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ABSTRACT OF THE DISSERTATION

Channel Coding and Power Control For FH/CDMA
Radios

by
Victor Shiaw-Jong Lin
Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 1995
Professor Gregory J. Pottie, Chair

We investigate the issues of adaptive power control, channel code selection
and decoding metrics formulation for a slow frequency-hopped/code division
multiple access (SFH/CDMA) radio.

We show how to effectively adapt a distributed power control scheme
proposed for single-channel narrowband systems to the unique constraints of the
SFH/CDMA system. In addition, the performance of distributed power control with
a fixed transmit power dynamic range is studied through simulation. Heuristic
admission control algorithms for mitigating performance degradations due to the
dynamic range constraints are presented. Some of the trade-offs between system
capacity and complexity are discussed.

We also present a low-delay channel coding technique and demonstrate the
benefits of dual antenna diversity in combination with coding. BCH, Reed-Solomon
(RS), and convolutional codes are considered. The basis for code comparison are

the system performance, delay and decoder complexity. It is shown that when
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binary non-coherent FSK modulation and hard decision detection are used, the
BCH, RS, and convolutional codes that can meet the delay and bandwidth
constraints have similar performance and comparable complexity. Soft decision
decoding for the convolutional code and error-and-erasure correction decoding for
the RS code are investigated in terms of the performance-complexity trade-offs. For
convolutional codes, it is shown that improvement over hard decision decoding is
significant when the right decoding metric is selected.

To improve the effectiveness of coding in SFH/CDMA systems, a new class
of decoding metrics is formulated. The performance of new adaptive decoding
metrics for convolutional codes is analyzed under Rayleigh fading and bi-level
partial-band noise jamming. New tighter probability of error performance bounds
are derived. We find that adapting the metric according to the channel condition
provides significant performance gain over standard fixed decoding metrics, such as
the soft decision and erasure and error decoding metrics. We also describe a simple

algorithm for adapting the decoding metric.
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Chapter 1

INTRODUCTION

Wireless personal communication systems enable geographically dispersed
users to exchange information using a portable terminal, such as a handheld transceiver.
Often, the system engineer’s design objective is to maximize the transmission rate and
number of simultaneous users (capacity) under the constraints of robustness, power
consumption and hardware complexity. The tradeoffs among capacity, reliability, signal
power, and cost of equipment can be complex. The topic of this thesis is a study of good
system tradeoffs in wireless transceiver design.

Future generations of wireless personal communication systems will be based
on digital transmission technology. Digital technology has important advantages over
traditional analog technology. With digital technology, radio communication systems
can be designed to meet more stringent transmission reliability requirements.
Furthermore, digital technology enables more efficient sharing of channel resources
when multiple users need to access the system through a common channel

simultaneously.



1.1 Historical Perspective

What are some important milestones in the history of wireless communications?
The birth of wireless communication is generally accepted to have occurred in 1897,
when Marconi received credit with the patent for the radiotelegraph, from which the
word radio was coined [17]. Since that time, mobile radio communications has been
used to navigate ships and airplanes, dispatch police cars and taxis, generate new
businesses, and win wars.

The use of radio telephones has evolved rapidly and grown explosively in the
last few decades. This evolution of wireless systems can be viewed to have occurred in
different stages [19]. The main force driving the evolution is an increasing public
demand for wireless services. To meet this ever increasing demand, better
communication technologies are required to increase network capacity, to improve
quality of service, and to introduce new service features.

The first generation of public wireless systems was developed in the 1970’s and
the 1980’s, based on analog technology. During this period, several systems were built,
including Nordic Mobile Telephone (NMT) by Ericsson, Advanced Mobile Phone
Service (AMPS) by AT&T, and Mobile Cellular Service L1 (MCS-L1) by Nippon
Telephone and Telegraph (NTT) [17]. In order to improve system capacity, the cellular
concept [14] was adopted. The main concept of cellular systems is that the service
region is divided into smaller areas, called cells. By using more cells, the system can
support more users. To further improve capacity, other ideas, such as cell splitting and
sectorization, were developed.

As the public appetite for wireless services gets bigger, the capacity of first

generation systems, even with improvements, soon became insufficient to satisfy the



demand in some areas. This led to the development of the second generation digital
wireless system, built in the 1980’s and the 1990’s. In this period, digital technology is
implemented to improve the system capacity several times over traditional analog
systems. At this stage, vehicular cellular radio and cordless telephone are developed
and optimized separately to provide service to users with different mobility patterns and
communication needs [8]. The typical vehicular radio systems include Global System
for Mobile Communications (GSM) in Europe and Digital AMPS (1S-54) in the United
States; the typical cordless telephone systems include CT-2 in Europe and some spread
spectrum products in the United States.

Among second generation systems, one of the new technologies used to boost
system capacity is code division multiple access (CDMA). CDMA, based on spread
spectrum technology, is developed to utilize the available spectrum more efficiently in
multicell networks. The history of spread spectrum (SS) communications can be traced
all the way back to its military origin during early phases of World War Il [36]. In
military applications, spread spectrum technology is used to combat intentional
jamming by an enemy transmitter. The approach to defeat jamming is to transmit over
many signal coordinates with large-bandwidth signals, such that the jammer cannot
achieve large jammer-to-signal power ratio in all the coordinates. The antijamming
properties of SS signals are well investigated and documented [37].

Since spread-spectrum uses large-bandwidth signals that result in the apparent
inefficient use of the radio spectrum, people had assumed that commercial applications
of SS radios were impractical [42][43]. Cooper and Nettleton, in 1978, were the first
ones to recognize that digital spread-spectrum radio had a potentially higher capacity
for mobile radio applications than the analog narrowband radios used at that time [7].

More research on digital SS mobile radio soon followed in 1980 [13][39].



By the late 1980’s and early 1990’s, advances in very-large-scale integrated
circuit (VLSI) technologies has made low-cost implementation of spread-spectrum
radio possible while the popularity of mobile radio has spurred the market demand for
high-capacity systems. These factors contributed to a renewed interest in the
application of spread-spectrum technology for mobile radio. The widespread
commercial development of SS wireless systems today is sparked by two key events.
One of the events is the 1985 FCC ruling which allows the unlicensed use of spread-
spectrum radio in ISM bands, which include the 902 to 928 MHz band. Another key
event is the well-publicized Qualcomm direct sequence spread-spectrum (DS/SS)
CDMA system which has led to the adoption of a second U.S. digital cellular standard,
1S-95 [12].

Today, commercial spread-spectrum radios are used in indoor office
applications, such as wireless local area networks (WLANSs), and wireless cordless
phone (PBX) systems. Among the interesting outdoor applications is the Federal
Emergency Management Agency’s (FEMA) experimental use of spread-spectrum
radios to transmit digital video. In some situations, unlicensed spread spectrum radio is
used as an emergency backup to wired lines and in many cases, they are used as a more
economical substitute for digital leased lines.

Numerous sources have projected that the demand for wireless communication
services will continue to grow rapidly well into the next century. One of the key
ingredients needed in third generation wireless personal communications systems
(PCS) is a low-power wireless access technology. The portability and affordability
requirements forces a design focus on power reduction to extend battery life and lower
component costs. Developing a low-power handheld transceiver that can provide robust

wireless communications presents many technical challenges. To meet some of the



challenges, the UCLA personal communications project began in 1991.

1.2 Scope of Thesis

This thesis arises from work we have performed to develop and validate the
system design techniques proposed for the UCLA prototype all-CMOS wireless
transceiver handset. A radio signal propagating in a wireless environment suffers from
severe corruption due to various channel impairments, making reliable communication
difficult. To overcome the radio channel impairments without resorting to high
transmitter power, the proposed architecture incorporates many advanced system
techniques, such as antenna diversity, slow frequency-hopped/code division multiple
access (SFH/CDMA), channel coding, and adaptive power control.

The topic of this thesis is the study of the system tradeoffs in the implementation
of adaptive power control, channel code selection, and the formulation of decoding
metrics for frequency-hopped transceivers in wireless communication applications.
Our investigation has resulted in the specification and validation of a distributed power
control scheme for a SFH/CDMA system, the determination of the sufficient transmit
power dynamic range to prevent significant system capacity loss and the development
of heuristic algorithms for reducing call dropping in a power controlled network with
dynamic power range restrictions. We have also performed a study on low-delay
channel coding and demonstrated the benefits of dual antenna diversity in combination
with coding. In addition, we have designed an adaptive metric that can track variations
in channel statistics and a simple algorithm for adapting the metric to changing channel
conditions. We will show that adapting the metric according to the channel condition
provides significant performance gain over standard fixed decoding metrics, such as the

soft decision and erasure and error decoding metrics.



Chapter 2 gives an overview of terrestrial cellular radio communication
technologies, with particular attention to CDMA systems. In chapter 3 we outline a
framework and describe system models for analyzing CDMA systems. In chapters 4 to
6, we present our new results. In chapter 4 we consider the implementation of
distributed adaptive power control. We show how to effectively adapt a distributed
power control scheme proposed for narrowband systems to the unique constraints of a
SFH/CDMA system. In chapter 5 we consider channel coding options for a frequency-
hopped system employing NC-BFSK signaling. Alternative channel codes are
compared on the basis of delay, complexity, and bandwidth efficiency. In chapter 6 we
propose new adaptive decoding metrics for convolutional code and derive new tighter
probability of error bounds. Chapter 7 contains our conclusions and suggestions for

future research.



Chapter 2

TECHNICAL BACKGROUND

In a multi-user radio communication system, several users can simultaneously
exchange information over different radio links. The system design objective is to
establish as many reliable links as possible over an unreliable shared communication
medium. The principal impairments in a single link or channel are attenuation due to
multipath fading and multiple access interference from other radios. To overcome these
impairments, advanced digital transmission techniques are needed.

In this chapter, we outline basic multi-user radio system design principles and
techniques. Specifically, we are concerned with the design of digital mobile radio
systems based on spread spectrum technology. Spread spectrum techniques have
inherent multipath fading immunity and multiple access capability. Section 2.1 briefly
reviews the basic principles of a digital communication system, with focus on system
design techniques for overcoming impairments in a fading channel. Section 2.2 gives
an overview of cellular radio concepts, explaining the characteristics of CDMA that are

advantageous for terrestrial personal wireless systems.



2.1 Communication Systems

We assume the reader to be familiar with the basic concept of digital
communications, such as digital modulation. Hence, we provide only a brief review of
the fundamental principles of a generic digital communication system. The review
introduces some of the communication terminologies used in this thesis. A glossary of
definitions is provided in the Appendix.

The basic functional elements of a digital communications system are shown in
the block diagram in Figure 2-1. The information source generates a message to be sent
electronically to the information sink by the transmitter-receiver pair through a medium

or channel, e.g. the copper wires in a telephone network. In digital communications, the

gistcrete
user A Digital ata Source Channel
Source P Encoder P Encoder »| Modulator ¢
Channel
Digital Source Channel
userB "Sink [ Decoder || Decoder [ [Pemodulatgra——

Figure 2-1 Block diagram of a digital communication system.

message consists of a sequence of discrete symbols, e.g. binary digits. The source
encoder processes the source output to remove redundancy, compressing the digital
sequence into a more efficient representation for transmission.

The channel encoder adds controlled redundancy to the compressed message in
order to control the errors caused by channel disturbances. There are a variety of error
control coding techniques which have been developed by communication engineers

since the 1960’s. Selecting an appropriate channel code for a particular system involves



making trade-offs among error performance, transmission delay, channel bandwidth
expansion due to added redundancy, and algorithmic complexity.

The modulator converts the digital information sequence into a signal suitable
for transmission through an analog waveform channel. The particular method of
modulation depends on the channel characteristics. In binary modulation, the

modulator may simply map the binary digit 0 onto a wavefae) and the binary digit
1 onto a waveforns, (t)

In general, no real channel is ideal. For the terrestrial mobile radio channel,
noise disturbances, multiple access interference, and multipath fading corrupt the
transmitted signal. The thermal noise generated within the receiver front-end is
accurately described by a mathematical model called additive white Gaussian noise
(AWGN). In some cases, the interference can also be approximated as Gaussian. In
addition to interference and thermal noise, the propagation impairments for terrestrial
mobile radio can be separated into two categories—namely, quickly varying or slowly
varying with respect to the symbol interval. In the former category is fast fading of
desired and interference signals, while in the latter category is shadowing and free space
losses. Techniques to deal with both of these conditions will be described in subsequent
chapters.

The most damaging type of multipath fading is Rayleigh fading. Multipath
fading occurs whenever the received signal consists of various delayed versions of the
transmitted signal arising from propagation over multiple paths of different lengths.
Depending the relative phases of the delayed signals, the signals could combine to
produce a large or small resultant signal, causing large amplitude and power variations

in the received signal. Figure 2-2 illustrates typical received power fluctuation due to



Rayleigh fading for a mobile receiver. During a deep fade, the quality of the received
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Figure 2-2 Temporal variation of the received signal power due to Rayleigh fading.
signal is severely degraded.

At the receiving end of the communication system, the demodulator processes
the channel-corrupted transmitted waveform by frequency shifting and reduces each
waveform to a single number that represents an estimate of the transmitted data symbol.
A hard decision demodulator decides on whether the transmittesib@ or a 1. On the
other hand, a soft decision demodulator quantizes the decision to more than two levels
to enable soft decision decoding, i. e., decoding with more complete signal information.
The remainder of the receiver decodes the received information sequence based on
knowledge of the code used by the source and channel encoders and delivers the
decoded sequence to the user.

The error probability of the decoded sequence is a commonly used measure of
the communication system performance. In general, the probability of error is a

function of the code characteristics, the types of waveforms used to transmit the

10



information over the channel, the transmitter power, the characteristic of the channel,
and the method of demodulation and decoding.

Whereas in an AWGN channel the bit error rate (BER) of an optimized system
drops exponentially with signal-to-noise-ratio (SNR), for a Rayleigh fading channel the
BER declines only linearly with SNR. Thus, a huge power penalty must be paid unless
diversity techniques are used to mitigate the effects of multipath fading. Diversity is the

technical term for reception of different versions of the same information, each with
independent fading levels. witH'Lorder diversity, the probability of error declines as

the Lt power of SNR [29]. Diversity may be achieved in any combination of the space
(antenna), time, or frequency domains. Diversity achieved in different domains is
multiplicative. A combination of techniques from several domains is an economical
means of achieving a high aggregate diversity order, thereby taming the multipath
channel and allowing receiver performance close to that achievable in the AWGN
channel. These items and their effect on bit error rate (BER) will be investigated in

Chapters 5.

2.2 Overview of Cellular Radio Concepts

The public switched telephone network (PSTN) has been developed rapidly in
this century, allowing reliable communication of voice and data around the globe. A
cellular radio system provides public wireless access to the capabilities of the global
wireline network at any time without regard to location or mobility. Subscribers of
cellular systems gain access to the wireline network over the service region where
cellular coverage is provided. The main feature of cellular systems is that the coverage

region consists of smaller disjoint areas, called cells. In each cell, coverage is provided
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by one base station. Continuous coverage across different cells is achieved by the
seamless transfer of the calls from one base station to another. This procedure is called
a handoff. Due to propagation attenuation of radio signals, the same frequency band
could be used simultaneously by multiple base-mobile pairs which are far enough apart
for the mutual interference to be tolerable. This “frequency reuse” allows a much higher
subscriber density per MHz of spectrum than systems using one base station to cover
the entire region.

There are two types of channels in cellular systems: downlink channels (from
the base station to the mobile user) and uplink channels (from the mobile users to the
base station). Under the centralized control of the base station, the downlink is
generally operated as a broadcast channel in the Time Division Multiplexing (TDM)
mode. On the other hand, the uplink is a multiple access channel that enables dispersed
users to share a common resource. The uplink problem poses a more challenging
problem than that of the downlink. Hence, in this thesis we focused more attention on

the uplink.

2.2.1 Multiple Access Schemes

In the wireless environment, the transmitted radio signal is subjected to various
impairments, such as interference, fading, and shadowing, as previously mentioned. A
good multiple access scheme should be able to tolerate such impairments while
allowing efficient and fair utilization of the available system resources. Depending on
the application, there might be many other considerations in designing or selecting a
multiple access technique.

In cellular systems, the multiple access channel resource can be parcelled out to

users either on a frequency basis using frequency division multiple access (FDMA), on
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a time basis using time division multiple access (TDMA), or on a code basis using code
division multiple access (CDMA). Hybrid schemes based on combinations of the three
basic sharing schemes are also possible. Next, we will describe the three basic schemes

briefly.
2.2.1.1 FDMA

In FDMA, a unique frequency channel is assigned to each user for the duration
of the call. The channel cannot be shared by other users during the call. With this fixed
assignment protocol, the control logic is very simple, but the channel resources are not
used very efficiently. To improve capacity, the same frequency channel can be reused in
distant cells where there is enough protection from co-channel interference. FDMA is
vulnerable to radio channel impairments even at relatively high SNR. The shortcomings
of FDMA makes it unsuitable for high capacity wireless systems. FDMA has been used
predominately in the first generation cellular systems. Today, it may serve an auxiliary

role in a hybrid access scheme.

2.2.1.2 TDMA

In TDMA, time is divided into slots which are grouped into frames. The frame
repeats. Each user is assigned a unique time slot in a frame. This slot is usually kept
until the connection is released by the user. TDMA suffers from the same inefficiency
problem as FDMA since it must rely on spatial attenuation to control intercell
interference. Due to excessive worst case co-channel interference, neighboring cells
cannot use the same frequency bands. However, it has certain distinct advantages in
multimedia applications. By using a flexible slot assignment policy, TDMA can easily
support integrated services. TDMA based protocols are used in some second generation

systems such as GSM in Europe, ADC in North America, and JDC in Japan.
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2.2.1.3 CDMA

Random access protocols require less centralized coordination than fixed
assignment protocols. CDMA is a sophisticated random access protocol that uses
spread spectrum techniques. Each user is assigned a unique code sequence which
modulates the data signal before transmission. With this modulation, the signal is
spread over a much wider bandwidth than that required to support the source data rate.
At the receiver, a matching code sequence is used to despread the received signal to
recover the original data. With this spread and despread procedure, all the other
simultaneous transmissions in the channel will act as additive noise to the desired signal
[37]. If the codes are orthogonal, the interference can be removed completely.

