without humidity). 

•   Site Arctic II:  Arctic like similar to conditions in Alaska in the winter but 

different from Arctic I.  (typically cold, windy, with and 

without snow cover). 

 

SSE evaluation was performed initially by correlator template selection and eventual 

classification / identification of signals. 

 

 

6.3 SSE Evaluation 

 

The SSE is evaluated with the above database for a selection of tracked and wheeled 

vehicles with the selected signals used to "train" and observe SSE performance. [11]  

Signal content used for training the SSE was removed from the signal sets used for 

evaluation.  Then, a matrix as shown in section 5.5.1 of chapter 5, is formed with the 

matrix element values corresponding to the AARMS / MARMS values of the template - 

signal inner products.  The SSE matrix may now be examined to determine and predict 

SSE performance. 

 

SSE operation on signals during the vehicle approach state-space is depicted here with 

signals and templates in the horizontal and vertical axis respectively.  Windowed 
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AARMS correlation values are plotted in a surface with darker grey scales corresponding 

to higher values. [65]  This case shows near ideal performance with a SSE AARMS 

template-signal matrix that is nearly diagonal.  Only one vehicle signal shows an error.  

The error rate obtained is a low 5.6%. 

 

 

 

Figure 6. 2.  SSE acoustic signal classification results are shown for approach state in desert terrain. 
 

Figures 6.2 – 6.5 show examples of these results.  In these Figures, the AARMS / 

MARMS amplitude of the template-signal inner products are shown for inner products 

between all signals and correlators.  The set of these inner product RMS amplitudes 

forms a matrix with the matrix element scalar value being the AARMS / MARMS signal 

amplitudes. 
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Ideal SSE operation occurs where the RMS value of the inner product between a signal 

and a template are maximal for the case where the correlator correctly identifies the 

signal. [17, 75]  Thus, ideal operation yields a matrix  where the diagonal  elements are 

greater than any off-diagonal element in the same row or column as any diagonal 

element.  This would correspond to identification template selection, as opposed to 

classification template selection where off-diagonal elements within the same class will 

give high AARMS/MARMS values. 

 

 

Figure 6. 3.  SSE acoustic signal classification results are shown for the departure state in desert 
terrain. 

 
 

Figure 6.3 shows a template-signal matrix with an acoustic signal for the departure state 

in the desert terrain.  The SSE operation for signals obtained during the departure state is 
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depicted here with signals and templates in the horizontal and vertical axis respectively.  

Windowed RMS correlation values are plotted in a surface with darker grey scales 

corresponding to higher values. This case shows ideal performance with a SSE RMS 

template-signal matrix where all diagonal values are maximal with a 100% identification 

accuracy. 

 

The SSE has demonstrated the ability to identify the differences between signals 

generated by a vehicle for the approach, departure, and closest point of approach (CPA) 

signal states.  In the event that proper correlators are available in the SSE library, this 

sensitivity to the evolution of a threat signal is exploited for enhancing threat 

identification accuracy.  Figures 6.4 and 6.5 show examples of these results.  In these 

figures, the RMS amplitude of the correlator template-signal inner products are shown for 

inner products between all signals and templates. [67, 68] 
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Figure 6. 4. Arctic terrain SSE evaluation for an acoustic data set. 
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Figure 6.4 shows the SSE evaluation for acoustic signal classification for tracked and 

wheeled vehicles.  This data corresponds to arctic terrain for the vehicle approach state.  

The SSE template-signal inner products form a matrix.  Here, the matrix element values, 

the AARMS value of the inner product, are plotted as the normalized height of a cylinder 

for each template-signal pair.  The templates and signals for each vehicle record are 

ordered along the matrix rows and columns.  Since one off diagonal matrix element is 

greater than a diagonal matrix element in its row, this result displays one error for a 5.6 

percent error rate. 
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Figure 6. 5.  Normal terrain evaluation of SSE for an acoustic data set.  
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Figure 6.5 shows SSE evaluation for acoustic signal identification for tracked and 

wheeled vehicles.  This data corresponds to normal terrain and the vehicle approach state.  

The SSE template-signal inner products form a matrix.  Here, the matrix element values, 

the MARMS value of the inner product, are plotted for each template-signal pair.  The 

template and signals for each vehicle record are ordered along the matrix rows and 

columns.  Since one off-diagonal matrix element is greater than a diagonal matrix 

element in its row, this result displays one error for a 5.6 percent error rate. 