Based on the spread spectrum technique, CDMA can be divided into Direct
Sequence CDMA (DS/CDMA), Frequency Hopping CDMA (FH/CDMA). In DS/
CDMA systems, each user occupies the whole bandwidth at the same time with a
unique signature code. In FH/CDMA, each user is assigned a unique FH pattern. Users
hop around in frequency. FH/CDMA can be further divided according to the hop rate.
In Fast FH/CDMA (FFH/CDMA), there are multiple hops per information symbol, and
in Slow FH/CDMA (SFH/CDMA), there are multiple information symbols per hop.
With well-designed channel coding and interleaving, SFH/CDMA can also obtain
interferer diversity and multipath diversity characteristics as DS/CDMA. The main
difference in the performance between DS and FH is due to the different forms the
intracell interference take in the two methods. While in DS, intracell interference is
typically dominant, for FH there is little or no intracell interference since FH can be
made approximately orthogonal within a cell.

The performance of DS/CDMA (e.g. IS-95) has been studied extensively. Key
advantages of CDMA are well documented in recent papers [12][44]. First in CDMA,
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since the whole bandwidth is used in each cell (universal one-cell frequency reuse) the
need for complex frequency planning can be eliminated. Second, CDMA allows for the
system to be designed based on the average interference, which provides more capacity
than the worst case design. Third, voice activity utilization can easily improve system
capacity. Multiple access interference (MAI) in CDMA is the dominant factor in the
limitation of capacity. A way to reduce MAI is to generate no packets whenever the
voice source is silent. By employing voice activity detection, the capacity can be
increased. Fourth, since CDMA is interference limited, any interference suppression
technique can be directly translated into an increase in system capacity. Fifth, the
CDMA systems have soft capacity and soft handoff features [16].

CDMA also has some shortcomings. The major one for DS/CDMA is that the
performance is very sensitive to power control. Power control inaccuracy due to
imperfect channel measurements can significantly lower the capacity of a real DS/
CDMA system [8]. FH/CDMA fares better than DS/CDMA in this respect because FH/
CDMA uses power control only to reduce intercell interference and as such, power
control can be less accurate.

FH/CDMA has other advantages over DS/CDMA for personal wireless
applications, in which a low power implementation of the handheld transceiver is an
important goal [26]. For an FH system, the signal processing is performed at the hop
rate, which is much lower than the chip rate encountered in a DS/CDMA system.
Slower signal processing components in a FH/CDMA system result in less power
consumption. Another advantage of FH technique is frequency agility, which means the
spectrum does not have to be contiguous. With frequency agility, the effect of
narrowband external jammers can be nullified.

The potential problems with FH/CDMA are the need for complex frequency
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synthesizer and strict time synchronization requirements to ensure the orthogonality of

FH patterns.

2.3 Summary

CDMA has inherent features which make it a good multiple access technique
for personal wireless communications. Unlike FDMA and TDMA systems, the
capacity of a well-designed CDMA system is interference limited. A spread spectrum
radio is designed to tolerate some level of mutual interference. In military applications,
interference derives from enemy jammers not under control of the communication
system. On the other hand, in commercial applications, interference can be controlled
by design techniques such as power control. In multicell systems, it is generally
believed that CDMA can fundamentally provide more capacity than either basic
TDMA or FDMA schemes. In addition, SFH/CDMA seems to have more merits than
DS/CDMA for the implementation of handheld radios. Therefore, SFH/CDMA was
chosen as the multiple access scheme for the UCLA low-power handheld transceiver.
To achieve robust performance, channel coding is essential in SFH/CDMA systems.

Although we have chosen SFH/CDMA, the merits of various multiple access
schemes for wireless personal communications are still the subject of considerable
dispute. The debate continues because the comparison results are highly dependent on
initial assumptions about system models and requirements. We also note that certain
features of CDMA can be implemented in TDMA. For example GSM has an option of

slow hopping to make GSM more like an interference-averaging system.
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Chapter 3

SYSTEM MODELS

In the last chapter, we outlined the design principles for CDMA wireless
systems. In this chapter, we discuss the system models and approaches used to analyze
different aspects of the proposed SFH/CDMA architecture. A model is something that
describes the objects or processes involved in a system. It can be in several forms, e.g.
physical or graphical. We are most interested in mathematical models which represent
the system behaviors in terms of mathematical relations. The nature of any object has
many facets and no mathematical model can deal with all these facets. Good models
should be simple, accurate and suit the purpose of the study.

Using models to predict system performance is a way of exploring design
tradeoffs in a fast, inexpensive manner. The purpose of the analysis is to guide the
selection of model parameters. Once the system models have been determined, we can
invoke analytical and/or simulation techniques to evaluate the performance of the
system. When the model is simple enough, elegant formulas that express how model

parameters relate to system performance variables could be derived. When the model is
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more complex, simulations might be required to evaluate the relationships between
system performance and parameters.

In communications, the transmission channel places fundamental limitations on
the performance of the system. To properly design a radio communication system, we
must have a thorough understanding of the radio channel, which may be quite complex.
Choosing and devising a channel model is a very important part of system analysis. In
selecting appropriate channel model parameters, factors such as the signal
characteristics and the system performance evaluation objectives must be considered.

This chapter is organized as follows. In Section 3.1 we describe two network
topologies: cellular and peer-to-peer. In Section 3.2 a multiuser SFH/CDMA system
model is presented and frequency hopping is illustrated. The system model for a single
user link in the SFH/CDMA system is shown in Section 3.3. Section 3.4 gives a
statistical characterization of the radio channel. Section 3.5 and Section 3.6 discuss the
appropriate channel models for studying power control and channel coding techniques,

respectively.

3.1 Network Topology

Consider two classes of communication networks: cellular and peer-to-peer.
The two classes are distinguished by their different link topologies. The cellular
concept has been discussed in some detail in Section 2.2. Here, we will describe the
peer-to-peer system in reference to the cellular system.

In a peer-to-peer network there are no base stations as in cellular networks and
every portable or transceiver can move freely within the service coverage area. The
links are organized into separate clusters, which in many ways are similar to cells. One

portable from each cluster is designated as a master to provide some network control
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services (e.g. a global clock) [11]. During call setup a user should be assigned to the
cluster from whose master it receives the strongest signal strength. However, almost all
communications takes place directly between the peers, without mediation by the
master. The peer-to-peer topology is useful in applications that requires an instant
communication infrastructure without cell planning. One example is radio networks for
soldiers in combat. These networks needs to be set up quickly, highly secure and self-
healing. Another example is wireless local area networks, which allow computers to
access any peripherals within communications range, such as printers, file servers, and
storage devices. Wireless LAN can reduce cost and diffculty of rewiring.

For both network classes, diversity techniques, such as frequency hopping, and
distributed power control are employed. These concepts will be explained in the

following subsections.

3.2 SFH/CDMA Network Model

The network model is defined as a group of M radio links, each consisting of
one transmitter sending information to the corresponding receiver over a SFH/CDMA
channel. In SFH/CDMA systems, the available channel bandwidth is subdivided into a
large number of contiguous frequency bins. In any signaling interval, a link occupies
one of the available frequency bins. We will assume a time synchronous SFH/CDMA
system, in which each link hops among the same set of orthogonal frequencies but with
a different hopping sequence that is designed to randomize co-channel interference in
order to provide interferer diversity. The latin square construction introduced in [28] is
a simple procedure for designing a set of hopping sequences with good interference
randomization. By using a latin square hopping pattern, each user suffers collisions

from an ensemble of users occupying the nearby clusters, rather than from one
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dominant interferer. The following are the key parameters for specifying the hopping
patterns generated by latin-squares:

N+ = number of orthogonal frequencies (tones) over which all users hop.

N = number of time slots in a frame.

In a latin square construction, the hopping pattern repeats after each frame.

Figure 3-1 depicts an application of the latin-square construction to a

Hopping Pattern Table for Links 1, 2, and 3
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Figure 3-1 Network model with three clusters and a table showing some
N=N1=8 latin-square hopping sequences.

hypothetical peer-to-peer network consisting of three clusters, each containing two
links. In the figure, transmitters are represented by x’s and receivers by o’s. The arrows
indicate the direction of transmission for each link. Observe that the hopping sequences
for the links in cluster A, labelled by indexes 1 and 2, are orthogonal; that is, they do
not overlap in any slot. On the other hand, the hopping sequence for link 3 in cluster B,
shown by the shaded entries in the hop table, overlaps with each hopping sequence from
cluster A only once per frame. In other words, links 1 and 3 will experience mutual co-

channel interference only in the first time slot of every frame. Furthermore, for systems
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with non-ideal bandpass filters, transmit power will leak into the adjacent frequency
bands. If the leakage power is significant in the system of Figure 3-1, link 1 and 2 would
emit adjacent channel interference to each other during every first and fourth time slots
in a frame. Although this example involves a peer-to-peer system, the latin-square

construction can be similarly applied to cellular networks.

3.3 Radio Link Model

Within the network, there are many links. Figure 3-2 outlines the system model
for a single radio link. The input bit stream is encoded and fed to the interleaver. The
interleaver rearranges the coded sequence in such a way that the fading channel with
burst error characteristic is transformed into a channel having independent errors. The
coded symbol at the output of the interleaver is transmitted by binary orthogonal FSK

signaling. The frequency hopping binary FSK signal is output from a frequency hopper
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Figure 3-2 System Model.

where the hopping local signal is multiplied by the binary FSK signal. A slow frequency
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hop scheme is assumed in which a hop is made in each slot interval consisting of a few
symbols. The transmitted signal passes through a radio channel, the characteristics of
which are described in the next section.

At the receiver end, the received signal is first dehopped to obtain the baseband
binary FSK signal. Non-coherent detection is used for the reception, because the
handheld system is designed to allow fast hopping. The receiver employs dual antenna
diversity with postdetection equal gain combining to achieve diversity. This was found
to outperform selection diversity, and in any case when the channel SNR cannot be
estimated with any accuracy for a slot (e.g., fast hopping), two complete receiver
branches are required to make antenna diversity effective. Thus, equal gain combining
comes essentially for free. We assume that the signals received at the two antennas have

low correlation.

3.4 Fading Channel Model

An active radio link will experience transmission impairments. Depending on
the bandwidth of the signal relative to the coherence bandwidth, channel models can be
classified as wideband or narrowband. In the proposed SFH/CDMA system, the spread
bandwidth is much larger than the coherence bandwidth so that frequency diversity can
be achieved. However, the aggregate channel resource defined by the bandwidth- time
product is divided evenly into subchannels, as illustrated in Section 3.2, and these
subchannels are more like narrowband channels; hence, we will concentrate on the
characterization of narrowband channels.

In classical AWGN channels, the signal is corrupted by an additive random
signal, known as noise. When a signal passes through a multiple access radio channel,

besides noise, other random processes, namely propagation phenomena and multiple
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access intereference distorts the signal. In this section, we will explain the transmission
impairments due to propagation and interference and show how these impairments can

be modeled for different types of performance evaluations.

3.4.1 Propagation Models

A major propagation mechanism in terrestrial mobile radio channel is multipath
fading. Multipath refers to the many paths by which signal energy may arrive at a
receiver. The paths are characterized by different delays, phase shifts, and attenuations.
The low-pass equivalent impulse response of the multipath radio channel can be

modeled by a time-varying linear filter:

h(t, T) = ZO(i(t)eei(t)é(t—Ti) (3.1)

where the -th path has amplitude , ph@se and propagationdelay dttime .As
a signal is transmitted through a radio channel, physical characteristics of the
propagation environment might be constantly changing. For example, the portables
might be moving amongst natural or man-made obstacles which are are randomly sited
onirregular terrain. It is too complicated and unrealistic to pursue an exact deterministic
approach to modeling the propagation effects. To determine the received radio signal,
which may be influenced by many random factors, a statistical approach is often used.

The time-varying distortion caused by multipath fading is often characterized
by two kinds of spreading: delay spreading (spreading in time) and Doppler spreading
(spreading in frequency). Delay spread measured in indoor settings is usually less than
100 ns [9]. For an outdoor microcellular environment, delay spreads on the order of a

few microseconds have been observed. The coherence bandwidth, which is defined as
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the inverse of the delay spread, ranges from around 1 MHz in outdoors to greater than
10 MHz in indoors. For the proposed SFH/CDMA system, the instantaneous signal
bandwidth is less than 1 MHz. When signal bandwith is narrow relative to the
coherence bandwidth of the channel, the channel is frequency-nonselective. That is, all
of the frequency components in the signal undergo the same attenuation and phase
during transmission. The impulse response for a narrowband channel can expressed in

the form:

h(t, t) = a(t)ebO3(t —1) (3.2)
This flat-fading channel results in multiplicative distortion of the transmitted signal. For
such narrowband systems, the symbol period is much longer than the delay spread so
that intersymbol interference (ISI) is negligible and ISI reduction by adaptive
equalization is unnecessary. Doppler spread due to terminal motion causes time
variations in the envelope of the received narrowband signal. For a pedestrian based
system, the doppler spread is small (e.g 5 Hz). The coherence time, roughly defined as
the inverse of doppler spread, is approximately 0.2 seconds, which is much greater than
the frequency dwell time of SFH/CDMA system (e.qu®  at the hop rate of 160 khops/
s). This implies that the channel fades relatively slowly, the condition under which the
multiplicative distortion may be regarded as a constant within a hop.

For the purpose of predicting the received strerdti) for a narrowband signal
at a receiver, we use a propagation model that quantifies the phenomena of signal
propagation by two factors: the median signal strength, and the signal variability. The
prediction is a two step method involving an estimation of both the median received

signal within a relatively small area, and the signal variability about the median level.
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3.4.1.1 Median Signal Strength

There are a number of models described in the literature for predicting the
median signal strength in a small area [27]. In general the models used in the prediction
methods are a mixture of empiricism and the application of propagation theory. The
empirical approach relies on fitting curves or analytical expressions to sets of measured
data and implicitly attempting to take factors such as diffraction, atomospheric effects
or irregular terrain into consideration. When the signal variability is averaged out, the
path loss has been empirically determined to follow an inverse power law with distance

between the transmitter and receiver. That is, the average received signal strength,

denoted by (r) , can be written as:
r(r) = ArY (3.3)
wherey is called the path loss exponant, is the distanceAand is some constant. The

values ofy ranged from 1.5 to 6, depending on the propagation environment.

3.4.1.2 Signal Variability

It is often useful to separate the effects of signal variability due to multipath
fading on a basis of scale into those which occur over a short distance and those which
are apparent only over much longer distance. Although fading is fundamentally a
spatial phenomenon, it is experienced as a temporal variation by a receiver moving
through the multipath field. Local multipath that can be observed over a short distance
on the order of a wavelength causes short-term fluctuation. For a receiver moving at 30
miles/hour, several short-term fades, also known as rapid fading, can occur within a
second. The long-term variation, caused by gross changes in the overall path between

the transmitter and receiver, occurs over much larger distances on the order of tens of
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wavelengths. Because the variations are often caused by the mobile moving into the
shadow of buidlings or hills, long- term fluctuation is called shadowing.

When shadowing is present, measurements reported by several researchers
[30][15][2]suggest that the average received signal strength at distance , denoted by
I"(r), has the log-normal distribution:

O (x=T(r))20
prin®) = e ST

where all units are in decibles. For similar environmental areas, the standard deviation

(3.4)

has been observed to be independent of path length. It ranges from 4-18 dB, with
o = 8 being a typical value for urban environments.

The signal variability also has a rapid fading component superimposed on the
log-normal variation. This is caused by multipath propagation in the immediate vicinity
of the receiver. In the absence of a strong line-of-sight path, the central limit theorem
arguments may be invoked to show that the received waveform can be characterized as
a complex Guassian process. The envelope of a complex Gaussian process follows a
Rayleigh distribution and the phase follows a uniform distribution. The probability

density function of Rayleigh fading can as written as:

() = Sexp—2) (3.5)

where2a? , the second moment, represents the average signal power.

The distinction in time scales of the signal variability is extremely useful for
engineering. Mathematically, this means that the statistical model of the short-term
fading is conditioned upon the instantaneous values of the parameters of the long-term

statistics [31]. For most fading channels, only the short-term fading variations influence
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the selection of the appropriate method of modulation, diversity, and coding; only the
long-term fading variations determine the availability of the channel. The
dichotomization of the time scales allows us to analyze network and link issues
separately. We will elaborate the practical implication on propagation modeling in

Section 3.5 and Section 3.6.

3.4.2 Interference Model

Frequency reuse leads to co-channel interference while spectral leakage
produces adjacent-channel interference as described in Section 3.2. The interference
and desired signals arrive simultaneously at a receiver and, excluding the thermal noise,
their sum is the received signal. Since the interference signals, similarly to the desired
signal, pass through the propagation channel, they are impaired by distance loss, log-
normal shadowing, and Rayleigh fading. In modeling interference, we assume that all
signals are affected by independent but identical statistics.

As with propagation modeling, proper modeling of the impairments due to
interference must match the engineering interest. Interference signals can be modeled
individually or as a single aggregate process, resulting from the combination of many
signals. How to choose the right model for a specific purpose is discussed in the next

two sections.

3.5 Channel Modeling for Power Control Study

In CDMA systems, power control techniques are employed to adjust the tranmit
power from every radio link to the minimum level required for reliable transmission.
This saves power and also reduces the interference in nearby cells, thereby increasing

capacity. Power control algorithms can be classified as centralized or distributed. To
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implement centralized algorithms, there must be some terminals, such as base stations,
that can cooperatively control the transmit power of every radio link in the network. On
the other hand, under distributed algorithms each radio link adjusts its power locally.
Distributed power control is suitable for peer-to-peer systems, such as military and
emergency response applications in which base stations may not be deployed and
centralized control is impractical. Futhermore, it is desirable from the practical point of
view of avoiding burdening higher levels of the network even should base stations be
available.

Chapter 4 studies the implementation of a distributed power control algorithm
for the proposed SFH/CDMA system. The power control algorithm uses feedback to
deal with slowly varying channel conditions, namely shadowing and free space loss.
The algorithm adapts with respect to an average signal-to- interference (SIR) threshold,
reducing the average transmitted power to the level actually needed for reliable
transmission. Power control with respect to a SIR measure requires a closed-loop
structure whereby the two parties on occasion exchange messages indicating that an
adjustment in transmitted power level is required.