 

Ideal SSE identification occurs where the AARMS / MARMS value of the inner product 

between a signal and template are maximal for the case where the template correctly 

identifies the signal.  Thus, ideal operation yields a matrix where the diagonal elements 

are greater than any off-diagonal element in the same row or column as a diagonal 

element. 

 

The SSE has demonstrated the ability to identify the differences between signals 

generated by a vehicle for the states when a vehicle passing the sensor is: 

  1)     approaching the sensor 

  2)     at the point of closest approach (CPA) 

  3)     departing from the sensor 
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In the event that proper templates are available in the SSE library, this sensitivity to the 

evolution of a signal is exploited further for enhancing identification accuracy. 

 

The results of Figures 6.2 – 6.5 are shown as an initial step to prove excellent 

identification capability of the SSE algorithm in two different terrain conditions with the 

approach and departure states of vehicle travel. 

 

6.4 SSE / M-SSE Implementation 
    
 

Having obtained extremely good results for the time-domain SCIA algorithm we 

proceeded to test the ability of the algorithm when implemented as a search engine.  The 

SSE designed with a three-tier structure [44] whereby the signals are classified in the first 

two tiers and are identified in the third tier.  Figure 6.6 shows system design diagram for 

the SSE hierarchical tree structure with branches converging for identification.  System 

design diagram for SSE using ‘hierarchical search’, clusters signals into the following tier 

structure. 

 

Step 0 : Corresponds to classification as tracked vs. wheeled. 

Step 1 : Corresponds to classification as heavy vs. light. 

Step 2 : Corresponds to identification of vehicles by distinct vehicle types. 

 



 195

 

 

 

The above structure for first tier classification is to group the vehicles into a meta-class as 

Tracked vs. Wheeled.  Second tier classification is to group them into a sub-class as 

Heavy vs. Light.  Results obtained from the groupings are then input into the third tier to 

identify vehicles with distinct vehicle types.  Each of these blocks contains templates in a 

library, which give the best set for classification / identification for each tier.  The 

following figures give test results and an analysis of the SSE / M-SSE for acoustic and 

seismic signal pairs. 

 

 

Figure 6. 6. Tier structure of class divisions and branching based on signal database. 
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Figure 6.7 above shows a tier 1 classification results.  The database of a subset of all 

signals present in the ‘ACIDS’ database is shown in the ‘Signal’ menu.  One signal of 

this displayed subset can be chosen from the ‘Signal’ menu to represent a signal to be 

classified.  Here we have chosen a subset of acoustic signals.  Signal templates or 

‘correlators’ are grouped into libraries for each meta-class.  These previously grouped 

Figure 6. 7.  Hierarchical Search (Type Abstraction Hierarchy) – Step 0. 
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templates perform the time-domain SCIA algorithm calculation and display the values for 

each segment in the RMS display menu. The menu lists calculated values for each  

 

Figure 6. 8.  SSE results after collaborative decision fusion. 
 

segment (approach, arrival, and departure) and its corresponding template name.  

Statistical fusion of the results yields a combined weighted value of the initial results for 

each template as discussed in section 3.5 of Chapter 3.  The highest possible value 

obtained from the decision-making fusion formulae gives the chosen class for the first 

tier. 
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Above classification chooses eight library templates, four of which corresponds to 

tracked vehicles and the rest to wheeled vehicles.  A signal ‘HT1_30_004’ is chosen as 

the signal to be classified.  (This signal corresponds to a tracked vehicle as seen by the 

second letter of the name ‘T’, rather than ‘W’, which corresponds to wheeled vehicles.)  

Note that the signal to be classified does not have any templates picked from that 

particular vehicle run, or for that matter from that vehicle make/model.  Fusion of initial 

AARMS yields a correct classification of ‘Tracked’ as given in the ‘Decision’ displaying 

HT2_10_080 (Tracked – ‘T’ is the second letter in the decision name).  Here we have 

shown a successful implementation of a tracked vs. wheeled TAH (Type Abstraction 

Hierarchy) classification 

 
The decision rule after weighted fusion calculation performs a maximum-polling 

decision- making selection.  Therefore, the decisions would have more confidence when 

the values of the decision class have a bigger margin than the incorrect decision class that 

is directly proportional to associated confidence measure.  Here we see that the correct 

decision class templates that are ‘tracked’ (left; columns 1-4) give much larger 

magnitudes than those of the incorrect decision class of ‘wheeled’ (right; columns 5-8) 

templates.  It is shown on Figure 6.8 with great certainty and confidence that the 

classified decision is a ‘tracked’ vehicle in that all tracked vehicle templates give larger 

decision values than each wheeled vehicle template. 
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With correct classification shown for tier-1, a sub-class based decision for the tier-2 

structure is performed to classify sub-classes in hierarchical tree structure.  Figure 6.9 

shows classification  

 