Power control is mainly a network issue. Its effectiveness can be measured by
system capacity, often defined as the number of users that can simulatenously access
the system with some guaranteed quality of service. Quality of service is related to both
reliability and availablility requirements. Reliability is usually a function of average
SIR. By keeping the mean SIR near a desired threshold through power control, an
implicit reliability requirement is established. A link is considered unavailable when it
cannot obtain the SIR threshold, which occurs when there is excessive interference
from other co-channel users in the system.

One purpose of studying power control algorithms is to determine system
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availability as a function of network loading. In addition, the dynamics of the power
control algorithm are interesting. Knowing the convergence property of the algorithm

Is very important. Since power control involves interaction between multiple links, the
interference model should treat the signal in every radio link individually. This allows
changes in SIR over succesive slots and frames to be determined. Since the system
model for studying power control is highly complex, a simulation approach is often
required to examine the system behavior. For power control simulations, a channel
model should include slowly varying propagation effects, namely distance loss and log-
normal shadowing, on the individual signals. The rapid fading can be ignored as long

as we assume perfect channel measurements.

3.6 Channel Modeling for Channel Code Study

The power control mechanism in the proposed SFH/CDMA transceiver
architecture can overcome slowly changing channel impairments. However, the
proposed power control algorithm cannot deal with the other dominant transmission
impairments in SFH/CDMA systems, namely multipath fading. In order to achieve a
high capacity with low power consumption, it is essential that diversity be employed in
the transceiver architecture. There are many well-known diversity techniques for
mitigating rapid fading. These techniques can be realized into one of three domains:
space, frequency, and time. Channel coding provide time diversity. There are many
different channel codes and one of the issues in transceiver design is channel code
selection. The selection process considers tradeoffs among error performance,
transmission delay, channel bandwidth expansion due to added redundancy, and
algorithmic complexity.

The effects of rapid fading on communications performance are usually
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described by the error-rate performance of the transceiver as a function of mean SNR.
In link performance simulations, the total inteference statistics could be modeled as an
additive white Guassian process. When there are many significant interferers and the
transceiver employs frequency hopping, long interleaving span and a powerful channel
code, the randomized interference will appear as an additive white Gaussian noise at the
baseband. The AWGN might have a time-varying variance to simulate the behavior of
fading interferers. The variance of the noise might also be time varying due to changes

in system loading, which could lead to increase or decrease in system interference.

3.7 Summary

In radio communications, the channel is highly complex and causes severe
degradation to the transmitted signal. It is important to understand and model how the
channel places fundamental limitations on the performance of the system. A good
channel model can facilitate the design and development of radio comunication
techniques for achieving robust transmission. Choosing a channel model depends on
many factors, such as the signal characteristics and the goals of the performance
analysis.

In general, for the purpose of determining system availability, a channel model
might include the slowly-varying propagation effects such as distance loss, and log-
normal shadowing. The model need to include all the various signals in the different
links in the system. On the other hand, for the purpose of computing bit error
performance on a single link the channel model could consists of only the impairments

due to rapid fading and AWGN.
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Chapter 4

IMPLEMENTATION OF
DISTRIBUTED POWER CONTROL

Dynamic control of the transmit powers and channel assignments of the mobiles
in a wireless network can greatly improve system capacity and resource allocation. For
networks requiring reduced complexity of protocols and infrastructure, distributed
power control schemes are more appropriate than centralized ones. For example,
distributed power control could be used in peer-to-peer networks which eliminate the
complexity associated with base-stations. In this chapter, we describe the
implementation of a distributed power control scheme for the prototype SFH/CDMA
system. The scheme is based on a distributed power and admission control algorithm
developed by Chen et. al [4]. An important feature in their scheme is the protection the
operational links by suppressing new links that may cause the quality of service for
ongoing calls to fall below a certain target.

In this chapter, we present capacity analysis of different networks, assuming
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power control with limited dynamic range. Some analytical results for simplified
systems are presented to verify simulation results. The idealized system provides a
baseline for comparison against more realistic systems.

The chapter is organized as follows. In Section 4.1, the motivation for studying
distributed power control with dynamic range constraints (DPCDRC) is given. A
mathematical description of DPCDRC is presented in Section 4.2. Section 4.3 deals
with capacity calculation of systems with different power control schemes to provide
some benchmarks for comparison. Section 4.4 studies performance degradation with a
dynamic range constraint and details the problem of dropped calls. Heuristic algorithms
for reducing dropped calls are presented in Section 4.5. Finally, concluding remarks are

made in Section 4.6

4.1 Motivation

The following simple example illustrates how a dynamic range constraint
affects the outage probability of a network. Outage probability is defined as the average
fraction of the service area over which an acceptable transmission quality cannot be
maintained [34]. We take this as our principal measure of performance.

In the network of Figure 4-1, there are two links operating in adjacent channels,
both receivers are fixed at the origin, and the transmitters are uniformly distributed in a
unit circle centered at the origin.

Let the adjacent channel interference emitted from a transmitterdig of the
power in the transmitter's own channel. Defire as the dynamic range in decibels.
When the SIR of a link drops below the acceptable threshold, denotgd by , outage

occurs. That is,
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Figure 4-1 Simple example with two links
SIR=P,-P,—a+x<y (4.1)
whereP, = power of the desired signal, &hd = power of the interference signal.

Assuming that radio propagation attenuation obeys an inverse fourth power law
with distance, we can derive a relationship between the distances under the outage

condition:

(y+ra-x)

40

d,<10 d, (4.2)

Letd, andd; be modeled as random variables with uniform distributions, then

the outage probability is given by
1ky
P{d,-kd, <0} = IIdxdy
00
= 0.5k; k<1

(4.3)

where

(y+a—x)

40

k=10 (4.4)

Figure 4-2 plots the analytical result for a variety of dynamic range values, given

y = 12dBanda = —29 dB . The -29 dB interference rejection factor is determined
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from a functional simulation of the UCLA prototype SFH/CDMA transceiver, taking

into account the frequency responses of the transmit and receiver filters.

1N

0.050 X

=
| ‘ﬁ\kﬁ"’\:&.,

0.01
o0 30, mamic Range (@8) 00 50.0

Pout

Figure 4-2 Outage Probability vs. Dynamic Rangeyferi2 dB and
a = —-29 dB

The plot exhibits a general trend in which more dynamic range reduces the
outage probability, and also that increasing the dynamic range yields diminishing
improvements in the outage probability, which is related to the system capacity.
Simulation results (marked by rectangles) for this simple case are in agreement with the

analytical result. Next, we consider more realistic networks.

4.2 Description of Power and Admission Control

Algorithm

A general description of the system models for SFH/CDMA network is given in
Chapter 3. Here we provide additional details about the models for the purpose of
studying power control issues. To implement distributed power control over a SFH/
CDMA link, we must be able to reliably estimate the signal-to-interference ratio (SIR)

at the receiver. Unreliable SIR information can significantly reduce the benefits of
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power control. The non-coherent correlator outputs can be used to implement a
maximum-likelihood estimator for the SIR [49]. To obtain reliable measurements of the
SIR, the estimator must average over hundreds of samples in a frame instead of ten or

less samples in a hop. The RMS error in the SIR estimation, expressed as a percentage

of the actual value, is approximatelil/M ,whéfe isthe number of samples. When
the number of samples is greater than 100, the RMS error is less than 10%, which
implies a fairly accurate measurement of the SIR. Given the SIR estimate, a signal is
sent to the corresponding transmitter to update the transmit power.

In our power control scheme, the power will be adjusted once per frame base on
a reliable measure of the “average” SIR, which is mathematically defined below. Given
the transmit power is constant across a frame, the SIR can fluctuate in successive hops
as multipath and the combination of links causing mutual interference change. Channel
coding is thus required to overcome hops with SIR too low for reliable transmission. In
other words, our SFH/CDMA system uses power control to mitigate the slowly
changing channel impairments such as shadowing and distance loss, and relies on
channel coding to combat the rapid channel variations.

In order to study the power control problem with constrained transmit power for
SFH/CDMA systems, we propose the following system model as an extension of the

models in [10][24]. The performance object is to achieve
R =y (i=12..,M) (4.5)
whereR; is the SIR of the i-th link averaged over the N time slots within a frame, is

the prefix SIR target value determined by the lowest acceptable global service quality
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of the network, and M is the number of links.

In (4.5),R; is given by

G)I

R =

i P,
(4.6)
iPi+

CDI

2%
whereP; is the power transmitted by tHét'ransmitter,Gij is the “average” attenuation
between thel transmitter and thé'] receiver and) is the power of the additive thermal

noise in each receiver. We assume that all receivers have the same noise floors. The

average attenuation in (4.6) can be written as

N
2 GM (4.7)

whereG{¥ is the attenuation between theriansmitter and the'j receiver during the
k' time slot within a frame. Equations (4.5) and (4.6) may be combined and stated in
matrix form along with the transmit power constraint as follows:

[l —yF]P=u

P <P, <P, (4.8)

where P is the vector of transmitter powers which are constrained to be within the

interval [P, Py] , I is theM xM identity matrix, matri¥ is non-negative with
elements:
F; =0 ifi =
. 4.9
= G/ G;ji ifi#]
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andu is the vector with elements
= yn/G; i=212..1 (4.10)

A solution to (4.8) is feasible if at least one solution ved®r  exists. Observe

that the SFH/CDMA system model reverts to the original TDMA/FDMA model if we

let [P, Pyl = [0,0] andG = G; ,Ok .Thatis, (4.8) becomes

ij
[l —yF]P>=u
P, 20

(4.11)

Mitra [24] showed that if a solution to (4.8) exists, then a particular solution is
P , Where

P = [I-yF] 'u (4.12)

and this solution is Pareto optimal in that any otRer  which also satisfies (4.8) is greater
than P~ . Note that finding the solution by (4.12) requires global control to collect
measurements @ and the distribution of the power vector after it has been computed.
Our objective as formulated in (4.8) is to use power control on a SFH/CDMA network
to minimize transmitters’ powerwithin the dynamic range constraintghile giving
each link enough power to satisfy their target average SIR and furthermore, we want to

do this in adistributed manneto reduce network control complexity.

Foschini [10] proposed a distributed power control algorithm based on an
iterative power update approach using the power update equation:

P(n+1) = yFP(n) +u (4.13)

Without any dynamic range restrictions, this simple distributed algorithm is

guaranteed to converge to the Pareto optimal power solution, whenever a power setting
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exists for which all links meet the SIR requirement. That is, when there exists a solution
which can found by the global algorithm (4.12), the solution of the distributed
algorithm approaches it geometrically fast [24]. Chen, Bambos and Pottie [4] simplified
Foschini's distributed algorithm and showed that the power update equation can be
rewritten as:

P(n+1) = %Pi(n) (i=12.. M) (4.14)

Equation (4.14) specifies that the current transmitter power should be adjusted
by a factor that is equal to the ratio of the target SIR to the measured average SIR at the
receiver.

Computing power updates is an essential part of the distributed power control
algorithm. In [4] a power update algorithm is developed to protect the quality of
operational links when the set of desired SIR requirements are no longer achievable.
The algorithm incorporates a non-linear adjustment function to allow the operational
links to increase their powers more rapidly than the new links so that the operational
links will always maintain their target SIR while the new links might end up with lower
SIR. The power adjustments in [4] are drawn from a set of real numbers. For our
iImplementation, however, we quantized the power update function to four levels. The
steps were chosen to preserve the active link protection mechanism. By using discrete
adjustment levels, the control traffic in the feedback loop of the power control process
IS minimized.

Our modified update scheme is formalized below. Define

P9B(k + 1) = PIB(K) + g,(RIB(k) —ydB —A) (4.15)

where the power update functions for an operation link i and a new link j are
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given by (4.16) and (4.17), respectively.

5—6 x>0
00  0<x<d
(%) = 4.16
%) E d -3<x<0 (4.16)
2925 x<-3
-0 X>d
g =H 0  0<x<d (4.17)
0 & -d<x<C

The only difference between the first and second update function is that the
maximum step size i80 versds , wheére s a quantized adjustment step. In (4.15),
a protection margin is provided by raising the effective SIR target of all links by
approximatelyA . In addition, the quantization adds a margit of so that the effect SIR
is actually betweeld and+A . Whenever its SIR drops into the protection margin,
the operational link can increase its power faster than a new link that is powering up.
The protection margin can be optimized for fine tuning the performance of the power
control algorithm.

A simple admission control policy algorithm was also derived in [4]. When a set
of SIR requirements become unattainable, a new link will see little or no SIR
iImprovements despite increasing its power. The basis of the admission policy is to track
the changes in SIR relative to the increase in transmit power and block any new links
with small SIR versus power slope in order to relieve network congestion.

When the transmit power is constrained, the admission control will malfunction
under certain circumstances. For example, suppose a new link powers up while an
operational link, denoted by O, is already at maximum power level. The new link

generates interference to active users, causing the SIR of link O to drop below target
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SIR. Since link O can no longer increase its power, its transmission quality will decline
as the new link, which sees SIR improvements, continues to increase its power to get to
the target SIR. If the new link is admitted, link O will terminate prematurely because it
can no longer maintain reliable transmission. Thus, failing to reject a new link that
causes infeasible SIR requirements forces one or more operational links to drop out.
Since call dropping is a more annoying problem than call blocking, in general, we want

to keep the call dropping probability lower than the call blocking probability.

4.3 Network Capacity for Ideal Power Control

We use both the number of users per cell and slot efficiency as the measure of
capacity performance. Slot efficiency is defined as the ratio of the number of channels
occupied to the number of available channels at a certain outage probability. The
cellular systems in this section are assumed to have ideal power control. For single-cell
systems, we computed the optimum capacity using the global power control algorithm
givenin (4.12). For multiple-cell systems, the power is controlled so that all reverse link
signals are received at the same power level. Although the latter scheme is suboptimal,
it is computationally less expensive and the capacity analysis is more tractable. The
simulation procedure starts with no calls, and adds calls until the set of SIR
requirements becomes infeasible. This is repeated for a large number of trial sets
(10000) so that the average efficiency of slot usage can be computed at an outage
probability not exceeding 1%. The next section furnishes some additional details about

the SFH/CDMA simulation model.

4.3.1 Simulation Parameters

Our simulations include both cellular and clustered systems. The following
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assumptions apply to the parameters of the SFH/CDMA model described in Section

4.2:
1.

All cells/clusters are of equal size and hexagonal shape. The radius of each
hexagon is small enough to ensure the systems are interference-limited.
The location of portables (both transmitters and receivers in cluster systems)
is uniformly distributed within the coverage area.

All portables have a common antenna height and antenna gain.

Orthogonal hopping patterns are generated by a 32-element latin square;
hence, each cell/cluster can accommodate a maximum of 32 links. In other
words, N = 32, where Nis the maximum number of links per cell/cluster.
Both the number of orthogonal hopping tones and the number of time slots in
aframe is also 32. That N;; = N = 32

A common fourth-power path loss model is used to describe the signal
propagation for all transmitter-receiver pairs. All transmitted signals are
affected by log-normal shadowing with identical statistics.

Adjacent channel interference is specified by the ACI coupling factor.
According to the RF transmit and receive filter specifications of the UCLA
prototype SFH/CDMA system, the out-of-band emission to an adjacent
frequency is approximately 29 dB down from the peak transmitted power in
the desired frequency.

Thermal noise can be modeled as a constant. It can be calculated assuming a
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3 dB noise figure for the low-noise amplifier.

8. Perfect knowledge of the SIR parameters at a receiver is available to the
corresponding transmitter.

9. The established SIR requirement includes the gain from coding and antenna
diversity. The effectiveness of antenna diversity and error correction coding
in mitigating multipath fading is demonstrated in later chapters.

Unless otherwise stated, the above parameters will be the standard for all SFH/
CDMA simulations. The next section deals with the basic SFH/CDMA single cell

system, and the subsequent sections deal with multi-cell and clustered systems.

4.3.2 Single Cell Reverse Link Capacity

The single-cell capacity formula in [12] can be extended to frequency-hopped
single cell systems utilizing an average power control scheme, in which the frame SNR
is kept constant and the slot SNR may vary about the mean. When there is ACI, the
hopping patterns are no longer completely orthogonal, and so a SFH/CDMA system
will experience in-cell interference, similar to a DS/CDMA system.

The capacity of a single-cell SFH/CDMA system with well-designed hopping

patterns may be closely approximated as follows. First, find the average SNI per frame.

~ (N-1)Sxf+n
wheref is the adjacency coefficient for the hopping pattern usedkand is the ACI

S S
|

coupling factor. In the best case, any pair of users will be in adjacent channels at most

twice in each frame. If the hopping patterns has this optimum adjacency property, then

42



it can be shown that

2R
f ==
W
Then,
Fop - /R SR
INJFave  1/W [2x(N=-1)S+n]/W
Finally, solve for N to obtain
L W/ R n1l :
+ — >
Eﬂ 2X(By/No)ayg  S2X o AE ol 71
N =0 (4.18)
H
E W/ R otherwise

whereW is the total spread spectrum bandwidRh, is the information bit &ate, is the

desired signal power at the base-station, is the ACI coupling faCiy Ny) ,\ is

the per user average frame SNR requirementyrpand is the background noise in the total
bandwidth,W . The noise term can be ignored when the system is interference limited.
We can look atW/(2xR) as the effective processing gain with respect to the in-cell
interference.

To compare the capacity approximation and the exact result obtained by Monte
Carlo simulation, we examined a 32-link system with an ACI coupling factefldf
dB. Figure 4-3 shows that the analytical result accurately predicts the capacity
performance.

We note that the simulation and analytical results are in close agreement

because the hopping patterns generated by a 32-element latin-square construction have

good adjacent interferer randomization. That is, most users interfere with any other user
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Figure 4-3 Reverse Link Capacity of the Single Cell SFH/CDMA

from the same cell only twice in each frame.

Capacity in terms of number of users per cell can be easily converted to a
corresponding slot-efficiency value. For example, at 9 dB SNR, the plot above shows
N = 25 and since the number of available slots is 32, the slot-efficiency is

21/ 32 = 0.66.

4.3.3 Multiple Cell Reverse Link Capacity

It is easy to see that in the absence of ACI, a latin-square based SFH/CDMA
cellular system utilizing average power control is similar to a DS-CDMA cellular
system without the in-cell interference. Hence, the reverse-link capacity of a SFH/
CDMA cellular system could be analyzed using the approach in [12]. This approach

assumes that the interference in the SFH/CDMA system has Gaussian statistics. This
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assumption is valid when the interference is not dominated by a small number of users.
In our analysis, we consider systems with and without ACI. Assuming the effect of

thermal noise is negligible, the result is

o—mN
P = Pl /S>98) = Q( ) (4.19)
FRAME 0-/\/N
0 )
0 __W/R if noACI
— g (Eb/No)AVG
°TH WR oy e
%KEb/No)AVG otherwise

where P is the outage probability, afld  is the number of users per cell,

(Ep/No) sy s the per user average frame SNR requirement and is the ACI

coupling factor. Given that a certaE,/ N is needed to achieve adequate BER

0)AVG
performance, (4.19) can be used to upper bound the probability of not achieving this
level of performance foN users/cell at any given time (e.g. 1% of the time).

Solving (4.19) folN we obtain:

N2 1,01 2 oW/ R DW/R[F _
m2N°—HoQ (P)”+2m MER, %\1 E N 0 (4.20)
where m is an upperbound orE(lgapme/S) anad is an upperbound on
var(l (rave” S » which can be found by numerical integratiQgk) is defined as
1
QK = ——(e*/2dx (4.21)
Tord

Notice that (4.20) is a quadratic equatiorNn , the number of users per cell. The larger
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root obtained from direct solution is the capacity.

Figure 4-4 plots the capacity expression for the SFH/CDMA system when the
“processing gain” is 156. The analytical result shows that the effect of ACI on capacity
performance is negligible in comparison to CCI when the ACI coupling factor is less

than -20 dB. We also observe that the analysis and simulation results based on a 19 cell

50.0 | -
Poutage = 0.01
WIR = 156
40.0 \
30.0 |
= Analysis
20.0
10.0 /
Simulation
| |
0.065 8.0 70.0 12.0 4.0
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Figure 4-4 Reverse-Link Capacity/Cell of the cellular SFH/CDMA system
(with and without ACI. The ACI coupling factor is -20 dB).

network diverge for smaller values of N because the Gaussian approximation used in

the analysis becomes less accurate.

4.3.4 Peer-to-Peer Cluster Capacity

This section presents the capacity of clustered peer-to-peer SFH/CDMA
networks described in Section 3.1. The lack of regular geometrical structure in a peer-

to-peer network renders capacity analysis problematic at best. Hence, we relied on
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simulation to calculate the capacity of the standard model described in the beginning of
Section 4.3. An algorithm is needed to organize links into clusters. We assume a
situation where the algorithm has set up hexagonal boundaries that conforms exactly to
the ones in the cellular system. In each cluster, there are an equal number of users. The
simulation of a single-cluster network with our distributed algorithm shows that the
slot-efficiency is approximately 6% at 1% outage probability wgen is 9 dB. This
performance figure is very poor in comparison to the 62% slot-efficiency found when
the network contains a base-station. (see Section 4.3.3).

The large disparity in performance between the clustered and cellular systems
indicates a fundamental trade-off between capacity and network infrastructure. An
intuitive benefit from having a base-station is that most of the time, a transmitter will
transmit more signal power to the desired receiver than adjacent channel interference
power to the other receivers. However, this is often not true in a clustered system.
Although the only source of interference comes from ACI, ACI could be a very severe
problem when the links are in a more random configuration.

One way to obtain reasonable capacity for peer-to-peer systems is to add more
complexity by doing better frequency planning. For example, the guard band between
different frequency slots can be increased to reduce ACI. This would trade-off some
spectral efficiency to improve the overall system capacity.

Figure 4-5 shows the effect of reducing ACI within the single-cluster system.
Suppose a larger guard band is introduced so that there are fewer channels in the
available bandwidth and that the ACI is reduced to -50 dB. Assuming that the guard
bands takes up about half of the available bandwidth, then data in Figure 4-5 confirms
that a slot-efficiency of aboui6/ 32 = 50% can be achieved.

For multi-cluster systems we can combine frequency reuse with the latin-square
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Figure 4-5 Capacity of single-cluster SFH/CDMA system versus different
ACI coupling factor

construction to improve system capacity. Appendix A shows how latin-squares can be
modified for frequency-reuse with little additional complexity. In general, a SFH/
CDMA system does not require frequency planning but simulations show that explicit
frequency- reuse is absolutely necessary to obtain reasonable capacity performance for
multi-clustered systems. The computed slot-efficiency of a 19-cluster network is a
dismal 7.3% at 1% outage probabilityrfa 9 dB SNRrequirement. The cost of the

frequency planning to make the entire network mobile can be quite high.

4.4 Performance Degradation Due to Power Control

With Dynamic Range Constraint

Although in the following sections we will focus mainly on the standard single-
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cell SFH/CDMA system, analogous results can be obtained for other SFH-CDMA
network configurations. Insufficient transmit power dynamic range could result in two
kinds of performance degradations. First, under a centralized power control scheme that
has a mechanism to block calls causing dynamic range problems, the network capacity
could be lowered to compensate for additional blocked calls in order to maintain the
original 1% outage criterion. Second, for a distributed power controlled system, when
there is insufficient dynamic range, one or more active calls may be dropped, which also
contributes to the outage probability. From the customer’s viewpoint, dropped calls are
more of a nuisance than a slightly lower network availability. In Section 4.4.1, we will
examine the loss in capacity from imposing a dynamic range constraint on the
centralized power control algorithm. In the subsequent section, we will study the
degradations in performance of the distributed power control algorithm when dynamic

range constraints are imposed.

4.4.1 Global Algorithm with Dynamic Range Constraint

In deriving the theoretical capacities formulas (4.18) and (4.20), it was assumed
that the portable’s transmit power dynamic range is sufficient to ensure that all active
portables, regardless of their locations, can deliver equal received power to the base-
station. Thus, it can be inferred that the dynamic range requirement is determined by
the propagation model and the cell radius. Assuming the propagation loss is an inverse

4-th law with distance, the design rule for the dynamic range is simply:

DR* = 40log mag (4.22)
|:RminD

whereR,,, andR,;, are the maximum and minimum separations between a portable

X

and the base-station, respectively. When the dynamic range is greater than or equal to

49



DR* , the theoretical capacity predicted by (4.18) or (4.20) can be achieved. When log-

normal shadowing is included in the propagation model, the dynamic range must be

increased by some margin.

A Monte Carlo simulation was written to quantify the performance degradation

due to a limited dynamic range by computing the capacity of a single-cell network with

a dynamic range less thaDR*

. We will assume that the global scheme has a

mechanism for blocking new calls to prevent dropped calls due to insufficient dynamic

range. The other system parameters (e.g. the cell radius) are fixed. Figure 4-6 shows the

simulation results. Capacity here is defined to be the maximum slot efficiency that can
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Figure 4-6 Reverse Link Capacity of the Single Cell SFH/CDMA vs. Dynamic
Range for Two Different Propagation Models. (With and Without Shadowing)

supported at 1% outage probability. With these parameters, Figure 4-6 shows that the
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reverse link can support 22 users witg BER 99% of the time when the dynamic
range is above 70 dB. It also shows when signal propagation includes a log-normal
shadowing component with = 8 dB , an additional margin in dynamic range would
be needed to maintain the same capacity performance. A 10% loss in capacity would
be incurred with a dynamic range of only 67 dB.

By observing the simulation results of various systems, some general remarks
can be made about the effect of dynamic range. The capacity vs. dynamic range curves
illustrate the existence of a breakpoint above which more dynamic range yields
diminishing returns in system capacity. The breakpoint phenomenon can be explained
by looking at power control as a linear programming problem, in which proper
operation of the network corresponds to the existence of a feasible power vector. From
the linear programming viewpoint we know there are certain network configurations
where no feasible power vector exists for any dynamic range; for these situations,
dynamic range becomes a non-issue. The probability that the network does not have a
feasible power vector becomes the dominant factor in lowering efficiency of slot usage
when the dynamic range is sufficiently large; thus, the efficiency of slot usage is

essentially independent of the dynamic range after a certain point.

4.4.2 Distributed Power Control With Dynamic Range Constraint

The capacity of a single-cell SFH/CDMA system utilizing the DPCDRC
algorithm is computed using the simulation procedure given in Section 4.3 but here the
outages can be caused by blocked as well as dropped calls. The parameters of the power
update function (4.10) are fixed: the protection madyi- 1.5dB and the minimum
step sized = 0.5dB . When a new link is assigned a channel, it stays in the system until

the distributed algorithm converges. This is called the initial set up period. The average
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number of power update iterations in the set up period depends on several factors,

including the dynamic range, the adjustment step sizes, as well as the load on the

network. If a new link does not obtain the required SIR after a setup period, it is

blocked. When a new link becomes operational, the SIRs of the pre-existing operational

links are checked for dropped calls. This is repeated for a large number of trial sets to

compute the efficiency of slot usage at an outage probability not exceeding 1%.

Figure 4-7 shows capacity as a function of dynamic range. Compared to the
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Figure 4-7 Reverse Link Capacity of the Single Cell SFH/CDMA vs. Dynamic

Range. (with Shadowing)

previous system with centralized power control, distributed power control suffers a

30% capacity loss due to the protection margin requirement, which raised the effective

SIR targets of all links by 1.5dB. Furthermore, if the dynamic range is only 60 dB

instead of 75 dB, there is another 10% loss in capacity. The capacity loss due to a more
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stringent SIR requirement is one of the drawbacks of the distributed algorithm. The

other drawback is that calls can be dropped when the dynamic range is constrained.
Figure 4-8 plots the call dropping and blocking probabilities for four different

dynamic ranges. We observe that calls are dropped much more frequently than they are

blocked for all dynamic ranges. Although the results in this section pertains to the
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Figure 4-8 Call blocking and call dropping probabilities vs. dynamic range for
a single-cell network.

single-cell network, the multi-cell and peer-to-peer networks also exhibit similar
behavior. Since call dropping is a severe problem, admission control algorithms for

reducing the call dropping rate will be presented in Section 4.5.

4.5 Reducing Call Dropping Probability

One way to reduce the call dropping rate is to decrease the maximum load,
trading off some system capacity for fewer dropped calls. A better solution, however, is

to employ a distributed admission control policy that allows voluntary termination of
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admission attempts when an operational link is in danger of being dropped. A local
mechanism to sense the “resistance” of other users is a key element toward
implementing a distributed policy. Resistance indicates the network congestion level.
Since more calls are dropped at higher congestion levels, blocking or terminating
admission attempts that encounter high resistance would effect a reduction in call
dropping probability with a slight increase in blocking probability.

To provide a better understanding of the network resistance concept, we can
look at each admission attempt as a trial in a random experiment involving a system of
links. At the end of a set-up period, one of three system outcomes may occur: call

admission, rejection and dropping, which are denoteclas,, , cgand respectively. A

good resistance indicator is a system variable that can accurately predict the outcome
of an admission attempt. The correlation between a random variable and a particular
event can be quantified through the probability mass function of the random variable
conditioned on that event.

To find a good resistance indicator, we evaluated several candidates through
simulation. All the simulations in this section involved the single-cell model mentioned
in Section 4.3.2. The target SIR is fixed at 9 dB and the dynamic range at 60 dB. One
candidate we considered is the initial interference power seen by a new link. The
conditional probability distributions of the interference power, conditioned on the three
outcomes, were found through simulation. The following definitions will be used in the

sequel:

« 10 is the power of the interference signal detected by the receiver of a new link at

the beginning of its set-up period.

« f(19) the probability mass function of the initial interference power for a success-
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ful admission attempic{ ).

« f4(19) the probability mass function of the initial interference power when an

admission attempt results in dropped lingg ().

« f,(19) the probability mass function of the initial interference power for a blocked

admission attempt( ).

The histograms of ,(19) f4(1°) , anti (19 are plotted in Figure 4-9. For a
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Figure 4-9 Histogram of the initial interference power for three different outcomes.
Single-cell network; N= Nt =N =32; Taget SIR =9 dB; Brnamic Raxge = 60 dB.

resistance indicator to be useful, it must, with high probability, distinguish between
admission attempts that will result in dropped links and ones that will not. That is, for
good performance, we nedd(i) ahgi) to be very different as functions of . The
result in Figure 4-9 shows thét(i) arig(i) have different shapes; thus, the initial

interference power could be used as a resistance indicator.

Another resistance measure we evaluated is called the gross power increase,
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denoted byAP . It is defined as the difference in powers transmitted by a transmitter at

the beginning and the end of the set-up period. We will use the following notation in the

sequel:

« f ,(AP) the probability mass function of the gross power increase for a successful

admission attempt.

« f 4(AP) the probability mass function of the gross power increase for an admission

attempt resulting in dropped links.

The histograms of ,(AP) andl,(AP) are plotted in Figure 4-10. It can be
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250 H call dropped

20.0 |

15.0 f

percentage (%)

10.0 H

5.0 |

0.0

0.0 20.0 40.0 60.0
gross power increase (dB)

Figure 4-10 Stacked histograms of the gross power increase conditioned on two
outcomes.

observed thatt ,(AP) is concentrated nA& = O andftdtP) is concentrated near

AP = 50. Sincef (AP) andf j(AP) are different as functioA® , the gross power

increase could also be a good resistance indicator.
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Other candidates that were evaluated include the initial received power level and

the change in interference power. The initial receive power level is denotB8 by . The
change in interference power, denotedy |, is calculated at the receiver by subtracting
the interference power measured at two different iterations separated by N updates,
where N is a small arbitrary positive integer. For example, we set N to six to allow
enough time for significant change in interference level to occur.

Given the statistics of potential indicators, we experimented with several
admission control algorithms that perform various combinations of threshold tests on
the set of resistance indicators. A flowchart of the algorithm that performed well is
given in Figure 4-11.

Although the above admission control algorithm, called Algorithm I, is
developed heuristically, there is a good physical explanation for why it works. From our
experience, we found that reverse link calls are dropped primarily in two kinds of
situations. The first occurs when a new call enters the network near the center of the cell
while the system is operating near maximum capacity. If the transmit power of the call
close to the base-station could not be sufficiently lowered to just meet the SIR
requirement, a necessary condition for achieving optimum system capacity, it would
generate excess ACI to the other users. The second is when a new call comes up far
away from the base-station while the system is also congested. In both cases, the
dynamic range required for a feasible power solution will likely violate the given
system design specification. From the statistics of initial received power level and initial
interference level, we can determine the corresponding thresholds that will indicate
when the location of a new call and the system congestion level might cause a dynamic

range problem. The values of P1 and I1 are thresholds that indicates when a new call
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Figure 4-11 Flow-Chart of Distributed Admission Control Algorithm

should be blocked because it is far enough away from the base-station and the system
has sufficiently high interference level to potentially cause other calls to be dropped.
Thresholds P2 and 12 applies to calls near the base-station. The dangerous levels of

congestion in the two cases are different.
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Table 4-1 summarizes the single-cell SFH/CDMA network performance with
and without admission control. The thresholds P1, 11, P2, and 12 of Algorithm | are set
to -80 dBm, -86 dBm, -13 dBm, and -43 dBm respectively. These thresholds were
chosen to ensure an equal slot-efficiency can be achieved without significantly
changing the outage probability. The results clearly show that the admission control
mechanism reduced the call dropping probability by raising the blocking probability.
Hence, performing a combination of threshold test could be the basis of an effective
admission control scheme.

Table 4-1: Call blocking and call dropping probabilities with and without
distributed admission control
Single-Cell Network; N, = Nt = N = 32; Target SIR = 9 dB; Dynamic Range = 60

dB.
Outage % Outage due| % Outage due
Probability to call drops | to call blocks
without admission control 0.0085 84 16
with Algorithm | 0.0104 53 47
with Algorithm Il 0.0093 50 50

Note that the outage probability is slightly increased when the admission
control algorithm is enabled because the admission control algorithm will sometimes
make a wrong prediction, declaring that the network has an infeasible power solution

when one actually exists.

A more accurate admission control algorithm was developed by also checking
the AP variable against a threshold, D. This algorithm, termed Algorithm Il, increases
the accuracy of prediction of the outcome of an admission attempt. In practice, if a

receiver already had the capability to estimate SIR needed for power control, it would

also be capable of estimatihg P9 AP . The advantage of only che&ing |%nd
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is that a dangerous congestion level can be detected early enough to quickly terminate
an admission attempt to avoid degrading the quality of existing links for a prolonged
period. Algorithm Il was implemented and tested by simulation. The data given in Table
4-1 shows that the outage probability under Algorithm Il is smaller compared to
Algorithm I; hence Algorithm Il is indeed a slightly more accurate algorithm. By using
even more complicated algorithms, it may be possible to further reduce call dropping
with a slight increase in outage probability.

With some minor modifications, the admission algorithms developed for the
single-cell network can be implemented for multi-cell networks. We repeated the
simulation technique to determine the appropriate thresholds, accounting for the effects
of both co-channel and adjacent channel interference. Our analysis in Section 4.3.3
showed that for multi-cell systems with a small ACI coupling factor, CCI is the
impairment dominating capacity. This fact may allow the admission algorithm to be
simplified since the excess ACI generated by calls near the center of a cell might no
longer cause other calls to be dropped. To investigate the efficacy of a simplified
admission algorithm with only three thresholds (i.e. P1, I1, and D), simulations were
employed. The performance measures for a multi-cell network with and without
admission control are summarized in Table 4-2. The simulation parameters for the

multi-cell network are similar to those for the single-cell network, except there are 19
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cells, instead of one, in the multi-cell network simulation.

Table 4-2: Call blocking and call dropping probabilities with and without
distributed admission control
Multi-Cell Network; N | = Ny = N = 32; ACI = -29 dB; Target SIR = 9 dB;
Dynamic Range = 60 dB.

Outage % Outage duetg % Outage due
Probability call drops to call blocks
without admission contro] 0.0100 60 40
with admission control 0.0140 41 59

The data in Table 4-2 show that the call dropping probability for the multi-cell network
can be reduced by using the simplified admission algorithm.

The previous admission algorithms worked well for cell-based networks. For
peer-to-peer networks, we found that very different admission algorithms are needed.
Simulation experiments showed that blocking new links which see no SIR
improvements despite increasing power can significantly reduce dropped calls. This

admission policy was described in [4] and here we will call it Algorithm Ill. To improve

the accuracy of Algorithm 1lI, Algorithm IV was developed by testing bBth ~ aRd
against corresponding thresholds to further reduce the call dropping probability. The
simulation results for the single cluster peer-to-peer network with different admission
control algorithms are summarized in Table 4-3. The dynamic range for the single-
cluster system was set to 60 dB because our simulation shows that the system capacity
did not improve with a larger dynamic range. We assume the system has a ACI

specification of-50 dB to obtain a reasonable capacity. The data in Table 4-3 show the
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advantage of using the more complicated Algorithm IV over Algorithm Il1.