Figure 6. 9.  SSE runs to classify Heavy vs. Light vehicles. 

 
step 1 of the hierarchical search (TAH).  Tier 2 classification results are shown in the 

above diagram.  The database of a subset of all signals present in the ‘ACIDS’ database is 

shown in the ‘Signal’ menu.  One signal of this displayed subset is chosen from the 

‘Signal’ menu.  Here we have chosen a subset of acoustic signals.  Signal templates or 

‘correlators’ are grouped into libraries for each sub-class.  These previously grouped 

templates perform the time-domain SCIA calculation for AARMS and display the values 
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for each segment in the RMS display menu.  The menu lists the calculated values for 

each segment (approach, arrival, and departure) and its corresponding template name.  

Statistical decision-making fusion of the result yields a combined weighted value of the 

initial result for each template.  The highest possible AARMS value obtained from the 

decision - fusion formulae gives the chosen sub-class for the second tier. 

Here we choose four library templates one of which corresponds to a light vehicle and the 

rest to heavy vehicles.  A signal ‘HW5_15_046’ is chosen as the signal to be classified 

into a sub-class.  (This signal corresponds to a heavy vehicle as seen by the first letter of 

the name ‘H’, rather than ‘L’, which corresponds to light vehicles.)  Note that the signal 

chosen to classify does not have any templates picked from that particular vehicle run. 

 

Fusion of initial calculation yields a correct classification of ‘Heavy’ as given in the 

‘Decision’ displaying HW5_15_148 (Heavy – ‘H’ is the first letter in the decision name).  

Here we have shown a successful implementation of a Heavy vs. Light TAH sub-class 

classification. 
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Figure 6. 10.  Classified results after collaborative decision making from multiple state spaces. 
 

Figure 6.10 shows the decision values for hierarchical search step – 1 of TAH.  The 

decision rule after weighted fusion calculation performs a maximum AARMS value 

selection.  Therefore, the decisions would have more confidence when the values of the 

decision sub-class have a bigger margin than the incorrect decision class.  Here we see 

that the correct decision class template, which is ‘Heavy’ (left; columns 1-3), gives a 

bigger magnitude than that of the incorrect decision class of ‘Light’ (right; column 4) 

class template.  However, we see that only one heavy vehicle template outscores the light 

vehicle template while the others are low in amplitude.  Therefore, the confidence of the 

result is less compared to the result obtained in Figure 6.8. 
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Tier 3 (TAH) identification is now taken up in step-2.  Here identification is performed 

for correct identification of the vehicle type.  The identified vehicle obtains MARMS 

values during SCIA processing.  The MARMS value is then fused for decision-making 

and scaling for confidence measure calculations.  Figure 6.10 shows SSE’s hierarchical 

search step-2 of the Type Identification Hierarchy (TAH).  The database of a subset of all 

signals present in the ‘ACIDS’ database is shown in the ‘Signal’ menu.  One signal of 

this displayed subset is chosen from the ‘Signal’ menu to be identified by SSE.  Here we  

 

 

 

 

Figure 6. 11.  SSE identification by vehicle types. 
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have chosen a subset of acoustic signals.  Signal templates or ‘correlators’ are grouped 

into libraries for each identification-class.  These previously selected template libraries 

perform the time-domain MARMS correlation calculation and display the values for each 

segment in the RMS display menu.  This menu lists the calculated values for each state 

(approach, arrival, and departure) and its corresponding template name.  Statistical fusion 

of the result yields a combined weighted value of the initial results for each template.  

The highest possible value obtained from the decision-making fusion formulae gives the 

identification for the third tier.   

 

For identification we choose six library templates two of which corresponds to Heavy 

Tracked Vehicle#1 (HT1) and the rest to Heavy Tracked Vehicle #2 (HT2).  A signal 

‘HT1_30_004’ is chosen as the signal to be identified.  (This signal corresponds to heavy 

tracked vehicle #1 as seen by the first three letters of the name ‘HT1’, rather than ‘HT2’ 

which corresponds to heavy tracked vehicle #2.)  Note that the signal selected to be 

classified does not have any templates picked from that particular vehicle run forming a 

mutually exclusive signal from the template library.  SCIA MARMS results decision-

fusion of initial calculations yield a correct identification of ‘Heavy Tracked Vehicle#1’ 

as given in the ‘Decision’ displaying HT1_15_134 (Heavy Tracked Vehicle #1– ‘HT1’ 

are the first three letters in the decision name).  Here we have shown a successful 

implementation of identification.   
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Figure 6.12.  SSE identification results after collaborative decision-making. 