Table 4-3: Call blocking and call dropping probabilities with and without
distributed admission control
Single-Cluster Network; Ny = Ny = N = 32; ACI = -50 dB; Target SIR = 9 dB;
Dynamic Range = 60 dB.

Outage % Outage due| % Outage due
Probability to call drops | to call blocks
without admission con- | 0.0104 44 56
trol
with Algorithm III 0.0104 36 64
with Algorithm IV 0.0107 23 77
4.6 Summary

In summary, we considered the implementation of a distributed power control
algorithm for a multiple-access frequency-hopped (SFH/CDMA) system employing
diversity techniques, such as coding and interference randomization. Our distributed
power control/admission scheme fits the unique constraints of this SFH/CDMA system.
In our scheme the transmit power is adjusted according to the average SIR of a frame
and the power update function uses only four discrete adjustment levels. The system
relies on channel coding to overcome hops with poor SIRs.

The performance of the distributed power control scheme with transmit power
dynamic constraints, measured by system efficiency and call dropping probability, was
computed through simulation. For both the single-cell and single-cluster networks, our
simulation shows that a 60 dB transmit power dynamic range is sufficient to obtain most
of the available system capacity without the dynamic range constraints. To reduce
dropped calls caused by the dynamic range constraint, heuristic admission control

algorithms were developed based on the concept of detecting “resistance” of other users
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during the call set-up period. We found that cellular and peer-to-peer networks with
distributed power control require individually customized admission control solutions.
The effectiveness of these algorithms in reducing call dropping probability without
significant capacity loss was demonstrated through simulation. Since dynamic power
controlled TDMA/FDMA systems must also deal with limited transmit power, the call
admission control techniques developed for our SFH/CDMA system may be applied to
those other system architectures.

From the simulation of different network topologies using our distributed power
control scheme, we can conclude that cellular networks, which contain base-stations,
have higher system capacity than the corresponding peer-to-peer networks with similar
system parameters. This represents a fundamental trade-off between network

complexity and capacity performance.
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Chapter 5

CODE SELECTION

In the last chapter we showed that adaptive power control can mitigate slowly-
changing variations in the received power by adjusting the transmit power of the desired
signal. The proposed power control implementation, however, cannot deal with the
other dominant transmission impairment in SFH/CDMA systems, namely rapid fading.
Fast fading results in severe fluctuation of the signal level, which can dramatically
increase the signal to noise ratio (SNR) required for reliable operation. Because of
factors such as geographic proximity and shadow fading, the interference power also
displays wide variations across slots.

In order to achieve a high capacity with low power consumption, it is essential
that diversity be employed in the transceiver architecture. Dual antenna diversity,
frequency hopping, and channel coding are some common diversity technques. In this
chapter, we discuss the selection of the channel codes, and the basic trade-offs in choice
of metrics for decoding. There are a variety of error control coding techniques which

have been developed by communication engineers since the 1960’s. Selecting an
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appropriate channel code for a particular system involves making trade-offs among
error performance, transmission delay, channel bandwidth expansion due to added

redundancy, and algorithmic complexity.

5.1 System Model

Figure 5-1 outlines the system model used in the investigation of alternative
channel coding schemes. The input bit stream is encoded into the coded g-bit symbol
sequence of a block code or a convolutional code and the resulting coded sequence with
a rate of £ symbols/s is fed to the interleaver. The interleaver rearranges the coded
sequence in such a way that the fading channel with burst error characteristic is
transformed into a channel having independent errors. The coded symbol at the output

of the interleaver, to be transmitted with a rate okfq, is assigned to one of the two

binary orthogonal FSK signals.

Hoppin Frequenc
Segﬁengca P> Synthesizar
8intary -
ata
—= Encoder |—®Interleavef—» HQS{, aﬁﬁﬁ—»

Channel <

Estimator Fading Channel
binary ¢

data i i
-¢— Decoder [~®—Deinterleavere— Egmbming:: %g‘r%%/dﬁgﬁo

in Frequenc
Pl |

ence Synthesizer

14

Figure 5-1 System Model.

The frequency hopping binary FSK signal is output from a frequency hopper
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where the hopping local signal is multiplied to the binary FSK signal. A slow frequency
hop scheme is assumed in which a hop is made in each slot interval consisting of a few
symbols. It is assumed that the received signal experiences independent Rayleigh
fading slot-by-slot, and that it is perturbed by additive white Gaussian noise. While this
model does not yield a capacity estimate, it is sufficient to evaluate the relative
effectiveness of coding schemes in a situation where we in fact expect the SNR to be
independent from hop to hop as a result of the use of the Latin squares construction. It
is possible to perform the link and network simulations independently.

The receiver dehops the signal to obtain the received binary FSK signal. Non-
coherent detection is used for the reception, because the handheld system is designed
to allow fast hopping. The receiver employs dual antenna diversity with postdetection
equal gain combining to achieve diversity. This was found to outperform selection
diversity, and in any case when the channel SNR cannot be estimated with any accuracy
for a slot (e.g., fast hopping), two complete receiver branches are required to make
antenna diversity effective. Thus, equal gain combining comes essentially for free. We
assume that the signals received at the two antennas have low correlation.

As a result of interleaving/deinterleaving and frequency hopping, errors within
a code word appear to be independent. We assume that a convolutional interleaver is
used because it results in less delay than block interleaving. In this section, we consider
hard decision decoding for convolutional codes and error correction for block codes.
Later, we examine soft decision decoding for convolutional codes and error-and-erasure
correction for block codes.

In order to compare the various coding options in terms of BER performance,
we assume ideal interleaving so that the channel is memoryless. For non-coherent

binary FSK (NC-BFSK) modulation with ideal interleaving, the error rate performance
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over a frequency-nonselective, slowly fading channel is

_ 1
P, = Tty (5.1)
where isy, the average signal-to-noise ratio, defined as
&y, 2
Yo =  E(@7) (5.2)

The term EQ(Z) Is the average value of the Rayleigh distributed envelope squared.

When L-th order antenna diversity technique is used, the performance of

square-law-detected binary FSK is well approximated by [29]

_idreL-1g
P, F.00 Lo (5.3)

For dual antenna diversity, L is set equal to two.

5.1.1 Performance of Reed-Solomon and BCH Codes

With Reed-Solomon (RS) codes over G#(2 binary channel symbols are
used to form one code symbol. Therefore, the probability of code symbol error is

P=1-(1-P,)%, whereP, is given by (5.1) and (5.2), with and without antenna

diversity, respectively. For M-ary (M =% block codes with error correction decoding,

the decoded symbol error probability can be approximated as

N

Pes™ % z EN%D(]- P)N ! (5.4)

where t = [(d - 1)/2] is the number of errors that can be corrected by the code, d is the

minimum distance of the coddl is the block length, and [x] is the largest integer less
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than or equal to x. The probability of a decoded bit error is

_ 29t
I:)eb - 20 _ 1Pes

(5.5)

For BCH codes, the probability of decoded bit error is Rigj= Peg WherePqgis given
by (5.4). Thus, by combining (5.4), (5.5) and (5.2) or (5.3), the probability of decoded
bit error for block codes can be computed at any signal-to-noise ratio, with or without

antenna diversity.

5.1.2 Performance of Convolutional Codes

Next, we consider the error rate performance of convolutional codes decoded
using the Viterbi algorithm with a hard decision decoding metric. The decoded bit error

probability of a ratd / n convolutional code can be upperbounded by
P<1§Bd (5.6)
b b| ‘. | :

where d is the minimum free distance of the code, gnslthe total information weight

of all paths of distance | from the all-zeros path. With hard decision decoding

D = [4P,(1-P,) (5.7)
whereP, is given by (5.1) and (5.2), with and without antenna diversity, respectively.
The weight and distance structure of many convolutional codes have been
computed and tabulated in the literature. Thus, equations (5.6) and (5.7) can be used to
evaluate the performance of a specific convolutional code.
To study the performance advantage of coded systems over an uncoded one, a

system simulation was designed and completed. For decoding Reed-Solomon and BCH
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codes, the Berlekemp-Massey algorithm and Forney algorithm were implemented. The
Viterbi algorithm was employed for decoding convolutional codes.

The simulation results were checked against the corresponding analytical
results whenever possible in order to verify the accuracy of our simulation software
during the initial phases of the simulation development. It was found that the
assumption of ideal interleaving was good. Analytical expressions (5.5) and (5.6)
produced fairly tight upper bounds. For each coding scheme, the difference between the

performance curves obtained from the upper bound and the simulation is less than 1 dB

for 102 < BER < 10* The simulation results were used to compute coding gains.
Figure 5-2 illustrates typical BER curves generated from the simulation data for a

particular convolutional code with and without dual antenna diversity. Some of the
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Figure 5-2 BER vs. SNR for rate-1/2, 64 state convolutional code.

coding gain data are summarized in Table 5-1. It shows that using the rate-1/2, 32 state
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(v=5) convolutional code resulted in near minimum SNR at the target BER, with and
without antenna diversity. The coding gain achieved is 19.1 dB with antenna diversity,
compared to 13.0 dB with a single antenna. This highly motivates the use of both
channel coding and antenna diversity in the system architecture.

The code rate and code size for the codes in Table 5-1 were chosen based on
their potential to meet code performance with decoding delay tolerable for voice

transmission, practical code complexity, and channel bandwidth constraints.

5.1.3 Decoding Delay

To evaluate and compare the delay of the selected codes, we defined three
different delay measurements: decoding delay, interleaving delay and overall delay. The
delay quantities are specified in signaling interval units, Ts, to provide a normalized
delay representation. Denoteg decoding delay is the waiting time for some number
of encoded symbol to be received before starting the decoding process. The interleaving
delay,t;, for a (I, J) convolutional interleaver is proportional to (1-4)), where values
of | and J are chosen to randomize the error bursts of the fading channel and depend on
the coding scheme, the code parameter, and the number of channel symbols per
frequency slot [41]. The overall delay is the sum of the decoding delay and interleaving
delay, et =14 +T;.

In a system with BFSK signaling andxcq channel symbols per slot, a Reed-
Solomon code over GF{pwith code symbols interleaved across slots would result in

TyTs=(H-1) xq,1/Ts=(c-1)x (29-1) x g andt/Ts = (F- 1) x ¢ x g. For the

same system, a rate-1/2 convolutional code with memdiryo. of states =9 would

result inty/Ts =9x v, 1;/Ts=(cxq-1)x9x v, andt/Ts = 9x v x ¢ X g assuming a
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truncation depth of 4.% v and the interleaving parameters are chosen to guarantee
independent fading condition for the successive symbols generated by the encoder with
a separation less than truncation depth. It can also be shown that using BCH codes with
block length N and bit-by-bit interleaving resultsig’Ts = N, t;/Ts=Nx (c x q - 1),
andt/Ts =Nxcxq.

In general, we note that for similar number of symbols per slot, the overall
delays for the BCH and Reed-Solomon codes with equal block lengths are the same.

We also note that the overall delay expressions derived above imply that a Reed-
Solomon code over GF{ghas comparable overall delay to a convolutional code with
memoryv = 29,

Substituting actual system parameters into the above delay formulae gives the

delay values summarized in Table 5-1:.

Table 5-1: Code Performance and Delay Comparison

Code Type Gainw/ | Gainw/ | coding Overall
Single Dual Delay w/o | Coding
RS = Reed-Solomon Antenna | Antenna | |nterleaving | Delay
CC = Convolutional (dB) (dB) (Ts) (Ts)
BCH (n=31, k=16, d=7) | 11.5 17.9 31 310
BCH (n=63, k=36, d=11)| 12.3 18.3 63 378
RS (n=31, k=15, d=17) 13.1 18.2 155 310
RS (n=63, k=33, d=31) 13.2 18.7 378 378
CC (r=1/2,v=b5) 13.5 19.3 38 380
CC (r=1/2,v=6) 13.6 19.5 54 540

All codes listed in Table 5-1 satisfy the tight delay constraint of 20 ms for voice

transmission. In converting normalized delay measure to seconds, it was assumed that
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each slot consists of 6 BFSK signals for the length 63 block codes and 10 for remaining
codes, and that the channel transmission rate is 16 kb/s. To reduce the delays for the
convolutional codes, we use the fact that the full minimum distances of the 32 the 64
state codes are obtained with a truncation depth of 19 and 27, respectively [20].

In addition, to ensure practical code complexity, code selections were limited to
block codes with block length less than 255 and convolutional codes with 128 states or
less. These are codes which are currently used in various digital communication
systems. Channel bandwidth constraints were included in the code selections by
limiting the code rate to approximately 1/2; this limits the channel bit rate to a value no
larger than twice the user data rate. This limitation was imposed to avoid excessively
large bandwidth requirements with high data rates and to decrease link vulnerability

from frequency selective fading at high data rates.

5.1.4 Decoder Complexity

Code complexity was quantified in terms of multiplies per decoded symbol for

the block codes and additions per decoded symbol for the convolutional code. We found
that decoding a single t-error correcting BCH code word required approximat@ly 10t

+ 3tn multiplications, obtained by adding fomultiplications for executing the

Berlekemp-Massey algorithm to 2tn for evaluating the syndrome, and tn for Chien
search. For a t-error correcting RS code, the number of multiplications required to
decode a code word increases due to the multiplications in the Forney algorithm.
However, the number of operations normalized per bit for RS codes is not necessarily
higher than BCH codes when the code length and rate are fixed. In fact, our calculation

showed that the (63, 33) RS codes required 26 multiplies per bit versus 33 multiplies
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per bit for the (63, 36) BCH code. For & 2onvolutional code, a total of 3¥2addition
operations are necessary at each stage. This includes two additions to compute the
cumulative path metrics of the paths merging at each state and a comparison
(subtraction) to determine which incoming path survives. For convolutional codes, in
addition, a trace back operation is required to complete the decoding. For the codes
parameters listed in Table 5-1, the convolutional codes required more than twice the
operations per bit than the comparable block codes. This fact was partly confirmed by
the longer simulation times for convolutional codes.

The results of analysis and simulation indicate that for a system architecture
employing slow frequency hop and dual antenna diversity to combat multipath fading,
a BCH code performs as well as an RS code with a comparable code rate. Our

investigation also shows that a rate-1/2, 32 state convolutional code can attain a

relatively large coding gain at TOBER while meeting the tight delay constraint for
two-way speech transmission. In addition, convolutional codes offer the advantage of
efficient soft decision decoding. The conclusion is that complexity and performance for
the code candidates are similar for hard decision decoding; however, the dependence on
soft decision decoding must be determined before deciding which code is the best

candidate. We now examine some of the relevant trade-offs.

5.2 Decoding Metrics

For Rayleigh fading channels, soft decision decoding with perfect channel
parameters can effectively double the diversity order available through coding [29].
However, for a real system where channel parameters are obtained by an imperfect

estimator, the unreliable estimates could significantly degrade the performance benefits
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of soft decoding with side information. The reliability of the channel parameter
estimator, the modulation scheme, and the channel condition are some of the factors
that affect the formulation of a good soft decoding metric. Furthermore, the trade-offs
in performance and complexity should be considered when selecting a decision metric
for NC-BFSK systems because most soft decoding schemes require much higher

receiver/decoder complexity than hard or erasure decoding.

5.2.1 Soft Decision Metrics for Fading AWGN Channels

The optimum soft decision metric is derived from the likelihood function of the
decision variables. For a NC-BFSK system, in which one of two frequencies is
transmitted with equal probability to a receiver and the transmitted signal is corrupted

by additive white Gaussian noise with spectral densigf2Na model of the received
signal is
ri(t) = asin(wt + @) +n(b); =01 (5.8)
We assume that the amplitude, is known and the phase, is a random

variable uniformly distributed in the interval [0y It can be shown that when the

constant terms are eliminated, the log-likelihood functions may be written

My = In(pi(r)) Dlnaog—g—ﬁ% i =01 (5.9)

where z is the decision variable produced by a square law detector (the optimum
demodulator for NC- FSK), ang(t) is the modified Bessel function [45].

The mapping of the decision variables into the maximume-likelihood (ML) soft

metric involves a very complicated function, Ig@)). To implement the branch

computation part of the Viterbi decoder, a look-up table will be required to transform
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the decision variables into branch metrics. Since the transforming function has a linear
and a non-linear region, one way to reduce the size of the look-up table is by storing the
values of the function over the non-linear region and use a linear approximation

formula, which does not require costly memory storage, to compute the function over
the linear region. Using this procedure, the size of the look-up table used in our study
is about 2 Kilobytes.

Besides the ML decoding metric, we consider two suboptimal but less
complicated soft decision metrics. The firstis based on the Euclidean distance concept.
The Euclidean distance metric has been shown to be the optimal soft metric for coherent
PSK systems in AWGN channels, but it is not optimal for NC-BFSK systems. It may
be written:

Mg = (z-a)?+(z)? (5.10)
wherei = 0 and = 1 forthe hypothesis thgt  was received, and vise versa for the
hypothesis thatz;, was received. The metric is simpler not only because it does not
involve any complicated functions but also the fade magnitude of the signal is the only
channel parameter appearing in the metric. The other metric we considered required

even less processing and complexity by using a simple linear combining scheme:

Mic = z-7 (5.11)

where values of i and j are defined as in the previous metric. The linear combining

metric does not require any channel state information.

5.2.2 Soft Decision Metrics for Multiple-Access Channels

FH/CDMA systems experience background thermal noise, as well as,
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interference from other users. We use the following model of the received signal for the
multiple-access channel:

ri(t) = asin(wt + @) + Bi(t) + n(t); i =01 (5.12)
where the fade levels arfl are independent Rayleigh distributed random variables
i(t)andn(t) are independent narrowband white Gaussian processes. Since interference
is typically the dominant impairment in multiple-access environments, we can assume
that the noise term is negligible and set the two-sided spectral density of 20 N

Thus, when H}?] is normalized to one, then

N
E[BI®RI(D] = E[RZEL®i()] = 5°8(t-1) (5.13)

Note that for the FH system under consideration, the only real difference between the
fading AWGN channel and the multiple-access channel is that the power of the “noise”
in the latter is changing from hop to hop.