 
 
Figure 6.12 shows decisions for hierarchical search step 2 in the type abstraction 

hierarchy.  The decision-making procedure after weighted fusion calculation selects the 

maximum value.  Therefore, the decisions would have more confidence when the values 

of the decision identifiers have a bigger margin than the incorrect decision identifiers, 

with normalized weighting and scaling according to MARMS values.  Here we see that 

the correct decision identifier templates (left; columns 1-2) which is ‘Heavy Tracked 

Vehicle #1’ gives a very small margin than that of incorrect decision identifier  ‘Heavy 

Tracked Vehicle #2’ (right; columns 3-6) identifier templates.  SSE’s SCIA gave 

excellent identification decisions for identification in the tier 3 (TAH) with results fused 
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with decision-making criteria as shown in Section 3.5 of Chapter 3.  Results gave more 

than 90% correction identifications in all test cases.  Having obtained great results a 

comparison of computational calculation requirements to a wavelet method is done with 

the same signal set. 

 

 

6.5 Wavelet Method Classification 

 

Wavelet methods were used for signal classification with the same data set.  Accuracy 

levels were similar to the SSE with correct classification in the 90% range.  It was found 

that the CSM algorithm used with the above signals gave the above accuracy levels.   

 

In comparison to SSE, the wavelet method decomposes signals into orthogonal sub-

spaces obtained during training.  Selected wavelets then perform signal energy 

decomposition into these orthogonal sub-spaces for signals to be classified.  In 

comparison to the SSE that decomposes signals, the wavelet approach takes the whole 

signal without segmenting into vehicle location relative to the sensor for signal energy 

decomposition. [16, 52, 71, 72, 73] 

 

A fundamental difference is that the wavelet signal subspace assignments are based on a 

closed form, where only signals used during training could be classified correctly.  Any 

new signals being sensed by the sensors would be classified into an existing class of 
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signal thereby giving an erroneous decision.  Further, wavelet methods need to be trained 

repeatedly when new signals are acquired further increasing the number of orthogonal 

subspaces.  Thus, with increasing classes of signals there is a linear dependence in the 

number of orthogonal wavelet sup-spaces causing more calculations to be done for each 

classification.  However, accuracy levels without confidence measures may facilitate an 

implementation with the wavelet method in parallel to the SSE. 

 

6.6 Wavelet DSP Hardware Implementation Feasibility 

 

SSE is more suitable for implementation with programmable DSPs.  The need for sensor 

classification / identification to be reconfigurable makes it more suitable for this 

application to be implemented with DSP hardware.  SSE hardware implementation 

requirements were shown in section 3.4 of Chapter 3.  Here a specification and 

requirements are given at the macro-level for an understanding of implementation 

requirements for the wavelet method.  It is assumed that implementation to be parallel to 

that of the time domain SSE. 

 

   Waveform  A/D   8 kbps           Programmable DSP          Output     
      10 sec           for 10 sec  
 

Sampling:  1000 Hz 
A/D: 8 bits/sample 

     Processing Time:  11sec 
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For proper wavelet implementation in parallel with the SSE, the programmable DSP 

module is to contain two blocks DSP1 (pre-processing / signal conditioning module), and 

DSP II (wavelet algorithm).  The following calculations show sample calculations to be 

performed on these two blocks and an analysis of the wavelet hardware implementation.  

 
 

DSP I  - Pre-processing 
 
Input        :   8Kbps bit stream  
Time        :  10 seconds 
Function    :  Would find Closest Point of Approach (CPA) and extract 1024 sample data. 
Algorithm  :   Find max(data samples) and extract 512 samples to the left and right of it. 
 
Problems:  I. The max(data samples) may not be the CPA.  It may happen that  
                        the value may be due to : 

a.   bumps on the path of travel (seismic)  
b.   glitches (acoustic, seismic) 

       
II. 10sec may not be enough to gather CPA data, especially if the      

vehicle is moving slowly. 
 
Computation  :  Computationally least intensive. 
Cost                :  The drawback of having DSPI is that it may have an added cost of a     

microcontroller. 
 
 
 

DSP II – Algorithm 
 
Input  :  Preprocessed Data (1024samples/node) 
Time  :  1seconds 
Function :  Would run the Algorithm with the received preprocessed data 
Algorithm   :  Do Wavelet Subspace decomposition on the preprocessed data of 1024 
samples. 

Find the minimum distance (L2 norm) from the decomposed signal to the 
existing wavelet subspace existent in the database.  
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Problems : I. Should be remotely programmable/configurable (To update database 

when new signals arrive). 
    II. Needs a cost function or off chip processing to detect new signals. 
 
Computation :  data = 1000 
     decomposition = 2*N classes *1000 
     minimum distance = k dimensional vector space (subtractions) 

              + k squares + 1 sqrt + N comparisons 
     approximately :   300,000instructions for N = 100;  
   
   Go For >2MIPS microcontroller.  
 
 
 
 
 

Wavelet DSP applied to Node Networks 
 
 
 
I. Centralized DSP to Process ALL nodes      (All nodes DSPI and Base Station has 

Microprocessor) 
 
 
II. Each node has own DSP but is integrated   (All nodes DSPI and 1/10 nodes 

DSPII) 
 
 
III. Each node has independent DSP             (All nodes DSP II) 
 

The above study looked at aspects of feasibility of wavelet method in DSP hardware for 

sensor networks.  It is a macro-estimate to compare with that of the SSE power 

requirements and its concurrent implementation with time domain SSE.  The above study 

was conducted based on results obtained from the wavelet method classification and 

identification.  [70, 90]     
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6.7 Summary 

The SSE was implemented and evaluated using a database of tactical seismic and 

acoustic signals.  Evaluation methods have been developed to characterize the SSE and 

optimize the selection of its matched filter correlators.  Excellent signal identification 

performance has been obtained for acoustic signal and seismic signals with accuracy 

levels of greater than 90% were achieved from the ACIDS database.   

 

The SSE has been used to resolve time evolution in acoustic and seismic signals.  Multi-

sensor classification and identification was performed with M-SSE with decision fusion 

between sensor types.  Finally, the SSE architecture is well adapted to implementation in 

low power systems.  In particular, future development effort may enable the SSE to be 

implemented in efficient, reconfigurable logic to permit high speed, and micro-power 

operation.   
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CHAPTER 7 

 

Conclusion and Future Work 

 

7.1 Conclusion 

 

In this dissertation, a signal search engine (SSE) for signal classification and 

identification was presented.  This method of time domain signal classification and 

identification has many potential applications in defense and commercial fields.  Though 

many of the present day WINS applications are still in their infancy, the SSE can serve as 

a critical block for many wireless sensor applications. 

 

Broad ranges of wireless applications were presented in the Introduction of Chapter 1.  

Many of these applications are already deployed with expanding commercial 

applications.  Research is being carried out to optimize WINS sensor system lifetime with 

concentration on low-power, robust, and reconfigurable hardware – software co-design 

implementations.  Chapter 2 shows battery power tradeoffs in transmitting signals and 

decisions for distributed and centralized signal processing and decision- making.  An 
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analysis of battery power to lifetime was performed for variable power transceivers.  

Additional attention was given to power tradeoffs for transmission of decisions and data 

between sensor nodes for designs of cluster head based signal processing and 

transmission of decision to a remote centralized micro-sensor.  An introduction to SSE / 

M-SSE was presented with applications in the military and commercial fields. 

 

Distributed and centralized signal processing, and decision-making were presented in 

Chapter 3 with the introduction to possible system level architectures for WINS SSE 

applications.  Decision-making was presented with maximum polling and weighted 

averaging for various cases used in WINS classification and identification.  Decision – 

making based on sensor class / type, or state-spaces were discussed with the derivation of 

decision-making criteria, and confidence measure calculations for each case.  It was 

concluded that the decision making criteria to implement on sensor nodes depends on the 

specific application, and should be decided during training with an application specific 

signal data-base.  Signal pre-processing and ‘SCIA’ modules were presented from an 

architectural design perspective.  These should be designed depending on application 

specific power, throughput, scalability, and complexity constraints. 

 

Investigation of the SSE response to test signals was presented in Chapter 4 along with 

the creation and testing of possible real-world signal models.  Test signals were created 

with single and multiple narrowband frequency signals, including real world wideband 

frequency signals with variable parameters as observed by sensors.   The created signals 
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were used to investigate SSE performance to input SNR (variable SNRs introduced on 

signals with addition of variable levels of additive white gaussian noise (AWGN)), 

different levels of phase noise, presence of multiple-narrow band sources, effect of 

Doppler on moving vehicles, and environmental and circuit noise effects (such as 

glitches).  Benchmarking of the time domain SSE to test signals was done with the 

MUSIC and Pisarenko parametric methods.  It was concluded that the time domain SSE 

performed much better than ‘MUSIC’, and ‘Pisarenko’ methods.  These two were noticed 

to have issues with closely spaced frequencies and low SNR signals.  The behavior of the 

SSE to test signals was overwhelmingly positive, with classification and identification 

error percentages of 2-5%. 