To perform well for the multiple-access channels, metrics (5.9) and (5.10) were
re-formulated to account for the variation in noise power in each symbol interval. The

re-formulations are given by (5.14) and (5.15), respectively:

20Z
M, = |n[|oEﬁ-2-N—'5} (5.14)
[0}

_(g-0)%+ (Zj)z
= e

For NC-BFSK, the relevant quantities for soft decision decoding are the

decision variables for the two frequencies, the received signal power, and the noise
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power for each slot. We next present ways of obtaining the channel parameters for slow-

hopped systems.

5.2.3 Estimation of Channel Parameters

The estimation of channel parameters from the data and with training sequences
was investigated in [28], in the context of DQPSK. It was found that it is better from the
point of view of capacity to form estimates directly from the data-bearing signals for
short slots of 8-16 symbols, rather than appending a training sequence. In addition, it
was found that for some combinations of cell loading and channel codes it was better
to use an erasure-declaring mechanism than to use the soft metric proposed; but in any
case performance was always better than using simple hard decisions for a properly
chosen erasure threshold. Simulations were also conducted using the soft metric with
perfect channel knowledge, revealing a very large gap in performance. Thus, channel
state information can be very valuable in decoding.

For NC-BFSK signaling with square-law detection, the signal power for a slot
can be estimated by accumulating the larger decision variaple, , for each received
symbol in the slot. This type of estimation involves hard decision demodulation. While
it is relatively easy to estimate the power of the desired signal for useful signal to
interference ratios, it is more difficult to accurately estimate the interference power. For
NC-BFSK, an orthogonal signaling scheme, one way to form an estimate of the noise
(or interference) power for a slot is to accumulate the smaller decision varzilble, , in
the slot. The reliability of the signal power and noise power estimates depends on the

sample size of the estimator, which is equal to the number of symbols per slot.
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5.2.4 Erasure Metric

When the channel state information is not so reliable, performing error-and-
erasure correction decoding is a way to increase code performance gains without
incurring increased cost in system complexity. The mechanism we have chosen for
erasing unreliable NC-BFSK symbols is based on a ratio threshold test, in which
channel symbols having a signal envelope ratio (i.e. the ratio between the decision
variables) below a certain threshold are erased. This erasure declaration mechanism
does not use any channel state information; hence, requires very little additional
complexity in comparison to hard decision decoding. In the branch metric
computations, erasures are assigned a value half-way between the binary values for the
expected symbols.

We also investigated error-and-erasure correction decoding for RS codes, which
achieves some performance benefit with a trivial increase in decoding computation in
comparison to error correction decoding [3]. The mechanism for declaring erasures is
again based on a ratio threshold test, in which the code symbols having the lowest signal

envelope ratio, @z, (assuming thatgz> z,), is erased. Whenyz; > 6 > 1, the decision
corresponding to zappears to have a good quality. This erasure declaration metric

recognizes that the worst BFSK symbol in each g-bit code symbol is the weak link but
it will inevitably fail to erase some symbols which are in error, and will erase some
symbols which are not in error. There is an optimum range of values for the number of

erasures, i declared so that residual error correcting capability, isl sufficient to

correct the remaining errors in the received word. The optimum range of values was

found during simulation.
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5.2.5 Performance Evaluations

Performance evaluation by simulation for a NC-BFSK system over fading
AWGN channels, as well as, multiple-access channels using soft decision decoding
metrics given in (5.9), (5.10), (5.11), (5.14) and (5.15) was performed. Receivers with
perfect knowledge of channel parameterand N,, and ones with estimated channel

parameters were simulated. Table 5-2 summarizes the releydyy &ata for a rate-

1/ 2, 32-state convolutional coded system with dual antenna diversity.

Table 5-2: Eb/No at Pb = 18 for different decoding metrics for a dual antenna
diversity system.

Fading AWGN Channel Multiple-Access Channel
Metric Type
Perfect Estimated Perfect Estimated
Maximum Likeli- 8.25 9.25 8.25 9.10
hood
Linear Combining | 8.50 8.50 10.0 10.0
Euclidean 8.25 9.0 8.75 9.50

The data in Table 5-2 shows that there is no single metric that out-performs all
others in every scenario. For the fading AWGN channel, the linear combining metric is
clearly a very good selection in terms of having a good complexity-performance trade-
off. However, for the multiple-access channel, the maximume-likelihood (ML) metric
might be the better choice since it holds a slight performance advantage over the other
two metrics. In short, when fading interferers are the dominant impairment, the metrics
using imperfect estimates of channel parameters performed better than the one using no
channel parameters at all. For single antenna systems, the performance gap between the

alternative metrics is even bigger.
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For comparing soft decision decoding against hard decision decoding, the
simulation showed that soft decoding with the ML metric performed 3.5 dB better than
hard decision decoding for a rate-1/2, 32 state convolutional code for a single antenna
system. When dual antenna diversity was employed, the improvement decreased to
approximately 2 dB. Figure 5-2 illustrates the improvements in SNR of soft decision

decoding over hard decision decoding for SNR ranging from 8 to 10 dB.
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Figure 5-3 BER vs. SNR for a convolutional code and a Reed-Solomon code
with different decoding strategies.

Simulation of the error-and-erasure correction decoding for a RS code was also

carried out and the results are included in Table 5-3, where the performance of coded
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systems for various coding schemes and decoding methods are summarized.

Table 5-3: Code Performance for Different Decoding Methods

Code Type Gainw/ | Gain w/
Single Dual
RS = Reed-Solomon Antenna | Antenna
CC = Convolutional Decoding method (dB) (dB)
RS (n=31, k=15, d=17) Error Correction 13.1 18.2
Error & Erasure Cor- | 14.9 19.5
rection
CC (r=1/2,v=5) Hard Decision Decod-| 13.5 19.3
ing
Error & Erasure 15.0 20.0
Decoding
Soft Decision Decod- | 17.0 21.5
ing

The simulation data showed that a rate-1/2, 32 state convolutional code with soft

decision decoding requires approximately 2 dB less signal-to-noisé%ﬂiez than a

length 31, RS code with error-and-erasure correction decoding on a Rayleigh fading
channel, both with and without dual antenna diversity. Thus, a convolutional code with
soft decision decoding using channel state information appears to be a suitable code
selection for the proposed frequency-hopped system under the assumption that the

channel can be modeled by Rayleigh fading with AWGN.

5.3 Summary

We have considered channel coding options for a frequency-hopped system
employing NC-BFSK signaling. We have concluded that the hopping patterns should

be selected so as to randomize the interference encountered in successive hops, and
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have observed the advantages offered by the Latin squares construction for
synchronous systems. Alternative channel codes were compared on the basis of delay,
complexity, and bandwidth efficiency, with the conclusion that when hard decision
decoding is employed, the BCH, RS, and convolutional codes that can meet the delay
and bandwidth constraints have similar performance and comparable complexity. At
the desired bit error rate, the convolutional codes are slightly better since they required
approximately one dB less signal-to-noise ratio than the best performing block codes.
Furthermore, the performance gain obtained by soft decoding of the convolutional
codes with the maximum-likelihood metric was shown to be more significant than the
gain obtained by error-and-erasure correction decoding of block codes. This was true
even with imperfect channel state estimates. The benefits of dual antenna diversity in
combination with coding were demonstrated.

One way to form an estimate of the SNR for a slot is to accumulate the mean
squared error between the received signal and hard decision demodulation. The larger
the mse, the less reliable the slot. The selection of a soft decision metric depends on the
reliability of the channel parameters estimator. That is, the number of levels of
guantization to be used in subsequent decoding depends on the application. For
example, with a very slowly changing channel, results could be accumulated over
several slots, and many bits of soft decision information extracted. At the other extreme,
for only a small number of data symbols per slot the best that can be expected is to be
able to declare erasures. The same is true of fast hopped systems, where all that could
be done is to monitor the received signal strength and declare erasures when it is below
some empirically determined threshold. In the next chapter, we consider decoding
metric formulation under more general fading statistics and algorithms for adapting the

metric to changing channel conditions.
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Chapter 6

ADAPTIVE METRICS FOR
CONVOLUTIONAL CODES

In the previous chapter, we considered channel code selection for the SFH/
CDMA system under the assumption of a Rayleigh fading channel model. The results
show that the performance gain obtained by soft decoding of the convolutional codes
with the maximume-likelihood metric was more significant than the gain obtained by
error-and-erasure correction decoding of block codes. Unlike convolutional codes,
block coding with algebraic decoders are not well suited for efficient soft decision
decoding.

In the last chapter we also observed that the selection of a soft decision metric
for the convolutional code might depend on the reliability of the channel estimates.
Since the branch metric computation of the Viterbi decoder can be changed easily and
quickly to implement different decoding strategies, the selection could be done on-line

during transmission. For example, to switch between hard decision decoding and soft
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decision decoding, only the number of quantization levels following the detector needs
to be modified. Depending on the quantization of decision statistics (soft or hard) at the
output of the demodulator, the decoding metric will compute either the Hamming
distance or the Euclidean distance between the received symbol sequence and the
hypothetical transmitted symbol sequences. Unlike convolutional codes, decoding
block codes, such as BCH and Reed-Solomon codes, with different metrics would
require several decoding algorithms with different structures. As a result, switching
decoding metrics for block codes on-line would be very difficult and expensive to
implement. In this chapter we focus on the convolutional code to show how the metric
computation can be adapted to the time-varying transmission impairments in a
multiple-access channel in order to achieve improved code performance. To generalize
the decoding metric problem to consider a variety of fading statistics, we model the
channel with Rayleigh fading and a bi-level partial-band noise jammer.

From among the conventional decoding metrics, we pick the standard soft, hard,
and error-and-erasure metrics for comparison against the new adaptive decoding
metric. The performances of some of the metrics will be computed using cutoff rate
analysis, put forward by Wozencraft [46] and Massey [23], based on the Chernoff
bound. The Chernoff bound is not always especially tight but it does provide a relatively
simple general expression for upper bounds on coded bit error probabilities. It applies
to all coded communication systems that use enough interleaving and deinterleaving so
that the channel can be modeled as memoryless. Another merit of cutoff rate analysis
is the decoupling of coding from the rest of the communication system so that codes
can evaluated separately. For anti-jlamming FH/SS systems, there has been considerable
investigation of convolutional code design [5][34][38][18][36][37]. Although some

coding design principles developed for anti-jamming systems can be applied to land-
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mobile and PCS systems, in general, we should exploit the unique requirements and
characteristics of commercial wireless applications in the channel code design.

This chapter is organized as follows. In Section 6.1 we motivate the
investigation of adaptive metrics. In Section 6.2 we introduce the channel and receiver
model the SFH/CDMA system. The model used here is slightly different from the one
used in previous chapter in order to facilitate cutoff rate analysis. In Section 6.3 the bit
error probability performance for all the metrics considered in this chapter is derived.
Section 6.4 presents numerical results on the performance of the various metrics.
Section 6.5 describes an algorithm for the metric adaptation and the cost to implement

the algorithm. Conclusions and comparisons are drawn in Section 6.6.

6.1 Motivation

The following example provides some of the motivation for investigating
adaptive metrics for wireless applications. We consider the error probability
performance for three different decoding metrics for a system using non-coherent
BFSK signaling over a channel that is impaired by Rayleigh fading and an on-off

partial-band noise jammer. The average SNR is set to 13 dB. Figure 6-1 plots the
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performance of each metric as a function of the jammer parameter
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Figure 6-1 Error probability for soft, E&X and hard decision decoding in bi-level
partial-band jamming channel.

The data show that the error and erasure (E&X) metric always results in a lower
error probability than the hard decision metric. In other words, the E&X metric
performs better than the hard decision metric fopall .for above a certain threshold,
the soft decision metric performs better than the E&X metric, but below the threshold,
the E&X metric does better. The soft decision metric does not do well for small
because high jamming energy can be injected on a small number of symbols of a coded
transmission sequence and lead to a large number of decoding errors. If the value of the
jammer parameter is known by the system, the system should be designed to select and
use the metric with the best performance for the gven

In military scenarios, the jammer parameter is under the control of the enemy’s
system and cannot be easily obtained. This means that anti-jam systems should use

metrics designed to be robust against all jammer parameters. Usually, these metrics are
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designed by using the minimax approach. On the other hand, in civilian cellular FH/
CDMA networks, unintentional jamming arises from multiple-access interference
generated by similar communication systems which have established links over a
shared radio spectrum. Since multiple-access interference is usually slowly-varying
with respect to the baud rate, each receiver can estimate some jammer (interference)
parameters in a distributed manner. For example, in a SFH/CDMA network, would
correspond to the fraction of the frequency-slots occupied by users of the network. As
p changes on the order of user arrival and service times, which are typically much
longer than the baud interval, it could be estimated locally by every receiver. Our design
approach, as described in this chapter, is to adapt the decoding metric in each
communication link according to the estimated jammer parameters in order to

effectively combat the prevailing interference characteristic.

6.2 System Model

As described in Section 5.1, frequency hopping, NC/BFSK, interleaving,
antenna diversity, and channel coding are parts of the SFH/CDMA transceiver
architecture. In this chapter, we model the transmission channel with Rayleigh fading
and bi-level partial-band noise jamming, which generalizes the metric formulation
problem to various fading statistics. This model is complex enough to represent realistic
channel conditions encountered in SFH/CDMA systems; at the same time, it is simple
enough to allow the cutoff analysis to be tractable mathematically. Although we carry
out the analysis for a system with only one antenna, the results can be easily extended

to multiple antenna diversity with slight modifications.
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6.2.1 Interference Model

We assume that the multiple-access interference in the SFH/CDMA system can
be modeled as a bi-level partial-band noise jammer. The model also take into account
the background thermal noise in the receiver front-end. The jammer model consists of

two states 0 and 1 with corresponding interference pOWefs, Nﬁnd . When the state

of the channel, denoted tzy , is O (or 1), each symbol transmitted over the channel will

undergo flat fading as well as perturbation by AWGN with varia‘n\Re Ngqr ). There

is a probabilityp that the channel will be in state 1 and a probability-ep that the
channel will be in state 0.

The bi-level partial-band noise jammer model is particularly well-suited for
modeling the impairments arising from interference and thermal noise in the reverse-
link of single-cell type systems [22]. The interference in single-cell type systems are
caused by adjacent channels spectral spillage. Under power-control, the average
received powers from different portable transmitters in the same cell will be
approximately equal at the base-station. In this chapter, we will focus on demonstrating
the advantage of an adaptive decoding metric in a partial-band noise jamming

environment.

6.2.2 Receiver Model

The conventional non-coherent square-law detector for BFSK has the form
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shown in Figure 6-2:
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Figure 6-2 Conventional non-coherent square-law detector for BFSK.
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The detector output consists of
y = (e, &) (6.1)
wheree, is the output of the i-th frequency energy detector. We denote the modulation

symbol by x [0 {0, 1} , wherex = i corresponds to the i-th frequency tone being
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transmitted.

We assume that the sequence of BFSK signals is transmitted over a slowly
varying Rayleigh fading channel in the presence of a bi-level partial-band noise
jammer. Consider a CW signal 8f seconds duration at frequagcy  with amplitude
a and phase . The channel impairments include white Gaussianmtjise of double-

sided power spectral densily,/2  and a bi-level partial-band jam(ter of double-
sided power spectral densltyjo/z aNqil/Z , The received sighgal is modeled as:
r(t) = asin(wyt + @) + n(t) +i(t) 0<t<sT (6.2)

To simplify the analysis, we can combine the effect of thermal noise and the
partial-band noise jammer. In other words, the power spectral density of the partial-
band jammer is increased to account for the effect of white noise.

Without loss of generality, assuming that= 0 , the statistics at the output of

the energy detectors are given by:

Plepf{>=0,2}) = =——e E* ™ 6.3)

jz
_ _ 1 N
p(e;|{x=0,2}) = ——e " (6.4)
N,

where E = (1/2)E[a] is the average energy per BFSK signal and the channel state
z is equal to O with probabilityp and 1 with probabiliy—p . Thus, in a Rayleigh
fading with a partial-band noise jammer, the detector output statistics are exponentially
distributed.

Another parameterf , is used in the bi-level partial-band jammer model to
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parameterize the difference in the power spectral density between the two channel

states. We define:

Vjo = NTOf Nj, = %_pf‘ (6.5)
wheref [J[0,1] represents the fraction of the average noise power concentrated in
channel state 0. Note that settihg= 1  will result in an on-off partial-band jammer
model since all the noise power will be concentrated in the jammer on state.
Futhermore, it can be observed that lettihng- 1/ 2 e 1/2 will result in a

broadband noise jammer model, which is more commonly known as the Rayleigh

fading channel.

6.2.3 Diversity and Coding

The common definition of ah  -th order diversity system is that the transmitter
sends replicas of each data bit oMer independent channels. With all diversity-
combining techniques, including error control coding (a form of time-diversity), the
final decision statistic is formed by taking a weighted sum of the square-law detector

output for the sequence of transmitted signals corresponding to each data bit. That is,
L
9, = Z w(2)e, | =01 (6.6)
k=1
whereeg), is the energy of the I-th tone in the k-th channel signal intervairg(z) is
a weighting factor that depends on the k-th channel state. For example, without any

knowledge of the channel state, the weight factors are all equal to a constant value and

the resulting sum is the basis for the well-known square-law combining metric. In
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practice, there might be some post processing on the detector output; hence, we rewrite

(6.27) as

L
d = z W (2 M( Vi %) (6.7)
k=1
wherem(y, ¥ denotes the post-processing function or the metric. For example, for hard

decision decoding, the maximum-likelihood metric is:

El ex2 e)“(
0
%b eX< €

whereX £ x . Ifx is a binary digitx is the complementxof

m(y, Y = (6.8)

6.3 Performance Analysis

In this section, we consider the error probability of convolutional codes decoded
using various metrics. In most cases, the analysis is based on the transfer function
bound using exact pairwise error probability. The Chernoff bound, which is easier to
compute, is used in some cases.