 

The time domain SSE was presented in Chapter 5, with a description and application of 

signal detection and classification to moving sources that have the most complex form of 

signals sensed.  These signals contain a multitude of variables.  These variables were 

presented with time-frequency spectrogram plots that were studied initially to obtain 

moving signal waveform characteristics from the training database.  Spectrogram 

information was used extensively to study the signal behavior, but the software 

implementation has only time-domain analysis of time-frequency behavior.  A method of 

reducing moving source variables was shown with segmentation of signals into state 

spaces using the segmentation module.  This method of state-space decomposition of 

signals into state-spaces, and a state-space based SSE were explained with a description 

of template tree building, along with the SCIA algorithm. 
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Performance of the time domain SSE was presented with real world signals to validate 

time domain SSE / M-SSE for moving source classification and identification in Chapter 

6.  Time domain SSE modules were evaluated for selecting of correlator templates and 

confidence assignments for classification and identification.  Tier based classification and 

identification was presented for real-world signals that give overwhelmingly accurate 

results, which are comparable with other classification and identification methods.  The 

time domain SSE was benchmarked with the wavelet method classification and 

identification with a comparison of pros and cons along with possible co-implementation 

and techniques to enhance the accuracy of each scheme. 

 

Based on the excellent accuracy levels obtained with both test signals and complex real- 

world wideband moving source signals during the validation and benchmarking of the 

SSE, we conclude that the SSE and its extension, the M-SSE, could be used with multi-

sensing sensors. 

 

7.2 Implementation:  Hardware Software Co-Design 

 

With applications of WINS expanding in the consumer domain, SSE usage on WINS and 

other consumer applications has many possibilities.  SSE and M-SSE can be used with 

the customization of application specific modules.  Therefore, it is required to implement 

the SSE with hardware-software co-design or programmable FPGA hardware modules.  
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The dissertation  research concentrated on a software-only implementation of the SSE / 

M-SSE.  A software-only implementation is possible for applications with high 

computational processor powered systems. [19, 45]  However, implementation of 

hardware-software modules and application specific IC’s are necessary for low-power, 

integrated operation especially for WINS nodes.  These applications will concentrate on 

reconfigurable, low-power hardware implementation that has to be initially tested and 

prototyped with an FPGA.      

 

Building better classification / identification tree structures enhances SSE / M-SSE 

accuracy levels and throughput.  Therefore, efforts need to concentrate on building re-

programmable tree-structures in hardware, and application-specific IC’s.  It is important 

to have correlator templates built in a generic form for all nodes within a cluster as 

emphasized in this dissertation. 

 

7.3 Future Research 

 

As a pre-cursor to future research, hardware-software co-design and low power hardware 

only implementation should be emphasized. [1, 25, 37, 77]  It is inevitable that the 

integration of the SSE / M-SSE based on the requirements and specifications of the 

applications needs to be implemented. 
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Decision support systems will require SSE / M-SSE usage that need to be implemented 

with links to a well-established datawarehouse.  Concentration needs to be focused on 

building a structured data warehouse, integrating the SSE / M-SSE, and building a 

decision support system that will cater to particular surveillance operations [86], 

condition based maintenance, and bio-medical monitoring systems.  It is clear that with 

expanding applications in the consumer domain, a prototype automated correlator-

template tree building algorithm (along with optimizing window sizing, and stepping) 

needs to be investigated.   

 

Additional consideration should be given to investigating SSE / M-SSE accuracy levels 

to multi-source wideband source presence.  SSE decision-making architecture should be 

exploited to curb low SNR signal-states with multi-vehicle presence.  The presence of 

multiple sources are modeled and tested with a created test signal set that consists of up 

to three narrowband sources.  However, a mixture of narrowband and wideband signals 

should be created and tested for SSE generalization. 

 

Automation of threshold for triggering the re-building of the correlator template tree 

should be investigated further along with automated tree building for specific 

applications (along with dividing it into state spaces.)  We conclude finally, that the time 

domain SCIA would be used extensively with various signal processing applications, 

both military and commercial.             
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