The bit error probability of rat&/n  convolutional codes is bounded by:
Po< 3 BAPLd) (6.9)
d= dfree
where 3(d) is the number of information symbol errors in two paths separated in
distance byd , and,(d) is the pairwise error probability between two paths separated

in distance byd d;.. is the minimum free distance of the code. NoticeRhl) is
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just the error probability of a repetition code of lendth

When the exact pairwise error probability is hard to obtain, we may use the

Chernoff bound to upperbound the solution. The Chernoff bound is given by:
P,(d) < D4 (6.10)
where the Chernoff parameter is defined by

D = anaox E{ expA(M(y, X2 —m(y, X;2))[X} |5 2 « (6.11)

Herem(y, X;2) is the metric corresponding to symbol given that is the received
vector and the side-informationis

The Chernoff parameter is directly related to the cutoff rate. For binary

modulation, the cutoff rate is defined as:

Ry = 1-logy(1+D) (6.12)

Next we present the performance analysis for the following metrics: hard
decision metric, erasure and error metric, soft decision metric (with and without

channel state information), and (non-adaptive and adaptive) quantized metric.

6.3.1 Hard Decision Decoding

The first system we consider makes hard decisions on each of the diversity
transmissions by deciding that the symbol corresponding to the larger energy was sent.
The hard decision metric is given mathematically by (6.8).

Without channel state information, the pairwise error probability can be

approximated by:
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d
5 [itpo-or
i=0

p(d) = i (6.13)

| . .
> 3 Hbia-py B - p]
i=0 k= ki
wherek, = maxQ[(d+1)/2]-j) .p; and, are the cross-over probability of the
BSC, one for each corresponding channel state.

(6.13) can be combined with (6.9) to produce an upperbound on the bit error rate

performance of the system with hard decision decoding.

6.3.2 VRT Erasure and Error Decoding

Viterbi ratio thresholding erasure and error (VRT E&X) decoding is considered
an effective method to improve the code performance. In this system, the detector

output is mapped to a ternary symbol, -1, 1 and 0 as follows:

E 1 e, > 0e;

my,x =g 0 € < &< 08¢ (6.14)
Ul
0 -1 Oe, < e

wheref , called the energy erasure threshold, is some value greater than one. In essence,
the detector erases unreliable symbols (i.e. mapping it to the 0 value) by a ratio
threshold test. Analysis by Viterbi [40] shows that the receiver designed with an
appropriate choice @ is robustin the sense that does not need to be re-adjusted for
different jamming environments or system parameters.

Denote the probabilities of making correct and erroneous decisions for the

resulting coding channel bp. anp, respectively. We can compy(é|z) and
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P«(6]2) as functions of the thresholtl and the channel state . phen 1—p.—p,

can be used to determipg(6]|z) . The results are:

(BN, +1)
p(6l2) = (E/N+1)+8 (6.15)
p612) = L (6.16)

(E/N,+1)6+1

The Viterbi decoder that ignores the erased positions and minimizes Hamming
distance among the non-erased positions is the maximum likelihood decoder. Hence,
the Chernoff bound reduces to the Bhattacharayya bound. For a broadband noise
jammer, the Chernoff parameter, which is a function of éhe , is given in [46]. Here
when we extended the result to a bi-level partial-band jammer, the Chernoff parameter

IS given by:

8]0) -2 6]0)p.(6]0
o) = PO -2/RLBIP P+ 617

[p(812) —2,/pe(6]1) p(B]1)] (1 -p)

The optimal value of the erasure threshold should minimize the Chernoff parameter.
Although (6.17) can be substituted into the Union-Chernoff bound (6.10) to

obtain an upperbound on decoded bit error probability for erasure and error decoding,

the bound is not particularly tight for all values pf ahd . We have therefore derived

a tighter bound by using the pairwise error probability given by:
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2 [Fra-ore

d, d—d,

Pod) = 5 3 {E’jlﬂpxo(l P B pn(1-p )%k (6.18)
I=0m=0
dll d22 |j:| |jj
> Y GyEPh(1-pe) ™ Pk (1 pcl)dzz"‘}]
i=0k= kn

whered;; = d; -1 ,d,, = d,—m andk, = maxQ[(d—1-m+1)/2]-]) Py
and p,, are shorthands for the conditional probabilitige(6]0) an®d|1) :
respectively. Similarlyp,y, Po Pe; ang,; are shorthands for the corresponding

conditional probabilities.

6.3.3 Soft Decision Decoding

6.3.3.1 No CSlI

In this system, the unquantized detector output is fed directly to the Viterbi
decoder. Without additional channel state information, the square-law combining

metric is used in the decoder. That is,
z ek | = 1,2 (6.19)
=1

It is well-known that this metric is optimum for a Rayleigh fading channel with a
broadband noise jammer. For the Rayleigh fading channel, the error probability
expression is given in [29].

To facilitate the derivations of the exact pair-wise error probability for a bi-level

partial-band jammer, instead of a broadband noise jammer, we first derive the
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conditional pdf of the decision statisticg, | = 1,2 . The condition is that given the
number of transmitted symbols in the sequenceiis m, +m, m, symbols have
been transmitted over the O-state channel@pd  symbols in the 1-state channel. The

pdf of y, can be written as:

p(y) = 11 .2 (6.20)
0 [ +s-1
2. M (L1)sI(m,+ 5—2)! 0 1 @ s o
iz e .z
zzlszl(s—l)!(mz—s)!(mz—l)!Di_iD Y
Lo, , 0,0

whereo, , depends on the channel parameters. The derivation of (6.20) is included in

Appendix B.

Assuming thatx, = 0 for(k , we can show thaw, , = E+ N;, and
0y, = Nj,. The probability of errorp,(m) can be found by first calculating the

conditional probability of erromp,(m|m,, m,)

00 00

p,(Mjmy, my) = Pr{y,>y;|m;, my] = j j P(Yy, Yo) dy,dy,
Oy,

00 00

= J’ J’ P(Y,) p(yy)dy,dy.
Oy,

(6.21)
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The double integration can be simplified to:

o 1 dwg 1 e,

py(m|my, my) = Qj1, 102, - mjl, 202, M (6.22)
2 m g2 ™ 1 1 0
S S @90y ¥ [k ozm-sm-tg Lo )]0
z=1s=1 ==
where
O gm+s-1
_ (-1)s-i(my+s-2)) O 1 O 6.03
“(@9 = GoDmohi(m-DinL 1 - (6.23)
Lo; , o050
and
Com (n+ m—r)!
=(mnah = z (m_.r)]ar+1(a+ b)n+n;—r+1 (6.24)
r=0
Averagingp,(m|m,;, m,) over the probability density of the conditioning event
results in

pom) = 3 I (1—p)™=py(mli, m—i) (6.25)
i=0

(6.25) can be combined with (6.9) to produce an upperbound on the bit error rate
performance of the system with soft decision decoding. The above bound is much

tighter than the one derived using the Chernoff parameter from [37].

6.3.3.2 Weighted Soft Decision Metric, Perfect CSI

We consider two systems that have different perfect channel state information

(CSI). The first system has perfect knowledge of the jammer power spectral densities
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and the jammer state, i®,,/2 N;;/2 amd .We denoted the CSlin the first system

by the vectod . The second system has perfect knowledge of the channel fade level,
in addition toJ . In both systems, the available channel state information is used to
improve the decoding process.

The ML metric for the first system with the CSI, , can be shown to be [1]

E

m(y, ¥J) = —————e (6.26)
N, (E+Nj) *
Using (6.27) the final decision statistics can be written as:
L
9 = z w(2)e, (6.27)
k=1
where
W (2 = E (6.28)

NZZ(E + NZZ)

To derive the pair-wise error probability for the first system, we note that the
weighting factors in (6.27) scale the detector output statistics in the summation. It can

be shown that formula (6.25) can still be used to deterrRis(d) for this system after
a slight modifications of the parameters, , aod , . More specifically, the

parameters should be changed to:
E/N d %L + ———NjZD_l (6.29)
0,, = _ando, , = — :
1,z jz 2,z E ]

Thus, an upperbound on the bit error rate performance of the first system with
weighted soft decision decoding can be easily obtained.

The ML metric for the second system with C&l ahd can be shown to be
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[21]:

20,5 (6.30

1Z

m(y, x| J, a) = In(l o

For high SNR, this highly nonlinear metric can be approximated by:

20, /e (6.31)

m(y, x|J, a) = N
0

The bit error rate performance of this system is difficult to analyze, so we have

used Monte Carlo simulation to obtain its performance.

6.3.3.3 Weighted Soft Decision Metric, Imperfect CSI

In practical systems, CSl is not directly known by the receiver but CSI can be
obtained by application of maximum-likelihood or suboptimal estimation techniques.
Estimation procedures produce imperfect CSI, and so the performance of decoding
metrics developed for ideal CSI will suffer some degradation in practice. The amount
of degradation depends on the quality of the CSI estimates.

For a NC-BFSK receiver, the channel state information can be estimated by
using only the output of energy detector. For NC-BFSK signaling with square-law
detection, the signal power for a slot can be estimated by accumulating the larger
decision variableg, , for each received symbol in the slot. This involves hard decision
demodulation and is a feature of decision-directed estimation. For an orthogonal
signaling scheme such as NC-BFSK, one way to form an estimate of the noise (or
interference) power for a slot is to accumulate the smaller decision varé}ble, , in the
slot. The quality of the signal power and noise power estimates depends on the sample
size of the estimator, which is equal to the number of symbols per slot.

To model the CSI estimation errors, we assumes a high SNR situation in which
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most of the demodulator decisions are correct. The estimates of the actual weight
factors, {w,(2)} , are denoted byw, (2} , wheig(0) ang(1) are random
variables. To determine the degradation due to imperfect estimates, we developed a
simulation to perform perturbation analysis. The simulation models the random nature
of {W, (2} inthe weighted soft decision decoding metric. The simulation results will

be discussed in Section 6.4.

6.3.4 Quantized Metric (Single Quantization Interval)

We consider three slightly different quantized decoding metrics. For the first
metric, called a linearly quantized metric (LQ metric), each sampled energy detector
output is uniformly quantized into one @f levels. That is,

0 0<, /e <V

1 v, /6,<2v
Y, = " " m=1,2 (6.32)
q-1 (g-1)v<,[e,<qv

q qvs /&,

One way to optimize the quantization interval is through the Chernoff

|
1O00O00O0000000c

parameter. For example, when the metm€y, ¥ =y, ,is used, the coding parameter

below is minimized to obtain the optimum quantization interval:

! 0 me N
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where

pi(k| Vv, = g K2/ 202 _ o~(k+1)2v?/ 20}

p(q|V, 9 = e &V/20f (6.34)
and
N. i=0
207 = 0 Nz | 635
% + NJZ 1 =1

For the second metric, C3l is assumed to be available at the receiver and the
sampled detector output is multiplied by a weighting factor before quantization. The
weighting factors are given in (6.28). This metric is referred to as the weight adaptive
quantized (WAQ) metric. Optimization of the quantization interval for the WAQ metric

can also be found by minimizing the coding parameter (6.33) with the following new

definitions for2c? :

%HN_JzD‘l i=0
202 = = (6.36)

6.3.5 Quantized Metric (Multiple Quantization Intervals)

We will show that the LQ metric can be improved significantly by using two
different quantization intervals, one for each channel state. The quantization intervals

are optimized through the coding parameter given by:

i - 02 ) ank —iAp. (i [
Jmino > p(z)ﬁz e po(K| v, z)%z eI py(j v, Z)[ (6.37)
z=0 =0 =0

wherev = |:VO VJ is a vector of two elements. Each element represents a quantization
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interval for the corresponding channel state. (6.37) is just a generalization of (6.32). It
can be expected that selecting one or two quantization intervals involves a trade-off
between receiver complexity and code performance. We name this third quantized
metric the interval adaptive metric (IAQ).

Similar to the other coding parameters, (6.33) and (6.37) can be substituted into
the Union-Chernoff bound (6.10) to obtain upperbounds on decoded bit error

probability for the corresponding quantized decoding metrics.

6.4 Numerical Results and Discussion

In this section, numerical results are given for the metrics considered in this
chapter for two types of channels, namely the Rayleigh fading with broadband noise
jammer channel and the Rayleigh fading with bi-level partial-band noise jammer
channel. The code we consider is the rate-1/2, constraint length 6, binary convolutional
codes. For the region of interest, the union bounds on bit error probability can be closely

approximated by the first five or six terms in the summation.

6.4.1 Rayleigh Fading Channel

The error probability analysis of the hard and soft decision metric for this
channel is presented in [29]. Here we start with error probability analysis for the VRT

E&X metric. A numerical optimization program is used to determine the optimum
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erasure threshold through the Chernoff bound parameter. The top graph in Figure 6-3
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Figure 6-3 The optimum threshold and cutoff rate vs. SNR per bit for a binary
coded system over the Rayleigh fading channel.

shows the optimum threshold as a function of #g'N, for the Rayleigh fading
channel. It shows that the optimum threshold increaseg bl , increases. Intuitively,

this says that as the channel becomes more reliable, the rate of declaring erasures should
be reduced. Other results show that the system performance is not very sensitive to the
setting of the threshold value and is quite robust against variations in SNR. The results

also indicate that for a rate-1/2 code, the optimum threshold should be approximately
2.75 and the requirell,/N, to achieve low decoded BER is approximately 14 dB.

These results have been confirmed by simulation results shown in the next figure.
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What is the comparative performance of different metrics? Figure 6-4 shows the

100 (hard, theory)
(E&X, theory)
C—{(soft, theory)
[>(hard, sim)
10-1 , A\ (E&X, sim)
<](soft, sim)
q-:\\ | R L soft w/ CSlI, sim)
' N
10-2 =>s : \.—.‘
2 T\ N
TN\ AN
; \‘fs T~ ~N
10-3 = : '1L S
-] \\\ L} \\\
10-4 B \,
\\
8.0 10.0 12.0 14.0 16.0 18.0 20.0

Eb/No

Figure 6-4 Coding gain comparison of four different metrics for L=6, k=1, n=2
convolutional code over the Rayleigh fading channel.

analytical and simulation BER VE,;/ N,  curves for four different decoding metrics for
the Rayleigh fading channel. Note that the simulation and theoretical results are in close
agreement. As for the SNR requiremeni8t3  , one can observe that the gain of E&X
decoding over hard decision decoding is approximately 1 dB. The gain of soft decision
decoding over hard decision decoding is approximately 5 dB. The soft metric with CSI,
a andJ , improves the coding gain by another 0.5 dB over the soft metric without CSI.

How many bits are required for the LQ metric to approach the performance of
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soft decision decoding? Figure 6-5 shows the optimum quantization interval and the
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Figure 6-5 The optimum quantization interval and the corresponding cutoff rate
vs. SNR for a binary coded system over a Rayleigh fading channel. (for 3 different
number of quantization bits)

cutoff rate vs. SNR for the linearly quantized (LQ) metric with different number of

quantization bits. To obtain the cutoff rate performance for this system, (6.33) is

minimized with a numerical optimization program. The average received symbol

energy was normalized to one in the optimization program. At rate 1/2, the difference

in the SNR requirements for 2-bit and 3-bit quantization is about 0.5 dB and the

difference between 3-bit and 4-bit quantization is negligible. Thus, the results show

that, for the Rayleigh fading channel, three-bit quantization is sufficient to obtain most

of the performance benefit of infinite precision soft decision decoding.
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Figure 6-6 shows the performance for LQ decoding metrics in comparison to
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Figure 6-6 Coding gain comparison of four different metrics for L=6, k=1, n=2
convolutional code over the Rayleigh fading channel.

other decoding metrics. Note that the simulation and theoretical results for the LQ

metric are in close agreement. A0 |, the coding gain of 2-bit LQ metric decoding
over E&X decoding is approximately 2 dB and the gain of soft decision decoding over

3-bit LQ metric decoding is approximately 1 dB.
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6.4.2 Rayleigh Fading, Bi-Level Partial-Band Jammer Channel

For the Rayleigh fading, bi-level partial-band jammer channel, Figure 6-7
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2500 5.0 10.0 15.0 20.0
Eb/No (dB)
0.80
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Figure 6-7 The optimum threshold and cutoff rate vs. SNR per bit for a binary
coded system in a Rayleigh fading, bi-level partial-band jammer chapreel (

0.25, f=0.90).

shows the optimum threshold as a function of B

N, . The results show that the

optimum threshold increases ds,/N, increases. The optimum threshold is

approximately 3.4 and the requirgg/N,  to achieve low BER is approximately 10 dB.
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Figure 6-8 shows the analytical and simulation BEREg.N curves for three
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Figure 6-8 Coding gain comparison of three metrics using L=6, k=1, n=2
convolutional code over Rayleigh fading, bi-level partial-band jammer channel
(p = 0.25, f=0.90).

different decoding metrics for the Rayleigh fading, bi-level partial-band noise jammer

channel. Considering the SNR requirement1at3 , we see that the gain of E&X
decoding over hard decision decoding is approximately 2 dB. And the gain of soft
decision decoding over hard decision decoding is approximately 1 dB. Compared to the
previous result for the Rayleigh fading channel, we see that soft decision decoding
without CSI is more effective than E&X decoding against broadband noise but E&X
decoding is more effective against narrowband noise than soft decision decoding
without CSI. The soft metric with CS , improves the coding gain by 5.5 dB over the
E&X metric. This shows that using CSl in the decoding metric is more important when

the channel noise characteristic is time-varying.
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In a practical system perfect CSI is unavailable. However, the noise variance
and bit energy could be estimated using the detector outputs as described in the previous
section. With this type of estimator, the channel parameter estimafes, E and  are Chi-

Square distributed. The variance of the Chi-Square distribution dependds on , the
number of independent samples in the estimator. Figure 6-9 illustrates the performance

degradation for the weighted soft metric due to the imperfect channel parameter

estimation.
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(softw/ Im. CSI, N=4) +—
C—LJ(soft w/ Im. CSI, N=16) |
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\
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Figure 6-9 Comparison of weighted soft metrics with perfect CSI and imperfect
CSI decoding for L=6, k=1, n=2 convolutional code for Rayleigh faded, bi-level
partial-band jammer channe € 0.25, f=0.90).

The data shows that although the unreliable channel state estimates does

degrade the performance of the weighted soft metric, a relatively small number (N=16)
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suffices for good decision quality, which results in loss of less than 1 dB-&t BER.
Even with only two samples per estimate, the weighted soft metric with imperfect CSI
still performs better than the E&X metric.

Next, we present numerical result for the different quantized metric. Figure 6-
10 shows the cutoff rates for three different quantized metrics. To obtain these cutoff
rates, we also found the optimum quantization intervals. Figure 6-11 shows the
optimum quantization intervals for the IAQ metric and Figure 6-12 shows the optimum
quantization interval for the WAQ and LQ metrics. The cutoff rate for E&X metric is
included for comparison. At rate one-half, the data show that the E&X metric has 1.5
dB better coding gain than the 2-bit LQ metric. The data also indicate that the two
adaptive quantized metrics have similar performance and both have 2 dB better coding
gain than the E&X metric. The fact that the two adaptive quantized metrics are
equivalent in performance is interesting. The results from cutoff rate analysis and
simulation seems to imply that the interval adaptive quantized metric can be
transformed to any other decoding metrics by simply changing the quantization interval

and the number of quantization bits of the IAQ metric.
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Figure 6-10 Cutoff rate vs. SNR per bit for quantized metric decode NC-
BFSK system over Rayleigh fading bi-level, partial-band jammer chapnel (
= 0.25, f=0.90).
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Figure 6-11 Optimum quantization interval vs. SNR per bit for IAQ metric
decode NC-BFSK system over Rayleigh fading bi-level, partial-band jammer
channel p = 0.25, =0.90).
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Figure 6-12 Optimum quantization interval vs. SNR for two quantized metric
decoded NC-BFSK system over Rayleigh fading bi-level, partial-band jammer
channel ¢ = 0.25, f=0.90).

Although the two adaptive metrics give the same coding performance, their
implementation costs are different. Selecting which metric to implement in the receiver
requires an understanding of the trade-off in hardware complexity. The WAQ metric
requires a multiplier and a ROM to store the look-up table for the optimum quantization
intervals. The IAQ metric does not require a multiplier but does demand twice as much
memory for the look-up table since it uses two different quantization levels for each set
of channel parameters. In custom VLSI design, a ROM larger than a few hundred bits
would typically be more expensive than an 8-bit multiplier both in terms of area and in
terms of complexity. Considering the memory requirements in the two cases, we
believe that the WAQ metric would be less costly to implement.

It is known that the branch metric computation unit for pure soft decision
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decoding over Rayleigh fading channels consists of a uniform quantizer with fixed
thresholds and perhaps an automatic gain controller (AGC) to compensate for fading.
For the WAQ metric, the branch metric computation unit should consist of a uniform
guantizer with adjustable thresholds, a multiplier, a look-up table and some channel
parameter estimators, such as the SNR estimator. We note that the cost of implementing
channel estimation might be shared with the other units in the receiver that would
require channel measurements. Compared to the pure soft decoding metric, the
additional complexity for implementing an adaptive metric is not excessive if the look-
up table is relatively small. Next, we describe an adaptive algorithm for the WAQ

metric.

6.5 Adaptive Algorithm and Performance Results for

the WAQ metric

To adapt the WAQ metric, we can make use of a training sequence to determine
the characteristics of the channel. We assume that the pararheper& , N, and can

be reliably estimated during the channel probing phase. The estimated channel
parameters are used to index a look-up table, selecting the appropriate quantization
interval. The look-up table stores the optimum quantization interval pre-computed by
the cutoff rate analysis presented in Section 6.3.4. To track the channel, the channel
estimates can be periodically updated by using a decision-directed estimation scheme
based on the received data sequence.
In designing the look-up table, the size of the table should be minimized while

meeting some accuracy constraint. In essence, the look-up table is used to approximate

a multivariate function. From simulation and analysis, we determined that the error in
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generating the optimum quantization interval must be less than 20% in order to
guarantee that the BER performance degradation from using an approximated,
suboptimal threshold would be no greater than 20%. A 20% increase in BER
corresponds roughly to a SNR degradation of 1 dB.

As an example of how the look-up table should be designed and how the size of
the table can be computed, consider a bi-level partial-band jammer channel where
E,/ N, varies betweed0 andl5 dB. The look-up table contains byte-sized entries of
the optimum quantization intervals for discrete values of the tripigt N, f p, , ).Each
coordinate in the triplet represents one axis in a three dimensional domain. If the
accuracy criterion could be met by dividing each axis into ten uniformly spaced
segments, then the look-up table would require exactly one kilobyte of memory.

We now illustrate the benefit of using the weighted adaptive quantized metric
through our original motivational example given in Section 6.1. The performance of the
WAQ metric is compared to the other metrics shown in Figure 6-1. The optimum
thresholds for the WAQ metric with 16 quantization levels are stored in a small look-up
table. 16 levels was found to give performance sufficiently close to infinite precision
soft decision decoding. In this examplg,/N, &nd are fixed so that the look-up table
can be greatly simplified. The look-up table contains only 11 entries, each
corresponding to one value in the sequeipde {0, 0.1, 0.2 ..., 1.0} . As the channel
parametep changes slowly, the quantization interval and the weight coefficients of the

WAQ metric automatically adapts to the new channel condition. The rate of change is
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on the order of thousands of channel symbol intervals. Figure 6-13 shows that the
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Figure 6-13 Error probability for four different decoding metrics in a NC-
BFSK system over a Rayleigh fading and bi-level partial-band jammer channel
(f=0.90, Eb/N0o=13 dB).

system with WAQ metric can maintain 802  or lower BER for all . It shows
tremendous improvement over the E&X metric whre 1 and over the soft metric
whenp = 0.2. In general, the performance curve for the WAQ metric tracks the lower
envelope formed by the curves for the E&X and soft metrics. Thus, using the WAQ
metric results in significant performance improvement over the standard fixed metrics

over the range gb
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6.6 Summary

In summary, we analyzed the performance of conventional and new adaptive
decoding metrics with convolutional coding in a Rayleigh fading and bi-level partial-
band noise jammer channel and derived new tighter probability of error performance
bounds in some cases. More importantly, we showed that using the weighted adaptive
decoding metric for the Rayleigh fading, bi-level partial-band noise jammer channel
can improve the performance of convolutional codes significantly over using
conventional metrics. Based on the results from cutoff rate analysis and simulation, we
observed that the adaptive quantized metric could be made to perform like standard
fixed decoding metrics by setting the quantization interval and the number of
quantization bits of the adaptive metric to the appropriate values. Thus, the adaptive
metric combines the features of standard hard, soft and E&X metrics. A simple
algorithm for adapting the metric was given and its implementation was considered.

The result of the thesis should motivate the consideration of adaptive decoding
metric for other channels in which the potential performance gain may be much greater.
Improving the adaptation algorithm is another possible research area. For example, we
note that it might be possible to implement a supervised learning neural network
(SLNN) co-processor to learn the relationship between channel statistical information
and the optimum quantization interval [48]. Implementing a SLNN, rather than a
memory look-up table, to generate the optimum quantization interval function might
provide a more cost effective solution when confronted with highly variable

propagation conditions.
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Chapter 7

CONCLUSION

The purpose of this study is to develop and validate the system design
techniques proposed for the UCLA prototype low-power handheld transceiver. The
proposed architecture incorporates many advanced system techniques, such as antenna
diversity, slow frequency-hopped/code division multiple access (SFH/CDMA), channel
coding, and adaptive power control. Although these system techniques are developed
for a particular transceiver, the techniques are general enough to be applicable to other
commercial and military wireless communication applications. Our study focused on
the system tradeoff issues in distributed power control implementation, channel code
selection and adaptive decoding metric formulation.

Our study is restricted to the SFH/CDMA radio communication channel, in
which the principal impairments are signal strength fluctuations due to log-normal
shadowing and nonselective Rayleigh fading, and multiple access interference from
other radios. To achieve robust transmission and maximize capacity without resorting

to high transmitter power, the following advanced system techniques are used. Two
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antennas with receive branch diversity combining are employed to provide polarization/
space diversity. Frequency hopping combined with error-control coding is implemented
to provide both frequency and interferer diversity. Adaptive power control is used so
that the transmitted power required for reliable communication is minimized.

Our investigation has generated interesting conclusions and new results. Some
new results include the specification and validation of a distributed power control
scheme for SFH/CDMA systems, the determination of the sufficient transmit power
dynamic range to prevent significant system capacity loss and the development of
heuristic algorithms for reducing call dropping in a power controlled network with
dynamic power range restrictions. Another result is the development of a low-delay
channel coding scheme and the demonstration of the benefits of dual antenna diversity
in combination with coding. In addition, we formulated an adaptive metric that can
track variations in channel statistics, accommodating rapid changes in interference
levels, and designed a simple algorithm for adapting the metric to the changing channel
conditions. We have concluded that adapting the metric according to the channel
condition provides significant performance gain over standard fixed decoding metrics,
such as the soft decision and erasure and error decoding metrics.

Many questions emerge from our study of system issues for the wireless
transceiver. The result of our thesis should motivate the consideration of adaptive
decoding metric for other channels in which the potential performance gain may be
much greater. In general, the effect of mobility on system capacity needs to be
examined by incorporating more complex system models. For example, handoff issues
could be studied in conjunction with power control. Better propagation channel
modeling might be required to more accurately simulate microcellular environments.

The use of other modulation schemes might be considered to improve transmission
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throughput. Finally, we have not addressed the potential problem with strict time
synchronization requirements for FH/CDMA systems. This problem and many others
which we have not mentioned provide new research opportunities. At the present time,
numerous researchers have already begun answering some of these very important
guestions.

The research activities in wireless communication will continue to be strong for
the immediately forseeable future. For example, a major research program is currently
in progress at UCLA to develop a high-speed transceiver [32]. In this new project, low
power design is not a major objective and hence, more sophisticated system techniques,
such as adaptive beam forming and equalization, could be implemented to enable high-
speed communication. Although SFH/CDMA is employed in both the UCLA high-
speed and low-power transceiver projects, the merits of various multiple access
schemes for wireless personal communications are still the subject of considerable
dispute. The research on advanced communication techniques for building better

wireless personal systems will fuel this intense debate for years to come.
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Appendix A

Frequency Reuse with Latin-Squares

Here we consider combining frequency reuse with the latin-square construction
for multi-cell or multi-cluster systems. Suppose the reuse factor is one-third, then the
frequency spectrum is divided up into three disjoint subsets of subbands. These sets are

denoted by{ B;,0<1<2} antl iscalledthe reuse subsetindex. Each cell is assigned
a single reuse subsd, , which contains the frequency slots the users in that cell may

hop over. Furthermore, to eliminate adjacent channel interference, the bands of each
reuse subset are interleaved with bands of the other subsets. Figure A-1 shows how a 1/
3 reuse pattern can be imposed on a 19 cell network:

There are different ways to assign unique cell identification numbers, ,toeach
cell (clusters). We want the assignment to yield a simple formula for finding the
frequency slot number in each hop. By sequentially labeling the cells in each cluster as
in Figure A-1, we can obtaifi(a) , which give the reuse set index as a function of the

cell identification number:
@ = (a=1)modr (A1)

| will also be called the frequency offset because it determines the relative

position of the subbands of each reuse set in the system bandwidth.
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Figure A-1 19 Hexagonal Cell Layout (Frequency Reuse Factor of 1/3)
Consider the following example. Suppose the base-station number of the kth

user with mobile idm™ isa® , the frequency slot number in the ith hop will be given

by the following formula:

K

i = (MY —a®)meanxr +1@") (A.2)

The mobile id is given by

g .
Rie g it (Dmodr = (a*)moar
O
QO otherwise
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. The hopping

For example, consider a system with the parameter 8

patterns used for cells one through six is shown in Figure A-1. Rows with identical

shading in the hopping pattern matrix are from the same reuse set.

Base stations 4-6

Base Stations 1-3

o

LO

N~

N~

N~

-
uig Asuanbai4

Time Slot
Figure A-2 Hopping pattern by Latin-square construction (n

factor of 1/3)

8 and frequency reuse
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Appendix B

Derivation of the Exact Pair-wise Error
Probability

In this Appendix we derive the exact pair-wise error probability for soft decision
decoding over a Rayleigh fading, bi-level partial-band jammer channel. Without loss
of generality we consider the decision variables y; , conditioned on the event that
given the number of transmitted symbols in the sequenoe s m, + m, , where

symbols have been transmitted over the O-state channehand symbols in the 1-state

channely can be written as:
my m,
y = Z efp) + z e{?) (B.1)
k=1 =1
The characteristic function of the decision variaple is defined as:

m, D
> ei.”g} (B.2)

=1

W(s) = E[&] = E[exp(isézl elp) +
=1

Since {e{p), e{P)} are independent, (B.2) reduces to the product of the characteristic

functions raised to some powers. That is,
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whereo; , = E+ Nj, if an all zero sequence was transmitted.

After expansion of (B.3) by partial-fractions and taking the inverse fourier

transform, we obtain the pdf:

p(y) = EIRCRY: (B.4)
O [, +s-1
2 M (c1)sY(m, +5—2)! E 1 E o
4 e 1,z
ZleZl(s—1)!(mz—s)!(m2—1)!D 1 11 y
Ebl,z 01,2D

In general, the pdf foy, is given by (B.4).
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Appendix C

Glossary

C.1 List of Acronyms and Abbreviations

AMPS

AWGN

BER

CDMA

DECT

FCC

FDMA

FEC

FM

FSK

GSM

1S-54

IS-95

ISDN

Advanced Mobile Phone Service

Additive white Gaussian noise

Bit error rate

Code division multiple access

Digital European Cordless Telecommunications

Federal Communications Commission (U. S.)

Frequency division multiple access

Forward error correction (Channel coding)

Frequency modulation

Frequency shift keying

Groupe Spécial Mobile or Global System for Mobile Communication
Interim Standard 54 (TIA/EIA TDMA cellular standard, U. S.)
Interim Standard 95 (TIA/EIA CDMA cellular standard, U. S.)

Integrated Services Digital Network
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ISM

LAN

NCFSK

PBX

PCN

PCS

PDC

PSTN

SIR

SNR

TDMA

TIA

UCLA

Industrial, Scientific, and Medical (bands, devices)
Local area network

Non-coherent frequency shift keying

Private branch exchange

Personal Communications Network (Europe)
Personal Communications Services (U. S.)
Personal Digital Cellular (Japan)

Public Switched Telephone Network
Signal-to-interference ratio

Signal-to-noise ratio

Time division multiple access
Telecommunications Industry Association (U. S.)

University of California, Los Angeles

C.2 Definitions

Availability: The probability or fraction of time that a system is available for use.

Baud: The unit of symbol rate in modulation.

Bit error rate: The ratio of the number of bits incorrectly received to the total number
of bits transmitted.

BCH Codes: A large class of cyclic codes that include both binary and nonbinary
alphabets.

Block codes: A type of code in which blocks df information symbols are encoded
into corresponding block oh symbols >k ). Each block oh symbols
constitute a code word.
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Capacity: Maximum number of users a system can support.

Cellular Radio: A system in which a service area is divided into smaller areas, called
cells and portions of the radio spectrum may be shared by different cells.

Channel:  An allocation of the physical (frequency and time) resources of a
transmission medium for communications.

Channel coding: Adding controlled redundancy to the information sequence to
improve reliability of data transmitted through a noisy channel.

Coherent detection: Detection using a reference signal that is synchronized in
frequency and phase to the transmitted signal.

Convolutional codes: A type of code in which output sequence consists of a selected
set of linear combinations of the input sequence.

Code division multiple access: A way of sharing a common spectrum in which
signals from different transmitters are distinguished by a code known to the
intended receiver.

Dispersion: The spreading, separation or scatter of a waveform during transmission.
Distortion: Any departure from a specified input/output relationship.

Diversity: The reception of different versions of the same information, each with
independent fading levels.

Doppler: A shift in the observed frequency of a signal caused by variation in the path
lengths between the transmitter and receiver.

Fading: The variation of the intensity or relative phase of any frequency component of
areceived signal due to changes in the characteristics of the propagation path with
time.

Flat fading: Fading resulting in similar attenuation of all frequency components of
signal.

Frame: A set of consecutive time slots in which the position of each slot can be
identified in reference to the frame start time.

Frequency diversity: A transmission technique used to minimize the effects of fading
wherein the same information signal is transmitted and received simultaneously

128



on two or more independent carrier frequencies.

Frequency-hopping: A spread spectrum technique in which the available channel
bandwidth is subdivided into a large number of frequency slots. In any signaling
interval, the transmitted signal occupies one or more of the available frequency
slots.

Frequency-selective fading: Fading in which not all frequency components of the
received radio signal are attenuated equally.

Frequency-shift keying (FSK): A form of frequency modulation in which discrete
frequencies are used to represent a digital signal.

Hard decoding: The decoder operates on the hard decisions made by the demodulator.

Integrated services digital network (ISDN): An integrated digital network which can
establish connection for data and telephony services using the same transmission
equipment.

Interference: Undesired signals in the communication channel.

Interleaving: A method of spacing successive symbols of a given codeword at wide
intervals in time to overcome burst errors.

Medium: A substance regarded as the means of signal transmission.

Modulation: The process of varying certain characteristics of a carrier in accordance
with a message signal.

Multipath: The large set of propagation paths that the transmitted signal takes to the
receiver. The multiple paths could be caused by scattering.

Multipath fading: Fading that results when radio signals reach the receiving antenna
by two or more paths.

Multiple-Access A sharing scheme that enables dispersed users to simultaneously
access a common channel resource.

Network: An organization of terminals capable of intercommunication.
Noncoherent detection: Any form of detection that does not require a phase reference.

Outage: A condition wherein a user is deprived of service due to unavailability of the
communication system.
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Personal Communication ServicegPCS): For standard purposes, it is an umbrella
term to describe services and supporting systems that provide users with the
ability to communicate anytime, anywhere, and in any form.

Power Control: A technique employed to adjust the transmit power from every radio
link to the minimum level required for reliable transmission.

Quantization: A process in which the continuous range of values of a signal is divided
into nonoverlapping but not necessarily equal subranges and to each subrange a
discrete value of the output is uniquely assigned. Whenever the signal value falls
within a given subrange, the output has the corresponding discrete value.

Receiver: A device that converts signals used for transmission back to information
signals.

Reed Solomon CodesA class of non-binary block codes with good distance
properties.

Spread Spectrum: A signaling scheme in which the transmission bandwidth is much
greater than the information rate.

Soft decoding: The decoder uses the unquantized samples output from the
demodulator to recover the information sequence.

Transmitter: A device that converts information signal to electrical or optical signals
for transmission purposes.

Transceiver: A contraction of “transmitter/receiver” The term is used when a
communication device can both transmit and receive.

White noise: Noise whose frequency spectrum is uniform over a wide frequency band.

Wireless Communications: Covers approaches to communication without wires.
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